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Prefa
esWhen I tell people about my LibTom proje
ts and that I release them as publi
domain they are often puzzled. They ask why I did it and espe
ially why I
ontinue to work on them for free. The best I 
an explain it is \Be
ause I 
an."Whi
h seems odd and perhaps too terse for adult 
onversation. I often qualifyit with \I am able, I am willing." whi
h perhaps explains it better. I am the�rst to admit there is not anything that spe
ial with what I have done. Perhapsothers 
an see that too and then we would have a so
iety to be proud of. MyLibTom proje
ts are what I am doing to give ba
k to so
iety in the form of toolsand knowledge that 
an help others in their endeavours.I started writing this book be
ause it was the most logi
al task to further mygoal of open a
ademia. The LibTomMath sour
e 
ode itself was written to beeasy to follow and learn from. There are times, however, where pure C sour
e
ode does not explain the algorithms properly. Hen
e this book. The bookliterally starts with the foundation of the library and works itself outwards tothe more 
ompli
ated algorithms. The use of both pseudo{
ode and verbatimsour
e 
ode provides a duality of \theory" and \pra
ti
e" that the 
omputers
ien
e students of the world shall appre
iate. I never deviate too far fromrelatively straightforward algebra and I hope that this book 
an be a valuablelearning asset.This book and indeed mu
h of the LibTom proje
ts would not exist in their
urrent form if it was not for a plethora of kind people donating their time,resour
es and kind words to help support my work. Writing a text of signi�
antlength (along with the sour
e 
ode) is a tiresome and lengthy pro
ess. Currentlythe LibTom proje
t is four years old, 
omprises of literally thousands of usersand over 100,000 lines of sour
e 
ode, TeX and other material. People likeMads and Greg were there at the beginning to en
ourage me to work well. Itis amazing how timely validation from others 
an boost morale to 
ontinue theproje
t. De�nitely my parents were there for me by providing room and boardxiii



during the many months of work in 2003.To my many friends whom I have met through the years I thank you for thegood times and the words of en
ouragement. I hope I honour your kind gestureswith this proje
t.Open Sour
e. Open A
ademia. Open Minds. Tom St Denis



I found the opportunity to work with Tom appealing for several reasons, notonly 
ould I broaden my own horizons, but also 
ontribute to edu
ate othersfa
ing the problem of having to handle big number mathemati
al 
al
ulations.This book is Tom's 
hild and he has been 
aring and fostering the proje
tever sin
e the beginning with a 
lear mind of how he wanted the proje
t to turnout. I have helped by proofreading the text and we have had several dis
ussionsabout the layout and language used.I hold a masters degree in 
ryptography from the University of SouthernDenmark and have always been interested in the pra
ti
al aspe
ts of 
ryptog-raphy.Having worked in the se
urity 
onsultan
y business for several years in S~aoPaulo, Brazil, I have been in tou
h with a great deal of work in whi
h multiplepre
ision mathemati
s was needed. Understanding the possibilities for speedingup multiple pre
ision 
al
ulations is often very important sin
e we deal withoutdated ma
hine ar
hite
ture where modular redu
tions, for example, be
omepainfully slow.This text is for people who stop and wonder when �rst examining algorithmssu
h as RSA for the �rst time and asks themselves, \You tell me this is onlyse
ure for large numbers, �ne; but how do you implement these numbers?"Mads RasmussenS~ao Paulo - SPBrazil



It's all be
ause I broke my leg. That just happened to be at about thesame time that Tom asked for someone to review the se
tion of the book aboutKaratsuba multipli
ation. I was laid up, alone and immobile, and thought \Whynot?" I vaguely knew what Karatsuba multipli
ation was, but not really, so Ithought I 
ould help, learn, and stop myself from wat
hing daytime 
able TV,all at on
e.At the time of writing this, I've still not met Tom or Mads in meatspa
e. I'vebeen following Tom's progress sin
e his �rst splash on the s
i.
rypt Usenet newsgroup. I wat
hed him go from a 
lueless newbie, to the 
ryptographi
 equivalentof a reformed smoker, to a real 
ontributor to the �eld, over a period of abouttwo years. I've been impressed with his obvious intelligen
e, and astounded byhis produ
tivity. Of 
ourse, he's young enough to be my own 
hild, so he doesn'thave my problems with staying awake.When I reviewed that single se
tion of the book, in its very earliest form,I was very pleasantly surprised. So I de
ided to 
ollaborate more fully, and atleast review all of it, and perhaps write some bits too. There's still a long wayto go with it, and I have wat
hed a number of 
lose friends go through the millof publi
ation, so I think that the way to go is longer than Tom thinks it is.Nevertheless, it's a good e�ort, and I'm pleased to be involved with it.Greg Rose, Sydney, Australia, June 2003.



Chapter 1Introdu
tion1.1 Multiple Pre
ision Arithmeti
1.1.1 What is Multiple Pre
ision Arithmeti
?When we think of long-hand arithmeti
 su
h as addition or multipli
ation werarely 
onsider the fa
t that we instin
tively raise or lower the pre
ision of thenumbers we are dealing with. For example, in de
imal we almost immediate 
anreason that 7 times 6 is 42. However, 42 has two digits of pre
ision as opposedto one digit we started with. Further multipli
ations of say 3 result in a largerpre
ision result 126. In these few examples we have multiple pre
isions for thenumbers we are working with. Despite the various levels of pre
ision a singlesubset1 of algorithms 
an be designed to a

omodate them.By way of 
omparison a �xed or single pre
ision operation would lose pre-
ision on various operations. For example, in the de
imal system with �xedpre
ision 6 � 7 = 2.Essentially at the heart of 
omputer based multiple pre
ision arithmeti
 arethe same long-hand algorithms taught in s
hools to manually add, subtra
t,multiply and divide.1.1.2 The Need for Multiple Pre
ision Arithmeti
The most prevalent need for multiple pre
ision arithmeti
, often referred toas \bignum" math, is within the implementation of publi
-key 
ryptography1With the o

asional optimization. 1



2 CHAPTER 1. INTRODUCTIONalgorithms. Algorithms su
h as RSA [11℄ and DiÆe-Hellman [12℄ require integersof signi�
ant magnitude to resist known 
ryptanalyti
 atta
ks. For example, atthe time of this writing a typi
al RSA modulus would be at least greater than10309. However, modern programming languages su
h as ISO C [18℄ and Java[19℄ only provide instrinsi
 support for integers whi
h are relatively small andsingle pre
ision.Data Type Range
har �128 : : :127short �32768 : : :32767long �2147483648 : : :2147483647long long �9223372036854775808 : : :9223372036854775807Figure 1.1: Typi
al Data Types for the C Programming LanguageThe largest data type guaranteed to be provided by the ISO C programminglanguage2 
an only represent values up to 1019 as shown in �gure 1.1. On itsown the C language is insuÆ
ient to a

omodate the magnitude required forthe problem at hand. An RSA modulus of magnitude 1019 
ould be triviallyfa
tored3 on the average desktop 
omputer, rendering any proto
ol based onthe algorithm inse
ure. Multiple pre
ision algorithms solve this very problemby extending the range of representable integers while using single pre
isiondata types.Most advan
ements in fast multiple pre
ision arithmeti
 stem from the needfor faster and more eÆ
ient 
ryptographi
 primitives. Faster modular redu
tionand exponentiation algorithms su
h as Barrett's algorithm, whi
h have appearedin various 
ryptographi
 journals, 
an render algorithms su
h as RSA and DiÆe-Hellman more eÆ
ient. In fa
t, several major 
ompanies su
h as RSA Se
urity,Certi
om and Entrust have built entire produ
t lines on the implementationand deployment of eÆ
ient algorithms.However, 
ryptography is not the only �eld of study that 
an bene�t fromfast multiple pre
ision integer routines. Another auxiliary use of multiple pre-
ision integers is high pre
ision 
oating point data types. The basi
 IEEE [13℄standard 
oating point type is made up of an integer mantissa q, an exponente and a sign bit s. Numbers are given in the form n = q � be � �1s where b = 22As per the ISO C standard. However, ea
h 
ompiler vendor is allowed to augment thepre
ision as they see �t.3A Pollard-Rho fa
toring would take only 216 time.



1.1. MULTIPLE PRECISION ARITHMETIC 3is the most 
ommon base for IEEE. Sin
e IEEE 
oating point is meant to beimplemented in hardware the pre
ision of the mantissa is often fairly small (23,48 and 64 bits). The mantissa is merely an integer and a multiple pre
ision in-teger 
ould be used to 
reate a mantissa of mu
h larger pre
ision than hardwarealone 
an eÆ
iently support. This approa
h 
ould be useful where s
ienti�
appli
ations must minimize the total output error over long 
al
ulations.Yet another use for large integers is within arithmeti
 on polynomials of large
hara
teristi
 (i.e. GF (p)[x℄ for large p). In fa
t the library dis
ussed withinthis text has already been used to form a polynomial basis library4.1.1.3 Bene�ts of Multiple Pre
ision Arithmeti
The bene�t of multiple pre
ision representations over single or �xed pre
isionrepresentations is that no pre
ision is lost while representing the result of anoperation whi
h requires ex
ess pre
ision. For example, the produ
t of two n-bit integers requires at least 2n bits of pre
ision to be represented faithfully.A multiple pre
ision algorithm would augment the pre
ision of the destinationto a

omodate the result while a single pre
ision system would trun
ate ex
essbits to maintain a �xed level of pre
ision.It is possible to implement algorithms whi
h require large integers with �xedpre
ision algorithms. For example, ellipti
 
urve 
ryptography (ECC ) is oftenimplemented on smart
ards by �xing the pre
ision of the integers to the maxi-mum size the system will ever need. Su
h an approa
h 
an lead to vastly simpleralgorithms whi
h 
an a

omodate the integers required even if the host platform
annot natively a

omodate them5. However, as eÆ
ient as su
h an approa
hmay be, the resulting sour
e 
ode is not normally very 
exible. It 
annot, atruntime, a

omodate inputs of higher magnitude than the designer anti
ipated.Multiple pre
ision algorithms have the most overhead of any style of arith-meti
. For the the most part the overhead 
an be kept to a minimum with
areful planning, but overall, it is not well suited for most memory starved plat-forms. However, multiple pre
ision algorithms do o�er the most 
exibility interms of the magnitude of the inputs. That is, the same algorithms based onmultiple pre
ision integers 
an a

omodate any reasonable size input withoutthe designer's expli
it forethought. This leads to lower 
ost of ownership for the
ode as it only has to be written and tested on
e.4See http://poly.libtom
rypt.org for more details.5For example, the average smart
ard pro
essor has an 8 bit a

umulator.

http://poly.libtomcrypt.org


4 CHAPTER 1. INTRODUCTION1.2 Purpose of This TextThe purpose of this text is to instru
t the reader regarding how to implementeÆ
ient multiple pre
ision algorithms. That is to not only explain a limitedsubset of the 
ore theory behind the algorithms but also the various \housekeeping" elements that are negle
ted by authors of other texts on the subje
t.Several well reknowned texts [1, 2℄ give 
onsiderably detailed explanations ofthe theoreti
al aspe
ts of algorithms and often very little information regardingthe pra
ti
al implementation aspe
ts.In most 
ases how an algorithm is explained and how it is a
tually imple-mented are two very di�erent 
on
epts. For example, the Handbook of AppliedCryptography (HAC ), algorithm 14.7 on page 594, gives a relatively simplealgorithm for performing multiple pre
ision integer addition. However, the de-s
ription la
ks any dis
ussion 
on
erning the fa
t that the two integer inputsmay be of di�ering magnitudes. As a result the implementation is not as simpleas the text would lead people to believe. Similarly the division routine (al-gorithm 14.20, pp. 598 ) does not dis
uss how to handle sign or handle thedividend's de
reasing magnitude in the main loop (step #3 ).Both texts also do not dis
uss several key optimal algorithms required su
has \Comba" and Karatsuba multipliers and fast modular inversion, whi
h we
onsider pra
ti
al oversights. These optimal algorithms are vital to a
hieve anyform of useful performan
e in non-trivial appli
ations.To solve this problem the fo
us of this text is on the pra
ti
al aspe
ts of im-plementing a multiple pre
ision integer pa
kage. As a 
ase study the \LibTom-Math"6 pa
kage is used to demonstrate algorithms with real implementations7that have been �eld tested and work very well. The LibTomMath library isfreely available on the Internet for all uses and this text dis
usses a very largeportion of the inner workings of the library.The algorithms that are presented will always in
lude at least one \pseudo-
ode" des
ription followed by the a
tual C sour
e 
ode that implements thealgorithm. The pseudo-
ode 
an be used to implement the same algorithm inother programming languages as the reader sees �t.This text shall also serve as a walkthrough of the 
reation of multiple pre
i-sion algorithms from s
rat
h. Showing the reader how the algorithms �t togetheras well as where to start on various taskings.6Available at http://math.libtom
rypt.
om7In the ISO C programming language.

http://math.libtomcrypt.com


1.3. DISCUSSION AND NOTATION 51.3 Dis
ussion and Notation1.3.1 NotationAmultiple pre
ision integer of n-digits shall be denoted as x = (xn�1; : : : ; x1; x0)�and represent the integer x �Pn�1i=0 xi�i. The elements of the array x are saidto be the radix � digits of the integer. For example, x = (1; 2; 3)10 wouldrepresent the integer 1 � 102 + 2 � 101 + 3 � 100 = 123.The term \mp int" shall refer to a 
omposite stru
ture whi
h 
ontains thedigits of the integer it represents, as well as auxilary data required to manipulatethe data. These additional members are dis
ussed further in se
tion 2.2.1. Forthe purposes of this text a \multiple pre
ision integer" and an \mp int" areassumed to be synonymous. When an algorithm is spe
i�ed to a

ept an mp intvariable it is assumed the various auxliary data members are present as well.An expression of the type variablename.item implies that it should evaluate tothe member named \item" of the variable. For example, a string of 
hara
tersmay have a member \length" whi
h would evaluate to the number of 
hara
tersin the string. If the string a equals \hello" then it follows that a:length = 5.For 
ertain dis
ussions more generi
 algorithms are presented to help thereader understand the �nal algorithm used to solve a given problem. When analgorithm is des
ribed as a

epting an integer input it is assumed the input is aplain integer with no additional multiple-pre
ision members. That is, algorithmsthat use integers as opposed to mp ints as inputs do not 
on
ern themselveswith the housekeeping operations required su
h as memory management. Thesealgorithms will be used to establish the relevant theory whi
h will subsequentlybe used to des
ribe a multiple pre
ision algorithm to solve the same problem.1.3.2 Pre
ision NotationThe variable � represents the radix of a single digit of a multiple pre
isioninteger and must be of the form qp for q; p 2 Z+. A single pre
ision variablemust be able to represent integers in the range 0 � x < q� while a doublepre
ision variable must be able to represent integers in the range 0 � x < q�2.The extra radix-q fa
tor allows additions and subtra
tions to pro
eed withouttrun
ation of the 
arry. Sin
e all modern 
omputers are binary, it is assumedthat q is two.Within the sour
e 
ode that will be presented for ea
h algorithm, the datatypemp digit will represent a single pre
ision integer type, while, the data typemp word will represent a double pre
ision integer type. In several algorithms



6 CHAPTER 1. INTRODUCTION(notably the Comba routines) temporary results will be stored in arrays ofdouble pre
ision mp words. For the purposes of this text xj will refer to thej'th digit of a single pre
ision array and x̂j will refer to the j'th digit of adouble pre
ision array. Whenever an expression is to be assigned to a doublepre
ision variable it is assumed that all single pre
ision variables are promotedto double pre
ision during the evaluation. Expressions that are assigned to asingle pre
ision variable are trun
ated to �t within the pre
ision of a singlepre
ision data type.For example, if � = 102 a single pre
ision data type may represent a value inthe range 0 � x < 103, while a double pre
ision data type may represent a valuein the range 0 � x < 105. Let a = 23 and b = 49 represent two single pre
isionvariables. The single pre
ision produ
t shall be written as 
  a � b while thedouble pre
ision produ
t shall be written as 
̂  a � b. In this parti
ular 
ase,
̂ = 1127 and 
 = 127. The most signi�
ant digit of the produ
t would not �tin a single pre
ision data type and as a result 
 6= 
̂.1.3.3 Algorithm Inputs and OutputsWithin the algorithm des
riptions all variables are assumed to be s
alars ofeither single or double pre
ision as indi
ated. The only ex
eption to this ruleis when variables have been indi
ated to be of type mp int. This distin
tion isimportant as s
alars are often used as array indi
ies and various other 
ounters.1.3.4 Mathemati
al ExpressionsThe b 
 bra
kets imply an expression trun
ated to an integer not greater thanthe expression itself. For example, b5:7
 = 5. Similarly the d e bra
kets implyan expression rounded to an integer not less than the expression itself. Forexample, d5:1e = 6. Typi
ally when the = division symbol is used the intentionis to perform an integer division with trun
ation. For example, 5=2 = 2 whi
hwill often be written as b5=2
 = 2 for 
larity. When an expression is written asa fra
tion a real value division is implied, for example 52 = 2:5.The norm of a multiple pre
ision integer, for example jjxjj, will be used torepresent the number of digits in the representation of the integer. For example,jj123jj = 3 and jj79452jj = 5.



1.4. EXERCISES 71.3.5 Work E�ortTo measure the eÆ
ien
y of the spe
i�ed algorithms, a modi�ed big-Oh notationis used. In this system all single pre
ision operations are 
onsidered to have thesame 
ost8. That is a single pre
ision addition, multipli
ation and division areassumed to take the same time to 
omplete. While this is generally not true inpra
ti
e, it will simplify the dis
ussions 
onsiderably.Some algorithms have slight advantages over others whi
h is why some 
on-stants will not be removed in the notation. For example, a normal baselinemultipli
ation (se
tion 5.2.1) requires O(n2) work while a baseline squaring(se
tion 5.3) requires O(n2+n2 ) work. In standard big-Oh notation these wouldboth be said to be equivalent to O(n2). However, in the 
ontext of the this textthis is not the 
ase as the magnitude of the inputs will typi
ally be rather small.As a result small 
onstant fa
tors in the work e�ort will make an observabledi�eren
e in algorithm eÆ
ien
y.All of the algorithms presented in this text have a polynomial time work level.That is, of the form O(nk) for n; k 2 Z+. This will help make useful 
omparisonsin terms of the speed of the algorithms and how various optimizations will helppay o� in the long run.1.4 Exer
isesWithin the more advan
ed 
hapters a se
tion will be set aside to give the readersome 
hallenging exer
ises related to the dis
ussion at hand. These exer
ises arenot designed to be prize winning problems, but instead to be thought provoking.Wherever possible the problems are forward minded, stating problems that willbe answered in subsequent 
hapters. The reader is en
ouraged to �nish theexer
ises as they appear to get a better understanding of the subje
t material.That being said, the problems are designed to aÆrm knowledge of a parti
-ular subje
t matter. Students in parti
ular are en
ouraged to verify they 
ananswer the problems 
orre
tly before moving on.Similar to the exer
ises of [1, pp. ix℄ these exer
ises are given a s
oringsystem based on the diÆ
ulty of the problem. However, unlike [1℄ the problemsdo not get nearly as hard. The s
oring of these exer
ises ranges from one (theeasiest) to �ve (the hardest). The following table sumarizes the s
oring systemused.8Ex
ept where expli
itly noted.



8 CHAPTER 1. INTRODUCTION[1℄ An easy problem that should only take the reader a manner ofminutes to solve. Usually does not involve mu
h 
omputer timeto solve.[2℄ An easy problem that involves a marginal amount of 
omputertime usage. Usually requires a program to be written tosolve the problem.[3℄ A moderately hard problem that requires a non-trivial amountof work. Usually involves trivial resear
h and development ofnew theory from the perspe
tive of a student.[4℄ A moderately hard problem that involves a non-trivial amountof work and resear
h, the solution to whi
h will demonstratea higher mastery of the subje
t matter.[5℄ A hard problem that involves 
on
epts that are diÆ
ult for anovi
e to solve. Solutions to these problems will demonstrate a
omplete mastery of the given subje
t.Figure 1.2: Exer
ise S
oring SystemProblems at the �rst level are meant to be simple questions that the reader
an answer qui
kly without programming a solution or devising new theory.These problems are qui
k tests to see if the material is understood. Problemsat the se
ond level are also designed to be easy but will require a programor algorithm to be implemented to arrive at the answer. These two levels areessentially entry level questions.Problems at the third level are meant to be a bit more diÆ
ult than the�rst two levels. The answer is often fairly obvious but arriving at an exa
tingsolution requires some thought and skill. These problems will almost alwaysinvolve devising a new algorithm or implementing a variation of another algo-rithm previously presented. Readers who 
an answer these questions will feel
omfortable with the 
on
epts behind the topi
 at hand.Problems at the fourth level are meant to be similar to those of the levelthree questions ex
ept they will require additional resear
h to be 
ompleted.The reader will most likely not know the answer right away, nor will the textprovide the exa
t details of the answer until a subsequent 
hapter.Problems at the �fth level are meant to be the hardest problems relative toall the other problems in the 
hapter. People who 
an 
orre
tly answer �fthlevel problems have a mastery of the subje
t matter at hand.Often problems will be tied together. The purpose of this is to start a 
hain



1.5. INTRODUCTION TO LIBTOMMATH 9of thought that will be dis
ussed in future 
hapters. The reader is en
ouragedto answer the follow-up problems and try to draw the relevan
e of problems.1.5 Introdu
tion to LibTomMath1.5.1 What is LibTomMath?LibTomMath is a free and open sour
e multiple pre
ision integer library writtenentirely in portable ISO C. By portable it is meant that the library does not
ontain any 
ode that is 
omputer platform dependent or otherwise problemati
to use on any given platform.The library has been su

essfully tested under numerous operating systemsin
luding Unix9, Ma
OS, Windows, Linux, PalmOS and on standalone hardwaresu
h as the Gameboy Advan
e. The library is designed to 
ontain enoughfun
tionality to be able to develop appli
ations su
h as publi
 key 
ryptosystemsand still maintain a relatively small footprint.1.5.2 Goals of LibTomMathLibraries whi
h obtain the most eÆ
ien
y are rarely written in a high levelprogramming language su
h as C. However, even though this library is writtenentirely in ISO C, 
onsiderable 
are has been taken to optimize the algorithmimplementations within the library. Spe
i�
ally the 
ode has been written towork well with the GNU C Compiler (GCC ) on both x86 and ARM pro
essors.Wherever possible, highly eÆ
ient algorithms, su
h as Karatsuba multipli
ation,sliding window exponentiation and Montgomery redu
tion have been providedto make the library more eÆ
ient.Even with the nearly optimal and spe
ialized algorithms that have been in-
luded the Appli
ation Programing Interfa
e (API ) has been kept as simpleas possible. Often generi
 pla
e holder routines will make use of spe
ializedalgorithms automati
ally without the developer's spe
i�
 attention. One su
hexample is the generi
 multipli
ation algorithmmp mul() whi
h will automat-i
ally use Toom{Cook, Karatsuba, Comba or baseline multipli
ation based onthe magnitude of the inputs and the 
on�guration of the library.Making LibTomMath as eÆ
ient as possible is not the only goal of theLibTomMath proje
t. Ideally the library should be sour
e 
ompatible withanother popular library whi
h makes it more attra
tive for developers to use.9All of these trademarks belong to their respe
tive rightful owners.



10 CHAPTER 1. INTRODUCTIONIn this 
ase the MPI library was used as a API template for all the basi
 fun
-tions. MPI was 
hosen be
ause it is another library that �ts in the same ni
heas LibTomMath. Even though LibTomMath uses MPI as the template for thefun
tion names and argument passing 
onventions, it has been written froms
rat
h by Tom St Denis.The proje
t is also meant to a
t as a learning tool for students, the logi
being that no easy-to-follow \bignum" library exists whi
h 
an be used to tea
h
omputer s
ien
e students how to perform fast and reliable multiple pre
isioninteger arithmeti
. To this end the sour
e 
ode has been given quite a few
omments and algorithm dis
ussion points.1.6 Choi
e of LibTomMathLibTomMath was 
hosen as the 
ase study of this text not only be
ause theauthor of both proje
ts is one and the same but for more worthy reasons. Otherlibraries su
h as GMP [14℄, MPI [15℄, LIP [17℄ and OpenSSL [16℄ have multiplepre
ision integer arithmeti
 routines but would not be ideal for this text forreasons that will be explained in the following sub-se
tions.1.6.1 Code BaseThe LibTomMath 
ode base is all portable ISO C sour
e 
ode. This means thatthere are no platform dependent 
onditional segments of 
ode littered through-out the sour
e. This 
lean and un
luttered approa
h to the library means thata developer 
an more readily dis
ern the true intent of a given se
tion of sour
e
ode without trying to keep tra
k of what 
onditional 
ode will be used.The 
ode base of LibTomMath is well organized. Ea
h fun
tion is in its ownseparate sour
e 
ode �le whi
h allows the reader to �nd a given fun
tion veryqui
kly. On average there are 76 lines of 
ode per sour
e �le whi
h makes thesour
e very easily to follow. By 
omparison MPI and LIP are single �le proje
tsmaking 
ode tra
ing very hard. GMP has many 
onditional 
ode segmentswhi
h also hinder tra
ing.When 
ompiled with GCC for the x86 pro
essor and optimized for speedthe entire library is approximately 100KiB10 whi
h is fairly small 
ompared toGMP (over 250KiB). LibTomMath is slightly larger than MPI (whi
h 
ompilesto about 50KiB) but LibTomMath is also mu
h faster and more 
omplete thanMPI.10The notation \KiB" means 210 o
tets, similarly \MiB" means 220 o
tets.



1.6. CHOICE OF LIBTOMMATH 111.6.2 API Simpli
ityLibTomMath is designed after the MPI library and shares the API design. Quiteoften programs that use MPI will build with LibTomMath without 
hange. Thefun
tion names 
orrelate dire
tly to the a
tion they perform. Almost all of thefun
tions share the same parameter passing 
onvention. The learning 
urve isfairly shallow with the API provided whi
h is an extremely valuable bene�t forthe student and developer alike.The LIP library is an example of a library with an API that is awkward towork with. LIP uses fun
tion names that are often \
ompressed" to illegibleshort hand. LibTomMath does not share this 
hara
teristi
.The GMP library also does not return error 
odes. Instead it uses a POSIX.1[?℄ signal system where errors are signaled to the host appli
ation. This happensto be the fastest approa
h but de�nitely not the most versatile. In e�e
t a matherror (i.e. invalid input, heap error, et
) 
an 
ause a program to stop fun
tioningwhi
h is de�nitely undersireable in many situations.1.6.3 OptimizationsWhile LibTomMath is 
ertainly not the fastest library (GMP often beats LibTom-Math by a fa
tor of two) it does feature a set of optimal algorithms for taskssu
h as modular redu
tion, exponentiation, multipli
ation and squaring. GMPand LIP also feature su
h optimizations while MPI only uses baseline algorithmswith no optimizations. GMP la
ks a few of the additional modular redu
tionoptimizations that LibTomMath features11.LibTomMath is almost always an order of magnitude faster than the MPIlibrary at 
omputationally expensive tasks su
h as modular exponentiation. Inthe grand s
heme of \bignum" libraries LibTomMath is faster than the averagelibrary and usually slower than the best libraries su
h as GMP and OpenSSLby only a small fa
tor.1.6.4 Portability and StabilityLibTomMath will build \out of the box" on any platform equipped with a mod-ern version of the GNU C Compiler (GCC ). This means that without 
hangesthe library will build without 
on�guration or setting up any variables. LIP andMPI will build \out of the box" as well but have numerous known bugs. Most11At the time of this writing GMP only had Barrett and Montgomery modular redu
tionalgorithms.



12 CHAPTER 1. INTRODUCTIONnotably the author of MPI has re
ently stopped working on his library and LIPhas long sin
e been dis
ontinued.GMP requires a 
on�guration s
ript to run and will not build out of thebox. GMP and LibTomMath are still in a
tive development and are very stablea
ross a variety of platforms.1.6.5 Choi
eLibTomMath is a relatively 
ompa
t, well do
umented, highly optimized andportable library whi
h seems only natural for the 
ase study of this text. Varioussour
e �les from the LibTomMath proje
t will be in
luded within the text.However, the reader is en
ouraged to download their own 
opy of the library toa
tually be able to work with the library.



Chapter 2Getting Started2.1 Library Basi
sThe tri
k to writing any useful library of sour
e 
ode is to build a solid founda-tion and work outwards from it. First, a problem along with allowable solutionparameters should be identi�ed and analyzed. In this parti
ular 
ase the in-ability to a

omodate multiple pre
ision integers is the problem. Futhermore,the solution must be written as portable sour
e 
ode that is reasonably eÆ
ienta
ross several di�erent 
omputer platforms.After a foundation is formed the remainder of the library 
an be designedand implemented in a hierar
hi
al fashion. That is, to implement the lowestlevel dependen
ies �rst and work towards the most abstra
t fun
tions last. Forexample, before implementing a modular exponentiation algorithm one wouldimplement a modular redu
tion algorithm. By building outwards from a basefoundation instead of using a parallel design methodology the resulting proje
tis highly modular. Being highly modular is a desirable property of any proje
tas it often means the resulting produ
t has a small footprint and updates areeasy to perform.Usually when I start a proje
t I will begin with the header �les. I de�nethe data types I think I will need and prototype the initial fun
tions that arenot dependent on other fun
tions (within the library). After I implement thesebase fun
tions I prototype more dependent fun
tions and implement them. Thepro
ess repeats until I implement all of the fun
tions I require. For example, inthe 
ase of LibTomMath I implemented fun
tions su
h as mp init() well before13



14 CHAPTER 2. GETTING STARTEDI implemented mp mul() and even further before I implemented mp exptmod().As an example as to why this design works note that the Karatsuba and Toom-Cook multipliers were written after the dependent fun
tion mp exptmod() waswritten. Adding the new multipli
ation algorithms did not require 
hanges tothe mp exptmod() fun
tion itself and lowered the total 
ost of ownership (so tospeak) and of development for new algorithms. This methodology allows newalgorithms to be tested in a 
omplete framework with relative ease.

Figure 2.1: Design Flow of the First Few Original LibTomMath Fun
tions.Only after the majority of the fun
tions were in pla
e did I pursue a lesshierar
hi
al approa
h to auditing and optimizing the sour
e 
ode. For example,one day I may audit the multipliers and the next day the polynomial basisfun
tions.It only makes sense to begin the text with the preliminary data types andsupport algorithms required as well. This 
hapter dis
usses the 
ore algorithmsof the library whi
h are the dependents for every other algorithm.2.2 What is a Multiple Pre
ision Integer?Re
all that most programming languages, in parti
ular ISO C [18℄, only have�xed pre
ision data types that on their own 
annot be used to represent values



2.2. WHAT IS A MULTIPLE PRECISION INTEGER? 15larger than their pre
ision will allow. The purpose of multiple pre
ision algo-rithms is to use �xed pre
ision data types to 
reate and manipulate multiplepre
ision integers whi
h may represent values that are very large.As a well known analogy, s
hool 
hildren are taught how to form numberslarger than nine by prepending more radix ten digits. In the de
imal system thelargest single digit value is 9. However, by 
on
atenating digits together largernumbers may be represented. Newly prepended digits (to the left) are said tobe in a di�erent power of ten 
olumn. That is, the number 123 
an be des
ribedas having a 1 in the hundreds 
olumn, 2 in the tens 
olumn and 3 in the ones
olumn. Or more formally 123 = 1 � 102 + 2 � 101 + 3 � 100. Computer basedmultiple pre
ision arithmeti
 is essentially the same 
on
ept. Larger integersare represented by adjoining �xed pre
ision 
omputer words with the ex
eptionthat a di�erent radix is used.What most people probably do not think about expli
itly are the variousother attributes that des
ribe a multiple pre
ision integer. For example, theinteger 15410 has two immediately obvious properties. First, the integer ispositive, that is the sign of this parti
ular integer is positive as opposed tonegative. Se
ond, the integer has three digits in its representation. There isan additional property that the integer posesses that does not 
on
ern pen
il-and-paper arithmeti
. The third property is how many digits pla
eholders areavailable to hold the integer.The human analogy of this third property is ensuring there is enough spa
eon the paper to write the integer. For example, if one starts writing a largenumber too far to the right on a pie
e of paper they will have to erase it andmove left. Similarly, 
omputer algorithms must maintain stri
t 
ontrol overmemory usage to ensure that the digits of an integer will not ex
eed the al-lowed boundaries. These three properties make up what is known as a multiplepre
ision integer or mp int for short.2.2.1 The mp int Stru
tureThe mp int stru
ture is the ISO C based manifestation of what represents a mul-tiple pre
ision integer. The ISO C standard does not provide for any su
h datatype but it does provide for making 
omposite data types known as stru
tures.The following is the stru
ture de�nition used within LibTomMath.The mp int stru
ture (�g. 2.2) 
an be broken down as follows.1. The used parameter denotes how many digits of the array dp 
ontain thedigits used to represent a given integer. The used 
ount must be positive
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t fint used, allo
, sign;mp digit *dp;g mp int;Figure 2.2: The mp int Stru
ture(or zero) and may not ex
eed the allo
 
ount.2. The allo
 parameter denotes how many digits are available in the arrayto use by fun
tions before it has to in
rease in size. When the used
ount of a result would ex
eed the allo
 
ount all of the algorithms willautomati
ally in
rease the size of the array to a

ommodate the pre
isionof the result.3. The pointer dp points to a dynami
ally allo
ated array of digits thatrepresent the given multiple pre
ision integer. It is padded with (allo
�used) zero digits. The array is maintained in a least signi�
ant digit order.As a pen
il and paper analogy the array is organized su
h that the rightmost digits are stored �rst starting at the lo
ation indexed by zero1 in thearray. For example, if dp 
ontains fa; b; 
; : : :g where dp0 = a, dp1 = b,dp2 = 
, : : : then it would represent the integer a+ b� + 
�2 + : : :4. The sign parameter denotes the sign as either zero/positive (MP ZPOS)or negative (MP NEG).Valid mp int Stru
turesSeveral rules are pla
ed on the state of an mp int stru
ture and are assumed tobe followed for reasons of eÆ
ien
y. The only ex
eptions are when the stru
tureis passed to initialization fun
tions su
h as mp init() and mp init 
opy().1. The value of allo
 may not be less than one. That is dp always points toa previously allo
ated array of digits.2. The value of used may not ex
eed allo
 and must be greater than orequal to zero.1In C all arrays begin at zero.



