niaaml.classifiers
¶
-
class
niaaml.classifiers.
AdaBoost
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of AdaBoost classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting”, 1995.
- Documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
- See Also:
-
Name
= 'AdaBoost'¶
-
fit
(x, y, **kwargs)¶ Fit AdaBoost.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
Bagging
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of bagging classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
Breiman, “Bagging predictors”, Machine Learning, 24(2), 123-140, 1996.
- Documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
- See Also:
-
Name
= 'Bagging'¶
-
fit
(x, y, **kwargs)¶ Fit Bagging.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
Classifier
(**kwargs)¶ Bases:
niaaml.pipeline_component.PipelineComponent
Class for implementing classifiers.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- See Also:
niaaml.pipeline_component.PipelineComponent
-
fit
(x, y, **kwargs)¶ Fit implemented classifier.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
class
niaaml.classifiers.
ClassifierFactory
(**kwargs)¶ Bases:
niaaml.utilities.Factory
Class with string mappings to classifiers.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Attributes:
_entities (Dict[str, Classifier]): Mapping from strings to classifiers.
- See Also:
niaaml.utilities.Factory
-
class
niaaml.classifiers.
DecisionTree
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of decision tree classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and Regression Trees”, Wadsworth, Belmont, CA, 1984.
- Documentation:
- See Also:
-
Name
= 'Decision Tree Classifier'¶
-
fit
(x, y, **kwargs)¶ Fit DecisionTree.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
ExtremelyRandomizedTrees
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of extremely randomized trees classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.
- Documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
- See Also:
-
Name
= 'Extremely Randomized Trees'¶
-
fit
(x, y, **kwargs)¶ Fit ExtremelyRandomizedTrees.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
GaussianNB
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of gaussian Naive Bayes classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
Murphy, Kevin P. “Naive bayes classifiers.” University of British Columbia 18 (2006): 60.
- Documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
- See Also:
-
Name
= 'Gaussian Naive Bayes'¶
-
fit
(x, y, **kwargs)¶ Fit GaussianNB.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
GaussianProcess
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of gaussian process classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
Rasmussen, Carl Edward, and Hannes Nickisch. “Gaussian processes for machine learning (GPML) toolbox.” The Journal of Machine Learning Research 11 (2010): 3011-3015.
- Documentation:
- See Also:
-
Name
= 'Gaussian Process Classifier'¶
-
fit
(x, y, **kwargs)¶ Fit GaussianProcess.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
KNeighbors
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of k neighbors classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
“Neighbourhood Components Analysis”, J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov, Advances in Neural Information Processing Systems, Vol. 17, May 2005, pp. 513-520.
- Documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
- See Also:
-
Name
= 'K Neighbors Classifier'¶
-
fit
(x, y, **kwargs)¶ Fit KNeighbors.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
LinearSVC
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of linear support vector classification.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
Fan, Rong-En, et al. “LIBLINEAR: A library for large linear classification.” Journal of machine learning research 9.Aug (2008): 1871-1874.
- Documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
- See Also:
-
Name
= 'Linear Support Vector Classification'¶
-
fit
(x, y, **kwargs)¶ Fit LinearSVCClassifier.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
MultiLayerPerceptron
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of multi-layer perceptron classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
Glorot, Xavier, and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neural networks.” International Conference on Artificial Intelligence and Statistics. 2010.
- Documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
- See Also:
-
Name
= 'Multi Layer Perceptron'¶
-
fit
(x, y, **kwargs)¶ Fit MultiLayerPerceptron.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
QuadraticDiscriminantAnalysis
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of quadratic discriminant analysis classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
“The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., Section 4.3, p.106-119, 2008.
- Documentation:
- See Also:
-
Name
= 'Quadratic Discriminant Analysis'¶
-
fit
(x, y, **kwargs)¶ Fit QuadraticDiscriminantAnalysis.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.
-
class
niaaml.classifiers.
RandomForest
(**kwargs)¶ Bases:
niaaml.classifiers.classifier.Classifier
Implementation of random forest classifier.
- Date:
2020
- Author:
Luka Pečnik
- License:
MIT
- Reference:
Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.
- Documentation:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
- See Also:
-
Name
= 'Random Forest Classifier'¶
-
fit
(x, y, **kwargs)¶ Fit RandomForestClassifier.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify. y (pandas.core.series.Series): n classes of the samples in the x array.
- Returns:
None
-
predict
(x, **kwargs)¶ Predict class for each sample (row) in x.
- Arguments:
x (pandas.core.frame.DataFrame): n samples to classify.
- Returns:
pandas.core.series.Series: n predicted classes.
-
set_parameters
(**kwargs)¶ Set the parameters/arguments of the algorithm.
-
to_string
()¶ User friendly representation of the object.
- Returns:
str: User friendly representation of the object.