2.3. ARGUMENT PASSING 173. The value of used implies the digit at index (used � 1) of the dp arrayis non-zero. That is, leading zero digits in the most signi�
ant positionsmust be trimmed.(a) Digits in the dp array at and above the used lo
ation must be zero.4. The value of sign must beMP ZPOS if used is zero; this represents themp int value of zero.2.3 Argument PassingA 
onvention of argument passing must be adopted early on in the developmentof any library. Making the fun
tion prototypes 
onsistent will help eliminatemany heada
hes in the future as the library grows to signi�
ant 
omplexity. InLibTomMath the multiple pre
ision integer fun
tions a

ept parameters fromleft to right as pointers to mp int stru
tures. That means that the sour
e(input) operands are pla
ed on the left and the destination (output) on theright. Consider the following examples.mp_mul(&a, &b, &
); /* 
 = a * b */mp_add(&a, &b, &a); /* a = a + b */mp_sqr(&a, &b); /* b = a * a */The left to right order is a fairly natural way to implement the fun
tionssin
e it lets the developer read aloud the fun
tions and make sense of them. Forexample, the �rst fun
tion would read \multiply a and b and store in 
".Certain libraries (LIP by Lenstra for instan
e) a

ept parameters the otherway around, to mimi
 the order of assignment expressions. That is, the desti-nation (output) is on the left and arguments (inputs) are on the right. In truth,it is entirely a matter of preferen
e. In the 
ase of LibTomMath the 
onventionfrom the MPI library has been adopted.Another very useful design 
onsideration, provided for in LibTomMath, iswhether to allow argument sour
es to also be a destination. For example, these
ond example (mp add) adds a to b and stores in a. This is an importantfeature to implement sin
e it allows the 
alling fun
tions to 
ut down on thenumber of variables it must maintain. However, to implement this feature spe-
i�
 
are has to be given to ensure the destination is not modi�ed before thesour
e is fully read.



18 CHAPTER 2. GETTING STARTED2.4 Return ValuesA well implemented appli
ation, no matter what its purpose, should trap asmany runtime errors as possible and return them to the 
aller. By 
at
hingruntime errors a library 
an be guaranteed to prevent unde�ned behaviour.However, the end developer 
an still manage to 
ause a library to 
rash. Forexample, by passing an invalid pointer an appli
ation may fault by dereferen
ingmemory not owned by the appli
ation.In the 
ase of LibTomMath the only errors that are 
he
ked for are relatedto inappropriate inputs (division by zero for instan
e) and memory allo
ationerrors. It will not 
he
k that the mp int passed to any fun
tion is valid nor willit 
he
k pointers for validity. Any fun
tion that 
an 
ause a runtime error willreturn an error 
ode as an int data type with one of the following values (�g2.3). Value MeaningMP OKAY The fun
tion was su

essfulMP VAL One of the input value(s) was invalidMP MEM The fun
tion ran out of heap memoryFigure 2.3: LibTomMath Error CodesWhen an error is dete
ted within a fun
tion it should free any memory itallo
ated, often during the initialization of temporary mp ints, and return assoon as possible. The goal is to leave the system in the same state it was whenthe fun
tion was 
alled. Error 
he
king with this style of API is fairly simple.int err;if ((err = mp_add(&a, &b, &
)) != MP_OKAY) {printf("Error: %s\n", mp_error_to_string(err));exit(EXIT_FAILURE);}The GMP [14℄ library uses C style signals to 
ag errors whi
h is of ques-tionable use. Not all errors are fatal and it was not deemed ideal by the authorof LibTomMath to for
e developers to have signal handlers for su
h 
ases.



2.5. INITIALIZATION AND CLEARING 192.5 Initialization and ClearingThe logi
al starting point when a
tually writing multiple pre
ision integer fun
-tions is the initialization and 
learing of the mp int stru
tures. These twoalgorithms will be used by the majority of the higher level algorithms.Given the basi
 mp int stru
ture an initialization routine must �rst allo
atememory to hold the digits of the integer. Often it is optimal to allo
ate asuÆ
iently large pre-set number of digits even though the initial integer willrepresent zero. If only a single digit were allo
ated quite a few subsequent re-allo
ations would o

ur when operations are performed on the integers. Thereis a tradeo� between how many default digits to allo
ate and how many re-allo
ations are tolerable. Obviously allo
ating an ex
essive amount of digitsinitially will waste memory and be
ome unmanageable.If the memory for the digits has been su

essfully allo
ated then the rest ofthe members of the stru
ture must be initialized. Sin
e the initial state of anmp int is to represent the zero integer, the allo
ated digits must be set to zero.The used 
ount set to zero and sign set to MP ZPOS.2.5.1 Initializing an mp intAn mp int is said to be initialized if it is set to a valid, preferably default, statesu
h that all of the members of the stru
ture are set to valid values. The mp initalgorithm will perform su
h an a
tion.Algorithm mp init.Input. An mp int aOutput. Allo
ate memory and initialize a to a known valid mp int state.1. Allo
ate memory for MP PREC digits.2. If the allo
ation failed return(MP MEM )3. for n from 0 to MP PREC � 1 do3.1 an  04. a:sign MP ZPOS5. a:used 06. a:allo
 MP PREC7. Return(MP OKAY )Figure 2.4: Algorithm mp init



20 CHAPTER 2. GETTING STARTEDAlgorithm mp init. The purpose of this fun
tion is to initialize an mp intstru
ture so that the rest of the library 
an properly manipulte it. It is assumedthat the input may not have had any of its members previously initialized whi
his 
ertainly a valid assumption if the input resides on the sta
k.Before any of the members su
h as sign, used or allo
 are initialized thememory for the digits is allo
ated. If this fails the fun
tion returns before settingany of the other members. The MP PREC name represents a 
onstant2 usedto di
tate the minimum pre
ision of newly initialized mp int integers. Ideally,it is at least equal to the smallest pre
ision number you'll be working with.Allo
ating a blo
k of digits at �rst instead of a single digit has the bene�tof lowering the number of usually slow heap operations later fun
tions will haveto perform in the future. If MP PREC is set 
orre
tly the sla
k memory andthe number of heap operations will be trivial.On
e the allo
ation has been made the digits have to be set to zero as wellas the used, sign and allo
 members initialized. This ensures that the mp intwill always represent the default state of zero regardless of the original 
onditionof the input.Remark. This fun
tion introdu
es the idiosyn
rasy that all iterative loops,
ommonly initiated with the \for" keyword, iterate in
rementally when the \to"keyword is pla
ed between two expressions. For example, \for a from b to 
 do"means that a subsequent expression (or body of expressions) are to be evaluatedupto 
� b times so long as b � 
. In ea
h iteration the variable a is substitutedfor a new integer that lies in
lusively between b and 
. If b > 
 o

ured the loopwould not iterate. By 
ontrast if the \downto" keyword were used in pla
e of\to" the loop would iterate de
rementally.File: bn mp init.
One immediate observation of this initializtion fun
tion is that it does notreturn a pointer to a mp int stru
ture. It is assumed that the 
aller has alreadyallo
ated memory for the mp int stru
ture, typi
ally on the appli
ation sta
k.The 
all to mp init() is used only to initialize the members of the stru
ture toa known default state.Here we see (line 24) the memory allo
ation is performed �rst. This allows usto exit 
leanly and qui
kly if there is an error. If the allo
ation fails the routinewill return MP MEM to the 
aller to indi
ate there was a memory error.The fun
tion XMALLOC is what a
tually allo
ates the memory. Te
hni
ally2De�ned in the \tommath.h" header �le within LibTomMath.



2.5. INITIALIZATION AND CLEARING 21XMALLOC is not a fun
tion but a ma
ro de�ned in \tommath.h\. By default,XMALLOC will evaluate to mallo
() whi
h is the C library's built{in memoryallo
ation routine.In order to assure the mp int is in a known state the digits must be set tozero. On most platforms this 
ould have been a

omplished by using 
allo
()instead of mallo
(). However, to 
orre
tly initialize a integer type to a givenvalue in a portable fashion you have to a
tually assign the value. The for loop(line 30) performs this required operation.After the memory has been su

essfully initialized the remainder of the mem-bers are initialized (lines 34 through 35) to their respe
tive default states. Atthis point the algorithm has su

eeded and a su

ess 
ode is returned to the
alling fun
tion. If this fun
tion returns MP OKAY it is safe to assume themp int stru
ture has been properly initialized and is safe to use with otherfun
tions within the library.2.5.2 Clearing an mp intWhen an mp int is no longer required by the appli
ation, the memory that hasbeen allo
ated for its digits must be returned to the appli
ation's memory poolwith the mp 
lear algorithm.Algorithm mp 
lear.Input. An mp int aOutput. The memory for a shall be deallo
ated.1. If a has been previously freed then return(MP OKAY ).2. for n from 0 to a:used� 1 do2.1 an  03. Free the memory allo
ated for the digits of a.4. a:used 05. a:allo
 06. a:sign MP ZPOS7. Return(MP OKAY ).Figure 2.5: Algorithm mp 
learAlgorithm mp 
lear. This algorithm a

omplishes two goals. First, it
lears the digits and the other mp int members. This ensures that if a developer
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identally re-uses a 
leared stru
ture it is less likely to 
ause problems. These
ond goal is to free the allo
ated memory.The logi
 behind the algorithm is extended by marking 
leared mp int stru
-tures so that subsequent 
alls to this algorithm will not try to free the memorymultiple times. Cleared mp ints are dete
table by having a pre-de�ned invaliddigit pointer dp setting.On
e an mp int has been 
leared the mp int stru
ture is no longer in avalid state for any other algorithm with the ex
eption of algorithms mp init,mp init 
opy, mp init size and mp 
lear.File: bn mp 
lear.
The algorithm only operates on the mp int if it hasn't been previously
leared. The if statement (line 25) 
he
ks to see if the dp member is notNULL. If the mp int is a valid mp int then dp 
annot be NULL in whi
h 
asethe if statement will evaluate to true.The digits of the mp int are 
leared by the for loop (line 27) whi
h assigns azero to every digit. Similar to mp init() the digits are assigned zero instead ofusing blo
k memory operations (su
h as memset()) sin
e this is more portable.The digits are deallo
ated o� the heap via the XFREE ma
ro. Similarto XMALLOC the XFREE ma
ro a
tually evaluates to a standard C libraryfun
tion. In this 
ase the free() fun
tion. Sin
e free() only deallo
ates thememory the pointer still has to be reset to NULL manually (line 35).Now that the digits have been 
leared and deallo
ated the other membersare set to their �nal values (lines 36 and 37).2.6 Maintenan
e AlgorithmsThe previous se
tions des
ribes how to initialize and 
lear an mp int stru
ture.To further support operations that are to be performed on mp int stru
tures(su
h as addition and multipli
ation) the dependent algorithms must be able toaugment the pre
ision of an mp int and initialize mp ints with di�ering initial
onditions.These algorithms 
omplete the set of low level algorithms required to workwith mp int stru
tures in the higher level algorithms su
h as addition, multipli-
ation and modular exponentiation.



2.6. MAINTENANCE ALGORITHMS 232.6.1 Augmenting an mp int's Pre
isionWhen storing a value in an mp int stru
ture, a suÆ
ient number of digits mustbe available to a

omodate the entire result of an operation without loss ofpre
ision. Quite often the size of the array given by the allo
 member is largeenough to simply in
rease the used digit 
ount. However, when the size of thearray is too small it must be re-sized appropriately to a

omodate the result.The mp grow algorithm will provide this fun
tionality.



24 CHAPTER 2. GETTING STARTEDAlgorithm mp grow.Input. An mp int a and an integer b.Output. a is expanded to a

omodate b digits.1. if a:allo
 � b then return(MP OKAY )2. u b (mod MP PREC)3. v  b+ 2 �MP PREC � u4. Re-allo
ate the array of digits a to size v5. If the allo
ation failed then return(MP MEM ).6. for n from a.allo
 to v � 1 do6.1 an  07. a:allo
 v8. Return(MP OKAY )Figure 2.6: Algorithm mp growAlgorithm mp grow. It is ideal to prevent re-allo
ations from being per-formed if they are not required (step one). This is useful to prevent mp intsfrom growing ex
essively in 
ode that erroneously 
alls mp grow.The requested digit 
ount is padded up to next multiple of MP PRECplus an additionalMP PREC (steps two and three). This helps prevent manytrivial reallo
ations that would grow an mp int by trivially small values.It is assumed that the reallo
ation (step four) leaves the lower a:allo
 digitsof the mp int inta
t. This is mu
h akin to how the reallo
 fun
tion from thestandard C library works. Sin
e the newly allo
ated digits are assumed to
ontain unde�ned values they are initially set to zero.File: bn mp grow.
A qui
k optimization is to �rst determine if a memory re-allo
ation is re-quired at all. The if statement (line 24) 
he
ks if the allo
member of the mp intis smaller than the requested digit 
ount. If the 
ount is not larger than allo
the fun
tion skips the re-allo
ation part thus saving time.When a re-allo
ation is performed it is turned into an optimal request tosave time in the future. The requested digit 
ount is padded upwards to 2ndmultiple of MP PREC larger than allo
 (line 25). The XREALLOC fun
tionis used to re-allo
ate the memory. As per the other fun
tions XREALLOC isa
tually a ma
ro whi
h evaluates to reallo
 by default. The reallo
 fun
tion



2.6. MAINTENANCE ALGORITHMS 25leaves the base of the allo
ation inta
t whi
h means the �rst allo
 digits of themp int are the same as before the re-allo
ation. All that is left is to 
lear thenewly allo
ated digits and return.Note that the re-allo
ation result is a
tually stored in a temporary pointertmp. This is to allow this fun
tion to return an error with a valid pointer.Earlier releases of the library stored the result of XREALLOC into the mp inta. That would result in a memory leak if XREALLOC ever failed.2.6.2 Initializing Variable Pre
ision mp intsO

asionally the number of digits required will be known in advan
e of an ini-tialization, based on, for example, the size of input mp ints to a given algorithm.The purpose of algorithm mp init size is similar to mp init ex
ept that it willallo
ate at least a spe
i�ed number of digits.Algorithm mp init size.Input. An mp int a and the requested number of digits b.Output. a is initialized to hold at least b digits.1. u b (mod MP PREC)2. v  b+ 2 �MP PREC � u3. Allo
ate v digits.4. for n from 0 to v � 1 do4.1 an  05. a:sign MP ZPOS6. a:used 07. a:allo
 v8. Return(MP OKAY )Figure 2.7: Algorithm mp init sizeAlgorithmmp init size. This algorithm will initialize an mp int stru
turea like algorithm mp init with the ex
eption that the number of digits allo
ated
an be 
ontrolled by the se
ond input argument b. The input size is paddedupwards so it is a multiple of MP PREC plus an additionalMP PREC digits.This padding is used to prevent trivial allo
ations from be
oming a bottlene
kin the rest of the algorithms.Like algorithm mp init, the mp int stru
ture is initialized to a default staterepresenting the integer zero. This parti
ular algorithm is useful if it is known



26 CHAPTER 2. GETTING STARTEDahead of time the approximate size of the input. If the approximation is 
orre
tno further memory re-allo
ations are required to work with the mp int.File: bn mp init size.
The number of digits b requested is padded (line 24) by �rst augmenting itto the next multiple of MP PREC and then addingMP PREC to the result.If the memory 
an be su

essfully allo
ated the mp int is pla
ed in a defaultstate representing the integer zero. Otherwise, the error 
ode MP MEM willbe returned (line 29).The digits are allo
ated and set to zero at the same time with the 
allo
()fun
tion (line �25,XCALLOC�). The used 
ount is set to zero, the allo

ount set to the padded digit 
ount and the sign 
ag set to MP ZPOS toa
hieve a default valid mp int state (lines 33, 34 and 35). If the fun
tion returnssu

esfully then it is 
orre
t to assume that the mp int stru
ture is in a validstate for the remainder of the fun
tions to work with.2.6.3 Multiple Integer Initializations and ClearingsO

asionally a fun
tion will require a series of mp int data types to be madeavailable simultaneously. The purpose of algorithm mp init multi is to initializea variable length array of mp int stru
tures in a single statement. It is essentiallya short
ut to multiple initializations.



2.6. MAINTENANCE ALGORITHMS 27Algorithm mp init multi.Input. Variable length array Vk of mp int variables of length k.Output. The array is initialized su
h that ea
h mp int of Vk is ready to use.1. for n from 0 to k � 1 do1.1. Initialize the mp int Vn (mp init)1.2. If initialization failed then do1.2.1. for j from 0 to n do1.2.1.1. Free the mp int Vj (mp 
lear)1.2.2. Return(MP MEM )2. Return(MP OKAY )Figure 2.8: Algorithm mp init multiAlgorithmmp init multi. The algorithmwill initialize the array of mp intvariables one at a time. If a runtime error has been dete
ted (step 1.2 ) all ofthe previously initialized variables are 
leared. The goal is an \all or nothing"initialization whi
h allows for qui
k re
overy from runtime errors.File: bn mp init multi.
This fun
tion intializes a variable length list of mp int stru
ture pointers.However, instead of having the mp int stru
tures in an a
tual C array they aresimply passed as arguments to the fun
tion. This fun
tion makes use of the\..." argument syntax of the C programming language. The list is terminatedwith a �nal NULL argument appended on the right.The fun
tion uses the \stdarg.h" va fun
tions to step portably through thearguments to the fun
tion. A 
ount n of su

esfully initialized mp int stru
turesis maintained (line 48) su
h that if a failure does o

ur, the algorithm 
anba
ktra
k and free the previously initialized stru
tures (lines 28 to 47).2.6.4 Clamping Ex
ess DigitsWhen a fun
tion anti
ipates a result will be n digits it is simpler to assume this istrue within the body of the fun
tion instead of 
he
king during the 
omputation.For example, a multipli
ation of a i digit number by a j digit produ
es a resultof at most i+ j digits. It is entirely possible that the result is i+ j � 1 though,with no �nal 
arry into the last position. However, suppose the destination had



28 CHAPTER 2. GETTING STARTEDto be �rst expanded (via mp grow) to a

omodate i+ j � 1 digits than furtherexpanded to a

omodate the �nal 
arry. That would be a 
onsiderable waste oftime sin
e heap operations are relatively slow.The ideal solution is to always assume the result is i+ j and �x up the used
ount after the fun
tion terminates. This way a single heap operation (at most)is required. However, if the result was not 
he
ked there would be an ex
esshigh order zero digit.For example, suppose the produ
t of two integers was xn = (0xn�1xn�2:::x0)� .The leading zero digit will not 
ontribute to the pre
ision of the result. In fa
t,through subsequent operations more leading zero digits would a

umulate tothe point the size of the integer would be prohibitive. As a result even thoughthe pre
ision is very low the representation is ex
essively large.The mp 
lamp algorithm is designed to solve this very problem. It willtrim high-order zeros by de
rementing the used 
ount until a non-zero mostsigni�
ant digit is found. Also in this system, zero is 
onsidered to be a positivenumber whi
h means that if the used 
ount is de
remented to zero, the signmust be set to MP ZPOS.Algorithm mp 
lamp.Input. An mp int aOutput. Any ex
ess leading zero digits of a are removed1. while a:used > 0 and aa:used�1 = 0 do1.1 a:used a:used� 12. if a:used = 0 then do2.1 a:sign MP ZPOSFigure 2.9: Algorithm mp 
lampAlgorithm mp 
lamp. As 
an be expe
ted this algorithm is very simple.The loop on step one is expe
ted to iterate only on
e or twi
e at the most. Forexample, this will happen in 
ases where there is not a 
arry to �ll the lastposition. Step two �xes the sign for when all of the digits are zero to ensurethat the mp int is valid at all times.File: bn mp 
lamp.




2.6. MAINTENANCE ALGORITHMS 29Note on line 28 how to test for the used 
ount is made on the left of the &&operator. In the C programming language the terms to && are evaluated leftto right with a boolean short-
ir
uit if any 
ondition fails. This is importantsin
e if the used is zero the test on the right would fet
h below the array. Thatis obviously undesirable. The parenthesis on line 31 is used to make sure theused 
ount is de
remented and not the pointer \a".Exer
ises[1℄ Dis
uss the relevan
e of the used member of the mp int stru
ture.[1℄ Dis
uss the 
onsequen
es of not using padding when performing allo
ations.[2℄ Estimate an ideal value for MP PREC when performing 1024-bit RSAen
ryption when � = 228.[1℄ Dis
uss the relevan
e of the algorithm mp 
lamp. What does it prevent?[1℄ Give an example of when the algorithm mp init 
opy might be useful.
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Chapter 3Basi
 Operations3.1 Introdu
tionIn the previous 
hapter a series of low level algorithms were established thatdealt with initializing and maintaining mp int stru
tures. This 
hapter willdis
uss another set of seemingly non-algebrai
 algorithms whi
h will form thelow level basis of the entire library. While these algorithm are relatively trivialit is important to understand how they work before pro
eeding sin
e thesealgorithms will be used almost intrinsi
ally in the following 
hapters.The algorithms in this 
hapter deal primarily with more \programmer" re-lated tasks su
h as 
reating 
opies of mp int stru
tures, assigning small valuesto mp int stru
tures and 
omparisons of the values mp int stru
tures represent.3.2 Assigning Values to mp int Stru
tures3.2.1 Copying an mp intAssigning the value that a given mp int stru
ture represents to another mp intstru
ture shall be known as making a 
opy for the purposes of this text. The
opy of the mp int will be a separate entity that represents the same value as themp int it was 
opied from. The mp 
opy algorithm provides this fun
tionality.
31



32 CHAPTER 3. BASIC OPERATIONSAlgorithm mp 
opy.Input. An mp int a and b.Output. Store a 
opy of a in b.1. If b:allo
 < a:used then grow b to a:used digits. (mp grow)2. for n from 0 to a:used� 1 do2.1 bn  an3. for n from a:used to b:used� 1 do3.1 bn  04. b:used a:used5. b:sign a:sign6. return(MP OKAY )Figure 3.1: Algorithm mp 
opyAlgorithm mp 
opy. This algorithm 
opies the mp int a su
h that uponsu

esful termination of the algorithm the mp int b will represent the sameinteger as the mp int a. The mp int b shall be a 
omplete and distin
t 
opy ofthe mp int a meaing that the mp int a 
an be modi�ed and it shall not a�e
tthe value of the mp int b.If b does not have enough room for the digits of a it must �rst have itspre
ision augmented via the mp grow algorithm. The digits of a are 
opied overthe digits of b and any ex
ess digits of b are set to zero (step two and three).The used and sign members of a are �nally 
opied over the respe
tive membersof b.Remark. This algorithm also introdu
es a new idiosyn
rasy that will beused throughout the rest of the text. The error return 
odes of other algorithmsare not expli
itly 
he
ked in the pseudo-
ode presented. For example, in stepone of the mp 
opy algorithm the return of mp grow is not expli
itly 
he
ked toensure it su

eeded. Text spa
e is limited so it is assumed that if a algorithmfails it will 
lear all temporarily allo
ated mp ints and return the error 
odeitself. However, the C 
ode presented will demonstrate all of the error handlinglogi
 required to implement the pseudo-
ode.File: bn mp 
opy.
O

asionally a dependent algorithmmay 
opy an mp int e�e
tively into itselfsu
h as when the input and output mp int stru
tures passed to a fun
tion are



3.2. ASSIGNING VALUES TO MP INT STRUCTURES 33one and the same. For this 
ase it is optimal to return immediately without
opying digits (line 25).The mp int b must have enough digits to a

omodate the used digits of themp int a. If b:allo
 is less than a:used the algorithm mp grow is used to augmentthe pre
ision of b (lines 30 to 33). In order to simplify the inner loop that 
opiesthe digits from a to b, two aliases tmpa and tmpb point dire
tly at the digitsof the mp ints a and b respe
tively. These aliases (lines 43 and 46) allow the
ompiler to a

ess the digits without �rst dereferen
ing the mp int pointers andthen subsequently the pointer to the digits.After the aliases are established the digits from a are 
opied into b (lines49 to 51) and then the ex
ess digits of b are set to zero (lines 54 to 56). Both\for" loops make use of the pointer aliases and in fa
t the alias for b is 
arriedthrough into the se
ond \for" loop to 
lear the ex
ess digits. This optimizationallows the alias to stay in a ma
hine register fairly easy between the two loops.Remarks. The use of pointer aliases is an implementation methodology�rst introdu
ed in this fun
tion that will be used 
onsiderably in other fun
tions.Te
hni
ally, a pointer alias is simply a short hand alias used to lower the numberof pointer dereferen
ing operations required to a

ess data. For example, a forloop may resemblefor (x = 0; x < 100; x++) fa->num[4℄->dp[x℄ = 0;g This 
ould be re-written using aliases asmp_digit *tmpa;a = a->num[4℄->dp;for (x = 0; x < 100; x++) f*a++ = 0;g In this 
ase an alias is used to a

ess the array of digits within an mp intstru
ture dire
tly. It may seem that a pointer alias is stri
tly not required asa 
ompiler may optimize out the redundant pointer operations. However, thereare two dominant reasons to use aliases.The �rst reason is that most 
ompilers will not e�e
tively optimize pointerarithmeti
. For example, some optimizations may work for the Mi
rosoft VisualC++ 
ompiler (MSVC) and not for the GNU C Compiler (GCC). Also someoptimizations may work for GCC and not MSVC. As su
h it is ideal to �nd a
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ommon ground for as many 
ompilers as possible. Pointer aliases optimize the
ode 
onsiderably before the 
ompiler even reads the sour
e 
ode whi
h meansthe end 
ompiled 
ode stands a better 
han
e of being faster.The se
ond reason is that pointer aliases often 
an make an algorithm simplerto read. Consider the �rst \for" loop of the fun
tion mp 
opy() re-written tonot use pointer aliases./* 
opy all the digits */for (n = 0; n < a->used; n++) fb->dp[n℄ = a->dp[n℄;gWhether this 
ode is harder to read depends strongly on the individual.However, it is quanti�ably slightly more 
ompli
ated as there are four variableswithin the statement instead of just two.Nested StatementsAnother 
ommonly used te
hnique in the sour
e routines is that 
ertain se
tionsof 
ode are nested. This is used in parti
ular with the pointer aliases to highlight
ode phases. For example, a Comba multiplier (dis
ussed in 
hapter six) willtypi
ally have three di�erent phases. First the temporaries are initialized, thenthe 
olumns 
al
ulated and �nally the 
arries are propagated. In this examplethe middle 
olumn produ
tion phase will typi
ally be nested as it uses temporaryvariables and aliases the most.The nesting also simplies the sour
e 
ode as variables that are nested areonly valid for their s
ope. As a result the various temporary variables requireddo not propagate into other se
tions of 
ode.3.2.2 Creating a CloneAnother 
ommon operation is to make a lo
al temporary 
opy of an mp intargument. To initialize an mp int and then 
opy another existing mp int intothe newly intialized mp int will be known as 
reating a 
lone. This is usefulwithin fun
tions that need to modify an argument but do not wish to a
tuallymodify the original 
opy. The mp init 
opy algorithm has been designed to helpperform this task.Algorithm mp init 
opy. This algorithm will initialize an mp int variableand 
opy another previously initialized mp int variable into it. As su
h thisalgorithm will perform two operations in one step.



3.3. ZEROING AN INTEGER 35Algorithm mp init 
opy.Input. An mp int a and bOutput. a is initialized to be a 
opy of b.1. Init a. (mp init)2. Copy b to a. (mp 
opy)3. Return the status of the 
opy operation.Figure 3.2: Algorithm mp init 
opyFile: bn mp init 
opy.
This will initialize a and make it a verbatim 
opy of the 
ontents of b. Notethat a will have its own memory allo
ated whi
h means that b may be 
learedafter the 
all and a will be left inta
t.3.3 Zeroing an IntegerReseting an mp int to the default state is a 
ommon step in many algorithms.The mp zero algorithm will be the algorithm used to perform this task.Algorithm mp zero.Input. An mp int aOutput. Zero the 
ontents of a1. a:used 02. a:sign MP ZPOS3. for n from 0 to a:allo
� 1 do3.1 an  0Figure 3.3: Algorithm mp zeroAlgorithm mp zero. This algorithm simply resets a mp int to the defaultstate.File: bn mp zero.




36 CHAPTER 3. BASIC OPERATIONSAfter the fun
tion is 
ompleted, all of the digits are zeroed, the used 
ountis zeroed and the sign variable is set to MP ZPOS.3.4 Sign Manipulation3.4.1 Absolute ValueWith the mp int representation of an integer, 
al
ulating the absolute value istrivial. The mp abs algorithm will 
ompute the absolute value of an mp int.Algorithm mp abs.Input. An mp int aOutput. Computes b = jaj1. Copy a to b. (mp 
opy)2. If the 
opy failed return(MP MEM ).3. b:sign MP ZPOS4. Return(MP OKAY )Figure 3.4: Algorithm mp absAlgorithm mp abs. This algorithm 
omputes the absolute of an mp intinput. First it 
opies a over b. This is an example of an algorithm where the
he
k in mp 
opy that determines if the sour
e and destination are equal provesuseful. This allows, for instan
e, the developer to pass the same mp int as thesour
e and destination to this fun
tion without addition logi
 to handle it.File: bn mp abs.
This fairly trivial algorithm �rst eliminates non{required dupli
ations (line28) and then sets the sign 
ag to MP ZPOS.3.4.2 Integer NegationWith the mp int representation of an integer, 
al
ulating the negation is alsotrivial. The mp neg algorithm will 
ompute the negative of an mp int input.Algorithm mp neg. This algorithm 
omputes the negation of an input.First it 
opies a over b. If a has no used digits then the algorithm returns



3.5. SMALL CONSTANTS 37Algorithm mp neg.Input. An mp int aOutput. Computes b = �a1. Copy a to b. (mp 
opy)2. If the 
opy failed return(MP MEM ).3. If a:used = 0 then return(MP OKAY ).4. If a:sign =MP ZPOS then do4.1 b:sign =MP NEG.5. else do5.1 b:sign =MP ZPOS.6. Return(MP OKAY )Figure 3.5: Algorithm mp negimmediately. Otherwise it 
ips the sign 
ag and stores the result in b. Notethat if a had no digits then it must be positive by de�nition. Had step threebeen omitted then the algorithm would return zero as negative.File: bn mp neg.
Like mp abs() this fun
tion avoids non{required dupli
ations (line 22) andthen sets the sign. We have to make sure that only non{zero values get a signof MP NEG. If the mp int is zero than the sign is hard{
oded toMP ZPOS.3.5 Small Constants3.5.1 Setting Small ConstantsOften a mp int must be set to a relatively small value su
h as 1 or 2. For these
ases the mp set algorithm is useful.



38 CHAPTER 3. BASIC OPERATIONSAlgorithm mp set.Input. An mp int a and a digit bOutput. Make a equivalent to b1. Zero a (mp zero).2. a0  b (mod �)3. a:used � 1 if a0 > 00 if a0 = 0Figure 3.6: Algorithm mp setAlgorithm mp set. This algorithm sets a mp int to a small single digitvalue. Step number 1 ensures that the integer is reset to the default state. Thesingle digit is set (modulo �) and the used 
ount is adjusted a

ordingly.File: bn mp set.
First we zero (line 21) the mp int to make sure that the other membersare initialized for a small positive 
onstant. mp zero() ensures that the sign ispositive and the used 
ount is zero. Next we set the digit and redu
e it modulo� (line 22). After this step we have to 
he
k if the resulting digit is zero or not.If it is not then we set the used 
ount to one, otherwise to zero.We 
an qui
kly redu
e modulo � sin
e it is of the form 2k and a qui
k binaryAND operation with 2k � 1 will perform the same operation.One important limitation of this fun
tion is that it will only set one digit.The size of a digit is not �xed, meaning sour
e that uses this fun
tion shouldtake that into a

ount. Only trivially small 
onstants 
an be set using thisfun
tion.3.5.2 Setting Large ConstantsTo over
ome the limitations of the mp set algorithm the mp set int algorithm isideal. It a

epts a \long" data type as input and will always treat it as a 32-bitinteger.Algorithm mp set int. The algorithm performs eight iterations of a sim-ple loop where in ea
h iteration four bits from the sour
e are added to themp int. Step 2.1 will multiply the 
urrent result by sixteen making room forfour more bits in the less signi�
ant positions. In step 2.2 the next four bits from



3.6. COMPARISONS 39Algorithm mp set int.Input. An mp int a and a \long" integer bOutput. Make a equivalent to b1. Zero a (mp zero)2. for n from 0 to 7 do2.1 a a � 16 (mp mul2d)2.2 u bb=24(7�n)
 (mod 16)2.3 a0  a0 + u2.4 a:used a:used+ 13. Clamp ex
ess used digits (mp 
lamp)Figure 3.7: Algorithm mp set intthe sour
e are extra
ted and are added to the mp int. The used digit 
ountis in
remented to re
e
t the addition. The used digit 
ounter is in
rementedsin
e if any of the leading digits were zero the mp int would have zero digitsused and the newly added four bits would be ignored.Ex
ess zero digits are trimmed in steps 2.1 and 3 by using higher levelalgorithms mp mul2d and mp 
lamp.File: bn mp set int.
This fun
tion sets four bits of the number at a time to handle all pra
ti
alDIGIT BIT sizes. The weird addition on line 39 ensures that the newly addedin bits are added to the number of digits. While it may not seem obvious asto why the digit 
ounter does not grow ex
eedingly large it is be
ause of theshift on line 28 as well as the 
all to mp 
lamp() on line 41. Both fun
tions will
lamp ex
ess leading digits whi
h keeps the number of used digits low.3.6 Comparisons3.6.1 Unsigned ComparisionsComparing a multiple pre
ision integer is performed with the exa
t same al-gorithm used to 
ompare two de
imal numbers. For example, to 
ompare



40 CHAPTER 3. BASIC OPERATIONS1; 234 to 1; 264 the digits are extra
ted by their positions. That is we 
om-pare 1 � 103 + 2 � 102 + 3 � 101 + 4 � 100 to 1 � 103 + 2 � 102 + 6 � 101 + 4 � 100 by
omparing single digits at a time starting with the highest magnitude positions.If any leading digit of one integer is greater than a digit in the same position ofanother integer then obviously it must be greater.The �rst 
omparision routine that will be developed is the unsigned magni-tude 
ompare whi
h will perform a 
omparison based on the digits of two mp intvariables alone. It will ignore the sign of the two inputs. Su
h a fun
tion is use-ful when an absolute 
omparison is required or if the signs are known to agreein advan
e.To fa
ilitate working with the results of the 
omparison fun
tions three 
on-stants are required. Constant MeaningMP GT Greater ThanMP EQ Equal ToMP LT Less ThanFigure 3.8: Comparison Return CodesAlgorithm mp 
mp mag.Input. Two mp ints a and b.Output. Unsigned 
omparison results (a to the left of b).1. If a:used > b:used then return(MP GT )2. If a:used < b:used then return(MP LT )3. for n from a:used� 1 to 0 do3.1 if an > bn then return(MP GT )3.2 if an < bn then return(MP LT )4. Return(MP EQ)Figure 3.9: Algorithm mp 
mp magAlgorithm mp 
mp mag. By saying \a to the left of b" it is meant thatthe 
omparison is with respe
t to a, that is if a is greater than b it will returnMP GT and similar with respe
t to when a = b and a < b. The �rst twosteps 
ompare the number of digits used in both a and b. Obviously if the



3.6. COMPARISONS 41digit 
ounts di�er there would be an imaginary zero digit in the smaller numberwhere the leading digit of the larger number is. If both have the same numberof digits than the a
tual digits themselves must be 
ompared starting at theleading digit.By step three both inputs must have the same number of digits so its safe tostart from either a:used�1 or b:used�1 and 
ount down to the zero'th digit. Ifafter all of the digits have been 
ompared, no di�eren
e is found, the algorithmreturns MP EQ.File: bn mp 
mp mag.
The two if statements (lines 25 and 29) 
ompare the number of digits inthe two inputs. These two are performed before all of the digits are 
omparedsin
e it is a very 
heap test to perform and 
an potentially save 
onsiderabletime. The implementation given is also not valid without those two statements.b:allo
 may be smaller than a:used, meaning that unde�ned values will be readfrom b past the end of the array of digits.3.6.2 Signed ComparisonsComparing with sign 
onsiderations is also fairly 
riti
al in several routines(division for example). Based on an unsigned magnitude 
omparison a trivialsigned 
omparison algorithm 
an be written.Algorithm mp 
mp.Input. Two mp ints a and bOutput. Signed Comparison Results (a to the left of b)1. if a:sign =MP NEG and b:sign =MP ZPOS then return(MP LT )2. if a:sign =MP ZPOS and b:sign =MP NEG then return(MP GT )3. if a:sign =MP NEG then3.1 Return the unsigned 
omparison of b and a (mp 
mp mag)4 Otherwise4.1 Return the unsigned 
omparison of a and bFigure 3.10: Algorithm mp 
mpAlgorithm mp 
mp. The �rst two steps 
ompare the signs of the twoinputs. If the signs do not agree then it 
an return right away with the ap-
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omparison 
ode. When the signs are equal the digits of the inputsmust be 
ompared to determine the 
orre
t result. In step three the unsigned
omparision 
ips the order of the arguments sin
e they are both negative. Forinstan
e, if �a > �b then jaj < jbj. Step number four will 
ompare the twowhen they are both positive.File: bn mp 
mp.
The two if statements (lines 23 and 24) perform the initial sign 
omparison.If the signs are not the equal then whi
h ever has the positive sign is larger.The inputs are 
ompared (line 32) based on magnitudes. If the signs were bothnegative then the unsigned 
omparison is performed in the opposite dire
tion(line 34). Otherwise, the signs are assumed to be both positive and a forwarddire
tion unsigned 
omparison is performed.Exer
ises[2℄ Modify algorithm mp set int to a

ept as input a variable length array of bits.[3℄ Give the probability that algorithm mp 
mp mag will have to 
ompare k digitsof two random digits (of equal magnitude) before a di�eren
e is found.[1℄ Suggest a simple method to speed up the implementation of mp 
mp mag basedon the observations made in the previous problem.



Chapter 4Basi
 Arithmeti

4.1 Introdu
tionAt this point algorithms for initialization, 
learing, zeroing, 
opying, 
ompar-ing and setting small 
onstants have been established. The next logi
al set ofalgorithms to develop are addition, subtra
tion and digit shifting algorithms.These algorithms make use of the lower level algorithms and are the 
rui
ialbuilding blo
k for the multipli
ation algorithms. It is very important that thesealgorithms are highly optimized. On their own they are simple O(n) algorithmsbut they 
an be 
alled from higher level algorithms whi
h easily pla
es them atO(n2) or even O(n3) work levels.All of the algorithms within this 
hapter make use of the logi
al bit shiftoperations denoted by << and>> for left and right logi
al shifts respe
tively. Alogi
al shift is analogous to sliding the de
imal point of radix-10 representations.For example, the real number 0:9345 is equivalent to 93:45% whi
h is foundby sliding the the de
imal two pla
es to the right (multiplying by �2 = 102).Algebrai
ally a binary logi
al shift is equivalent to a division or multipli
ationby a power of two. For example, a << k = a � 2k while a >> k = ba=2k
.One signi�
ant di�eren
e between a logi
al shift and the way de
imals areshifted is that digits below the zero'th position are removed from the number.For example, 
onsider 11012 >> 1 using de
imal notation this would produ
e110:12. However, with a logi
al shift the result is 1102.43



44 CHAPTER 4. BASIC ARITHMETIC4.2 Addition and Subtra
tionIn 
ommon twos 
omplement �xed pre
ision arithmeti
 negative numbers areeasily represented by subtra
tion from the modulus. For example, with 32-bitintegers a � b (mod 232) is the same as a + (232 � b) (mod 232) sin
e 232 �0 (mod 232). As a result subtra
tion 
an be performed with a trivial series oflogi
al operations and an addition.However, in multiple pre
ision arithmeti
 negative numbers are not repre-sented in the same way. Instead a sign 
ag is used to keep tra
k of the sign of theinteger. As a result signed addition and subtra
tion are a
tually implementedas 
onditional usage of lower level addition or subtra
tion algorithms with thesign �xed up appropriately.The lower level algorithms will add or subtra
t integers without regard tothe sign 
ag. That is they will add or subtra
t the magnitude of the integersrespe
tively.4.2.1 Low Level AdditionAn unsigned addition of multiple pre
ision integers is performed with the samelong-hand algorithm used to add de
imal numbers. That is to add the trailingdigits �rst and propagate the resulting 
arry upwards. Sin
e this is a lower levelalgorithm the name will have a \s " pre�x. Histori
ally that 
onvention stemsfrom the MPI library where \s " stood for stati
 fun
tions that were hiddenfrom the developer entirely.



4.2. ADDITION AND SUBTRACTION 45Algorithm s mp add.Input. Two mp ints a and bOutput. The unsigned addition 
 = jaj+ jbj.1. if a:used > b:used then1.1 min b:used1.2 max a:used1.3 x a2. else2.1 min a:used2.2 max b:used2.3 x b3. If 
:allo
 < max+ 1 then grow 
 to hold at least max+ 1 digits (mp grow)4. oldused 
:used5. 
:used max+ 16. u 07. for n from 0 to min � 1 do7.1 
n  an + bn + u7.2 u 
n >> lg(�)7.3 
n  
n (mod �)8. if min 6= max then do8.1 for n from min to max� 1 do8.1.1 
n  xn + u8.1.2 u 
n >> lg(�)8.1.3 
n  
n (mod �)9. 
max  u10. if olduse > max then10.1 for n from max+ 1 to oldused� 1 do10.1.1 
n  011. Clamp ex
ess digits in 
. (mp 
lamp)12. Return(MP OKAY )Figure 4.1: Algorithm s mp addAlgorithm s mp add. This algorithm is loosely based on algorithm 14.7of HAC [2, pp. 594℄ but has been extended to allow the inputs to have di�erentmagnitudes. Coin
identally the des
ription of algorithm A in Knuth [1, pp. 266℄shares the same de�
ien
y as the algorithm from [2℄. Even the MIX pseudoma
hine 
ode presented by Knuth [1, pp. 266-267℄ is in
apable of handlinginputs whi
h are of di�erent magnitudes.The �rst thing that has to be a

omplished is to sort out whi
h of the two



46 CHAPTER 4. BASIC ARITHMETICinputs is the largest. The addition logi
 will simply add all of the smallest inputto the largest input and store that �rst part of the result in the destination.Then it will apply a simpler addition loop to ex
ess digits of the larger input.The �rst two steps will handle sorting the inputs su
h that min and maxhold the digit 
ounts of the two inputs. The variable x will be an mp int aliasfor the largest input or the se
ond input b if they have the same number ofdigits. After the inputs are sorted the destination 
 is grown as required toa

omodate the sum of the two inputs. The original used 
ount of 
 is 
opiedand set to the new used 
ount.At this point the �rst addition loop will go through as many digit positionsthat both inputs have. The 
arry variable � is set to zero outside the loop.Inside the loop an \addition" step requires three statements to produ
e onedigit of the summand. First two digits from a and b are added together alongwith the 
arry �. The 
arry of this step is extra
ted and stored in � and �nallythe digit of the result 
n is trun
ated within the range 0 � 
n < �.Now all of the digit positions that both inputs have in 
ommon have beenexhausted. If min 6= max then x is an alias for one of the inputs that has moredigits. A simpli�ed addition loop is then used to essentially 
opy the remainingdigits and the 
arry to the destination.The �nal 
arry is stored in 
max and digits above max upto oldused arezeroed whi
h 
ompletes the addition.File: bn s mp add.
We �rst sort (lines 28 to 36) the inputs based on magnitude and determinethe min and max variables. Note that x is a pointer to an mp int assigned tothe largest input, in e�e
t it is a lo
al alias. Next we grow the destination (38to 42) ensure that it 
an a

omodate the result of the addition.Similar to the implementation of mp 
opy this fun
tion uses the bra
ed 
odeand lo
al aliases 
oding style. The three aliases that are on lines 56, 59 and 62represent the two inputs and destination variables respe
tively. These aliases areused to ensure the 
ompiler does not have to dereferen
e a, b or 
 (respe
tively)to a

ess the digits of the respe
tive mp int.The initial 
arry u will be 
leared (line 65), note that u is of type mp digitwhi
h ensures type 
ompatibility within the implementation. The initial addi-tion (line 66 to 75) adds digits from both inputs until the smallest input runsout of digits. Similarly the 
onditional addition loop (line 81 to 90) adds theremaining digits from the larger of the two inputs. The addition is �nished withthe �nal 
arry being stored in tmp
 (line 94). Note the \++" operator within



4.2. ADDITION AND SUBTRACTION 47the same expression. After line 94, tmp
 will point to the 
:used'th digit of themp int 
. This is useful for the next loop (line 97 to 99) whi
h set any old upperdigits to zero.4.2.2 Low Level Subtra
tionThe low level unsigned subtra
tion algorithm is very similar to the low levelunsigned addition algorithm. The prin
iple di�eren
e is that the unsigned sub-tra
tion algorithm requires the result to be positive. That is when 
omputinga � b the 
ondition jaj � jbj must be met for this algorithm to fun
tion prop-erly. Keep in mind this low level algorithm is not meant to be used in higherlevel algorithms dire
tly. This algorithm as will be shown 
an be used to 
reatefun
tional signed addition and subtra
tion algorithms.For this algorithm a new variable is required to make the des
ription simpler.Re
all from se
tion 1.3.1 that a mp digit must be able to represent the range0 � x < 2� for the algorithms to work 
orre
tly. However, it is allowable that amp digit represent a larger range of values. For this algorithm we will assumethat the variable 
 represents the number of bits available in a mp digit (thisimplies 2
 > �).For example, the default for LibTomMath is to use a \unsigned long" for themp digit \type" while � = 228. In ISO C an \unsigned long" data type mustbe able to represent 0 � x < 232 meaning that in this 
ase 
 � 32.



48 CHAPTER 4. BASIC ARITHMETICAlgorithm s mp sub.Input. Two mp ints a and b (jaj � jbj)Output. The unsigned subtra
tion 
 = jaj � jbj.1. min b:used2. max a:used3. If 
:allo
 < max then grow 
 to hold at least max digits. (mp grow)4. oldused 
:used5. 
:used max6. u 07. for n from 0 to min � 1 do7.1 
n  an � bn � u7.2 u 
n >> (
 � 1)7.3 
n  
n (mod �)8. if min < max then do8.1 for n from min to max� 1 do8.1.1 
n  an � u8.1.2 u 
n >> (
 � 1)8.1.3 
n  
n (mod �)9. if oldused > max then do9.1 for n from max to oldused� 1 do9.1.1 
n  010. Clamp ex
ess digits of 
. (mp 
lamp).11. Return(MP OKAY ).Figure 4.2: Algorithm s mp subAlgorithm s mp sub. This algorithm performs the unsigned subtra
tionof two mp int variables under the restri
tion that the result must be positive.That is when passing variables a and b the 
ondition that jaj � jbj must bemet for the algorithm to fun
tion 
orre
tly. This algorithm is loosely based onalgorithm 14.9 [2, pp. 595℄ and is similar to algorithm S in [1, pp. 267℄ as well.As was the 
ase of the algorithm s mp add both other referen
es la
k dis
ussion
on
erning various pra
ti
al details su
h as when the inputs di�er in magnitude.The initial sorting of the inputs is trivial in this algorithm sin
e a is guar-anteed to have at least the same magnitude of b. Steps 1 and 2 set the minand max variables. Unlike the addition routine there is guaranteed to be no
arry whi
h means that the �nal result 
an be at most max digits in length asopposed to max + 1. Similar to the addition algorithm the used 
ount of 
 is
opied lo
ally and set to the maximal 
ount for the operation.



4.2. ADDITION AND SUBTRACTION 49The subtra
tion loop that begins on step seven is essentially the same asthe addition loop of algorithm s mp add ex
ept single pre
ision subtra
tion isused instead. Note the use of the 
 variable to extra
t the 
arry (also knownas the borrow) within the subtra
tion loops. Under the assumption that two's
omplement single pre
ision arithmeti
 is used this will su

essfully extra
t thedesired 
arry.For example, 
onsider subtra
ting 01012 from 01002 where 
 = 4 and � = 2.The least signi�
ant bit will for
e a 
arry upwards to the third bit whi
h willbe set to zero after the borrow. After the very �rst bit has been subtra
ted4� 1 � 00112 will remain, When the third bit of 01012 is subtra
ted from theresult it will 
ause another 
arry. In this 
ase though the 
arry will be for
edto propagate all the way to the most signi�
ant bit.Re
all that � < 2
 . This means that if a 
arry does o

ur just before thelg(�)'th bit it will propagate all the way to the most signi�
ant bit. Thus, thehigh order bits of the mp digit that are not part of the a
tual digit will eitherbe all zero, or all one. All that is needed is a single zero or one bit for the 
arry.Therefore a single logi
al shift right by 
 � 1 positions is suÆ
ient to extra
tthe 
arry. This method of 
arry extra
tion may seem awkward but the reasonfor it be
omes apparent when the implementation is dis
ussed.If b has a smaller magnitude than a then step 9 will for
e the 
arry and 
opyoperation to propagate through the larger input a into 
. Step 10 will ensurethat any leading digits of 
 above the max'th position are zeroed.File: bn s mp sub.
Like low level addition we \sort" the inputs. Ex
ept in this 
ase the sortingis hard
oded (lines 25 and 26). In reality the min and max variables are onlyaliases and are only used to make the sour
e 
ode easier to read. Again thepointer alias optimization is used within this algorithm. The aliases tmpa,tmpb and tmp
 are initialized (lines 42, 43 and 44) for a, b and 
 respe
tively.The �rst subtra
tion loop (lines 47 through 61) subtra
t digits from bothinputs until the smaller of the two inputs has been exhausted. As remarkedearlier there is an implementation reason for using the \awkward" method ofextra
ting the 
arry (line 57). The traditional method for extra
ting the 
arrywould be to shift by lg(�) positions and logi
ally AND the least signi�
ant bit.The AND operation is required be
ause all of the bits above the lg(�)'th bitwill be set to one after a 
arry o

urs from subtra
tion. This 
arry extra
tionrequires two relatively 
heap operations to extra
t the 
arry. The other method



50 CHAPTER 4. BASIC ARITHMETICis to simply shift the most signi�
ant bit to the least signi�
ant bit thus ex-tra
ting the 
arry with a single 
heap operation. This optimization only workson twos 
ompliment ma
hines whi
h is a safe assumption to make.If a has a larger magnitude than b an additional loop (lines 64 through 73)is required to propagate the 
arry through a and 
opy the result to 
.4.2.3 High Level AdditionNow that both lower level addition and subtra
tion algorithms have been estab-lished an e�e
tive high level signed addition algorithm 
an be established. Thishigh level addition algorithm will be what other algorithms and developers willuse to perform addition of mp int data types.Re
all from se
tion 5.2 that an mp int represents an integer with an unsignedmantissa (the array of digits) and a sign 
ag. A high level addition is a
tuallyperformed as a series of eight separate 
ases whi
h 
an be optimized down tothree unique 
ases.Algorithm mp add.Input. Two mp ints a and bOutput. The signed addition 
 = a+ b.1. if a:sign = b:sign then do1.1 
:sign a:sign1.2 
 jaj+ jbj (s mp add)2. else do2.1 if jaj < jbj then do (mp 
mp mag)2.1.1 
:sign b:sign2.1.2 
 jbj � jaj (s mp sub)2.2 else do2.2.1 
:sign a:sign2.2.2 
 jaj � jbj3. Return(MP OKAY ).Figure 4.3: Algorithm mp addAlgorithm mp add. This algorithm performs the signed addition of twomp int variables. There is no referen
e algorithm to draw upon from either[1℄ or [2℄ sin
e they both only provide unsigned operations. The algorithm is



4.2. ADDITION AND SUBTRACTION 51fairly straightforward but restri
ted sin
e subtra
tion 
an only produ
e positiveresults.Sign of a Sign of b jaj > jbj Unsigned Operation Result Sign Flag+ + Yes 
 = a+ b a:sign+ + No 
 = a+ b a:sign� � Yes 
 = a+ b a:sign� � No 
 = a+ b a:sign+ � No 
 = b� a b:sign� + No 
 = b� a b:sign+ � Yes 
 = a� b a:sign� + Yes 
 = a� b a:signFigure 4.4: Addition Guide ChartFigure 4.4 lists all of the eight possible input 
ombinations and is sorted toshow that only three spe
i�
 
ases need to be handled. The return 
ode of theunsigned operations at step 1.2, 2.1.2 and 2.2.2 are forwarded to step three to
he
k for errors. This simpli�es the des
ription of the algorithm 
onsiderablyand best follows how the implementation a
tually was a
hieved.Also note how the sign is set before the unsigned addition or subtra
-tion is performed. Re
all from the des
riptions of algorithms s mp add ands mp sub that the mp 
lamp fun
tion is used at the end to trim ex
ess digits.The mp 
lamp algorithm will set the sign to MP ZPOS when the used digit
ount rea
hes zero.For example, 
onsider performing �a + a with algorithm mp add. By thedes
ription of the algorithm the sign is set to MP NEG whi
h would produ
ea result of �0. However, sin
e the sign is set �rst then the unsigned additionis performed the subsequent usage of algorithm mp 
lamp within algorithms mp add will for
e �0 to be
ome 0.File: bn mp add.
The sour
e 
ode follows the algorithm fairly 
losely. The most notable newsour
e 
ode addition is the usage of the res integer variable whi
h is used topass result of the unsigned operations forward. Unlike in the algorithm, thevariable res is merely returned as is without expli
itly 
he
king it and returning
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onstantMP OKAY. The observation is this algorithm will su

eed or failonly if the lower level fun
tions do so. Returning their return 
ode is suÆ
ient.4.2.4 High Level Subtra
tionThe high level signed subtra
tion algorithm is essentially the same as the highlevel signed addition algorithm.



4.2. ADDITION AND SUBTRACTION 53Algorithm mp sub.Input. Two mp ints a and bOutput. The signed subtra
tion 
 = a� b.1. if a:sign 6= b:sign then do1.1 
:sign a:sign1.2 
 jaj+ jbj (s mp add)2. else do2.1 if jaj � jbj then do (mp 
mp mag)2.1.1 
:sign a:sign2.1.2 
 jaj � jbj (s mp sub)2.2 else do2.2.1 
:sign � MP ZPOS if a:sign =MP NEGMP NEG otherwise2.2.2 
 jbj � jaj3. Return(MP OKAY ).Figure 4.5: Algorithm mp subAlgorithm mp sub. This algorithm performs the signed subtra
tion oftwo inputs. Similar to algorithm mp add there is no referen
e in either [1℄ or[2℄. Also this algorithm is restri
ted by algorithm s mp sub. Chart 4.6 lists theeight possible inputs and the operations required.Sign of a Sign of b jaj � jbj Unsigned Operation Result Sign Flag+ � Yes 
 = a+ b a:sign+ � No 
 = a+ b a:sign� + Yes 
 = a+ b a:sign� + No 
 = a+ b a:sign+ + Yes 
 = a� b a:sign� � Yes 
 = a� b a:sign+ + No 
 = b� a opposite of a:sign� � No 
 = b� a opposite of a:signFigure 4.6: Subtra
tion Guide Chart
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ase of algorithm mp add the sign is set �rst before the un-signed addition or subtra
tion. That is to prevent the algorithm from produ
ing�a��a = �0 as a result.File: bn mp sub.
Mu
h like the implementation of algorithm mp add the variable res is usedto 
at
h the return 
ode of the unsigned addition or subtra
tion operations andforward it to the end of the fun
tion. On line 39 the \not equal to" MP LTexpression is used to emulate a \greater than or equal to" 
omparison.4.3 Bit and Digit ShiftingIt is quite 
ommon to think of a multiple pre
ision integer as a polynomial inx, that is y = f(�) where f(x) = Pn�1i=0 aixi. This notation arises within dis-
ussion of Montgomery and Diminished Radix Redu
tion as well as Karatsubamultipli
ation and squaring.In order to fa
ilitate operations on polynomials in x as above a series ofsimple \digit" algorithms have to be established. That is to shift the digits leftor right as well to shift individual bits of the digits left and right. It is importantto note that not all \shift" operations are on radix-� digits.4.3.1 Multipli
ation by TwoIn a binary system where the radix is a power of two multipli
ation by two notonly arises often in other algorithms it is a fairly eÆ
ient operation to perform.A single pre
ision logi
al shift left is suÆ
ient to multiply a single digit by two.



4.3. BIT AND DIGIT SHIFTING 55Algorithm mp mul 2.Input. One mp int aOutput. b = 2a.1. If b:allo
 < a:used+ 1 then grow b to hold a:used+ 1 digits. (mp grow)2. oldused b:used3. b:used a:used4. r 05. for n from 0 to a:used� 1 do5.1 rr an >> (lg(�)� 1)5.2 bn  (an << 1) + r (mod �)5.3 r rr6. If r 6= 0 then do6.1 bn+1  r6.2 b:used b:used+ 17. If b:used < oldused� 1 then do7.1 for n from b:used to oldused� 1 do7.1.1 bn  08. b:sign a:sign9. Return(MP OKAY ).Figure 4.7: Algorithm mp mul 2Algorithm mp mul 2. This algorithm will qui
kly multiply a mp int bytwo provided � is a power of two. Neither [1℄ nor [2℄ des
ribe su
h an algorithmdespite the fa
t it arises often in other algorithms. The algorithm is setup mu
hlike the lower level algorithm s mp add sin
e it is for all intents and purposesequivalent to the operation b = jaj+ jaj.Step 1 and 2 grow the input as required to a

omodate the maximum numberof used digits in the result. The initial used 
ount is set to a:used at step 4.Only if there is a �nal 
arry will the used 
ount require adjustment.Step 6 is an optimization implementation of the addition loop for this spe
i�

ase. That is sin
e the two values being added together are the same there isno need to perform two reads from the digits of a. Step 6.1 performs a singlepre
ision shift on the 
urrent digit an to obtain what will be the 
arry for thenext iteration. Step 6.2 
al
ulates the n'th digit of the result as single pre
isionshift of an plus the previous 
arry. Re
all from se
tion 4.1 that an << 1 isequivalent to an �2. An iteration of the addition loop is �nished with forwardingthe 
arry to the next iteration.Step 7 takes 
are of any �nal 
arry by setting the a:used'th digit of the
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arry and augmenting the used 
ount of b. Step 8 
lears anyleading digits of b in 
ase it originally had a larger magnitude than a.File: bn mp mul 2.
This implementation is essentially an optimized implementation of s mp addfor the 
ase of doubling an input. The only noteworthy di�eren
e is the use ofthe logi
al shift operator on line 52 to perform a single pre
ision doubling.4.3.2 Division by TwoA division by two 
an just as easily be a

omplished with a logi
al shift rightas multipli
ation by two 
an be with a logi
al shift left.



4.4. POLYNOMIAL BASIS OPERATIONS 57Algorithm mp div 2.Input. One mp int aOutput. b = a=2.1. If b:allo
 < a:used then grow b to hold a:used digits. (mp grow)2. If the reallo
ation failed return(MP MEM ).3. oldused b:used4. b:used a:used5. r  06. for n from b:used� 1 to 0 do6.1 rr an (mod 2)6.2 bn  (an >> 1) + (r << (lg(�)� 1)) (mod �)6.3 r rr7. If b:used < oldused� 1 then do7.1 for n from b:used to oldused� 1 do7.1.1 bn  08. b:sign a:sign9. Clamp ex
ess digits of b. (mp 
lamp)10. Return(MP OKAY ).Figure 4.8: Algorithm mp div 2Algorithm mp div 2. This algorithm will divide an mp int by two usinglogi
al shifts to the right. Like mp mul 2 it uses a modi�ed low level addition
ore as the basis of the algorithm. Unlike mp mul 2 the shift operations workfrom the leading digit to the trailing digit. The algorithm 
ould be written towork from the trailing digit to the leading digit however, it would have to stopone short of a:used � 1 digits to prevent reading past the end of the array ofdigits.Essentially the loop at step 6 is similar to that of mp mul 2 ex
ept the logi
alshifts go in the opposite dire
tion and the 
arry is at the least signi�
ant bitnot the most signi�
ant bit.File: bn mp div 2.
4.4 Polynomial Basis OperationsRe
all from se
tion 4.3 that any integer 
an be represented as a polynomial inx as y = f(�). Su
h a representation is also known as the polynomial basis
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h a notation a multipli
ation or division by x amountsto shifting whole digits a single pla
e. The need for su
h operations arises inseveral other higher level algorithms su
h as Barrett and Montgomery redu
tion,integer division and Karatsuba multipli
ation.Converting from an array of digits to polynomial basis is very simple. Con-sider the integer y � (a2; a1; a0)� and re
all that y = P2i=0 ai�i. Simplyrepla
e � with x and the expression is in polynomial basis. For example,f(x) = 8x + 9 is the polynomial basis representation for 89 using radix ten.That is, f(10) = 8(10) + 9 = 89.4.4.1 Multipli
ation by xGiven a polynomial in x su
h as f(x) = anxn+ an�1xn�1+ :::+ a0 multiplyingby x amounts to shifting the 
oeÆ
ients up one degree. In this 
ase f(x) � x =anxn+1 + an�1xn + :::+ a0x. From a s
alar basis point of view multiplying byx is equivalent to multiplying by the integer �.



4.4. POLYNOMIAL BASIS OPERATIONS 59Algorithm mp lshd.Input. One mp int a and an integer bOutput. a a � �b (equivalent to multipli
ation by xb).1. If b � 0 then return(MP OKAY ).2. If a:allo
 < a:used+ b then grow a to at least a:used+ b digits. (mp grow).3. If the reallo
ation failed return(MP MEM ).4. a:used a:used+ b5. i a:used� 16. j  a:used� 1� b7. for n from a:used� 1 to b do7.1 ai  aj7.2 i i � 17.3 j  j � 18. for n from 0 to b� 1 do8.1 an  09. Return(MP OKAY ).Figure 4.9: Algorithm mp lshdAlgorithm mp lshd. This algorithm multiplies an mp int by the b'thpower of x. This is equivalent to multiplying by �b. The algorithm di�ersfrom the other algorithms presented so far as it performs the operation in pla
einstead storing the result in a separate lo
ation. The motivation behind this
hange is due to the way this fun
tion is typi
ally used. Algorithms su
h asmp add store the result in an optionally di�erent third mp int be
ause the orig-inal inputs are often still required. Algorithm mp lshd (and similarly algorithmmp rshd) is typi
ally used on values where the original value is no longer re-quired. The algorithm will return su

ess immediately if b � 0 sin
e the rest ofalgorithm is only valid when b > 0.First the destination a is grown as required to a

omodate the result. The
ounters i and j are used to form a sliding window over the digits of a of lengthb. The head of the sliding window is at i (the leading digit) and the tail at j(the trailing digit). The loop on step 7 
opies the digit from the tail to the head.In ea
h iteration the window is moved down one digit. The last loop on step 8sets the lower b digits to zero.
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Figure 4.10: Sliding Window MovementFile: bn mp lshd.
The if statement (line 24) ensures that the b variable is greater than zerosin
e we do not interpret negative shift 
ounts properly. The used 
ount isin
remented by b before the 
opy loop begins. This elminates the need for anadditional variable in the for loop. The variable top (line 42) is an alias for theleading digit while bottom (line 45) is an alias for the trailing edge. The aliasesform a window of exa
tly b digits over the input.4.4.2 Division by xDivision by powers of x is easily a
hieved by shifting the digits right and remov-ing any that will end up to the right of the zero'th digit.



4.4. POLYNOMIAL BASIS OPERATIONS 61Algorithm mp rshd.Input. One mp int a and an integer bOutput. a a=�b (Divide by xb).1. If b � 0 then return.2. If a:used � b then do2.1 Zero a. (mp zero).2.2 Return.3. i 04. j  b5. for n from 0 to a:used� b� 1 do5.1 ai  aj5.2 i i + 15.3 j  j + 16. for n from a:used� b to a:used� 1 do6.1 an  07. a:used a:used� b8. Return.Figure 4.11: Algorithm mp rshdAlgorithm mp rshd. This algorithm divides the input in pla
e by the b'thpower of x. It is analogous to dividing by a �b but mu
h qui
ker sin
e it doesnot require single pre
ision division. This algorithm does not a
tually return anerror 
ode as it 
annot fail.If the input b is less than one the algorithm qui
kly returns without per-forming any work. If the used 
ount is less than or equal to the shift 
ount bthen it will simply zero the input and return.After the trivial 
ases of inputs have been handled the sliding window issetup. Mu
h like the 
ase of algorithm mp lshd a sliding window that is b digitswide is used to 
opy the digits. Unlike mp lshd the window slides in the oppositedire
tion from the trailing to the leading digit. Also the digits are 
opied fromthe leading to the trailing edge.On
e the window 
opy is 
omplete the upper digits must be zeroed and theused 
ount de
remented.File: bn mp rshd.
The only noteworthy element of this routine is the la
k of a return type sin
eit 
annot fail. Like mp lshd() we form a sliding window ex
ept we 
opy in the
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tion. After the window (line 60) we then zero the upper digits of theinput to make sure the result is 
orre
t.4.5 Powers of TwoNow that algorithms for moving single bits as well as whole digits exist algo-rithms for moving the \in between" distan
es are required. For example, toqui
kly multiply by 2k for any k without using a full multiplier algorithm wouldprove useful. Instead of performing single shifts k times to a
hieve a multi-pli
ation by 2�k a mixture of whole digit shifting and partial digit shifting isemployed.4.5.1 Multipli
ation by Power of Two



4.5. POWERS OF TWO 63Algorithm mp mul 2d.Input. One mp int a and an integer bOutput. 
 a � 2b.1. 
 a. (mp 
opy)2. If 
:allo
 < 
:used+ bb=lg(�)
+ 2 then grow 
 a

ordingly.3. If the reallo
ation failed return(MP MEM ).4. If b � lg(�) then4.1 
 
 � �bb=lg(�)
 (mp lshd).4.2 If step 4.1 failed return(MP MEM ).5. d b (mod lg(�))6. If d 6= 0 then do6.1 mask 2d6.2 r  06.3 for n from 0 to 
:used� 1 do6.3.1 rr 
n >> (lg(�)� d) (mod mask)6.3.2 
n  (
n << d) + r (mod �)6.3.3 r rr6.4 If r > 0 then do6.4.1 

:used  r6.4.2 
:used 
:used + 17. Return(MP OKAY ).Figure 4.12: Algorithm mp mul 2dAlgorithm mp mul 2d. This algorithm multiplies a by 2b and stores theresult in 
. The algorithm uses algorithm mp lshd and a derivative of algorithmmp mul 2 to qui
kly 
ompute the produ
t.First the algorithm will multiply a by xbb=lg(�)
 whi
h will ensure that theremainder multipli
and is less than �. For example, if b = 37 and � = 228 thenthis step will multiply by x leaving a multipli
ation by 237�28 = 29 left.After the digits have been shifted appropriately at most lg(�)� 1 shifts areleft to perform. Step 5 
al
ulates the number of remaining shifts required. Ifit is non-zero a modi�ed shift loop is used to 
al
ulate the remaining produ
t.Essentially the loop is a generi
 version of algorithm mp mul 2 designed tohandle any shift 
ount in the range 1 � x < lg(�). The mask variable is usedto extra
t the upper d bits to form the 
arry for the next iteration.This algorithm is loosely measured as a O(2n) algorithm whi
h means thatif the input is n-digits that it takes 2n \time" to 
omplete. It is possible tooptimize this algorithm down to a O(n) algorithm at a 
ost of making the



64 CHAPTER 4. BASIC ARITHMETICalgorithm slightly harder to follow.File: bn mp mul 2d.
The shifting is performed in{pla
e whi
h means the �rst step (line 25) is to
opy the input to the destination. We avoid 
alling mp 
opy() by making surethe mp ints are di�erent. The destination then has to be grown (line 32) toa

omodate the result.If the shift 
ount b is larger than lg(�) then a 
all to mp lshd() is used tohandle all of the multiples of lg(�). Leaving only a remaining shift of lg(�)� 1or fewer bits left. Inside the a
tual shift loop (lines 46 to 76) we make useof pre{
omputed values shift and mask. These are used to extra
t the 
arrybit(s) to pass into the next iteration of the loop. The r and rr variables form a
hain between 
onse
utive iterations to propagate the 
arry.4.5.2 Division by Power of Two



4.5. POWERS OF TWO 65Algorithm mp div 2d.Input. One mp int a and an integer bOutput. 
 ba=2b
; d a (mod 2b).1. If b � 0 then do1.1 
 a (mp 
opy)1.2 d 0 (mp zero)1.3 Return(MP OKAY ).2. 
 a3. d a (mod 2b) (mp mod 2d)4. If b � lg(�) then do4.1 
 b
=�bb=lg(�)

 (mp rshd).5. k b (mod lg(�))6. If k 6= 0 then do6.1 mask 2k6.2 r 06.3 for n from 
:used� 1 to 0 do6.3.1 rr 
n (mod mask)6.3.2 
n  (
n >> k) + (r << (lg(�)� k))6.3.3 r rr7. Clamp ex
ess digits of 
. (mp 
lamp)8. Return(MP OKAY ).Figure 4.13: Algorithm mp div 2dAlgorithm mp div 2d. This algorithm will divide an input a by 2b andprodu
e the quotient and remainder. The algorithm is designed mu
h like al-gorithm mp mul 2d by �rst using whole digit shifts then single pre
ision shifts.This algorithm will also produ
e the remainder of the division by using algo-rithm mp mod 2d.File: bn mp div 2d.
The implementation of algorithm mp div 2d is slightly di�erent than thealgorithm spe
i�es. The remainder d may be optionally ignored by passingNULL as the pointer to the mp int variable. The temporary mp int variable tis used to hold the result of the remainder operation until the end. This allowsd and a to represent the same mp int without modifying a before the quotientis obtained.



66 CHAPTER 4. BASIC ARITHMETICThe remainder of the sour
e 
ode is essentially the same as the sour
e 
odefor mp mul 2d. The only signi�
ant di�eren
e is the dire
tion of the shifts.4.5.3 Remainder of Division by Power of TwoThe last algorithm in the series of polynomial basis power of two algorithmsis 
al
ulating the remainder of division by 2b. This algorithm bene�ts fromthe fa
t that in twos 
omplement arithmeti
 a (mod 2b) is the same as a AND2b � 1. Algorithm mp mod 2d.Input. One mp int a and an integer bOutput. 
 a (mod 2b).1. If b � 0 then do1.1 
 0 (mp zero)1.2 Return(MP OKAY ).2. If b > a:used � lg(�) then do2.1 
 a (mp 
opy)2.2 Return the result of step 2.1.3. 
 a4. If step 3 failed return(MP MEM ).5. for n from db=lg(�)e to 
:used do5.1 
n  06. k b (mod lg(�))7. 
bb=lg(�)
  
bb=lg(�)
 (mod 2k).8. Clamp ex
ess digits of 
. (mp 
lamp)9. Return(MP OKAY ).Figure 4.14: Algorithm mp mod 2dAlgorithm mp mod 2d. This algorithm will qui
kly 
al
ulate the valueof a (mod 2b). First if b is less than or equal to zero the result is set to zero. If bis greater than the number of bits in a then it simply 
opies a to 
 and returns.Otherwise, a is 
opied to b, leading digits are removed and the remaining leadingdigit is trimed to the exa
t bit 
ount.File: bn mp mod 2d.




4.5. POWERS OF TWO 67We �rst avoid 
ases of b � 0 by simply mp zero()'ing the destination in su
h
ases. Next if 2b is larger than the input we just mp 
opy() the input and returnright away. After this point we know we must a
tually perform some work toprodu
e the remainder.Re
alling that redu
ing modulo 2k and a binary \and" with 2k � 1 arenumeri
ally equivalent we 
an qui
kly redu
e the number. First we zero anydigits above the last digit in 2b (line 42). Next we redu
e the leading digit ofboth (line 46) and then mp 
lamp().Exer
ises[3℄ Devise an algorithm that performs a � 2b for generi
 values of bin O(n) time.[3℄ Devise an eÆ
ient algorithm to multiply by small low hammingweight values su
h as 3, 5 and 9. Extend it to handle all valuesupto 64 with a hamming weight less than three.[2℄ Modify the pre
eding algorithm to handle values of the form2k � 1 as well.[3℄ Using only algorithms mp mul 2, mp div 2 and mp add 
reate analgorithm to multiply two integers in roughly O(2n2) time forany n-bit input. Note that the time of addition is ignored in the
al
ulation.[5℄ Improve the previous algorithm to have a working time of at mostO �2(k�1)n+ �2n2k �� for an appropriate 
hoi
e of k. Again ignorethe 
ost of addition.[2℄ Devise a 
hart to �nd optimal values of k for the previous problemfor n = 64 : : : 1024 in steps of 64.[2℄ Using only algorithms mp abs and mp sub devise another method for
al
ulating the result of a signed 
omparison.
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Chapter 5Multipli
ation and Squaring5.1 The MultipliersFor most number theoreti
 problems in
luding 
ertain publi
 key 
ryptographi
algorithms, the \multipliers" form the most important subset of algorithms ofany multiple pre
ision integer pa
kage. The set of multiplier algorithms in
ludeinteger multipli
ation, squaring and modular redu
tion where in ea
h of thealgorithms single pre
ision multipli
ation is the dominant operation performed.This 
hapter will dis
uss integer multipli
ation and squaring, leaving modularredu
tions for the subsequent 
hapter.The importan
e of the multiplier algorithms is for the most part drivenby the fa
t that 
ertain popular publi
 key algorithms are based on modularexponentiation, that is 
omputing d � ab (mod 
) for some arbitrary 
hoi
e ofa, b, 
 and d. During a modular exponentiation the majority1 of the pro
essortime is spent performing single pre
ision multipli
ations.For 
enturies general purpose multipli
ation has required a lengthly O(n2)pro
ess, whereby ea
h digit of one multipli
and has to be multiplied againstevery digit of the other multipli
and. Traditional long-hand multipli
ation isbased on this pro
ess; while the te
hniques 
an di�er the overall algorithm usedis essentially the same. Only \re
ently" have faster algorithms been studied.First Karatsuba multipli
ation was dis
overed in 1962. This algorithm 
an1Roughly speaking a modular exponentiation will spend about 40% of the time performingmodular redu
tions, 35% of the time performing squaring and 25% of the time performingmultipli
ations. 69



70 CHAPTER 5. MULTIPLICATION AND SQUARINGmultiply two numbers with 
onsiderably fewer single pre
ision multipli
ationswhen 
ompared to the long-hand approa
h. This te
hnique led to the dis
ov-ery of polynomial basis algorithms (good referen
e? ) and subquently FourierTransform based solutions.5.2 Multipli
ation5.2.1 The Baseline Multipli
ationComputing the produ
t of two integers in software 
an be a
hieved using atrivial adaptation of the standard O(n2) long-hand multipli
ation algorithmthat s
hool 
hildren are taught. The algorithm is 
onsidered an O(n2) algorithmsin
e for two n-digit inputs n2 single pre
ision multipli
ations are required. Morespe
i�
ally for a m and n digit input m � n single pre
ision multipli
ations arerequired. To simplify most dis
ussions, it will be assumed that the inputs have
omparable number of digits.The \baseline multipli
ation" algorithm is designed to a
t as the \
at
h-all"algorithm, only to be used when the faster algorithms 
annot be used. Thisalgorithm does not use any parti
ularly interesting optimizations and shouldideally be avoided if possible. One important fa
et of this algorithm, is thatit has been modi�ed to only produ
e a 
ertain amount of output digits as res-olution. The importan
e of this modi�
ation will be
ome evident during thedis
ussion of Barrett modular redu
tion. Re
all that for a n and m digit inputthe produ
t will be at most n + m digits. Therefore, this algorithm 
an beredu
ed to a full multiplier by having it produ
e n+m digits of the produ
t.Re
all from sub-se
tion 4.2.2 the de�nition of 
 as the number of bits inthe type mp digit. We shall now extend the variable set to in
lude � whi
hshall represent the number of bits in the type mp word. This implies that2� > 2 � �2. The 
onstant Æ = 2��2lg(�) will represent the maximal weight ofany 
olumn in a produ
t (see sub-se
tion 5.2.2 for more information).



5.2. MULTIPLICATION 71Algorithm s mp mul digs.Input. mp int a, mp int b and an integer digsOutput. 
 jaj � jbj (mod �digs).1. If min(a:used; b:used) < Æ then do1.1 Cal
ulate 
 = jaj � jbj by the Comba method (see algorithm 5.5).1.2 Return the result of step 1.1Allo
ate and initialize a temporary mp int.2. Init t to be of size digs3. If step 2 failed return(MP MEM ).4. t:used digsCompute the produ
t.5. for ix from 0 to a:used� 1 do5.1 u 05.2 pb min(b:used; digs� ix)5.3 If pb < 1 then goto step 6.5.4 for iy from 0 to pb� 1 do5.4.1 r̂ tiy+ix + aix � biy + u5.4.2 tiy+ix  r̂ (mod �)5.4.3 u br̂=�
5.5 if ix+ pb < digs then do5.5.1 tix+pb  u6. Clamp ex
ess digits of t.7. Swap 
 with t8. Clear t9. Return(MP OKAY ).Figure 5.1: Algorithm s mp mul digsAlgorithm s mp mul digs. This algorithm 
omputes the unsigned prod-u
t of two inputs a and b, limited to an output pre
ision of digs digits. While itmay seem a bit awkward to modify the fun
tion from its simple O(n2) des
rip-tion, the usefulness of partial multipliers will arise in a subsequent algorithm.The algorithm is loosely based on algorithm 14.12 from [2, pp. 595℄ and is simi-lar to Algorithm M of Knuth [1, pp. 268℄. Algorithm s mp mul digs di�ers fromthese 
ited referen
es sin
e it 
an produ
e a variable output pre
ision regardlessof the pre
ision of the inputs.The �rst thing this algorithm 
he
ks for is whether a Comba multiplier 
an



72 CHAPTER 5. MULTIPLICATION AND SQUARINGbe used instead. If the minimum digit 
ount of either input is less than Æ, thenthe Comba method may be used instead. After the Comba method is ruled out,the baseline algorithm begins. A temporary mp int variable t is used to holdthe intermediate result of the produ
t. This allows the algorithm to be used to
ompute produ
ts when either a = 
 or b = 
 without overwriting the inputs.All of step 5 is the infamous O(n2) multipli
ation loop slightly modi�ed toonly produ
e upto digs digits of output. The pb variable is given the 
ount ofdigits to read from b inside the nested loop. If pb � 1 then no more outputdigits 
an be produ
ed and the algorithm will exit the loop. The best way tothink of the loops are as a series of pb� 1 multipli
ations. That is, in ea
h passof the innermost loop aix is multiplied against b and the result is added (withan appropriate shift) to t.For example, 
onsider multiplying 576 by 241. That is equivalent to 
om-puting 100(1)(576) + 101(4)(576) + 102(2)(576) whi
h is best visualized in thefollowing table. 5 7 6� 2 4 15 7 6 100(1)(576)2 3 6 1 6 101(4)(576) + 100(1)(576)1 3 8 8 1 6 102(2)(576) + 101(4)(576) + 100(1)(576)Figure 5.2: Long-Hand Multipli
ation DiagramEa
h row of the produ
t is added to the result after being shifted to the left(multiplied by a power of the radix ) by the appropriate 
ount. That is in passix of the inner loop the produ
t is added starting at the ix'th digit of the reult.Step 5.4.1 introdu
es the hat symbol (e.g. r̂) whi
h represents a double pre-
ision variable. The multipli
ation on that step is assumed to be a double wideoutput single pre
ision multipli
ation. That is, two single pre
ision variablesare multiplied to produ
e a double pre
ision result. The step is somewhat op-timized from a long-hand multipli
ation algorithm be
ause the 
arry from theaddition in step 5.4.1 is propagated through the nested loop. If the 
arry wasnot propagated immediately it would over
ow the single pre
ision digit tix+iyand the result would be lost.At step 5.5 the nested loop is �nished and any 
arry that was left over shouldbe forwarded. The 
arry does not have to be added to the ix+ pb'th digit sin
e



5.2. MULTIPLICATION 73that digit is assumed to be zero at this point. However, if ix + pb � digs the
arry is not set as it would make the result ex
eed the pre
ision requested.File: bn s mp mul digs.
First we determine (line 31) if the Comba method 
an be used �rst sin
e it'sfaster. The 
onditions for sing the Comba routine are that min(a:used; b:used) <Æ and the number of digits of output is less than MP WARRAY. This new
onstant is used to 
ontrol the sta
k usage in the Comba routines. By defaultit is set to Æ but 
an be redu
ed when memory is at a premium.If we 
annot use the Comba method we pro
eed to setup the baseline routine.We allo
ate the the destination mp int t (line 37) to the exa
t size of the outputto avoid further re{allo
ations. At this point we now begin the O(n2) loop.This implementation of multipli
ation has the 
aveat that it 
an be trimmedto only produ
e a variable number of digits as output. In ea
h iteration of theouter loop the pb variable is set (line 49) to the maximum number of inner loopiterations.Inside the inner loop we 
al
ulate r̂ as the mp word produ
t of the twomp digits and the addition of the 
arry from the previous iteration. A parti
u-larly important observation is that most modern optimizing C 
ompilers (GCCfor instan
e) 
an re
ognize that a N � N ! 2N multipli
ation is all that isrequired for the produ
t. In x86 terms for example, this means using the MULinstru
tion.Ea
h digit of the produ
t is stored in turn (line 69) and the 
arry propagated(line 72) to the next iteration.5.2.2 Faster Multipli
ation by the \Comba" MethodOne of the huge drawba
ks of the \baseline" algorithms is that at the O(n2)level the 
arry must be 
omputed and propagated upwards. This makes thenested loop very sequential and hard to unroll and implement in parallel. The\Comba" [4℄ method is named after little known (in 
ryptographi
 venues) PaulG. Comba who des
ribed a method of implementing fast multipliers that donot require nested 
arry �xup operations. As an interesting aside it seems thatPaul Barrett des
ribes a similar te
hnique in his 1986 paper [7℄ written �ve yearsbefore.At the heart of the Comba te
hnique is on
e again the long-hand algorithm.Ex
ept in this 
ase a slight twist is pla
ed on how the 
olumns of the result areprodu
ed. In the standard long-hand algorithm rows of produ
ts are produ
ed



74 CHAPTER 5. MULTIPLICATION AND SQUARINGthen added together to form the �nal result. In the baseline algorithm the
olumns are added together after ea
h iteration to get the result instantaneously.In the Comba algorithm the 
olumns of the result are produ
ed entirelyindependently of ea
h other. That is at the O(n2) level a simple multipli
ationand addition step is performed. The 
arries of the 
olumns are propagated afterthe nested loop to redu
e the amount of work requiored. Su

intly the �rst stepof the algorithm is to 
ompute the produ
t ve
tor ~x as follows.~xn = Xi+j=n aibj ;8n 2 f0; 1; 2; : : : ; i+ jg (5.1)Where ~xn is the n0th 
olumn of the output ve
tor. Consider the followingexample whi
h 
omputes the ve
tor ~x for the multipli
ation of 576 and 241.



5.2. MULTIPLICATION 755 7 6 First Input� 2 4 1 Se
ond Input1 � 5 = 5 1 � 7 = 7 1 � 6 = 6 First pass4 � 5 = 20 4 � 7 + 5 = 33 4 � 6 + 7 = 31 6 Se
ond pass2 � 5 = 10 2 � 7 + 20 = 34 2 � 6 + 33 = 45 31 6 Third pass10 34 45 31 6 Final ResultFigure 5.3: Comba Multipli
ation DiagramAt this point the ve
tor x = h10; 34; 45; 31; 6i is the result of the �rst step ofthe Comba multipler. Now the 
olumns must be �xed by propagating the 
arryupwards. The resultant ve
tor will have one extra dimension over the inputve
tor whi
h is 
ongruent to adding a leading zero digit.Algorithm Comba Fixup.Input. Ve
tor ~x of dimension kOutput. Ve
tor ~x su
h that the 
arries have been propagated.1. for n from 0 to k � 1 do1.1 ~xn+1  ~xn+1 + b~xn=�
1.2 ~xn  ~xn (mod �)2. Return(~x).Figure 5.4: Algorithm Comba FixupWith that algorithm and k = 5 and � = 10 the following ve
tor is produ
ed~x = h1; 3; 8; 8; 1; 6i. In this 
ase 241 � 576 is in fa
t 138816 and the pro
eduresu

eeded. If the algorithm is 
orre
t and as will be demonstrated shortly moreeÆ
ient than the baseline algorithm why not simply always use this algorithm?Column Weight.At the nested O(n2) level the Comba method adds the produ
t of two singlepre
ision variables to ea
h 
olumn of the output independently. A serious ob-sta
le is if the 
arry is lost, due to la
k of pre
ision before the algorithm has a
han
e to �x the 
arries. For example, in the multipli
ation of two three-digitnumbers the third 
olumn of output will be the sum of three single pre
isionmultipli
ations. If the pre
ision of the a

umulator for the output digits is lessthen 3�(��1)2 then an over
ow 
an o

ur and the 
arry information will be lost.



76 CHAPTER 5. MULTIPLICATION AND SQUARINGFor any m and n digit inputs the maximum weight of any 
olumn is min(m;n)whi
h is fairly obvious.The maximum number of terms in any 
olumn of a produ
t is known as the\
olumn weight" and stri
tly governs when the algorithm 
an be used. Re
allfrom earlier that a double pre
ision type has � bits of resolution and a singlepre
ision digit has lg(�) bits of pre
ision. Given these two quantities we mustnot violate the following k � (� � 1)2 < 2� (5.2)Whi
h redu
es to k � ��2 � 2� + 1� < 2� (5.3)Let � = lg(�) represent the number of bits in a single pre
ision digit. Byfurther re-arrangement of the equation the �nal solution is found.k < 2�(22� � 2�+1 + 1) (5.4)The defaults for LibTomMath are � = 228 and � = 264 whi
h means that k isbounded by k < 257. In this 
on�guration the smaller input may not have morethan 256 digits if the Comba method is to be used. This is quite satisfa
toryfor most appli
ations sin
e 256 digits would allow for numbers in the rangeof 0 � x < 27168 whi
h, is mu
h larger than most publi
 key 
ryptographi
algorithms require.



5.2. MULTIPLICATION 77Algorithm fast s mp mul digs.Input. mp int a, mp int b and an integer digsOutput. 
 jaj � jbj (mod �digs).Pla
e an array of MP WARRAY single pre
ision digits named W on the sta
k.1. If 
:allo
 < digs then grow 
 to digs digits. (mp grow)2. If step 1 failed return(MP MEM ).3. pa MIN(digs; a:used+ b:used)4. Ŵ  05. for ix from 0 to pa� 1 do5.1 ty MIN(b:used� 1; ix)5.2 tx ix� ty5.3 iy  MIN(a:used� tx; ty + 1)5.4 for iz from 0 to iy � 1 do5.4.1 Ŵ  Ŵ + atx+iybty�iy5.5 Wix  Ŵ (mod �)5.6 Ŵ  b Ŵ=�
6. oldused 
:used7. 
:used digs8. for ix from 0 to pa do8.1 
ix  Wix9. for ix from pa+ 1 to oldused� 1 do9.1 
ix  010. Clamp 
.11. Return MP OKAY.Figure 5.5: Algorithm fast s mp mul digsAlgorithm fast s mp mul digs. This algorithm performs the unsignedmultipli
ation of a and b using the Comba method limited to digs digits ofpre
ision.The outer loop of this algorithm is more 
ompli
ated than that of the baselinemultiplier. This is be
ause on the inside of the loop we want to produ
e one
olumn per pass. This allows the a

umulator Ŵ to be pla
ed in CPU registersand redu
e the memory bandwidth to two mp digit reads per iteration.The ty variable is set to the minimum 
ount of ix or the number of digits in



78 CHAPTER 5. MULTIPLICATION AND SQUARINGb. That way if a has more digits than b this will be limited to b:used� 1. Thetx variable is set to the to the distan
e past b:used the variable ix is. This isused for the immediately subsequent statement where we �nd iy.The variable iy is the minimum digits we 
an read from either a or b beforerunning out. Computing one 
olumn at a time means we have to s
an one integerupwards and the other downwards. a starts at tx and b starts at ty. In ea
hpass we are produ
ing the ix'th output 
olumn and we note that tx+ ty = ix.As we move tx upwards we have to move ty downards so the equality remainsvalid. The iy variable is the number of iterations until tx � a:used or ty < 0o

urs.After every inner pass we store the lower half of the a

umulator into Wixand then propagate the 
arry of the a

umulator into the next round by dividingŴ by �.To measure the bene�ts of the Comba method over the baseline method
onsider the number of operations that are required. If the 
ost in terms oftime of a multiply and addition is p and the 
ost of a 
arry propagation is qthen a baseline multipli
ation would require O �(p+ q)n2� time to multiply twon-digit numbers. The Comba method requires only O(pn2 + qn) time, howeverin pra
ti
e, the speed in
rease is a
tually mu
h more. With O(n) spa
e thealgorithm 
an be redu
ed to O(pn + qn) time by implementing the n multiplyand addition operations in the nested loop in parallel.File: bn fast s mp mul digs.
As per the pseudo{
ode we �rst 
al
ulate pa (line 48) as the number of digitsto output. Next we begin the outer loop to produ
e the individual 
olumns ofthe produ
t. We use the two aliases tmpx and tmpy (lines 62, 63) to pointinside the two multipli
ands qui
kly.The inner loop (lines 71 to 74) of this implementation is where the tradeo�
ome into play. Originally this 
omba implementation was \row{major" whi
hmeans it adds to ea
h of the 
olumns in ea
h pass. After the outer loop it wouldthen �x the 
arries. This was very fast ex
ept it had an annoying drawba
k.You had to read a mp word and two mp digits and write one mp word periteration. On pro
essors su
h as the Athlon XP and P4 this did not mattermu
h sin
e the 
a
he bandwidth is very high and it 
an keep the ALU fed withdata. It did, however, matter on older and embedded 
pus where 
a
he is oftenslower and also often doesn't exist. This new algorithm only performs two readsper iteration under the assumption that the 
ompiler has aliased Ŵ to a CPUregister.



5.2. MULTIPLICATION 79After the inner loop we store the 
urrent a

umulator in W and shift Ŵ(lines 77, 80) to forward it as a 
arry for the next pass. After the outer loop weuse the �nal 
arry (line 77) as the last digit of the produ
t.5.2.3 Polynomial Basis Multipli
ationTo break the O(n2) barrier in multipli
ation requires a 
ompletely di�erentlook at integer multipli
ation. In the following algorithms the use of polynomialbasis representation for two integers a and b as f(x) = Pni=0 aixi and g(x) =Pni=0 bixi respe
tively, is required. In this system both f(x) and g(x) have n+1terms and are of the n'th degree.The produ
t a � b � f(x)g(x) is the polynomial W (x) = P2ni=0 wixi. The
oeÆ
ients wi will dire
tly yield the desired produ
t when � is substituted forx. The dire
t solution to solve for the 2n + 1 
oeÆ
ients requires O(n2) timeand would in pra
ti
e be slower than the Comba te
hnique.However, numeri
al analysis theory indi
ates that only 2n+1 distin
t pointsinW (x) are required to determine the values of the 2n+1 unknown 
oeÆ
ients.This means by �nding �y = W (y) for 2n + 1 small values of y the 
oeÆ
ientsof W (x) 
an be found with Gaussian elimination. This te
hnique is also o

a-sionally refered to as the interpolation te
hnique (referen
es please...) sin
e ine�e
t an interpolation based on 2n+1 points will yield a polynomial equivalentto W (x).The 
oeÆ
ients of the polynomial W (x) are unknown whi
h makes �ndingW (y) for any value of y impossible. However, sin
e W (x) = f(x)g(x) theequivalent �y = f(y)g(y) 
an be used in its pla
e. The bene�t of this te
hniquestems from the fa
t that f(y) and g(y) are mu
h smaller than either a or brespe
tively. As a result �nding the 2n + 1 relations required by multiplyingf(y)g(y) involves multiplying integers that are mu
h smaller than either of theinputs.When pi
king points to gather relations there are always three obvious pointsto 
hoose, y = 0; 1 and 1. The �0 term is simply the produ
t W (0) = w0 =a0 � b0. The �1 term is the produ
t W (1) = (Pni=0 ai) (Pni=0 bi). The thirdpoint �1 is less obvious but rather simple to explain. The 2n+ 1'th 
oeÆ
ientof W (x) is numeri
ally equivalent to the most signi�
ant 
olumn in an integermultipli
ation. The point at 1 is used symboli
ally to represent the mostsigni�
ant 
olumn, that is W (1) = w2n = anbn. Note that the points at y = 0and 1 yield the 
oeÆ
ients w0 and w2n dire
tly.If more points are required they should be of small values and powers of twosu
h as 2q and the related mirror points (2q)2n � �2�q for small values of q. The



80 CHAPTER 5. MULTIPLICATION AND SQUARINGSplit into n Parts Exponent Notes2 1:584962501 This is Karatsuba Multipli
ation.3 1:464973520 This is Toom-Cook Multipli
ation.4 1:4036774615 1:36521238910 1:278753601100 1:1494265381000 1:10027093110000 1:075252070Figure 5.6: Asymptoti
 Running Time of Polynomial Basis Multipli
ationterm \mirror point" stems from the fa
t that (2q)2n � �2�q 
an be 
al
ulated inthe exa
t opposite fashion as �2q . For example, when n = 2 and q = 1 thenfollowing two equations are equivalent to the point �2 and its mirror.�2 = f(2)g(2) = (4a2 + 2a1 + a0)(4b2 + 2b1 + b0)16 � � 12 = 4f(12) � 4g(12) = (a2 + 2a1 + 4a0)(b2 + 2b1 + 4b0) (5.5)Using su
h points will allow the values of f(y) and g(y) to be independently
al
ulated using only left shifts. For example, when n = 2 the polynomial f(2q)is equal to 2q((2qa2) + a1) + a0. This te
hnique of polynomial representation isknown as Horner's method.As a general rule of the algorithm when the inputs are split into n partsea
h there are 2n � 1 multipli
ations. Ea
h multipli
ation is of multipli
andsthat have n times fewer digits than the inputs. The asymptoti
 running time ofthis algorithm is O �klgn(2n�1)� for k digit inputs (assuming they have the samenumber of digits). Figure 5.6 summarizes the exponents for various values of n.At �rst it may seem like a good idea to 
hoose n = 1000 sin
e the exponentis approximately 1:1. However, the overhead of solving for the 2001 terms ofW (x) will 
ertainly 
onsume any savings the algorithm 
ould o�er for all butex
eedingly large numbers.Cuto� PointThe polynomial basis multipli
ation algorithms all require fewer single pre
isionmultipli
ations than a straight Comba approa
h. However, the algorithms in
ur



5.2. MULTIPLICATION 81an overhead (at the O(n) work level) sin
e they require a system of equations tobe solved. This makes the polynomial basis approa
h more 
ostly to use withsmall inputs.Let m represent the number of digits in the multipli
ands (assume bothmultipli
ands have the same number of digits). There exists a point y su
h thatwhen m < y the polynomial basis algorithms are more 
ostly than Comba, whenm = y they are roughly the same 
ost and when m > y the Comba methodsare slower than the polynomial basis algorithms.The exa
t lo
ation of y depends on several key ar
hite
tural elements of the
omputer platform in question.1. The ratio of 
lo
k 
y
les for single pre
ision multipli
ation versus othersimpler operations su
h as addition, shifting, et
. For example on theAMD Athlon the ratio is roughly 17 : 1 while on the Intel P4 it is 29 : 1.The higher the ratio in favour of multipli
ation the lower the 
uto� pointy will be.2. The 
omplexity of the linear system of equations (for the 
oeÆ
ients ofW (x)) is. Generally speaking as the number of splits grows the 
omplexitygrows substantially. Ideally solving the system will only involve addition,subtra
tion and shifting of integers. This dire
tly re
e
ts on the ratioprevious mentioned.3. To a lesser extent memory bandwidth and fun
tion 
all overheads. Pro-vided the values are in the pro
essor 
a
he this is less of an in
uen
e overthe 
uto� point.A 
lean 
uto� point separation o

urs when a point y is found su
h thatall of the 
uto� point 
onditions are met. For example, if the point is too lowthen there will be values of m su
h that m > y and the Comba method is stillfaster. Finding the 
uto� points is fairly simple when a high resolution timer isavailable.5.2.4 Karatsuba Multipli
ationKaratsuba [5℄ multipli
ation when originally proposed in 1962 was among the�rst set of algorithms to break the O(n2) barrier for general purpose mul-tipli
ation. Given two polynomial basis representations f(x) = ax + b andg(x) = 
x+ d, Karatsuba proved with light algebra [6℄ that the following poly-nomial is equivalent to multipli
ation of the two integers the polynomials rep-resent.



82 CHAPTER 5. MULTIPLICATION AND SQUARINGf(x) � g(x) = a
x2 + ((a+ b)(
+ d)� (a
+ bd))x+ bd (5.6)Using the observation that a
 and bd 
ould be re-used only three half sizedmultipli
ations would be required to produ
e the produ
t. Applying this al-gorithm re
ursively, the work fa
tor be
omes O(nlg(3)) whi
h is substantiallybetter than the work fa
tor O(n2) of the Comba te
hnique. It turns out whatKaratsuba did not know or at least did not publish was that this is simplypolynomial basis multipli
ation with the points �0, �1 and �1. Consider theresultant system of equations.�0 = w0�1 = w2 + w1 + w0�1 = w2By adding the �rst and last equation to the equation in the middle the termw1 
an be isolated and all three 
oeÆ
ients solved for. The simpli
ity of thissystem of equations has made Karatsuba fairly popular. In fa
t the 
uto� pointis often fairly low2 making it an ideal algorithm to speed up 
ertain publi
 key
ryptosystems su
h as RSA and DiÆe-Hellman.

2With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respe
-tively.



5.2. MULTIPLICATION 83Algorithm mp karatsuba mul.Input. mp int a and mp int bOutput. 
 jaj � jbj1. Init the following mp int variables: x0, x1, y0, y1, t1, x0y0, x1y1.2. If step 2 failed then return(MP MEM ).Split the input. e.g. a = x1 � �B + x03. B  min(a:used; b:used)=24. x0 a (mod �B) (mp mod 2d)5. y0 b (mod �B)6. x1 ba=�B
 (mp rshd)7. y1 bb=�B
Cal
ulate the three produ
ts.8. x0y0 x0 � y0 (mp mul)9. x1y1 x1 � y110. t1 x1 + x0 (mp add)11. x0 y1 + y012. t1 t1 � x0Cal
ulate the middle term.13. x0 x0y0 + x1y114. t1 t1� x0 (s mp sub)Cal
ulate the �nal produ
t.15. t1 t1 � �B (mp lshd)16. x1y1 x1y1 � �2B17. t1 x0y0 + t118. 
 t1 + x1y119. Clear all of the temporary variables.20. Return(MP OKAY ).Figure 5.7: Algorithm mp karatsuba mulAlgorithm mp karatsuba mul. This algorithm 
omputes the unsignedprodu
t of two inputs using the Karatsuba multipli
ation algorithm. It is looselybased on the des
ription from Knuth [1, pp. 294-295℄.In order to split the two inputs into their respe
tive halves, a suitable radixpoint must be 
hosen. The radix point 
hosen must be used for both of theinputs meaning that it must be smaller than the smallest input. Step 3 
hooses



84 CHAPTER 5. MULTIPLICATION AND SQUARINGthe radix point B as half of the smallest input used 
ount. After the radixpoint is 
hosen the inputs are split into lower and upper halves. Step 4 and 5
ompute the lower halves. Step 6 and 7 
omputer the upper halves.After the halves have been 
omputed the three intermediate half-size prod-u
ts must be 
omputed. Step 8 and 9 
ompute the trivial produ
ts x0 � y0and x1 � y1. The mp int x0 is used as a temporary variable after x1 + x0 hasbeen 
omputed. By using x0 instead of an additional temporary variable, thealgorithm 
an avoid an addition memory allo
ation operation.The remaining steps 13 through 18 
ompute the Karatsuba polynomialthrough a variety of digit shifting and addition operations.File: bn mp karatsuba mul.
The new 
oding element in this routine, not seen in previous routines, isthe usage of goto statements. The 
onventional wisdom is that goto statementsshould be avoided. This is generally true, however when every single fun
tion
all 
an fail, it makes sense to handle error re
overy with a single pie
e of
ode. Lines 62 to 76 handle initializing all of the temporary variables required.Note how ea
h of the if statements goes to a di�erent label in 
ase of failure.This allows the routine to 
orre
tly free only the temporaries that have beensu

essfully allo
ated so far.The temporary variables are all initialized using the mp init size routinesin
e they are expe
ted to be large. This saves the additional reallo
ation thatwould have been ne
essary. Also x0, x1, y0 and y1 have to be able to hold atleast their respe
tive number of digits for the next se
tion of 
ode.The �rst algebrai
 portion of the algorithm is to split the two inputs intotheir halves. However, instead of using mp mod 2d and mp rshd to extra
tthe halves, the respe
tive 
ode has been pla
ed inline within the body of thefun
tion. To initialize the halves, the used and sign members are 
opied �rst.The �rst for loop on line 96 
opies the lower halves. Sin
e they are both thesame magnitude it is simpler to 
al
ulate both lower halves in a single loop. Thefor loop on lines 102 and 107 
al
ulate the upper halves x1 and y1 respe
tively.By inlining the 
al
ulation of the halves, the Karatsuba multiplier has aslightly lower overhead and 
an be used for smaller magnitude inputs.When line 151 is rea
hed, the algorithm has 
ompleted su

esfully. The\error status" variable err is set to MP OKAY so that the same 
ode thathandles errors 
an be used to 
lear the temporary variables and return.



5.2. MULTIPLICATION 855.2.5 Toom-Cook 3-Way Multipli
ationToom-Cook 3-Way [?℄ multipli
ation is essentially the polynomial basis algo-rithm for n = 2 ex
ept that the points are 
hosen su
h that � is easy to 
omputeand the resulting system of equations easy to redu
e. Here, the points �0, 16 �� 12 ,�1, �2 and �1 make up the �ve required points to solve for the 
oeÆ
ients ofthe W (x).With the �ve relations that Toom-Cook spe
i�es, the following system ofequations is formed.�0 = 0w4 + 0w3 + 0w2 + 0w1 + 1w016 � � 12 = 1w4 + 2w3 + 4w2 + 8w1 + 16w0�1 = 1w4 + 1w3 + 1w2 + 1w1 + 1w0�2 = 16w4 + 8w3 + 4w2 + 2w1 + 1w0�1 = 1w4 + 0w3 + 0w2 + 0w1 + 0w0A trivial solution to this matrix requires 12 subtra
tions, two multipli
ationsby a small power of two, two divisions by a small power of two, two divisionsby three and one multipli
ation by three. All of these 19 sub-operations requireless than quadrati
 time, meaning that the algorithm 
an be faster than a base-line multipli
ation. However, the greater 
omplexity of this algorithm pla
esthe 
uto� point (TOOM MUL CUTOFF) where Toom-Cook be
omes moreeÆ
ient mu
h higher than the Karatsuba 
uto� point.



86 CHAPTER 5. MULTIPLICATION AND SQUARINGAlgorithm mp toom mul.Input. mp int a and mp int bOutput. 
 a � bSplit a and b into three pie
es. E.g. a = a2�2k + a1�k + a01. k  bmin(a:used; b:used)=3
2. a0  a (mod �k)3. a1  ba=�k
, a1  a1 (mod �k)4. a2  ba=�2k
, a2  a2 (mod �k)5. b0  a (mod �k)6. b1  ba=�k
, b1  b1 (mod �k)7. b2  ba=�2k
, b2  b2 (mod �k)Find the �ve equations for w0; w1; :::; w4.8. w0  a0 � b09. w4  a2 � b210. tmp1  2 � a0, tmp1  a1 + tmp1, tmp1  2 � tmp1, tmp1  tmp1 + a211. tmp2  2 � b0, tmp2  b1 + tmp2, tmp2  2 � tmp2, tmp2  tmp2 + b212. w1  tmp1 � tmp213. tmp1  2 � a2, tmp1  a1 + tmp1, tmp1  2 � tmp1, tmp1  tmp1 + a014. tmp2  2 � b2, tmp2  b1 + tmp2, tmp2  2 � tmp2, tmp2  tmp2 + b015. w3  tmp1 � tmp216. tmp1  a0 + a1, tmp1  tmp1 + a2, tmp2  b0 + b1, tmp2  tmp2 + b217. w2  tmp1 � tmp2Continued on the next page.Figure 5.8: Algorithm mp toom mulAlgorithm mp toom mul. This algorithm 
omputes the produ
t of twomp int variables a and b using the Toom-Cook approa
h. Compared to theKaratsuba multipli
ation, this algorithm has a lower asymptoti
 running time ofapproximately O(n1:464) but at an obvious 
ost in overhead. In this des
ription,several statements have been 
ompounded to save spa
e. The intention is thatthe statements are exe
uted from left to right a
ross any given step.The two inputs a and b are �rst split into three k-digit integers a0; a1; a2and b0; b1; b2 respe
tively. From these smaller integers the 
oeÆ
ients of thepolynomial basis representations f(x) and g(x) are known and 
an be used to�nd the relations required.



5.2. MULTIPLICATION 87Algorithm mp toom mul (
ontinued).Input. mp int a and mp int bOutput. 
 a � bNow solve the system of equations.18. w1  w4 � w1, w3  w3 � w019. w1  bw1=2
, w3  bw3=2
20. w2  w2 � w0, w2  w2 � w421. w1  w1 � w2, w3  w3 � w222. tmp1  8 � w0, w1  w1 � tmp1, tmp1  8 � w4, w3  w3 � tmp123. w2  3 � w2, w2  w2 � w1, w2  w2 � w324. w1  w1 � w2, w3  w3 � w225. w1  bw1=3
; w3  bw3=3
Now substitute �k for x by shifting w0; w1; :::; w4.26. for n from 1 to 4 do26.1 wn  wn � �nk27. 
 w0 + w1, 
 
+ w2, 
 
+w3, 
 
+ w428. Return(MP OKAY )Figure 5.9: Algorithm mp toom mul (
ontinued)The �rst two relations w0 and w4 are the points �0 and �1 respe
tively. Therelation w1; w2 and w3 
orrespond to the points 16 � � 12 ; �2 and �1 respe
tively.These are found using logi
al shifts to independently �nd f(y) and g(y) whi
hsigni�
antly speeds up the algorithm.After the �ve relations w0; w1; : : : ; w4 have been 
omputed, the system theyrepresent must be solved in order for the unknown 
oeÆ
ients w1; w2 and w3to be isolated. The steps 18 through 25 perform the system redu
tion requiredas previously des
ribed. Ea
h step of the redu
tion represents the 
omparablematrix operation that would be performed had this been performed by pen
il.For example, step 18 indi
ates that row 1 must be subtra
ted from row 4 andsimultaneously row 0 subtra
ted from row 3.On
e the 
oeÆents have been isolated, the polynomial W (x) = P2ni=0 wixiis known. By substituting �k for x, the integer result a � b is produ
ed.File: bn mp toom mul.
The �rst obvious thing to note is that this algorithm is 
ompli
ated. The
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omplexity is worth it if you are multiplying very large numbers. For example, a10,000 digit multipli
ation takes approximaly 99,282,205 fewer single pre
isionmultipli
ations with Toom{Cook than a Comba or baseline approa
h (this is asavings of more than 99%). For most \
rypto" sized numbers this algorithm isnot pra
ti
al as Karatsuba has a mu
h lower 
uto� point.First we split a and b into three roughly equal portions. This has beena

omplished (lines 41 to 70) with 
ombinations of mp rshd() and mp mod 2d()fun
tion 
alls. At this point a = a2 � �2 + a1 � � + a0 and similiarly for b.Next we 
ompute the �ve points w0; w1; w2; w3 and w4. Re
all that w0 andw4 
an be 
omputed dire
tly from the portions so we get those out of the way�rst (lines 73 and 78). Next we 
ompute w1; w2 and w3 using Horners method.After this point we solve for the a
tual values of w1; w2 and w3 by redu
ingthe 5� 5 system whi
h is relatively straight forward.5.2.6 Signed Multipli
ationNow that algorithms to handle multipli
ations of every useful dimensions havebeen developed, a rather simple �nishing tou
h is required. So far all of themultipli
ation algorithms have been unsigned multipli
ations whi
h leaves onlya signed multipli
ation algorithm to be established.Algorithm mp mul. This algorithm performs the signed multipli
ationof two inputs. It will make use of any of the three unsigned multipli
ationalgorithms available when the input is of appropriate size. The sign of theresult is not set until the end of the algorithm sin
e algorithm s mp mul digswill 
lear it.File: bn mp mul.
The implementation is rather simplisti
 and is not parti
ularly noteworthy.Line 22 
omputes the sign of the result using the \?" operator from the Cprogramming language. Line 48 
omputes Æ using the fa
t that 1 << k is equalto 2k.5.3 SquaringSquaring is a spe
ial 
ase of multipli
ation where both multipli
ands are equal.At �rst it may seem like there is no signi�
ant optimization available but in fa
tthere is. Consider the multipli
ation of 576 against 241. In total there will be



5.3. SQUARING 89Algorithm mp mul.Input. mp int a and mp int bOutput. 
 a � b1. If a:sign = b:sign then1.1 sign =MP ZPOS2. else2.1 sign =MP ZNEG3. If min(a:used; b:used) � TOOM MUL CUTOFF then3.1 
 a � b using algorithm mp toom mul4. else if min(a:used; b:used) � KARATSUBA MUL CUTOFF then4.1 
 a � b using algorithm mp karatsuba mul5. else5.1 digs a:used+ b:used+ 15.2 If digs < MP ARRAY and min(a:used; b:used) � Æ then5.2.1 
 a � b (mod �digs) using algorithm fast s mp mul digs.5.3 else5.3.1 
 a � b (mod �digs) using algorithm s mp mul digs.6. 
:sign sign7. Return the result of the unsigned multipli
ation performed.Figure 5.10: Algorithm mp mulnine single pre
ision multipli
ations performed whi
h are 1 � 6, 1 � 7, 1 � 5, 4 � 6,4 � 7, 4 � 5, 2 � 6, 2 � 7 and 2 � 5. Now 
onsider the multipli
ation of 123 against123. The nine produ
ts are 3 �3, 3 �2, 3 �1, 2 �3, 2 �2, 2 �1, 1 �3, 1 �2 and 1 �1. On
loser inspe
tion some of the produ
ts are equivalent. For example, 3 � 2 = 2 � 3and 3 � 1 = 1 � 3.For any n-digit input, there are (n2+n)2 possible unique single pre
ision multi-pli
ations required 
ompared to the n2 required for multipli
ation. The followingdiagram gives an example of the operations required.Starting from zero and numbering the 
olumns from right to left a very sim-ple pattern be
omes obvious. For the purposes of this dis
ussion let x representthe number being squared. The �rst observation is that in row k the 2k'th
olumn of the produ
t has a (xk)2 term in it.The se
ond observation is that every 
olumn j in row k where j 6= 2k ispart of a double produ
t. Every non-square term of a 
olumn will appear twi
ehen
e the name \double produ
t". Every odd 
olumn is made up entirely ofdouble produ
ts. In fa
t every 
olumn is made up of double produ
ts and at



90 CHAPTER 5. MULTIPLICATION AND SQUARING1 2 3� 1 2 33 � 1 3 � 2 3 � 3 Row 02 � 1 2 � 2 2 � 3 Row 11 � 1 1 � 2 1 � 3 Row 2Figure 5.11: Squaring Optimization Diagrammost one square (see the exer
ise se
tion).The third and �nal observation is that for row k the �rst unique non-squareterm, that is, one that hasn't already appeared in an earlier row, o

urs at
olumn 2k + 1. For example, on row 1 of the previous squaring, 
olumn one ispart of the double produ
t with 
olumn one from row zero. Column two of rowone is a square and 
olumn three is the �rst unique 
olumn.5.3.1 The Baseline Squaring AlgorithmThe baseline squaring algorithm is meant to be a 
at
h-all squaring algorithm.It will handle any of the input sizes that the faster routines will not handle.Algorithm s mp sqr. This algorithm 
omputes the square of an input us-ing the three observations on squaring. It is based fairly faithfully on algorithm14.16 of HAC [2, pp.596-597℄. Similar to algorithm s mp mul digs, a temporarymp int is allo
ated to hold the result of the squaring. This allows the destinationmp int to be the same as the sour
e mp int.The outer loop of this algorithm begins on step 4. It is best to think of theouter loop as walking down the rows of the partial results, while the inner loop
omputes the 
olumns of the partial result. Step 4.1 and 4.2 
ompute the squareterm for ea
h row, and step 4.3 and 4.4 propagate the 
arry and 
ompute thedouble produ
ts.The requirement that a mp word be able to represent the range 0 � x <2�2 arises from this very algorithm. The produ
t aixaiy will lie in the range0 � x � �2 � 2� + 1 whi
h is obviously less than �2 meaning that when it ismultiplied by two, it 
an be properly represented by a mp word.Similar to algorithm s mp mul digs, after every pass of the inner loop, thedestination is 
orre
tly set to the sum of all of the partial results 
al
ulated sofar. This involves expensive 
arry propagation whi
h will be eliminated in thenext algorithm.



5.3. SQUARING 91Algorithm s mp sqr.Input. mp int aOutput. b a21. Init a temporary mp int of at least 2 � a:used+ 1 digits. (mp init size)2. If step 1 failed return(MP MEM )3. t:used 2 � a:used+ 14. For ix from 0 to a:used� 1 doCal
ulate the square.4.1 r̂ t2ix + (aix)24.2 t2ix  r̂ (mod �)Cal
ulate the double produ
ts after the square.4.3 u br̂=�
4.4 For iy from ix+ 1 to a:used� 1 do4.4.1 r̂ 2 � aixaiy + tix+iy + u4.4.2 tix+iy  r̂ (mod �)4.4.3 u br̂=�
Set the last 
arry.4.5 While u > 0 do4.5.1 iy  iy + 14.5.2 r̂ tix+iy + u4.5.3 tix+iy  r̂ (mod �)4.5.4 u br̂=�
5. Clamp ex
ess digits of t. (mp 
lamp)6. Ex
hange b and t.7. Clear t (mp 
lear)8. Return(MP OKAY )Figure 5.12: Algorithm s mp sqrFile: bn s mp sqr.
Inside the outer loop (line 34) the square term is 
al
ulated on line 37. The
arry (line 44) has been extra
ted from the mp word a

umulator using a rightshift. Aliases for aix and tix+iy are initialized (lines 47 and 50) to simplify theinner loop. The doubling is performed using two additions (line 59) sin
e it isusually faster than shifting, if not at least as fast.The important observation is that the inner loop does not begin at iy = 0like for multipli
ation. As su
h the inner loops get progressively shorter as the
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eeds. This is what leads to the savings 
ompared to using amultipli
ation to square a number.5.3.2 Faster Squaring by the \Comba" MethodA major drawba
k to the baseline method is the requirement for single pre
isionshifting inside the O(n2) nested loop. Squaring has an additional drawba
k thatit must double the produ
t inside the inner loop as well. As for multipli
ation,the Comba te
hnique 
an be used to eliminate these performan
e hazards.The �rst obvious solution is to make an array of mp words whi
h will hold allof the 
olumns. This will indeed eliminate all of the 
arry propagation operationsfrom the inner loop. However, the inner produ
t must still be doubled O(n2)times. The solution stems from the simple fa
t that 2a+2b+2
 = 2(a+ b+ 
).That is the sum of all of the double produ
ts is equal to double the sum of allthe produ
ts. For example, ab+ ba+ a
+ 
a = 2ab+ 2a
 = 2(ab+ a
).However, we 
annot simply double all of the 
olumns, sin
e the squaresappear only on
e per row. The most pra
ti
al solution is to have two mp wordarrays. One array will hold the squares and the other array will hold the doubleprodu
ts. With both arrays the doubling and 
arry propagation 
an be movedto a O(n) work level outside the O(n2) level. In this 
ase, we have an evensimpler solution in mind.



5.3. SQUARING 93Algorithm fast s mp sqr.Input. mp int aOutput. b a2Pla
e an array of MP WARRAY mp digits named W on the sta
k.1. If b:allo
 < 2a:used+ 1 then grow b to 2a:used+ 1 digits. (mp grow).2. If step 1 failed return(MP MEM ).3. pa 2 � a:used4. Ŵ1 05. for ix from 0 to pa� 1 do5.1 Ŵ  05.2 ty  MIN(a:used� 1; ix)5.3 tx ix� ty5.4 iy  MIN(a:used� tx; ty + 1)5.5 iy  MIN(iy; b(ty � tx+ 1) =2
)5.6 for iz from 0 to iz � 1 do5.6.1 Ŵ  Ŵ + atx+izaty�iz5.7 Ŵ  2 � Ŵ + Ŵ15.8 if ix is even then5.8.1 Ŵ  Ŵ + �abix=2
�25.9 Wix  Ŵ (mod �)5.10 Ŵ1 b Ŵ=�
6. oldused b:used7. b:used 2 � a:used8. for ix from 0 to pa� 1 do8.1 bix  Wix9. for ix from pa to oldused� 1 do9.1 bix  010. Clamp ex
ess digits from b. (mp 
lamp)11. Return(MP OKAY ).Figure 5.13: Algorithm fast s mp sqrAlgorithm fast s mp sqr. This algorithm 
omputes the square of an in-put using the Comba te
hnique. It is designed to be a repla
ement for algorithms mp sqr when the number of input digits is less thanMP WARRAY and lessthan Æ2 . This algorithm is very similar to the Comba multiplier ex
ept with afew key di�eren
es we shall make note of.
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umulator and 
arry variables Ŵ and Ŵ1 respe
tively.This is be
ause the inner loop produ
ts are to be doubled. If we had added theprevious 
arry in we would be doubling too mu
h. Next we perform an additionMIN 
ondition on iy (step 5.5) to prevent overlapping digits. For example, a3 �a5is equal a5 � a3. Whereas in the multipli
ation 
ase we would have 5 < a:usedand 3 � 0 is maintained sin
e we double the sum of the produ
ts just outsidethe inner loop we have to avoid doing this. This is also a good thing sin
e weperform fewer multipli
ations and the routine ends up being faster.Finally the last di�eren
e is the addition of the \square" term outside theinner loop (step 5.8). We add in the square only to even outputs and it is thesquare of the term at the bix=2
 position.File: bn fast s mp sqr.
This implementation is essentially a 
opy of Comba multipli
ation with theappropriate 
hanges added to make it faster for the spe
ial 
ase of squaring.5.3.3 Polynomial Basis SquaringThe same algorithm that performs optimal polynomial basis multipli
ation 
anbe used to perform polynomial basis squaring. The minor ex
eption is that�y = f(y)g(y) is a
tually equivalent to �y = f(y)2 sin
e f(y) = g(y). Insteadof performing 2n+1 multipli
ations to �nd the � relations, squaring operationsare performed instead.5.3.4 Karatsuba SquaringLet f(x) = ax + b represent the polynomial basis representation of a numberto square. Let h(x) = (f(x))2 represent the square of the polynomial. TheKaratsuba equation 
an be modi�ed to square a number with the followingequation. h(x) = a2x2 + �(a+ b)2 � (a2 + b2)�x+ b2 (5.7)Upon 
loser inspe
tion this equation only requires the 
al
ulation of threehalf-sized squares: a2, b2 and (a + b)2. As in Karatsuba multipli
ation, thisalgorithm 
an be applied re
ursively on the input and will a
hieve an asymptoti
running time of O �nlg(3)�.If the asymptoti
 times of Karatsuba squaring and multipli
ation are thesame, why not simply use the multipli
ation algorithm instead? The answer to



5.3. SQUARING 95this arises from the 
uto� point for squaring. As in multipli
ation there existsa 
uto� point, at whi
h the time required for a Comba based squaring and aKaratsuba based squaring meet. Due to the overhead inherent in the Karatsubamethod, the 
uto� point is fairly high. For example, on an AMD Athlon XPpro
essor with � = 228, the 
uto� point is around 127 digits.Consider squaring a 200 digit number with this te
hnique. It will be splitinto two 100 digit halves whi
h are subsequently squared. The 100 digit halveswill not be squared using Karatsuba, but instead using the faster Comba basedsquaring algorithm. If Karatsuba multipli
ation were used instead, the 100 digitnumbers would be squared with a slower Comba based multipli
ation.



96 CHAPTER 5. MULTIPLICATION AND SQUARINGAlgorithm mp karatsuba sqr.Input. mp int aOutput. b a21. Initialize the following temporary mp ints: x0, x1, t1, t2, x0x0 and x1x1.2. If any of the initializations on step 1 failed return(MP MEM ).Split the input. e.g. a = x1�B + x03. B  ba:used=2
4. x0 a (mod �B) (mp mod 2d)5. x1 ba=�B
 (mp lshd)Cal
ulate the three squares.6. x0x0 x02 (mp sqr)7. x1x1 x128. t1 x1 + x0 (s mp add)9. t1 t12Compute the middle term.10. t2 x0x0 + x1x1 (s mp add)11. t1 t1� t2Compute �nal produ
t.12. t1 t1�B (mp lshd)13. x1x1 x1x1�2B14. t1 t1 + x0x015. b t1 + x1x116. Return(MP OKAY ).Figure 5.14: Algorithm mp karatsuba sqrAlgorithm mp karatsuba sqr. This algorithm 
omputes the square ofan input a using the Karatsuba te
hnique. This algorithm is very similar tothe Karatsuba based multipli
ation algorithm with the ex
eption that the threehalf-size multipli
ations have been repla
ed with three half-size squarings.The radix point for squaring is simply pla
ed exa
tly in the middle of thedigits when the input has an odd number of digits, otherwise it is pla
ed justbelow the middle. Step 3, 4 and 5 
ompute the two halves required using B asthe radix point. The �rst two squares in steps 6 and 7 are rather straightforwardwhile the last square is of a more 
ompa
t form.



5.3. SQUARING 97By expanding (x1 + x0)2, the x12 and x02 terms in the middle disappear,that is (x0�x1)2� (x12+x02) = 2 �x0 �x1. Now if 5n single pre
ision additionsand a squaring of n-digits is faster than multiplying two n-digit numbers anddoubling then this method is faster. Assuming no further re
ursions o

ur, thedi�eren
e 
an be estimated with the following inequality.Let p represent the 
ost of a single pre
ision addition and q the 
ost of asingle pre
ision multipli
ation both in terms of time3.5pn+ q(n2 + n)2 � pn+ qn2 (5.8)For example, on an AMD Athlon XP pro
essor p = 13 and q = 6. Thisimplies that the following inequality should hold.5n3 + 3n2 + 3n < n3 + 6n253 + 3n+ 3 < 13 + 6n139 < nThis results in a 
uto� point around n = 2. As a 
onsequen
e it is a
-tually faster to 
ompute the middle term the \long way" on pro
essors wheremultipli
ation is substantially slower4 than simpler operations su
h as addition.File: bn mp karatsuba sqr.
This implementation is largely based on the implementation of algorithmmp karatsuba mul. It uses the same inline style to 
opy and shift the input intothe two halves. The loop from line 54 to line 70 has been modi�ed sin
e only oneinput exists. The used 
ount of both x0 and x1 is �xed up and x0 is 
lampedbefore the 
al
ulations begin. At this point x1 and x0 are valid equivalents tothe respe
tive halves as if mp rshd and mp mod 2d had been used.By inlining the 
opy and shift operations the 
uto� point for Karatsubamultipli
ation 
an be lowered. On the Athlon the 
uto� point is exa
tly at thepoint where Comba squaring 
an no longer be used (128 digits). On slowerpro
essors su
h as the Intel P4 it is a
tually below the Comba limit (at 110digits).This routine uses the same error trap 
oding style as mp karatsuba sqr. Asthe temporary variables are initialized errors are redire
ted to the error trap3Or ma
hine 
lo
k 
y
les.4On the Athlon there is a 1:17 ratio between 
lo
k 
y
les for addition and multipli
ation.On the Intel P4 pro
essor this ratio is 1:29 making this method even more bene�
ial. Theonly 
ommon ex
eption is the ARMv4 pro
essor whi
h has a ratio of 1:7.
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ompletes without error the error 
ode is set toMP OKAY and mp 
lears are exe
uted normally.5.3.5 Toom-Cook SquaringThe Toom-Cook squaring algorithm mp toom sqr is heavily based on the al-gorithm mp toom mul with the ex
eption that squarings are used instead ofmultipli
ation to �nd the �ve relations. The reader is en
ouraged to read thedes
ription of the latter algorithm and try to derive their own Toom-Cook squar-ing algorithm.5.3.6 High Level Squaring



5.3. SQUARING 99Algorithm mp sqr.Input. mp int aOutput. b a21. If a:used � TOOM SQR CUTOFF then1.1 b a2 using algorithm mp toom sqr2. else if a:used � KARATSUBA SQR CUTOFF then2.1 b a2 using algorithm mp karatsuba sqr3. else3.1 digs a:used+ b:used+ 13.2 If digs < MP ARRAY and a:used � Æ then3.2.1 b a2 using algorithm fast s mp sqr.3.3 else3.3.1 b a2 using algorithm s mp sqr.4. b:sign MP ZPOS5. Return the result of the unsigned squaring performed.Figure 5.15: Algorithm mp sqr
Algorithm mp sqr. This algorithm 
omputes the square of the input us-ing one of four di�erent algorithms. If the input is very large and has at leastTOOM SQR CUTOFF orKARATSUBA SQR CUTOFF digits then ei-ther the Toom-Cook or the Karatsuba Squaring algorithm is used. If neitherof the polynomial basis algorithms should be used then either the Comba orbaseline algorithm is used.File: bn mp sqr.




100 CHAPTER 5. MULTIPLICATION AND SQUARINGExer
ises[3℄ Devise an eÆ
ient algorithm for sele
tion of the radix point to handle inputsthat have di�erent number of digits in Karatsuba multipli
ation.[2℄ In se
tion 5.3 the fa
t that every 
olumn of a squaring is made upof double produ
ts and at most one square is stated. Prove this statement.[3℄ Prove the equation for Karatsuba squaring.[1℄ Prove that Karatsuba squaring requires O �nlg(3)� time.[2℄ Determine the minimal ratio between addition and multipli
ation 
lo
k 
y
lesrequired for equation 6:7 to be true.[3℄ Implement a threaded version of Comba multipli
ation (and squaring) where you
ompute subsets of the 
olumns in ea
h thread. Determine a 
uto� point whereit is e�e
tive and add the logi
 to mp mul() and mp sqr().[4℄ Same as the previous but also modify the Karatsuba and Toom-Cook. You mustin
rease the throughput of mp exptmod() for random odd moduli in the range512 : : :4096 bits signi�
antly (> 2x) to 
omplete this 
hallenge.



Chapter 6Modular Redu
tion6.1 Basi
s of Modular Redu
tionModular redu
tion is an operation that arises quite often within publi
 key
ryptography algorithms and various number theoreti
 algorithms, su
h as fa
-toring. Modular redu
tion algorithms are the third 
lass of algorithms of the\multipliers" set. A number a is said to be redu
ed modulo another number b by�nding the remainder of the division a=b. Full integer division with remainderis a topi
 to be 
overed in 8.1.Modular redu
tion is equivalent to solving for r in the following equation.a = bq + r where q = ba=b
. The result r is said to be \
ongruent to a modulob" whi
h is also written as r � a (mod b). In other verna
ular r is known asthe \modular residue" whi
h leads to \quadrati
 residue"1 and other forms ofresidues.Modular redu
tions are normally used to 
reate either �nite groups, rings or�elds. The most 
ommon usage for performan
e driven modular redu
tions isin modular exponentiation algorithms. That is to 
ompute d = ab (mod 
) asfast as possible. This operation is used in the RSA and DiÆe-Hellman publi
key algorithms, for example. Modular multipli
ation and squaring also ap-pears as a fundamental operation in ellipti
 
urve 
ryptographi
 algorithms.As will be dis
ussed in the subsequent 
hapter there exist fast algorithms for
omputing modular exponentiations without having to perform (in this exam-ple) b� 1 multipli
ations. These algorithms will produ
e partial results in the1That's fan
y talk for b � a2 (mod p). 101



102 CHAPTER 6. MODULAR REDUCTIONrange 0 � x < 
2 whi
h 
an be taken advantage of to 
reate several eÆ
ientalgorithms. They have also been used to 
reate redundan
y 
he
k algorithmsknown as CRCs, error 
orre
tion 
odes su
h as Reed-Solomon and solve a varietyof number theoereti
 problems.6.2 The Barrett Redu
tionThe Barrett redu
tion algorithm [7℄ was inspired by fast division algorithmswhi
h multiply by the re
ipro
al to emulate division. Barretts observation wasthat the residue 
 of a modulo b is equal to
 = a� b � ba=b
 (6.1)Sin
e algorithms su
h as modular exponentiation would be using the samemodulus extensively, typi
al DSP2 intuition would indi
ate the next step wouldbe to repla
e a=b by a multipli
ation by the re
ipro
al. However, DSP intuitionon its own will not work as these numbers are 
onsiderably larger than thepre
ision of 
ommon DSP 
oating point data types. It would take another
ommon optimization to optimize the algorithm.6.2.1 Fixed Point Arithmeti
The tri
k used to optimize the above equation is based on a te
hnique of em-ulating 
oating point data types with �xed pre
ision integers. Fixed pointarithmeti
 would be
ome very popular as it greatly optimize the \3d-shooter"genre of games in the mid 1990s when 
oating point units were fairly slow if notunavailable. The idea behind �xed point arithmeti
 is to take a normal k-bitinteger data type and break it into p-bit integer and a q-bit fra
tion part (wherep+ q = k).In this system a k-bit integer n would a
tually represent n=2q. For example,with q = 4 the integer n = 37 would a
tually represent the value 2:3125. Tomultiply two �xed point numbers the integers are multiplied using traditionalarithmeti
 and subsequently normalized by moving the implied de
imal pointba
k to where it should be. For example, with q = 4 to multiply the integers9 and 5 they must be 
onverted to �xed point �rst by multiplying by 2q. Leta = 9(2q) represent the �xed point representation of 9 and b = 5(2q) represent2It is worth noting that Barrett's paper targeted the DSP56K pro
essor.



6.2. THE BARRETT REDUCTION 103the �xed point representation of 5. The produ
t ab is equal to 45(22q) whi
hwhen normalized by dividing by 2q produ
es 45(2q).This te
hnique be
ame popular sin
e a normal integer multipli
ation andlogi
al shift right are the only required operations to perform a multipli
ationof two �xed point numbers. Using �xed point arithmeti
, division 
an be easilyapproximated by multiplying by the re
ipro
al. If 2q is equivalent to one than2q=b is equivalent to the �xed point approximation of 1=b using real arithmeti
.Using this fa
t dividing an integer a by another integer b 
an be a
hieved withthe following expression. ba=b
 � b(a � b2q=b
)=2q
 (6.2)The pre
ision of the division is proportional to the value of q. If the divisorb is used frequently as is the 
ase with modular exponentiation pre-
omputing2q=b will allow a division to be performed with a multipli
ation and a right shift.Both operations are 
onsiderably faster than division on most pro
essors.Consider dividing 19 by 5. The 
orre
t result is b19=5
 = 3. With q = 3the re
ipro
al is b2q=5
 = 1 whi
h leads to a produ
t of 19 whi
h when dividedby 2q produ
es 2. However, with q = 4 the re
ipro
al is b2q=5
 = 3 and theresult of the emulated division is b3 � 19=2q
 = 3 whi
h is 
orre
t. The valueof 2q must be 
lose to or ideally larger than the dividend. In e�e
t if a is thedividend then q should allow 0 � ba=2q
 � 1 in order for this approa
h to work
orre
tly. Plugging this form of divison into the original equation the followingmodular residue equation arises.
 = a� b � b(a � b2q=b
)=2q
 (6.3)Using the notation from [7℄ the value of b2q=b
 will be represented by the �symbol. Using the � variable also helps re-infor
e the idea that it is meant tobe 
omputed on
e and re-used.
 = a� b � b(a � �)=2q
 (6.4)Provided that 2q � a this algorithm will produ
e a quotient that is eitherexa
tly 
orre
t or o� by a value of one. In the 
ontext of Barrett redu
tion thevalue of a is bound by 0 � a � (b � 1)2 meaning that 2q � b2 is suÆ
ient toensure the re
ipro
al will have enough pre
ision.Let n represent the number of digits in b. This algorithm requires approxi-mately 2n2 single pre
ision multipli
ations to produ
e the quotient and anothern2 single pre
ision multipli
ations to �nd the residue. In total 3n2 single pre
i-sion multipli
ations are required to redu
e the number.



104 CHAPTER 6. MODULAR REDUCTIONFor example, if b = 1179677 and q = 41 (2q > b2), then the re
ipro
al �is equal to b2q=b
 = 1864089. Consider redu
ing a = 180388626447 modulob using the above redu
tion equation. The quotient using the new formulais b(a � �)=2q
 = 152913. By subtra
ting 152913b from a the 
orre
t residuea � 677346 (mod b) is found.6.2.2 Choosing a Radix PointUsing the �xed point representation a modular redu
tion 
an be performed with3n2 single pre
ision multipli
ations. If that were the best that 
ould be a
hieveda full division3 might as well be used in its pla
e. The key to optimizing theredu
tion is to redu
e the pre
ision of the initial multipli
ation that �nds thequotient.Let a represent the number of whi
h the residue is sought. Let b representthe modulus used to �nd the residue. Let m represent the number of digits inb. For the purposes of this dis
ussion we will assume that the number of digitsin a is 2m, whi
h is generally true if two m-digit numbers have been multiplied.Dividing a by b is the same as dividing a 2m digit integer by a m digit integer.Digits below the m� 1'th digit of a will 
ontribute at most a value of 1 to thequotient be
ause �k < b for any 0 � k � m� 1. Another way to express this isby re-writing a as two parts. If a0 � a (mod bm) and a00 = a�a0 then ab � a0+a00bwhi
h is equivalent to a0b + a00b . Sin
e a0 is bound to be less than b the quotientis bound by 0 � a0b < 1.Sin
e the digits of a0 do not 
ontribute mu
h to the quotient the observationis that they might as well be zero. However, if the digits \might as well be zero"they might as well not be there in the �rst pla
e. Let q0 = ba=�m�1
 representthe input with the irrelevant digits trimmed. Now the modular redu
tion istrimmed to the almost equivalent equation
 = a� b � b(q0 � �)=�m+1
 (6.5)Note that the original divisor 2q has been repla
ed with �m+1 where in this
ase q is a multiple of lg(�). Also note that the exponent on the divisor whenadded to the amount q0 was shifted by equals 2m. If the optimization hadnot been performed the divisor would have the exponent 2m so in the end theexponents do \add up". Using the above equation the quotient b(q0 � �)=�m+1

an be o� from the true quotient by at most two. The original �xed point3A division requires approximately O(2
n2) single pre
ision multipli
ations for a smallvalue of 
. See 8.1 for further details.



6.2. THE BARRETT REDUCTION 105quotient 
an be o� by as mu
h as one (provided the radix point is 
hosen suitably)and now that the lower irrelevent digits have been trimmed the quotient 
an beo� by an additional value of one for a total of at most two. This implies that0 � a � b � b(q0 � �)=�m+1
 < 3b. By �rst subtra
ting b times the quotient andthen 
onditionally subtra
ting b on
e or twi
e the residue is found.The quotient is now found using (m + 1)(m) = m2 + m single pre
isionmultipli
ations and the residue with an additional m2 single pre
ision multipli-
ations, ignoring the subtra
tions required. In total 2m2 +m single pre
isionmultipli
ations are required to �nd the residue. This is 
onsiderably faster thanthe original attempt.For example, let � = 10 represent the radix of the digits. Let b = 9999represent the modulus whi
h implies m = 4. Let a = 99929878 represent thevalue of whi
h the residue is desired. In this 
ase q = 8 sin
e 107 < 99992meaning that � = b�q=b
 = 10001. With the new observation the multipli
andfor the quotient is equal to q0 = ba=�m�1
 = 99929. The quotient is thenb(q0 � �)=�m+1
 = 9993. Subtra
ting 9993b from a and the 
orre
t residuea � 9871 (mod b) is found.6.2.3 Trimming the QuotientSo far the redu
tion algorithm has been optimized from 3m2 single pre
isionmultipli
ations down to 2m2 +m single pre
ision multipli
ations. As it standsnow the algorithm is already fairly fast 
ompared to a full integer division algo-rithm. However, there is still room for optimization.After the �rst multipli
ation inside the quotient (q0 � �) the value is shiftedright bym+1 pla
es e�e
tively nullifying the lower half of the produ
t. It wouldbe ni
e to be able to remove those digits from the produ
t to e�e
tively 
ut downthe number of single pre
ision multipli
ations. If the number of digits in themodulus m is far less than � a full produ
t is not required for the algorithm towork properly. In fa
t the lower m � 2 digits will not a�e
t the upper half ofthe produ
t at all and do not need to be 
omputed.The value of � is a m-digit number and q0 is a m + 1 digit number. Usinga full multiplier (m + 1)(m) = m2 + m single pre
ision multipli
ations wouldbe required. Using a multiplier that will only produ
e digits at and above them � 1'th digit redu
es the number of single pre
ision multipli
ations to m2+m2single pre
ision multipli
ations.



106 CHAPTER 6. MODULAR REDUCTION6.2.4 Trimming the ResidueAfter the quotient has been 
al
ulated it is used to redu
e the input. As previ-ously noted the algorithm is not exa
t and it 
an be o� by a small multiple ofthe modulus, that is 0 � a� b � b(q0 � �)=�m+1
 < 3b. If b is m digits than theresult of redu
tion equation is a value of at most m+ 1 digits (provided 3 < �)implying that the upper m� 1 digits are impli
itly zero.The next optimization arises from this very fa
t. Instead of 
omputingb � b(q0 � �)=�m+1
 using a full O(m2) multipli
ation algorithm only the lowerm+ 1 digits of the produ
t have to be 
omputed. Similarly the value of a 
anbe redu
ed modulo �m+1 before the multiple of b is subtra
ted whi
h simplifesthe subtra
tion as well. A multipli
ation that produ
es only the lower m + 1digits requires m2+3m�22 single pre
ision multipli
ations.With both optimizations in pla
e the algorithm is the algorithm Barrettproposed. It requires m2 + 2m � 1 single pre
ision multipli
ations whi
h is
onsiderably faster than the straightforward 3m2 method.6.2.5 The Barrett Algorithm



6.2. THE BARRETT REDUCTION 107Algorithm mp redu
e.Input. mp int a, mp int b and � = b�2m=b
; m = dlg�(b)e; (0 � a < b2; b > 1)Output. a (mod b)Let m represent the number of digits in b.1. Make a 
opy of a and store it in q. (mp init 
opy)2. q  bq=�m�1
 (mp rshd)Produ
e the quotient.3. q  q � � (note: only produ
e digits at or above m� 1)4. q  bq=�m+1
Subtra
t the multiple of modulus from the input.5. a a (mod �m+1) (mp mod 2d)6. q  q � b (mod �m+1) (s mp mul digs)7. a a� q (mp sub)Add �m+1 if a 
arry o

ured.8. If a < 0 then (mp 
mp d)8.1 q  1 (mp set)8.2 q  q � �m+1 (mp lshd)8.3 a a+ qNow subtra
t the modulus if the residue is too large (e.g. quotient too small).9. While a � b do (mp 
mp)9.1 
 a� b10. Clear q.11. Return(MP OKAY )Figure 6.1: Algorithm mp redu
eAlgorithm mp redu
e. This algorithm will redu
e the input a modulob in pla
e using the Barrett algorithm. It is loosely based on algorithm 14.42of HAC [2, pp. 602℄ whi
h is based on the paper from Paul Barrett [7℄. Thealgorithm has several restri
tions and assumptions whi
h must be adhered tofor the algorithm to work.First the modulus b is assumed to be positive and greater than one. If themodulus were less than or equal to one than subtra
ting a multiple of it wouldeither a

omplish nothing or a
tually enlarge the input. The input a must bein the range 0 � a < b2 in order for the quotient to have enough pre
ision. If a
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t of two numbers that were already redu
ed modulo b, this will notbe a problem. Te
hni
ally the algorithm will still work if a � b2 but it will takemu
h longer to �nish. The value of � is passed as an argument to this algorithmand is assumed to be 
al
ulated and stored before the algorithm is used.Re
all that the multipli
ation for the quotient on step 3 must only produ
edigits at or above them�1'th position. An algorithm 
alled s mp mul high digswhi
h has not been presented is used to a

omplish this task. The algorithmis based on s mp mul digs ex
ept that instead of stopping at a given level ofpre
ision it starts at a given level of pre
ision. This optimal algorithm 
an onlybe used if the number of digits in b is very mu
h smaller than �.While it is known that a � b � b(q0 � �)=�m+1
 only the lower m + 1 digitsare being used to 
ompute the residue, so an implied \borrow" from the higherdigits might leave a negative result. After the multiple of the modulus hasbeen subtra
ted from a the residue must be �xed up in 
ase it is negative. Theinvariant �m+1 must be added to the residue to make it positive again.The while loop at step 9 will subtra
t b until the residue is less than b. Ifthe algorithm is performed 
orre
tly this step is performed at most twi
e, andon average on
e. However, if a � b2 than it will iterate substantially more timesthan it should.File: bn mp redu
e.
The �rst multipli
ation that determines the quotient 
an be performed byonly produ
ing the digits from m�1 and up. This essentially halves the numberof single pre
ision multipli
ations required. However, the optimization is onlysafe if � is mu
h larger than the number of digits in the modulus. In the sour
e
ode this is evaluated on lines 36 to 44 where algorithm s mp mul high digs isused when it is safe to do so.6.2.6 The Barrett Setup AlgorithmIn order to use algorithm mp redu
e the value of � must be 
al
ulated in ad-van
e. Ideally this value should be 
omputed on
e and stored for future use sothat the Barrett algorithm 
an be used without delay.



6.3. THE MONTGOMERY REDUCTION 109Algorithm mp redu
e setup.Input. mp int a (a > 1)Output. � b�2m=a
1. � 22�lg(�)�m (mp 2expt)2. � b�=b
 (mp div)3. Return(MP OKAY )Figure 6.2: Algorithm mp redu
e setupAlgorithm mp redu
e setup. This algorithm 
omputes the re
ipro
al �required for Barrett redu
tion. First �2m is 
al
ulated as 22�lg(�)�m whi
h isequivalent and mu
h faster. The �nal value is 
omputed by taking the integerquotient of b�=b
.File: bn mp redu
e setup.
This simple routine 
al
ulates the re
ipro
al � required by Barrett redu
tion.Note the extended usage of algorithm mp div where the variable whi
h wouldre
eived the remainder is passed as NULL. As will be dis
ussed in 8.1 the divisionroutine allows both the quotient and the remainder to be passed as NULLmeaning to ignore the value.6.3 The Montgomery Redu
tionMontgomery redu
tion4 [8℄ is by far the most interesting form of redu
tion in
ommon use. It 
omputes a modular residue whi
h is not a
tually equal to theresidue of the input yet instead equal to a residue times a 
onstant. However,as perplexing as this may sound the algorithm is relatively simple and veryeÆ
ient.Throughout this entire se
tion the variable n will represent the modulusused to form the residue. As will be dis
ussed shortly the value of n must beodd. The variable x will represent the quantity of whi
h the residue is sought.Similar to the Barrett algorithm the input is restri
ted to 0 � x < n2. To beginthe des
ription some simple number theory fa
ts must be established.Fa
t 1. Adding n to x does not 
hange the residue sin
e in e�e
t it addsone to the quotient bx=n
. Another way to explain this is that n is (or multiples4Thanks to Niels Ferguson for his insightful explanation of the algorithm.



110 CHAPTER 6. MODULAR REDUCTIONof n are) 
ongruent to zero modulo n. Adding zero will not 
hange the value ofthe residue.Fa
t 2. If x is even then performing a division by two in Z is 
ongruent tox � 2�1 (mod n). A
tually this is an appli
ation of the fa
t that if x is evenlydivisible by any k 2 Z then division in Z will be 
ongruent to multipli
ation byk�1 modulo n.From these two simple fa
ts the following simple algorithm 
an be derived.



6.3. THE MONTGOMERY REDUCTION 111Algorithm Montgomery Redu
tion.Input. Integer x, n and kOutput. 2�kx (mod n)1. for t from 1 to k do1.1 If x is odd then1.1.1 x x+ n1.2 x x=22. Return x.Figure 6.3: Algorithm Montgomery Redu
tionThe algorithm redu
es the input one bit at a time using the two 
ongruen
iesstated previously. Inside the loop n, whi
h is odd, is added to x if x is odd.This for
es x to be even whi
h allows the division by two in Z to be 
ongruentto a modular division by two. Sin
e x is assumed to be initially mu
h largerthan n the addition of n will 
ontribute an insigni�
ant magnitude to x. Letr represent the �nal result of the Montgomery algorithm. If k > lg(n) and0 � x < n2 then the �nal result is limited to 0 � r < bx=2k
+n. As a result atmost a single subtra
tion is required to get the residue desired.Step number (t) Result (x)1 x+ n = 5812, x=2 = 29062 x=2 = 14533 x+ n = 1710, x=2 = 8554 x+ n = 1112, x=2 = 5565 x=2 = 2786 x=2 = 1397 x+ n = 396, x=2 = 1988 x=2 = 999 x+ n = 356, x=2 = 178Figure 6.4: Example of Montgomery Redu
tion (I)Consider the example in �gure 6.4 whi
h redu
es x = 5555 modulo n = 257when k = 9 (note �k = 512 whi
h is larger than n). The result of the algorithmr = 178 is 
ongruent to the value of 2�9 � 5555 (mod 257). When r is multipliedby 29 modulo 257 the 
orre
t residue r � 158 is produ
ed.Let k = blg(n)
+1 represent the number of bits in n. The 
urrent algorithm



112 CHAPTER 6. MODULAR REDUCTIONrequires 2k2 single pre
ision shifts and k2 single pre
ision additions. At this ratethe algorithm is most 
ertainly slower than Barrett redu
tion and not terriblyuseful. Fortunately there exists an alternative representation of the algorithm.Algorithm Montgomery Redu
tion (modi�ed I).Input. Integer x, n and k (2k > n)Output. 2�kx (mod n)1. for t from 1 to k do1.1 If the t'th bit of x is one then1.1.1 x x+ 2tn2. Return x=2k.Figure 6.5: Algorithm Montgomery Redu
tion (modi�ed I)This algorithm is equivalent sin
e 2tn is a multiple of n and the lower k bitsof x are zero by step 2. The number of single pre
ision shifts has now beenredu
ed from 2k2 to k2 + k whi
h is only a small improvement.Step number (t) Result (x) Result (x) in Binary{ 5555 10101101100111 x+ 20n = 5812 10110101101002 5812 10110101101003 x+ 22n = 6840 11010101110004 x+ 23n = 8896 100010110000005 8896 100010110000006 8896 100010110000007 x+ 26n = 25344 1100011000000008 25344 1100011000000009 x+ 27n = 91136 10110010000000000{ x=2k = 178Figure 6.6: Example of Montgomery Redu
tion (II)Figure 6.6 demonstrates the modi�ed algorithm redu
ing x = 5555 modulon = 257 with k = 9. With this algorithm a single shift right at the end isthe only right shift required to redu
e the input instead of k right shifts insidethe loop. Note that for the iterations t = 2; 5; 6 and 8 where the result x isnot 
hanged. In those iterations the t'th bit of x is zero and the appropriate



6.3. THE MONTGOMERY REDUCTION 113multiple of n does not need to be added to for
e the t'th bit of the result tozero.6.3.1 Digit Based Montgomery Redu
tionInstead of 
omputing the redu
tion on a bit-by-bit basis it is a
tually mu
hfaster to 
ompute it on digit-by-digit basis. Consider the previous algorithmre-written to 
ompute the Montgomery redu
tion in this new fashion.Algorithm Montgomery Redu
tion (modi�ed II).Input. Integer x, n and k (�k > n)Output. ��kx (mod n)1. for t from 0 to k � 1 do1.1 x x+ �n�t2. Return x=�k.Figure 6.7: Algorithm Montgomery Redu
tion (modi�ed II)The value �n�t is a multiple of the modulus nmeaning that it will not 
hangethe residue. If the �rst digit of the value �n�t equals the negative (modulo �)of the t'th digit of x then the addition will result in a zero digit. This problembreaks down to solving the following 
ongruen
y.xt + �n0 � 0 (mod �)�n0 � �xt (mod �)� � �xt=n0 (mod �)In ea
h iteration of the loop on step 1 a new value of � must be 
al
ulated.The value of �1=n0 (mod �) is used extensively in this algorithm and should bepre
omputed. Let � represent the negative of the modular inverse of n0 modulo�. For example, let � = 10 represent the radix. Let n = 17 represent themodulus whi
h implies k = 2 and � � 7. Let x = 33 represent the value toredu
e.



114 CHAPTER 6. MODULAR REDUCTIONStep (t) Value of x Value of �{ 33 {0 33 + �n = 50 11 50 + �n� = 900 5Figure 6.8: Example of Montgomery Redu
tionThe �nal result 900 is then divided by �k to produ
e the �nal result 9.The �rst observation is that 9 6� x (mod n) whi
h implies the result is not themodular residue of x modulo n. However, re
all that the residue is a
tuallymultiplied by ��k in the algorithm. To get the true residue the value mustbe multiplied by �k. In this 
ase �k � 15 (mod n) and the 
orre
t residue is9 � 15 � 16 (mod n).6.3.2 Baseline Montgomery Redu
tionThe baseline Montgomery redu
tion algorithm will produ
e the residue for anysize input. It is designed to be a 
at
h-all algororithm for Montgomery redu
-tions.



6.3. THE MONTGOMERY REDUCTION 115Algorithm mp montgomery redu
e.Input. mp int x, mp int n and a digit � � �1=n0 (mod n).(0 � x < n2; n > 1; (n; �) = 1; �k > n)Output. ��kx (mod n)1. digs 2n:used+ 12. If digs < MP ARRAY and m:used < Æ then2.1 Use algorithm fast mp montgomery redu
e instead.Setup x for the redu
tion.3. If x:allo
 < digs then grow x to digs digits.4. x:used digsEliminate the lower k digits.5. For ix from 0 to k � 1 do5.1 � xix � � (mod �)5.2 u 05.3 For iy from 0 to k � 1 do5.3.1 r̂ �niy + xix+iy + u5.3.2 xix+iy  r̂ (mod �)5.3.3 u br̂=�
5.4 While u > 0 do5.4.1 iy  iy + 15.4.2 xix+iy  xix+iy + u5.4.3 u bxix+iy=�
5.4.4 xix+iy  xix+iy (mod �)Divide by �k and �x up as required.6. x bx=�k
7. If x � n then7.1 x x� n8. Return(MP OKAY ).Figure 6.9: Algorithm mp montgomery redu
eAlgorithm mp montgomery redu
e. This algorithm redu
es the inputx modulo n in pla
e using the Montgomery redu
tion algorithm. The algorithmis loosely based on algorithm 14.32 of [2, pp.601℄ ex
ept it merges the multi-pli
ation of �n�t with the addition in the inner loop. The restri
tions on thisalgorithm are fairly easy to adapt to. First 0 � x < n2 bounds the input to



116 CHAPTER 6. MODULAR REDUCTIONnumbers in the same range as for the Barrett algorithm. Additionally if n > 1and n is odd there will exist a modular inverse �. � must be 
al
ulated in ad-van
e of this algorithm. Finally the variable k is �xed and a pseudonym forn:used.Step 2 de
ides whether a faster Montgomery algorithm 
an be used. It isbased on the Comba te
hnique meaning that there are limits on the size of theinput. This algorithm is dis
ussed in sub-se
tion 6.3.3.Step 5 is the main redu
tion loop of the algorithm. The value of � is 
al
u-lated on
e per iteration in the outer loop. The inner loop 
al
ulates x+ �n�ixby multiplying �n and adding the result to x shifted by ix digits. Both theaddition and multipli
ation are performed in the same loop to save time andmemory. Step 5.4 will handle any additional 
arries that es
ape the inner loop.Using a qui
k inspe
tion this algorithm requires n single pre
ision multipli-
ations for the outer loop and n2 single pre
ision multipli
ations in the innerloop. In total n2+n single pre
ision multipli
ations whi
h 
ompares favourablyto Barrett at n2 + 2n� 1 single pre
ision multipli
ations.File: bn mp montgomery redu
e.
This is the baseline implementation of the Montgomery redu
tion algorithm.Lines 31 to 36 determine if the Comba based routine 
an be used instead. Line47 
omputes the value of � for that parti
ular iteration of the outer loop.The multipli
ation �n�ix is performed in one step in the inner loop. Thealias tmpx refers to the ix'th digit of x and the alias tmpn refers to the modulusn.6.3.3 Faster \Comba" Montgomery Redu
tionThe Montgomery redu
tion requires fewer single pre
ision multipli
ations thana Barrett redu
tion, however it is mu
h slower due to the serial nature of theinner loop. The Barrett redu
tion algorithm requires two slightly modi�ed mul-tipliers whi
h 
an be implemented with the Comba te
hnique. The Montgomeryredu
tion algorithm 
annot dire
tly use the Comba te
hnique to any signi�
antadvantage sin
e the inner loop 
al
ulates a k � 1 produ
t k times.The biggest obsta
le is that at the ix'th iteration of the outer loop the valueof xix is required to 
al
ulate �. This means the 
arries from 0 to ix� 1 musthave been propagated upwards to form a valid ix'th digit. The solution as itturns out is very simple. Perform a Comba like multiplier and inside the outerloop just after the inner loop �x up the ix+1'th digit by forwarding the 
arry.
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hange in pla
e the Montgomery redu
tion algorithm 
an be per-formed with a Comba style multipli
ation loop whi
h substantially in
reases thespeed of the algorithm.



118 CHAPTER 6. MODULAR REDUCTIONAlgorithm fast mp montgomery redu
e.Input. mp int x, mp int n and a digit � � �1=n0 (mod n).(0 � x < n2; n > 1; (n; �) = 1; �k > n)Output. ��kx (mod n)Pla
e an array of MP WARRAY mp word variables 
alled Ŵ on the sta
k.1. if x:allo
 < n:used+ 1 then grow x to n:used+ 1 digits.Copy the digits of x into the array Ŵ2. For ix from 0 to x:used� 1 do2.1 Ŵix  xix3. For ix from x:used to 2n:used� 1 do3.1 Ŵix  0Elimiate the lower k digits.4. for ix from 0 to n:used� 1 do4.1 � Ŵix � � (mod �)4.2 For iy from 0 to n:used� 1 do4.2.1 Ŵiy+ix  Ŵiy+ix + � � niy4.3 Ŵix+1  Ŵix+1 + bŴix=�
Propagate 
arries upwards.5. for ix from n:used to 2n:used+ 1 do5.1 Ŵix+1  Ŵix+1 + bŴix=�
Shift right and redu
e modulo � simultaneously.6. for ix from 0 to n:used+ 1 do6.1 xix  Ŵix+n:used (mod �)Zero ex
ess digits and �xup x.7. if x:used > n:used+ 1 then do7.1 for ix from n:used+ 1 to x:used� 1 do7.1.1 xix  08. x:used n:used+ 19. Clamp ex
essive digits of x.10. If x � n then10.1 x x� n11. Return(MP OKAY ).Figure 6.10: Algorithm fast mp montgomery redu
eAlgorithm fast mp montgomery redu
e. This algorithm will 
omputethe Montgomery redu
tion of x modulo n using the Comba te
hnique. It is onmost 
omputer platforms signi�
antly faster than algorithmmp montgomery redu
eand algorithm mp redu
e (Barrett redu
tion). The algorithm has the same re-
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tions on the input as the baseline redu
tion algorithm. An additional tworestri
tions are imposed on this algorithm. The number of digits k in the themodulus n must not violateMP WARRAY > 2k+1 and n < Æ. When � = 228this algorithm 
an be used to redu
e modulo a modulus of at most 3; 556 bitsin length.As in the other Comba redu
tion algorithms there is a Ŵ array whi
h storesthe 
olumns of the produ
t. It is initially �lled with the 
ontents of x withthe ex
ess digits zeroed. The redu
tion loop is very similar the to the baselineloop at heart. The multipli
ation on step 4.1 
an be single pre
ision only sin
eab (mod �) � (a mod �)(b mod �). Some multipliers su
h as those on the ARMpro
essors take a variable length time to 
omplete depending on the number ofbytes of result it must produ
e. By performing a single pre
ision multipli
ationinstead half the amount of time is spent.Also note that digit Ŵix must have the 
arry from the ix� 1'th digit propa-gated upwards in order for this to work. That is what step 4.3 will do. In e�e
tover the n:used iterations of the outer loop the n:used'th lower 
olumns all havethe their 
arries propagated forwards. Note how the upper bits of those samewords are not redu
ed modulo �. This is be
ause those values will be dis
ardedshortly and there is no point.Step 5 will propagate the remainder of the 
arries upwards. On step 6 the
olumns are redu
ed modulo � and shifted simultaneously as they are stored inthe destination x.File: bn fast mp montgomery redu
e.
The Ŵ array is �rst �lled with digits of x on line 48 then the rest of thedigits are zeroed on line 55. Both loops share the same alias variables to makethe 
ode easier to read.The value of � is 
al
ulated in an interesting fashion. First the value Ŵixis redu
ed modulo � and 
ast to a mp digit. This for
es the 
ompiler to use asingle pre
ision multipli
ation and prevents any 
on
erns about loss of pre
ision.Line 110 �xes the 
arry for the next iteration of the loop by propagating the
arry from Ŵix to Ŵix+1.The for loop on line 109 propagates the rest of the 
arries upwards throughthe 
olumns. The for loop on line 126 redu
es the 
olumns modulo � and shiftsthem k pla
es at the same time. The alias Ŵ a
tually refers to the array Ŵstarting at the n:used'th digit, that is Ŵt = Ŵn:used+t.
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al
ulate the variable � a relatively simple algorithm will be required.Algorithm mp montgomery setup.Input. mp int n (n > 1 and (n; 2) = 1)Output. � � �1=n0 (mod �)1. b n02. If b is even return(MP VAL)3. x (((b+ 2) AND 4) << 1) + b4. for k from 0 to dlg(lg(�))e � 2 do4.1 x x � (2� bx)5. � � � x (mod �)6. Return(MP OKAY ).Figure 6.11: Algorithm mp montgomery setupAlgorithm mp montgomery setup. This algorithm will 
al
ulate thevalue of � required within the Montgomery redu
tion algorithms. It uses a veryinteresting tri
k to 
al
ulate 1=n0 when � is a power of two.File: bn mp montgomery setup.
This sour
e 
ode 
omputes the value of � required to perform Montgomeryredu
tion. It has been modi�ed to avoid performing ex
ess multipli
ations when� is not the default 28-bits.6.4 The Diminished Radix AlgorithmThe Diminished Radix method of modular redu
tion [9℄ is a fairly 
lever te
h-nique whi
h 
an be more eÆ
ient than either the Barrett or Montgomery meth-ods for 
ertain forms of moduli. The te
hnique is based on the following simple
ongruen
e. (x mod n) + kbx=n
 � x (mod (n� k)) (6.6)This observation was used in the MMB [10℄ blo
k 
ipher to 
reate a di�usionprimitive. It used the fa
t that if n = 231 and k = 1 that then a x86 multiplier
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ould produ
e the 62-bit produ
t and use the \shrd" instru
tion to perform adouble-pre
ision right shift. The proof of the above equation is very simple.First write x in the produ
t form.x = qn+ r (6.7)Now redu
e both sides modulo (n� k).x � qk + r (mod (n� k)) (6.8)The variable n redu
es modulo n � k to k. By putting q = bx=n
 andr = x mod n into the equation the original 
ongruen
e is reprodu
ed, thus
on
luding the proof. The following algorithm is based on this observation.Algorithm Diminished Radix Redu
tion.Input. Integer x, n, kOutput. x mod (n� k)1. q  bx=n
2. q  k � q3. x x (mod n)4. x x+ q5. If x � (n� k) then5.1 x x� (n� k)5.2 Goto step 1.6. Return xFigure 6.12: Algorithm Diminished Radix Redu
tionThis algorithm will redu
e x modulo n � k and return the residue. If 0 �x < (n � k)2 then the algorithm will loop almost always on
e or twi
e ando

asionally three times. For simpli
ity sake the value of x is bounded by thefollowing simple polynomial.0 � x < n2 + k2 � 2nk (6.9)The true bound is 0 � x < (n� k� 1)2 but this has quite a few more terms.The value of q after step 1 is bounded by the following.q < n� 2k � k2=n (6.10)



122 CHAPTER 6. MODULAR REDUCTIONx = 123456789; n = 256; k = 3q  bx=n
 = 482253q  q � k = 1446759x x mod n = 21x x+ q = 1446780x x� (n� k) = 1446527q  bx=n
 = 5650q  q � k = 16950x x mod n = 127x x+ q = 17077x x� (n� k) = 16824q  bx=n
 = 65q  q � k = 195x x mod n = 184x x+ q = 379x x� (n� k) = 126Figure 6.13: Example Diminished Radix Redu
tionSin
e k2 is going to be 
onsiderably smaller than n that term will always bezero. The value of x after step 3 is bounded trivially as 0 � x < n. By stepfour the sum x+ q is bounded by0 � q + x < (k + 1)n� 2k2 � 1 (6.11)With a se
ond pass q will be loosely bounded by 0 � q < k2 after step 2while x will still be loosely bounded by 0 � x < n after step 3. After the se
ondpass it is highly unlike that the sum in step 4 will ex
eed n � k. In pra
ti
efewer than three passes of the algorithm are required to redu
e virtually everyinput in the range 0 � x < (n� k � 1)2.Figure 6.13 demonstrates the redu
tion of x = 123456789modulo n�k = 253when n = 256 and k = 3. Note that even while x is 
onsiderably larger than(n � k � 1)2 = 63504 the algorithm still 
onverges on the modular residueex
eedingly fast. In this 
ase only three passes were required to �nd the residuex � 126.
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e of ModuliOn the surfa
e this algorithm looks like a very expensive algorithm. It requires a
ouple of subtra
tions followed by multipli
ation and other modular redu
tions.The usefulness of this algorithm be
omes ex
eedingly 
lear when an appropriatemodulus is 
hosen.Division in general is a very expensive operation to perform. The one ex-
eption is when the division is by a power of the radix of representation used.Division by ten for example is simple for pen
il and paper mathemati
s sin
eit amounts to shifting the de
imal pla
e to the right. Similarly division by two(or powers of two) is very simple for binary 
omputers to perform. It wouldtherefore seem logi
al to 
hoose n of the form 2p whi
h would imply that bx=n
is a simple shift of x right p bits.However, there is one operation related to division of power of twos that iseven faster than this. If n = �p then the division may be performed by movingwhole digits to the right p pla
es. In pra
ti
e division by �p is mu
h faster thandivision by 2p for any p. Also with the 
hoi
e of n = �p redu
ing x modulo nmerely requires zeroing the digits above the p� 1'th digit of x.Throughout the next se
tion the term \restri
ted modulus" will refer to amodulus of the form �p � k whereas the term \unrestri
ted modulus" will referto a modulus of the form 2p � k. The word \restri
ted" in this 
ase refers tothe fa
t that it is based on the 2p logi
 ex
ept p must be a multiple of lg(�).6.4.2 Choi
e of kNow that division and redu
tion (step 1 and 3 of �gure 6.12) have been opti-mized to simple digit operations the multipli
ation by k in step 2 is the mostexpensive operation. Fortunately the 
hoi
e of k is not terribly limited. For allintents and purposes it might as well be a single digit. The smaller the value ofk is the faster the algorithm will be.6.4.3 Restri
ted Diminished Radix Redu
tionThe restri
ted Diminished Radix algorithm 
an qui
kly redu
e an input moduloa modulus of the form n = �p�k. This algorithm 
an redu
e an input x withinthe range 0 � x < n2 using only a 
ouple passes of the algorithm demonstratedin �gure 6.12. The implementation of this algorithm has been optimized toavoid additional overhead asso
iated with a division by �p, the multipli
ationby k or the addition of x and q. The resulting algorithm is very eÆ
ient and
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an lead to substantial improvements over Barrett and Montgomery redu
tionwhen modular exponentiations are performed.
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e.Input. mp int x, n and a mp digit k = � � n0(0 � x < n2, n > 1, 0 < k < �)Output. x mod n1. m n:used2. If x:allo
 < 2m then grow x to 2m digits.3. � 04. for i from 0 to m� 1 do4.1 r̂ k � xm+i + xi + �4.2 xi  r̂ (mod �)4.3 � br̂=�
5. xm  �6. for i from m+ 1 to x:used� 1 do6.1 xi  07. Clamp ex
ess digits of x.8. If x � n then8.1 x x� n8.2 Goto step 3.9. Return(MP OKAY ).Figure 6.14: Algorithm mp dr redu
eAlgorithm mp dr redu
e. This algorithm will perform the DimishedRadix redu
tion of x modulo n. It has similar restri
tions to that of the Barrettredu
tion with the addition that n must be of the form n = �m � k where0 < k < �.This algorithm essentially implements the pseudo-
ode in �gure 6.12 ex
eptwith a slight optimization. The division by �m, multipli
ation by k and additionof x mod �m are all performed simultaneously inside the loop on step 4. Thedivision by �m is emulated by a

essing the term at the m+ i'th position whi
his subsequently multiplied by k and added to the term at the i'th position. Afterthe loop the m'th digit is set to the 
arry and the upper digits are zeroed. Steps5 and 6 emulate the redu
tion modulo �m that should have happend to x beforethe addition of the multiple of the upper half.At step 8 if x is still larger than n another pass of the algorithm is required.First n is subtra
ted from x and then the algorithm resumes at step 3.File: bn mp dr redu
e.




126 CHAPTER 6. MODULAR REDUCTIONThe �rst step is to grow x as required to 2m digits sin
e the redu
tion isperformed in pla
e on x. The label on line 52 is where the algorithm will resumeif further redu
tion passes are required. In theory it 
ould be pla
ed at the topof the fun
tion however, the size of the modulus and question of whether x islarge enough are invariant after the �rst pass meaning that it would be a wasteof time.The aliases tmpx1 and tmpx2 refer to the digits of x where the latter iso�set by m digits. By reading digits from x o�set by m digits a division by �m
an be simulated virtually for free. The loop on line 64 performs the bulk ofthe work (
orresponds to step 4 of algorithm 7.11 ) in this algorithm.By line 67 the pointer tmpx1 points to the m'th digit of x whi
h is wherethe �nal 
arry will be pla
ed. Similarly by line 74 the same pointer will pointto the m+ 1'th digit where the zeroes will be pla
ed.Sin
e the algorithm is only valid if both x and n are greater than zero anunsigned 
omparison suÆ
es to determine if another pass is required. Withthe same logi
 at line 81 the value of x is known to be greater than or equalto n meaning that an unsigned subtra
tion 
an be used as well. Sin
e thedestination of the subtra
tion is the larger of the inputs the 
all to algorithms mp sub 
annot fail and the return 
ode does not need to be 
he
ked.SetupTo setup the restri
ted Diminished Radix algorithm the value k = � � n0 is re-quired. This algorithm is not really 
ompli
ated but provided for 
ompleteness.Algorithm mp dr setup.Input. mp int nOutput. k = � � n01. k � � n0Figure 6.15: Algorithm mp dr setupFile: bn mp dr setup.
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tionAnother algorithm whi
h will be useful is the ability to dete
t a restri
ted Di-minished Radix modulus. An integer is said to be of restri
ted DiminishedRadix form if all of the digits are equal to � � 1 ex
ept the trailing digit whi
hmay be any value. Algorithm mp dr is modulus.Input. mp int nOutput. 1 if n is in D.R form, 0 otherwise1. If n:used < 2 then return(0).2. for ix from 1 to n:used� 1 do2.1 If nix 6= � � 1 return(0).3. Return(1).Figure 6.16: Algorithm mp dr is modulusAlgorithm mp dr is modulus. This algorithm determines if a value isin Diminished Radix form. Step 1 reje
ts obvious 
ases where fewer than twodigits are in the mp int. Step 2 tests all but the �rst digit to see if they areequal to � � 1. If the algorithm manages to get to step 3 then n must be ofDiminished Radix form.File: bn mp dr is modulus.
6.4.4 Unrestri
ted Diminished Radix Redu
tionThe unrestri
ted Diminished Radix algorithm allows modular redu
tions to beperformed when the modulus is of the form 2p�k. This algorithm is a straight-forward adaptation of algorithm 6.12.In general the restri
ted Diminished Radix redu
tion algorithm is mu
hfaster sin
e it has 
onsiderably lower overhead. However, this new algorithm ismu
h faster than either Montgomery or Barrett redu
tion when the moduli areof the appropriate form.Algorithm mp redu
e 2k. This algorithm qui
kly redu
es an input amodulo an unrestri
ted Diminished Radix modulus n. Division by 2p is emu-lated with a right shift whi
h makes the algorithm fairly inexpensive to use.File: bn mp redu
e 2k.
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e 2k.Input. mp int a and n. mp digit k(a � 0, n > 1, 0 < k < �, n+ k is a power of two)Output. a (mod n)1. p dlg(n)e (mp 
ount bits)2. While a � n do2.1 q  ba=2p
 (mp div 2d)2.2 a a (mod 2p) (mp mod 2d)2.3 q  q � k (mp mul d)2.4 a a� q (s mp sub)2.5 If a � n then do2.5.1 a a� n3. Return(MP OKAY ).Figure 6.17: Algorithm mp redu
e 2kThe algorithm mp 
ount bits 
al
ulates the number of bits in an mp intwhi
h is used to �nd the initial value of p. The 
all to mp div 2d on line 31
al
ulates both the quotient q and the remainder a required. By doing both in asingle fun
tion 
all the 
ode size is kept fairly small. The multipli
ation by k isonly performed if k > 1. This allows redu
tions modulo 2p� 1 to be performedwithout any multipli
ations.The unsigned s mp add, mp 
mp mag and s mp sub are used in pla
e oftheir full sign 
ounterparts sin
e the inputs are only valid if they are positive.By using the unsigned versions the overhead is kept to a minimum.Unrestri
ted SetupTo setup this redu
tion algorithm the value of k = 2p � n is required.Algorithm mp redu
e 2k setup. This algorithm 
omputes the value ofk required for the algorithm mp redu
e 2k. By making a temporary variable xequal to 2p a subtra
tion is suÆ
ient to solve for k. Alternatively if n has morethan one digit the value of k is simply � � n0.File: bn mp redu
e 2k setup.
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e 2k setup.Input. mp int nOutput. k = 2p � n1. p dlg(n)e (mp 
ount bits)2. x 2p (mp 2expt)3. x x� n (mp sub)4. k x05. Return(MP OKAY ).Figure 6.18: Algorithm mp redu
e 2k setupUnrestri
ted Dete
tionAn integer n is a valid unrestri
ted Diminished Radix modulus if either of thefollowing are true.1. The number has only one digit.2. The number has more than one digit and every bit from the �'th to themost signi�
ant is one.If either 
ondition is true than there is a power of two 2p su
h that 0 <2p � n < �. If the input is only one digit than it will always be of the 
orre
tform. Otherwise all of the bits above the �rst digit must be one. This arises fromthe fa
t that there will be value of k that when added to the modulus 
auses a
arry in the �rst digit whi
h propagates all the way to the most signi�
ant bit.The resulting sum will be a power of two.Algorithm mp redu
e is 2k.Input. mp int nOutput. 1 if of proper form, 0 otherwise1. If n:used = 0 then return(0).2. If n:used = 1 then return(1).3. p dlg(n)e (mp 
ount bits)4. for x from lg(�) to p do4.1 If the (x mod lg(�))'th bit of the bx=lg(�)
 of n is zero then return(0).5. Return(1). Figure 6.19: Algorithm mp redu
e is 2k



130 CHAPTER 6. MODULAR REDUCTIONAlgorithmmp redu
e is 2k. This algorithm qui
kly determines if a mod-ulus is of the form required for algorithm mp redu
e 2k to fun
tion properly.File: bn mp redu
e is 2k.

6.5 Algorithm ComparisonSo far three very di�erent algorithms for modular redu
tion have been dis
ussed.Ea
h of the algorithms have their own strengths and weaknesses that makeshaving su
h a sele
tion very useful. The following table sumarizes the threealgorithms along with 
omparisons of work fa
tors. Sin
e all three algorithmshave the restri
tion that 0 � x < n2 and n > 1 those limitations are not in
ludedin the table.Method Work Required Limitations m = 8 m = 32 m = 64Barrett m2 + 2m� 1 None 79 1087 4223Montgomery m2 +m n must be odd 72 1056 4160D.R. 2m n = �m � k 16 64 128In theory Montgomery and Barrett redu
tions would require roughly thesame amount of time to 
omplete. However, in pra
ti
e sin
e Montgomeryredu
tion 
an be written as a single fun
tion with the Comba te
hnique it ismu
h faster. Barrett redu
tion su�ers from the overhead of 
alling the halfpre
ision multipliers, addition and division by � algorithms.For almost every 
ryptographi
 algorithm Montgomery redu
tion is the al-gorithm of 
hoi
e. The one set of algorithms where Diminished Radix redu
tiontruly shines are based on the dis
rete logarithm problem su
h as DiÆe-Hellman[?℄ and ElGamal [?℄. In these algorithms primes of the form �m � k 
an befound and shared amongst users. These primes will allow the Diminished Radixalgorithm to be used in modular exponentiation to greatly speed up the opera-tion.
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ises[3℄ Prove that the \tri
k" in algorithm mp montgomery setup a
tually
al
ulates the 
orre
t value of �.[2℄ Devise an algorithm to redu
e modulo n+ k for small k qui
kly.[4℄ Prove that the pseudo-
ode algorithm \Diminished Radix Redu
tion"(�gure 6.12) terminates. Also prove the probability that it willterminate within 1 � k � 10 iterations.
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Chapter 7ExponentiationExponentiation is the operation of raising one variable to the power of another,for example, ab. A variant of exponentiation, 
omputed in a �nite �eld or ring,is 
alled modular exponentiation. This latter style of operation is typi
allyused in publi
 key 
ryptosystems su
h as RSA and DiÆe-Hellman. The abilityto qui
kly 
ompute modular exponentiations is of great bene�t to any su
h
ryptosystem and many methods have been sought to speed it up.7.1 Exponentiation Basi
sA trivial algorithm would simply multiply a against itself b�1 times to 
omputethe exponentiation desired. However, as b grows in size the number of multipli-
ations be
omes prohibitive. Imagine what would happen if b � 21024 as is the
ase when 
omputing an RSA signature with a 1024-bit key. Su
h a 
al
ulation
ould never be 
ompleted as it would take simply far too long.Fortunately there is a very simple algorithm based on the laws of exponents.Re
all that lga(ab) = b and that lga(aba
) = b + 
 whi
h are two trivial rela-tionships between the base and the exponent. Let bi represent the i'th bit of bstarting from the least signi�
ant bit. If b is a k-bit integer than the followingequation is true. ab = k�1Yi=0 a2i�bi (7.1)133



134 CHAPTER 7. EXPONENTIATIONBy taking the base a logarithm of both sides of the equation the followingequation is the result. b = k�1Xi=0 2i � bi (7.2)The term a2i 
an be found from the i � 1'th term by squaring the termsin
e �a2i�2 is equal to a2i+1 . This observation forms the basis of essentiallyall fast exponentiation algorithms. It requires k squarings and on average k2multipli
ations to 
ompute the result. This is indeed quite an improvementover simply multiplying by a a total of b� 1 times.While this 
urrent method is a 
onsiderable speed up there are further im-provements to be made. For example, the a2i term does not need to be 
omputedin an auxilary variable. Consider the following equivalent algorithm.Algorithm Left to Right Exponentiation.Input. Integer a, b and kOutput. 
 = ab1. 
 12. for i from k � 1 to 0 do2.1 
 
22.2 
 
 � abi3. Return 
.Figure 7.1: Left to Right ExponentiationThis algorithm starts from the most signi�
ant bit and works towards theleast signi�
ant bit. When the i'th bit of b is set a is multiplied against the
urrent produ
t. In ea
h iteration the produ
t is squared whi
h doubles theexponent of the individual terms of the produ
t.For example, let b = 1011002 � 4410. The following 
hart demonstrates thea
tions of the algorithm.



7.1. EXPONENTIATION BASICS 135Value of i Value of 
- 15 a4 a23 a4 � a2 a8 � a2 � a1 a16 � a4 � a20 a32 � a8 � a4Figure 7.2: Example of Left to Right ExponentiationWhen the produ
t a32 �a8 �a4 is simpli�ed it is equal a44 whi
h is the desiredexponentiation. This parti
ular algorithm is 
alled \Left to Right" be
ause itreads the exponent in that order. All of the exponentiation algorithms that willbe presented are of this nature.7.1.1 Single Digit ExponentiationThe �rst algorithm in the series of exponentiation algorithms will be an un-bounded algorithm where the exponent is a single digit. It is intended to beused when a small power of an input is required (e.g. a5). It is faster thansimply multiplying b� 1 times for all values of b that are greater than three.



136 CHAPTER 7. EXPONENTIATIONAlgorithm mp expt d.Input. mp int a and mp digit bOutput. 
 = ab1. g  a (mp init 
opy)2. 
 1 (mp set)3. for x from 1 to lg(�) do3.1 
 
2 (mp sqr)3.2 If b AND 2lg(�)�1 6= 0 then3.2.1 
 
 � g (mp mul)3.3 b b << 14. Clear g.5. Return(MP OKAY ).Figure 7.3: Algorithm mp expt dAlgorithm mp expt d. This algorithm 
omputes the value of a raised tothe power of a single digit b. It uses the left to right exponentiation algorithmto qui
kly 
ompute the exponentiation. It is loosely based on algorithm 14.79of HAC [2, pp. 615℄ with the di�eren
e that the exponent is a �xed width.A 
opy of a is made �rst to allow destination variable 
 be the same as thesour
e variable a. The result is set to the initial value of 1 in the subsequentstep.Inside the loop the exponent is read from the most signi�
ant bit �rst downto the least signi�
ant bit. First 
 is invariably squared on step 3.1. In thefollowing step if the most signi�
ant bit of b is one the 
opy of a is multipliedagainst 
. The value of b is shifted left one bit to make the next bit down fromthe most sign�
ant bit the new most signi�
ant bit. In e�e
t ea
h iterationof the loop moves the bits of the exponent b upwards to the most signi�
antlo
ation.File: bn mp expt d.
Line 29 sets the initial value of the result to 1. Next the loop on line 31steps through ea
h bit of the exponent starting from the most signi�
ant downtowards the least signi�
ant. The invariant squaring operation pla
ed on line33 is performed �rst. After the squaring the result 
 is multiplied by the baseg if and only if the most signi�
ant bit of the exponent is set. The shift on line47 moves all of the bits of the exponent upwards towards the most signi�
antlo
ation.



7.2. K-ARY EXPONENTIATION 1377.2 k-ary ExponentiationWhen 
al
ulating an exponentiation the most time 
onsuming bottlene
k is themultipli
ations whi
h are in general a small fa
tor slower than squaring. Re
allfrom the previous algorithm that bi refers to the i'th bit of the exponent b.Suppose instead it referred to the i'th k-bit digit of the exponent of b. Fork = 1 the de�nitions are synonymous and for k > 1 algorithm 7.4 
omputes thesame exponentiation. A group of k bits from the exponent is 
alled a window.That is it is a small window on only a portion of the entire exponent. Considerthe following modi�
ation to the basi
 left to right exponentiation algorithm.Algorithm k-ary Exponentiation.Input. Integer a, b, k and tOutput. 
 = ab1. 
 12. for i from t� 1 to 0 do2.1 
 
2k2.2 Extra
t the i'th k-bit word from b and store it in g.2.3 
 
 � ag3. Return 
.Figure 7.4: k-ary ExponentiationThe squaring on step 2.1 
an be 
al
ulated by squaring the value 
 su

es-sively k times. If the values of ag for 0 < g < 2k have been pre
omputed thisalgorithm requires only t multipli
ations and tk squarings. The table 
an begenerated with 2k�1�1 squarings and 2k�1+1 multipli
ations. This algorithmassumes that the number of bits in the exponent is evenly divisible by k. How-ever, when it is not the remaining 0 < x � k � 1 bits 
an be handled withalgorithm 7.1.Suppose k = 4 and t = 100. This modi�ed algorithm will require 109multipli
ations and 408 squarings to 
ompute the exponentiation. The originalalgorithm would on average have required 200 multipli
ations and 400 squringsto 
ompute the same value. The total number of squarings has in
reased slightlybut the number of multipli
ations has nearly halved.



138 CHAPTER 7. EXPONENTIATION7.2.1 Optimal Values of kAn optimal value of k will minimize 2k + dn=ke+ n � 1 for a �xed number ofbits in the exponent n. The simplest approa
h is to brute for
e sear
h amongstthe values k = 2; 3; : : : ; 8 for the lowest result. Table 7.5 lists optimal valuesof k for various exponent sizes and 
ompares the number of multipli
ation andsquarings required against algorithm 7.1.Exponent (bits) Optimal k Work at k Work with 7.116 2 27 2432 3 49 4864 3 92 96128 4 175 192256 4 335 384512 5 645 7681024 6 1257 15362048 6 2452 30724096 7 4808 6144Figure 7.5: Optimal Values of k for k-ary Exponentiation7.2.2 Sliding-Window ExponentiationA simple modi�
ation to the previous algorithm is only generate the upper halfof the table in the range 2k�1 � g < 2k. Essentially this is a table for all valuesof g where the most signi�
ant bit of g is a one. However, in order for this to beallowed in the algorithm values of g in the range 0 � g < 2k�1 must be avoided.Table 7.6 lists optimal values of k for various exponent sizes and 
omparesthe work required against algorithm 7.4.



7.2. K-ARY EXPONENTIATION 139Exponent (bits) Optimal k Work at k Work with 7.416 3 24 2732 3 45 4964 4 87 92128 4 167 175256 5 322 335512 6 628 6451024 6 1225 12572048 7 2403 24524096 8 4735 4808Figure 7.6: Optimal Values of k for Sliding Window ExponentiationAlgorithm Sliding Window k-ary Exponentiation.Input. Integer a, b, k and tOutput. 
 = ab1. 
 12. for i from t� 1 to 0 do2.1 If the i'th bit of b is a zero then2.1.1 
 
22.2 else do2.2.1 
 
2k2.2.2 Extra
t the k bits from (bibi�1 : : : bi�(k�1)) and store it in g.2.2.3 
 
 � ag2.2.4 i i� k3. Return 
.Figure 7.7: Sliding Window k-ary ExponentiationSimilar to the previous algorithm this algorithm must have a spe
ial handlerwhen fewer than k bits are left in the exponent. While this algorithm requiresthe same number of squarings it 
an potentially have fewer multipli
ations. Thepre-
omputed table ag is also half the size as the previous table.Consider the exponent b = 1111010110010002 � 3143210 with k = 3 usingboth algorithms. The �rst algorithm will divide the exponent up as the following�ve 3-bit words b � (111; 101; 011; 001; 000)2. The se
ond algorithm will breakthe exponent as b � (111; 101; 0; 110; 0; 100; 0)2. The single digit 0 in the se
ond



140 CHAPTER 7. EXPONENTIATIONrepresentation are where a single squaring took pla
e instead of a squaring andmultipli
ation. In total the �rst method requires 10 multipli
ations and 18squarings. The se
ond method requires 8 multipli
ations and 18 squarings.In general the sliding window method is never slower than the generi
 k-arymethod and often it is slightly faster.7.3 Modular ExponentiationModular exponentiation is essentially 
omputing the power of a base withina �nite �eld or ring. For example, 
omputing d � ab (mod 
) is a modularexponentiation. Instead of �rst 
omputing ab and then redu
ing it modulo 
 theintermediate result is redu
ed modulo 
 after every squaring or multipli
ationoperation.This guarantees that any intermediate result is bounded by 0 � d � 
2�2
+1and 
an be redu
ed modulo 
 qui
kly using one of the algorithms presented in
hapter six.Before the a
tual modular exponentiation algorithm 
an be written a wrap-per algorithm must be written �rst. This algorithm will allow the exponent b tobe negative whi
h is 
omputed as 
 � (1=a)jbj (mod d). The value of (1=a) mod 
is 
omputed using the modular inverse (see ??). If no inverse exists the algo-rithm terminates with an error.Algorithm mp exptmod.Input. mp int a, b and 
Output. y � gx (mod p)1. If 
:sign =MP NEG return(MP VAL).2. If b:sign =MP NEG then2.1 g0  g�1 (mod 
)2.2 x0  jxj2.3 Compute d � g0x0 (mod 
) via re
ursion.3. if p is odd OR p is a D.R. modulus then3.1 Compute y � gx (mod p) via algorithm mp exptmod fast.4. else4.1 Compute y � gx (mod p) via algorithm s mp exptmod.Figure 7.8: Algorithm mp exptmodAlgorithm mp exptmod. The �rst algorithm whi
h a
tually performs



7.3. MODULAR EXPONENTIATION 141modular exponentiation is algorithm s mp exptmod. It is a sliding window k-ary algorithm whi
h uses Barrett redu
tion to redu
e the produ
t modulo p.The se
ond algorithm mp exptmod fast performs the same operation ex
ept ituses either Montgomery or Diminished Radix redu
tion. The two latter redu
-tion algorithms are 
lumped in the same exponentiation algorithm sin
e theirarguments are essentially the same (two mp ints and one mp digit).File: bn mp exptmod.
In order to keep the algorithms in a known state the �rst step on line 29 is toreje
t any negative modulus as input. If the exponent is negative the algorithmtries to perform a modular exponentiation with the modular inverse of the baseG. The temporary variable tmpG is assigned the modular inverse of G andtmpX is assigned the absolute value of X . The algorithm will re
use with thesenew values with a positive exponent.If the exponent is positive the algorithm resumes the exponentiation. Line77 determines if the modulus is of the restri
ted Diminished Radix form. If itis not line 70 attempts to determine if it is of a unrestri
ted Diminished Radixform. The integer dr will take on one of three values.1. dr = 0 means that the modulus is not of either restri
ted or unrestri
tedDiminished Radix form.2. dr = 1 means that the modulus is of restri
ted Diminished Radix form.3. dr = 2 means that the modulus is of unrestri
ted Diminished Radix form.Line 69 determines if the fast modular exponentiation algorithm 
an beused. It is allowed if dr 6= 0 or if the modulus is odd. Otherwise, the slowers mp exptmod algorithm is used whi
h uses Barrett redu
tion.7.3.1 Barrett Modular Exponentiation



142 CHAPTER 7. EXPONENTIATIONAlgorithm s mp exptmod.Input. mp int a, b and 
Output. y � gx (mod p)1. k lg(x)2. winsize 8>>>>>>>><>>>>>>>>:
2 if k � 73 if 7 < k � 364 if 36 < k � 1405 if 140 < k � 4506 if 450 < k � 13037 if 1303 < k � 35298 if 3529 < k3. Initialize 2winsize mp ints in an array named M and one mp int named �4. Cal
ulate the � required for Barrett Redu
tion (mp redu
e setup).5. M1  g (mod p)Setup the table of small powers of g. First �nd g2winsize and then all multiples of it.6. k 2winsize�17. Mk  M18. for ix from 0 to winsize� 2 do8.1 Mk  (Mk)2 (mp sqr)8.2 Mk  Mk (mod p) (mp redu
e)9. for ix from 2winsize�1 + 1 to 2winsize � 1 do9.1 Mix  Mix�1 �M1 (mp mul)9.2 Mix  Mix (mod p) (mp redu
e)10. res 1Start Sliding Window.11. mode 0; bit
nt 1; buf  0; digidx x:used� 1; bit
py  0; bitbuf  012. Loop12.1 bit
nt bit
nt� 112.2 If bit
nt = 0 then do12.2.1 If digidx = �1 goto step 13.12.2.2 buf  xdigidx12.2.3 digidx digidx� 112.2.4 bit
nt lg(�)Continued on next page.Figure 7.9: Algorithm s mp exptmod



7.3. MODULAR EXPONENTIATION 143Algorithm s mp exptmod (
ontinued).Input. mp int a, b and 
Output. y � gx (mod p)12.3 y  (buf >> (lg(�)� 1)) AND 112.4 buf  buf << 112.5 if mode = 0 and y = 0 then goto step 12.12.6 if mode = 1 and y = 0 then do12.6.1 res res212.6.2 res res (mod p)12.6.3 Goto step 12.12.7 bit
py bit
py + 112.8 bitbuf  bitbuf + (y << (winsize � bit
py))12.9 mode 212.10 If bit
py = winsize then doWindow is full so perform the squarings and single multipli
ation.12.10.1 for ix from 0 to winsize � 1 do12.10.1.1 res res212.10.1.2 res res (mod p)12.10.2 res res �Mbitbuf12.10.3 res res (mod p)Reset the window.12.10.4 bit
py 0; bitbuf  0;mode 1No more windows left. Che
k for residual bits of exponent.13. If mode = 2 and bit
py > 0 then do13.1 for ix form 0 to bit
py � 1 do13.1.1 res res213.1.2 res res (mod p)13.1.3 bitbuf  bitbuf << 113.1.4 If bitbuf AND 2winsize 6= 0 then do13.1.4.1 res res �M113.1.4.2 res res (mod p)14. y  res15. Clear res, mu and the M array.16. Return(MP OKAY ).Figure 7.10: Algorithm s mp exptmod (
ontinued)Algorithm s mp exptmod. This algorithm 
omputes the x'th power of gmodulo p and stores the result in y. It takes advantage of the Barrett redu
tion



144 CHAPTER 7. EXPONENTIATIONalgorithm to keep the produ
t small throughout the algorithm.The �rst two steps determine the optimal window size based on the numberof bits in the exponent. The larger the exponent the larger the window sizebe
omes. After a window size winsize has been 
hosen an array of 2winsizemp int variables is allo
ated. This table will hold the values of gx (mod p) for2winsize�1 � x < 2winsize.After the table is allo
ated the �rst power of g is found. Sin
e g � p isallowed it must be �rst redu
ed modulo p to make the rest of the algorithmmore eÆ
ient. The �rst element of the table at 2winsize�1 is found by squaringM1 su

essively winsize� 2 times. The rest of the table elements are found bymultiplying the previous element by M1 modulo p.Now that the table is available the sliding window may begin. The followinglist des
ribes the fun
tions of all the variables in the window.1. The variable mode di
tates how the bits of the exponent are interpreted.(a) When mode = 0 the bits are ignored sin
e no non-zero bit of theexponent has been seen yet. For example, if the exponent were simply1 then there would be lg(�)�1 zero bits before the �rst non-zero bit.In this 
ase bits are ignored until a non-zero bit is found.(b) When mode = 1 a non-zero bit has been seen before and a newwinsize-bit window has not been formed yet. In this mode leading0 bits are read and a single squaring is performed. If a non-zero bitis read a new window is 
reated.(
) When mode = 2 the algorithm is in the middle of forming a windowand new bits are appended to the window from the most signi�
antbit downwards.2. The variable bit
nt indi
ates how many bits are left in the 
urrent digit ofthe exponent left to be read. When it rea
hes zero a new digit is fet
hedfrom the exponent.3. The variable buf holds the 
urrently read digit of the exponent.4. The variable digidx is an index into the exponents digits. It starts at theleading digit x:used� 1 and moves towards the trailing digit.5. The variable bit
py indi
ates how many bits are in the 
urrently formedwindow. When it rea
hes winsize the window is 
ushed and the appro-priate operations performed.



7.3. MODULAR EXPONENTIATION 1456. The variable bitbuf holds the 
urrent bits of the window being formed.All of step 12 is the window pro
essing loop. It will iterate while there aredigits available form the exponent to read. The �rst step inside this loop is toextra
t a new digit if no more bits are available in the 
urrent digit. If thereare no bits left a new digit is read and if there are no digits left than the loopterminates.After a digit is made available step 12.3 will extra
t the most signi�
ant bitof the 
urrent digit and move all other bits in the digit upwards. In e�e
t thedigit is read from most signi�
ant bit to least signi�
ant bit and sin
e the digitsare read from leading to trailing edges the entire exponent is read from mostsigni�
ant bit to least signi�
ant bit.At step 12.5 if the mode and 
urrently extra
ted bit y are both zero the bitis ignored and the next bit is read. This prevents the algorithm from having toperform trivial squaring and redu
tion operations before the �rst non-zero bitis read. Step 12.6 and 12.7-10 handle the two 
ases of mode = 1 and mode = 2respe
tively.

Figure 7.11: Sliding Window State DiagramBy step 13 there are no more digits left in the exponent. However, there maybe partial bits in the window left. If mode = 2 then a Left-to-Right algorithmis used to pro
ess the remaining few bits.File: bn s mp exptmod.




146 CHAPTER 7. EXPONENTIATIONLines 32 through 46 determine the optimal window size based on the lengthof the exponent in bits. The window divisions are sorted from smallest togreatest so that in ea
h if statement only one 
ondition must be tested. Forexample, by the if statement on line 38 the value of x is already known to begreater than 140.The 
onditional pie
e of 
ode beginning on line 48 allows the window size tobe restri
ted to �ve bits. This logi
 is used to ensure the table of pre
omputedpowers of G remains relatively small.The for loop on line 61 initializes the M array while lines 72 and 77 through86 initialize the redu
tion fun
tion that will be used for this modulus.{ More later.7.4 Qui
k Power of TwoCal
ulating b = 2a 
an be performed mu
h qui
ker than with any of the previousalgorithms. Re
all that a logi
al shift left m << k is equivalent to m � 2k. Bythis logi
 when m = 1 a qui
k power of two 
an be a
hieved.Algorithm mp 2expt.Input. integer bOutput. a 2b1. a 02. If a:allo
 < bb=lg(�)
+ 1 then grow a appropriately.3. a:used bb=lg(�)
+ 14. abb=lg(�)
  1 << (b mod lg(�))5. Return(MP OKAY ).Figure 7.12: Algorithm mp 2exptAlgorithm mp 2expt.File: bn mp 2expt.




Chapter 8Higher Level AlgorithmsThis 
hapter dis
usses the various higher level algorithms that are required to
omplete a well rounded multiple pre
ision integer pa
kage. These routines areless performan
e oriented than the algorithms of 
hapters �ve, six and sevenbut are no less important.The �rst se
tion des
ribes a method of integer division with remainder thatis universally well known. It provides the signed division logi
 for the pa
kage.The subsequent se
tion dis
usses a set of algorithms whi
h allow a single digitto be the 2nd operand for a variety of operations. These algorithms servemostly to simplify other algorithms where small 
onstants are required. Thelast two se
tions dis
uss how to manipulate various representations of integers.For example, 
onverting from an mp int to a string of 
hara
ter.8.1 Integer Division with RemainderInteger division aside from modular exponentiation is the most intensive algo-rithm to 
ompute. Like addition, subtra
tion and multipli
ation the basis ofthis algorithm is the long-hand division algorithm taught to s
hool 
hildren.Throughout this dis
ussion several 
ommon variables will be used. Let x rep-resent the divisor and y represent the dividend. Let q represent the integerquotient by=x
 and let r represent the remainder r = y�xby=x
. The followingsimple algorithm will be used to start the dis
ussion.147



148 CHAPTER 8. HIGHER LEVEL ALGORITHMSAlgorithm Radix-� Integer Division.Input. integer x and yOutput. q = by=x
; r = y � xq1. q  02. n jjyjj � jjxjj3. for t from n down to 0 do3.1 Maximize k su
h that kx�t is less than or equal to y and (k + 1)x�t is greater.3.2 q  q + k�t3.3 y  y � kx�t4. r y5. Return(q; r) Figure 8.1: Algorithm Radix-� Integer DivisionAs 
hildren we are taught this very simple algorithm for the 
ase of � = 10.Almost instin
tively several optimizations are taught for whi
h their reasonof existing are never explained. For this example let y = 5471 represent thedividend and x = 23 represent the divisor.To �nd the �rst digit of the quotient the value of k must be maximized su
hthat kx�t is less than or equal to y and simultaneously (k+1)x�t is greater thany. Impli
itly k is the maximum value the t'th digit of the quotient may have.The habitual method used to �nd the maximum is to \eyeball" the two numbers,typi
ally only the leading digits and qui
kly estimate a quotient. By only usingleading digits a mu
h simpler division may be used to form an edu
ated guessat what the value must be. In this 
ase k = b54=23
 = 2 qui
kly arises as apossible solution. Indeed 2x�2 = 4600 is less than y = 5471 and simultaneously(k + 1)x�2 = 6900 is larger than y. As a result k�2 is added to the quotientwhi
h now equals q = 200 and 4600 is subtra
ted from y to give a remainder ofy = 841.Again this pro
ess is repeated to produ
e the quotient digit k = 3 whi
hmakes the quotient q = 200+3� = 230 and the remainder y = 841�3x� = 181.Finally the last iteration of the loop produ
es k = 7 whi
h leads to the quotientq = 230 + 7 = 237 and the remainder y = 181 � 7x = 20. The �nal quotientand remainder found are q = 237 and r = y = 20 whi
h are indeed 
orre
t sin
e237 � 23 + 20 = 5471 is true.



8.1. INTEGER DIVISION WITH REMAINDER 1498.1.1 Quotient EstimationAs alluded to earlier the quotient digit k 
an be estimated from only the leadingdigits of both the divisor and dividend. When p leading digits are used from boththe divisor and dividend to form an estimation the a

ura
y of the estimationrises as p grows. Te
hni
ally speaking the estimation is based on assuming thelower jjyjj � p and jjxjj � p lower digits of the dividend and divisor are zero.The value of the estimation may o� by a few values in either dire
tion and ingeneral is fairly 
orre
t. A simpli�
ation [1, pp. 271℄ of the estimation te
hniqueis to use t + 1 digits of the dividend and t digits of the divisor, in parti
ularlywhen t = 1. The estimate using this te
hnique is never too small. For thefollowing proof let t = jjyjj � 1 and s = jjxjj � 1 represent the most signi�
antdigits of the dividend and divisor respe
tively.Proof. The quotient k̂ = b(yt� + yt�1)=xs
 is greater than or equal tok = by=(x � �jjyjj�jjxjj�1)
. The �rst obvious 
ase is when k̂ = � � 1 in whi
h
ase the proof is 
on
luded sin
e the real quotient 
annot be larger. For allother 
ases k̂ = b(yt� + yt�1)=xs
 and k̂xs � yt� + yt�1 � xs + 1. The latterportion of the inequalility �xs +1 arises from the fa
t that a trun
ated integerdivision will give the same quotient for at most xs � 1 values. Next a series ofinequalities will prove the hypothesis.y � k̂x � y � k̂xs�s (8.1)This is trivially true sin
e x � xs�s. Next we repla
e k̂xs�s by the previousinequality for k̂xs.y � k̂x � yt�t + : : :+ y0 � (yt�t + yt�1�t�1 � xs�t + �s) (8.2)By simplifying the previous inequality the following inequality is formed.y � k̂x � yt�2�t�2 + : : :+ y0 + xs�s � �s (8.3)Subsequently, yt�2�t�2 + : : :+ y0 + xs�s � �s < xs�s � x (8.4)Whi
h proves that y � k̂x � x and by 
onsequen
e k̂ � k whi
h 
on
ludesthe proof. QED



150 CHAPTER 8. HIGHER LEVEL ALGORITHMS8.1.2 Normalized IntegersFor the purposes of division a normalized input is when the divisors leadingdigit xn is greater than or equal to �=2. By multiplying both x and y by j =b(�=2)=xn
 the quotient remains un
hanged and the remainder is simply j timesthe original remainder. The purpose of normalization is to ensure the leadingdigit of the divisor is suÆ
iently large su
h that the estimated quotient will lie inthe domain of a single digit. Consider the maximum dividend (��1) ��+(��1)and the minimum divisor �=2. �2 � 1�=2 � 2� � 2� (8.5)At most the quotient approa
hes 2�, however, in pra
ti
e this will not o

ursin
e that would imply the previous quotient digit was too small.8.1.3 Radix-� Division with Remainder



8.1. INTEGER DIVISION WITH REMAINDER 151Algorithm mp div.Input. mp int a; bOutput. 
 = ba=b
, d = a� b
1. If b = 0 return(MP VAL).2. If jaj < jbj then do2.1 d a2.2 
 02.3 Return(MP OKAY ).Setup the quotient to re
eive the digits.3. Grow q to a:used+ 2 digits.4. q  05. x jaj; y  jbj6. sign � MP ZPOS if a:sign = b:signMP NEG otherwiseNormalize the inputs su
h that the leading digit of y is greater than or equal to �=2.7. norm (lg(�)� 1)� (dlg(y)e (mod lg(�)))8. x x � 2norm; y  y � 2normFind the leading digit of the quotient.9. n x:used� 1; t y:used� 110. y  y � �n�t11. While (x � y) do11.1 qn�t  qn�t + 111.2 x x� y12. y  by=�n�t
Continued on the next page.Figure 8.2: Algorithm mp div



152 CHAPTER 8. HIGHER LEVEL ALGORITHMSAlgorithm mp div (
ontinued).Input. mp int a; bOutput. 
 = ba=b
, d = a� b
Now �nd the remainder fo the digits.13. for i from n down to (t+ 1) do13.1 If i > x:used then jump to the next iteration of this loop.13.2 If xi = yt then13.2.1 qi�t�1  � � 113.3 else13.3.1 r̂ xi � � + xi�113.3.2 r̂ br̂=yt
13.3.3 qi�t�1  r̂13.4 qi�t�1  qi�t�1 + 1Fixup quotient estimation.13.5 Loop13.5.1 qi�t�1  qi�t�1 � 113.5.2 t1 013.5.3 t10  yt�1; t11  yt; t1:used 213.5.4 t1 t1 � qi�t�113.5.5 t20  xi�2; t21  xi�1; t22  xi; t2:used 313.5.6 If jt1j > jt2j then goto step 13.5.13.6 t1 y � qi�t�113.7 t1 t1 � �i�t�113.8 x x� t113.9 If x:sign =MP NEG then13.10 t1 y13.11 t1 t1 � �i�t�113.12 x x+ t113.13 qi�t�1  qi�t�1 � 1Finalize the result.14. Clamp ex
ess digits of q15. 
 q; 
:sign sign16. x:sign a:sign17. d bx=2norm
18. Return(MP OKAY ).Figure 8.3: Algorithm mp div (
ontinued)



8.1. INTEGER DIVISION WITH REMAINDER 153Algorithm mp div. This algorithm will 
al
ulate quotient and remainderfrom an integer division given a dividend and divisor. The algorithm is a signeddivision and will produ
e a fully quali�ed quotient and remainder.First the divisor b must be non-zero whi
h is enfor
ed in step one. If thedivisor is larger than the dividend than the quotient is impli
itly zero and theremainder is the dividend.After the �rst two trivial 
ases of inputs are handled the variable q is setupto re
eive the digits of the quotient. Two unsigned 
opies of the divisor y anddividend x are made as well. The 
ore of the division algorithm is an unsigneddivision and will only work if the values are positive. Now the two values x andy must be normalized su
h that the leading digit of y is greater than or equalto �=2. This is performed by shifting both to the left by enough bits to get thedesired normalization.At this point the division algorithm 
an begin produ
ing digits of the quo-tient. Re
all that maximum value of the estimation used is 2�� 2� whi
h meansthat a digit of the quotient must be �rst produ
ed by another means. In this
ase y is shifted to the left (step ten) so that it has the same number of digitsas x. The loop on step eleven will subtra
t multiples of the shifted 
opy of yuntil x is smaller. Sin
e the leading digit of y is greater than or equal to �=2this loop will iterate at most two times to produ
e the desired leading digit ofthe quotient.Now the remainder of the digits 
an be produ
ed. The equation q̂ =bxi�+xi�1yt 
 is used to fairly a

urately approximate the true quotient digit. Theestimation 
an in theory produ
e an estimation as high as 2�� 2� but by indu
-tion the upper quotient digit is 
orre
t (as established on step eleven) and theestimate must be less than �.Re
all from se
tion 8.1.1 that the estimation is never too low but may be toohigh. The next step of the estimation pro
ess is to re�ne the estimation. Theloop on step 13.5 uses xi�2 + xi�1� + xi�2 and qi�t�1(yt� + yt�1) as a higherorder approximation to adjust the quotient digit.After both phases of estimation the quotient digit may still be o� by avalue of one1. Steps 13.6 and 13.7 subtra
t the multiple of the divisor fromthe dividend (Similar to step 3.3 of algorithm 8.1 and then subsequently add amultiple of the divisor if the quotient was too large.Now that the quotient has been determine �nializing the result is a matterof 
lamping the quotient, �xing the sizes and de-normalizing the remainder. Animportant aspe
t of this algorithm seemingly overlooked in other des
riptions1This is similar to the error introdu
ed by optimizing Barrett redu
tion.



154 CHAPTER 8. HIGHER LEVEL ALGORITHMSsu
h as that of Algorithm 14.20 HAC [2, pp. 598℄ is that when the estimationsare being made (inside the loop on step 13.5 ) that the digits yt�1, xi�2 andxi�1 may lie outside their respe
tive boundaries. For example, if t = 0 or i � 1then the digits would be unde�ned. In those 
ases the digits should respe
tivelybe repla
ed with a zero.File: bn mp div.
The implementation of this algorithm di�ers slightly from the pseudo 
odepresented previously. In this algorithm either of the quotient 
 or remainder dmay be passed as a NULL pointer whi
h indi
ates their value is not desired.For example, the C 
ode to 
all the division algorithm with only the quotient ismp_div(&a, &b, &
, NULL); /* 
 = [a/b℄ */Lines 109 and 113 handle the two trivial 
ases of inputs whi
h are divisionby zero and dividend smaller than the divisor respe
tively. After the two trivial
ases all of the temporary variables are initialized. Line 148 determines the signof the quotient and line 148 ensures that both x and y are positive.The number of bits in the leading digit is 
al
ulated on line 151. Impli
tlyan mp int with r digits will require lg(�)(r�1)+k bits of pre
ision whi
h whenredu
ed modulo lg(�) produ
es the value of k. In this 
ase k is the number ofbits in the leading digit whi
h is exa
tly what is required. For the algorithmto operate k must equal lg(�) � 1 and when it does not the inputs must benormalized by shifting them to the left by lg(�)� 1� k bits.Throughout the variables n and t will represent the highest digit of x and yrespe
tively. These are �rst used to produ
e the leading digit of the quotient.The loop beginning on line 184 will produ
e the remainder of the quotient digits.The 
onditional \
ontinue" on line 187 is used to prevent the algorithmfrom reading past the leading edge of x whi
h 
an o

ur when the algorithmeliminates multiple non-zero digits in a single iteration. This ensures that xi isalways non-zero sin
e by de�nition the digits above the i'th position x must bezero in order for the quotient to be pre
ise2.Lines 214, 216 and 223 through 225 manually 
onstru
t the high a

ura
yestimations by setting the digits of the two mp int variables dire
tly.2Pre
ise as far as integer division is 
on
erned.



8.2. SINGLE DIGIT HELPERS 1558.2 Single Digit HelpersThis se
tion brie
y des
ribes a series of single digit helper algorithms whi
h
ome in handy when working with small 
onstants. All of the helper fun
tionsassume the single digit input is positive and will treat them as su
h.8.2.1 Single Digit Addition and Subtra
tionBoth addition and subtra
tion are performed by \
heating" and using mp setfollowed by the higher level addition or subtra
tion algorithms. As a result thesealgorithms are subtantially simpler with a slight 
ost in performan
e.



156 CHAPTER 8. HIGHER LEVEL ALGORITHMSAlgorithm mp add d.Input. mp int a and a mp digit bOutput. 
 = a+ b1. t b (mp set)2. 
 a+ t3. Return(MP OKAY )Figure 8.4: Algorithm mp add dAlgorithm mp add d. This algorithm initiates a temporary mp int withthe value of the single digit and uses algorithm mp add to add the two valuestogether.File: bn mp add d.
Clever use of the letter 't'.Subtra
tionThe single digit subtra
tion algorithm mp sub d is essentially the same ex
eptit uses mp sub to subtra
t the digit from the mp int.8.2.2 Single Digit Multipli
ationSingle digit multipli
ation arises enough in division and radix 
onversion that itought to be implement as a spe
ial 
ase of the baseline multipli
ation algorithm.Essentially this algorithm is a modi�ed version of algorithm s mp mul digswhere one of the multipli
ands only has one digit.Algorithm mp mul d. This algorithm qui
kly multiplies an mp int by asmall single digit value. It is spe
ially tailored to the job and has a minimalof overhead. Unlike the full multipli
ation algorithms this algorithm does notrequire any signi�
nat temporary storage or memory allo
ations.File: bn mp mul d.
In this implementation the destination 
may point to the same mp int as thesour
e a sin
e the result is written after the digit is read from the sour
e. Thisfun
tion uses pointer aliases tmpa and tmp
 for the digits of a and 
 respe
tively.



8.2. SINGLE DIGIT HELPERS 157Algorithm mp mul d.Input. mp int a and a mp digit bOutput. 
 = ab1. pa a:used2. Grow 
 to at least pa+ 1 digits.3. oldused 
:used4. 
:used pa+ 15. 
:sign a:sign6. � 07. for ix from 0 to pa� 1 do7.1 r̂ �+ aixb7.2 
ix  r̂ (mod �)7.3 � br̂=�
8. 
pa  �9. for ix from pa+ 1 to oldused do9.1 
ix  010. Clamp ex
ess digits of 
.11. Return(MP OKAY ).Figure 8.5: Algorithm mp mul d8.2.3 Single Digit DivisionLike the single digit multipli
ation algorithm, single digit division is also a fairly
ommon algorithm used in radix 
onversion. Sin
e the divisor is only a singledigit a spe
ialized variant of the division algorithm 
an be used to 
ompute thequotient.



158 CHAPTER 8. HIGHER LEVEL ALGORITHMSAlgorithm mp div d.Input. mp int a and a mp digit bOutput. 
 = ba=b
; d = a� 
b1. If b = 0 then return(MP VAL).2. If b = 3 then use algorithm mp div 3 instead.3. Init q to a:used digits.4. q:used a:used5. q:sign a:sign6. ŵ 07. for ix from a:used� 1 down to 0 do7.1 ŵ  ŵ� + aix7.2 If ŵ � b then7.2.1 t bŵ=b
7.2.2 ŵ ŵ (mod b)7.3 else7.3.1 t 07.4 qix  t8. d ŵ9. Clamp ex
ess digits of q.10. 
 q11. Return(MP OKAY ).Figure 8.6: Algorithm mp div dAlgorithm mp div d. This algorithm divides the mp int a by the singlemp digit b using an optimized approa
h. Essentially in every iteration of thealgorithm another digit of the dividend is redu
ed and another digit of quotientprodu
ed. Provided b < � the value of ŵ after step 7.1 will be limited su
h that0 � bŵ=b
 < �.If the divisor b is equal to three a variant of this algorithm is used whi
his 
alled mp div 3. It repla
es the division by three with a multipli
ation byb�=3
 and the appropriate shift and residual �xup. In essen
e it is mu
h likethe Barrett redu
tion from 
hapter seven.File: bn mp div d.
Like the implementation of algorithm mp div this algorithm allows eitherof the quotient or remainder to be passed as a NULL pointer to indi
ate the



8.2. SINGLE DIGIT HELPERS 159respe
tive value is not required. This allows a trivial single digit modular re-du
tion algorithm, mp mod d to be 
reated.The division and remainder on lines 44 and �45,pro
essors 
an divide a64-bit quantity by a 32-bit quantity and produ
e the quotient and remaindersimultaneously. Unfortunately the GCC 
ompiler does not re
ognize that opti-mization and will a
tually produ
e two fun
tion 
alls to �nd the quotient andremainder respe
tively.8.2.4 Single Digit Root Extra
tionFinding the n'th root of an integer is fairly easy as far as numeri
al analysis is
on
erned. Algorithms su
h as the Newton-Raphson approximation (8.6) serieswill 
onverge very qui
kly to a root for any 
ontinuous fun
tion f(x).xi+1 = xi � f(xi)f 0(xi) (8.6)In this 
ase the n'th root is desired and f(x) = xn�a where a is the integerof whi
h the root is desired. The derivative of f(x) is simply f 0(x) = nxn�1. Ofparti
ular importan
e is that this algorithm will be used over the integers notover the a more 
ontinuous domain su
h as the real numbers. As a result theroot found 
an be above the true root by few and must be manually adjusted.Ideally at the end of the algorithm the n'th root b of an integer a is desired su
hthat bn � a.



160 CHAPTER 8. HIGHER LEVEL ALGORITHMSAlgorithm mp n root.Input. mp int a and a mp digit bOutput. 
b � a1. If b is even and a:sign =MP NEG return(MP VAL).2. sign a:sign3. a:sign MP ZPOS4. t2 25. Loop5.1 t1 t25.2 t3 t1b�15.3 t2 t3 � t15.4 t2 t2� a5.5 t3 t3 � b5.6 t3 bt2=t3
5.7 t2 t1� t35.8 If t1 6= t2 then goto step 5.6. Loop6.1 t2 t1b6.2 If t2 > a then6.2.1 t1 t1� 16.2.2 Goto step 6.7. a:sign sign8. 
 t19. 
:sign sign10. Return(MP OKAY ).Figure 8.7: Algorithm mp n rootAlgorithm mp n root. This algorithm �nds the integer n'th root of aninput using the Newton-Raphson approa
h. It is partially optimized basedon the observation that the numerator of f(x)f 0(x) 
an be derived from a partialdenominator. That is at �rst the denominator is 
al
ulated by �nding xb�1.This value 
an then be multiplied by x and have a subtra
ted from it to �ndthe numerator. This saves a total of b� 1 multipli
ations by t1 inside the loop.The initial value of the approximation is t2 = 2 whi
h allows the algorithmto start with very small values and qui
kly 
onverge on the root. Ideally thisalgorithm is meant to �nd the n'th root of an input where n is bounded by2 � n � 5.



8.3. RANDOM NUMBER GENERATION 161File: bn mp n root.
8.3 Random Number GenerationRandom numbers 
ome up in a variety of a
tivities from publi
 key 
ryptographyto simple simulations and various randomized algorithms. Pollard-Rho fa
toringfor example, 
an make use of random values as starting points to �nd fa
tors of a
omposite integer. In this 
ase the algorithm presented is solely for simulationsand not intended for 
ryptographi
 use.



162 CHAPTER 8. HIGHER LEVEL ALGORITHMSAlgorithm mp rand.Input. An integer bOutput. A pseudo-random number of b digits1. a 02. If b � 0 return(MP OKAY )3. Pi
k a non-zero random digit d.4. a a+ d5. for ix from 1 to d� 1 do5.1 a a � �5.2 Pi
k a random digit d.5.3 a a+ d6. Return(MP OKAY ).Figure 8.8: Algorithm mp randAlgorithmmp rand. This algorithm produ
es a pseudo-random integer ofb digits. By ensuring that the �rst digit is non-zero the algorithm also guaranteesthat the �nal result has at least b digits. It relies heavily on a third-part randomnumber generator whi
h should ideally generate uniformly all of the integersfrom 0 to � � 1.File: bn mp rand.
8.4 Formatted RepresentationsThe ability to emit a radix-n textual representation of an integer is useful forintera
ting with human parties. For example, the ability to be given a string of
hara
ters su
h as \114585" and turn it into the radix-� equivalent would makeit easier to enter numbers into a program.8.4.1 Reading Radix-n InputFor the purposes of this text we will assume that a simple lower ASCII map (8.9)is used for the values of from 0 to 63 to printable 
hara
ters. For example, whenthe 
hara
ter \N" is read it represents the integer 23. The �rst 16 
hara
ters ofthe map are for the 
ommon representations up to hexade
imal. After that theymat
h the \base64" en
oding s
heme whi
h are suitable 
hosen su
h that they



8.4. FORMATTED REPRESENTATIONS 163are printable. While outputting as base64 may not be too helpful for humanoperators it does allow 
ommuni
ation via non binary mediums.



164 CHAPTER 8. HIGHER LEVEL ALGORITHMSValue Char Value Char Value Char Value Char0 0 1 1 2 2 3 34 4 5 5 6 6 7 78 8 9 9 10 A 11 B12 C 13 D 14 E 15 F16 G 17 H 18 I 19 J20 K 21 L 22 M 23 N24 O 25 P 26 Q 27 R28 S 29 T 30 U 31 V32 W 33 X 34 Y 35 Z36 a 37 b 38 
 39 d40 e 41 f 42 g 43 h44 i 45 j 46 k 47 l48 m 49 n 50 o 51 p52 q 53 r 54 s 55 t56 u 57 v 58 w 59 x60 y 61 z 62 + 63 =Figure 8.9: Lower ASCII Map



8.4. FORMATTED REPRESENTATIONS 165Algorithm mp read radix.Input. A string str of length sn and radix r.Output. The radix-� equivalent mp int.1. If r < 2 or r > 64 return(MP VAL).2. ix 03. If str0 = \-" then do3.1 ix ix+ 13.2 sign MP NEG4. else4.1 sign MP ZPOS5. a 06. for iy from ix to sn� 1 do6.1 Let y denote the position in the map of striy.6.2 If striy is not in the map or y � r then goto step 7.6.3 a a � r6.4 a a+ y7. If a 6= 0 then a:sign sign8. Return(MP OKAY ).Figure 8.10: Algorithm mp read radixAlgorithm mp read radix. This algorithm will read an ASCII stringand produ
e the radix-� mp int representation of the same integer. A minussymbol \-" may pre
ede the string to indi
ate the value is negative, otherwiseit is assumed to be positive. The algorithm will read up to sn 
hara
ters fromthe input and will stop when it reads a 
hara
ter it 
annot map the algorithmstops reading 
hara
ters from the string. This allows numbers to be embeddedas part of larger input without any signi�
ant problem.File: bn mp read radix.
8.4.2 Generating Radix-n OutputGenerating radix-n output is fairly trivial with a division and remainder algo-rithm.



166 CHAPTER 8. HIGHER LEVEL ALGORITHMSAlgorithm mp toradix.Input. A mp int a and an integer rOutput. The radix-r representation of a1. If r < 2 or r > 64 return(MP VAL).2. If a = 0 then str = \0" and return(MP OKAY ).3. t a4. str \"5. if t:sign =MP NEG then5.1 str str+ \-"5.2 t:sign =MP ZPOS6. While (t 6= 0) do6.1 d t (mod r)6.2 t bt=r
6.3 Look up d in the map and store the equivalent 
hara
ter in y.6.4 str str+ y7. If str0 =\�" then7.1 Reverse the digits str1; str2; : : : strn.8. Otherwise8.1 Reverse the digits str0; str1; : : : strn.9. Return(MP OKAY ).Figure 8.11: Algorithm mp toradixAlgorithm mp toradix. This algorithm 
omputes the radix-r representa-tion of an mp int a. The \digits" of the representation are extra
ted by redu
ingsu

essive powers of ba=rk
 the input modulo r until rk > a. Note that insteadof a
tually dividing by rk in ea
h iteration the quotient ba=r
 is saved for thenext iteration. As a result a series of trivial n� 1 divisions are required insteadof a series of n� k divisions. One design 
aw of this approa
h is that the digitsare produ
ed in the reverse order (see 8.12). To remedy this 
aw the digits mustbe swapped or simply \reversed".File: bn mp toradix.
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Value of a Value of d Value of str1234 { {123 4 \4"12 3 \43"1 2 \432"0 1 \4321"Figure 8.12: Example of Algorithm mp toradix.
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Chapter 9Number Theoreti
AlgorithmsThis 
hapter dis
usses several fundamental number theoreti
 algorithms su
h asthe greatest 
ommon divisor, least 
ommon multiple and Ja
obi symbol 
om-putation. These algorithms arise as essential 
omponents in several key 
ryp-tographi
 algorithms su
h as the RSA publi
 key algorithm and various Sievebased fa
toring algorithms.9.1 Greatest Common DivisorThe greatest 
ommon divisor of two integers a and b, often denoted as (a; b) isthe largest integer k that is a proper divisor of both a and b. That is, k is thelargest integer su
h that 0 � a (mod k) and 0 � b (mod k) o

ur simultaneously.The most 
ommon approa
h (
ite) is to redu
e one input modulo another.That is if a and b are divisible by some integer k and if qa+ r = b then r is alsodivisible by k. The redu
tion pattern follows ha; bi ! hb; a mod bi.
169



170 CHAPTER 9. NUMBER THEORETIC ALGORITHMSAlgorithm Greatest Common Divisor (I).Input. Two positive integers a and b greater than zero.Output. The greatest 
ommon divisor (a; b).1. While (b > 0) do1.1 r a (mod b)1.2 a b1.3 b r2. Return(a).Figure 9.1: Algorithm Greatest Common Divisor (I)This algorithm will qui
kly 
onverge on the greatest 
ommon divisor sin
ethe residue r tends diminish rapidly. However, divisions are relatively expensiveoperations to perform and should ideally be avoided. There is another approa
hbased on a similar relationship of greatest 
ommon divisors. The faster approa
his based on the observation that if k divides both a and b it will also divide a�b.In parti
ular, we would like a� b to de
rease in magnitude whi
h implies thatb � a. Algorithm Greatest Common Divisor (II).Input. Two positive integers a and b greater than zero.Output. The greatest 
ommon divisor (a; b).1. While (b > 0) do1.1 Swap a and b su
h that a is the smallest of the two.1.2 b b� a2. Return(a).Figure 9.2: Algorithm Greatest Common Divisor (II)Proof Algorithm 9.2 will return the greatest 
ommon divisor of a and b. Thealgorithm in �gure 9.2 will eventually terminate sin
e b � a the subtra
tion instep 1.2 will be a value less than b. In other words in every iteration that tupleha; bi de
rease in magnitude until eventually a = b. Sin
e both a and b arealways divisible by the greatest 
ommon divisor (until the last iteration) and inthe last iteration of the algorithm b = 0, therefore, in the se
ond to last iterationof the algorithm b = a and 
learly (a; a) = a whi
h 
on
ludes the proof. QED.As a matter of pra
ti
ality algorithm 9.1 de
reases far too slowly to be useful.



9.1. GREATEST COMMON DIVISOR 171Spe
ially if b is mu
h larger than a su
h that b�a is still very mu
h larger thana. A simple addition to the algorithm is to divide b � a by a power of someinteger p whi
h does not divide the greatest 
ommon divisor but will divide b�a.In this 
ase b�ap is also an integer and still divisible by the greatest 
ommondivisor.However, instead of fa
toring b � a to �nd a suitable value of p the powersof p 
an be removed from a and b that are in 
ommon �rst. Then inside theloop whenever b� a is divisible by some power of p it 
an be safely removed.Algorithm Greatest Common Divisor (III).Input. Two positive integers a and b greater than zero.Output. The greatest 
ommon divisor (a; b).1. k  02. While a and b are both divisible by p do2.1 a ba=p
2.2 b bb=p
2.3 k k + 13. While a is divisible by p do3.1 a ba=p
4. While b is divisible by p do4.1 b bb=p
5. While (b > 0) do5.1 Swap a and b su
h that a is the smallest of the two.5.2 b b� a5.3 While b is divisible by p do5.3.1 b bb=p
6. Return(a � pk).Figure 9.3: Algorithm Greatest Common Divisor (III)This algorithm is based on the �rst ex
ept it removes powers of p �rst andinside the main loop to ensure the tuple ha; bi de
reases more rapidly. The�rst loop on step two removes powers of p that are in 
ommon. A 
ount, k, iskept whi
h will present a 
ommon divisor of pk. After step two the remaining
ommon divisor of a and b 
annot be divisible by p. This means that p 
anbe safely divided out of the di�eren
e b � a so long as the division leaves noremainder.In parti
ular the value of p should be 
hosen su
h that the division on step5.3.1 o

ur often. It also helps that division by p be easy to 
ompute. The ideal
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hoi
e of p is two sin
e division by two amounts to a right logi
al shift. Anotherimportant observation is that by step �ve both a and b are odd. Therefore, thedi�ren
e b � a must be even whi
h means that ea
h iteration removes one bitfrom the largest of the pair.9.1.1 Complete Greatest Common DivisorThe algorithms presented so far 
annot handle inputs whi
h are zero or negative.The following algorithm 
an handle all input 
ases properly and will produ
ethe greatest 
ommon divisor.



9.1. GREATEST COMMON DIVISOR 173Algorithm mp g
d.Input. mp int a and bOutput. The greatest 
ommon divisor 
 = (a; b).1. If a = 0 then1.1 
 jbj1.2 Return(MP OKAY ).2. If b = 0 then2.1 
 jaj2.2 Return(MP OKAY ).3. u jaj; v  jbj4. k 05. While u:used > 0 and v:used > 0 and u0 � v0 � 0 (mod 2)5.1 k  k + 15.2 u bu=2
5.3 v  bv=2
6. While u:used > 0 and u0 � 0 (mod 2)6.1 u bu=2
7. While v:used > 0 and v0 � 0 (mod 2)7.1 v  bv=2
8. While v:used > 08.1 If juj > jvj then8.1.1 Swap u and v.8.2 v  jvj � juj8.3 While v:used > 0 and v0 � 0 (mod 2)8.3.1 v  bv=2
9. 
 u � 2k10. Return(MP OKAY ).Figure 9.4: Algorithm mp g
dAlgorithm mp g
d. This algorithm will produ
e the greatest 
ommondivisor of two mp ints a and b. The algorithm was originally based on AlgorithmB of Knuth [1, pp. 338℄ but has been modi�ed to be simpler to explain. In theoryit a
hieves the same asymptoti
 working time as Algorithm B and in pra
ti
ethis appears to be true.The �rst two steps handle the 
ases where either one of or both inputs arezero. If either input is zero the greatest 
ommon divisor is the largest input orzero if they are both zero. If the inputs are not trivial than u and v are assignedthe absolute values of a and b respe
tively and the algorithm will pro
eed to



174 CHAPTER 9. NUMBER THEORETIC ALGORITHMSredu
e the pair.Step �ve will divide out any 
ommon fa
tors of two and keep tra
k of the
ount in the variable k. After this step, two is no longer a fa
tor of the remaininggreatest 
ommon divisor between u and v and 
an be safely evenly divided outof either whenever they are even. Step six and seven ensure that the u and vrespe
tively have no more fa
tors of two. At most only one of the while{loopswill iterate sin
e they 
annot both be even.By step eight both of u and v are odd whi
h is required for the inner logi
.First the pair are swapped su
h that v is equal to or greater than u. This ensuresthat the subtra
tion on step 8.2 will always produ
e a positive and even result.Step 8.3 removes any fa
tors of two from the di�eren
e u to ensure that in thenext iteration of the loop both are on
e again odd.After v = 0 o

urs the variable u has the greatest 
ommon divisor of thepair hu; vi just after step six. The result must be adjusted by multiplying bythe 
ommon fa
tors of two (2k) removed earlier.File: bn mp g
d.
This fun
tion makes use of the ma
ros mp iszero and mp iseven. The formerevaluates to 1 if the input mp int is equivalent to the integer zero otherwise itevaluates to 0. The latter evaluates to 1 if the input mp int represents a non-zero even integer otherwise it evaluates to 0. Note that just be
ause mp isevenmay evaluate to 0 does not mean the input is odd, it 
ould also be zero. Thethree trivial 
ases of inputs are handled on lines 24 through 30. After thoselines the inputs are assumed to be non-zero.Lines 32 and 37 make lo
al 
opies u and v of the inputs a and b respe
tively.At this point the 
ommon fa
tors of two must be divided out of the two inputs.The blo
k starting at line 44 removes 
ommon fa
tors of two by �rst 
ountingthe number of trailing zero bits in both. The lo
al integer k is used to keep tra
kof how many fa
tors of 2 are pulled out of both values. It is assumed that thenumber of fa
tors will not ex
eed the maximum value of a C \int" data type1.At this point there are no more 
ommon fa
tors of two in the two values. Thedivisions by a power of two on lines 62 and 68 remove any independent fa
tors oftwo su
h that both u and v are guaranteed to be an odd integer before hitting themain body of the algorithm. The while loop on line 73 performs the redu
tionof the pair until v is equal to zero. The unsigned 
omparison and subtra
tion1Stri
tly speaking no array in C may have more than entries than are a

essible by an\int" so this is not a limitation.



9.2. LEAST COMMON MULTIPLE 175algorithms are used in pla
e of the full signed routines sin
e both values areguaranteed to be positive and the result of the subtra
tion is guaranteed to benon-negative.9.2 Least Common MultipleThe least 
ommon multiple of a pair of integers is their produ
t divided by theirgreatest 
ommon divisor. For two integers a and b the least 
ommon multipleis normally denoted as [a; b℄ and numeri
ally equivalent to ab(a;b) . For example,if a = 2 � 2 � 3 = 12 and b = 2 � 3 � 3 � 7 = 126 the least 
ommon multiple is126(12;126) = 1266 = 21.The least 
ommon multiple arises often in 
oding theory as well as numbertheory. If two fun
tions have periods of a and b respe
tively they will 
ollide,that is be in syn
hronous states, after only [a; b℄ iterations. This is why, forexample, random number generators based on Linear Feedba
k Shift Registers(LFSR) tend to use registers with periods whi
h are 
o-prime (e.g. the greatest
ommon divisor is one.). Similarly in number theory if a 
omposite n has twoprime fa
tors p and q then maximal order of any unit of Z=nZwill be [p�1; q�1℄.Algorithm mp l
m.Input. mp int a and bOutput. The least 
ommon multiple 
 = [a; b℄.1. 
 (a; b)2. t a � b3. 
 bt=

4. Return(MP OKAY ).Figure 9.5: Algorithm mp l
mAlgorithm mp l
m. This algorithm 
omputes the least 
ommon multipleof two mp int inputs a and b. It 
omputes the least 
ommon multiple dire
tlyby dividing the produ
t of the two inputs by their greatest 
ommon divisor.File: bn mp l
m.
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obi Symbol ComputationTo explain the Ja
obi Symbol we shall �rst dis
uss the Legendre fun
tion2 o�whi
h the Ja
obi symbol is de�ned. The Legendre fun
tion 
omputes whetheror not an integer a is a quadrati
 residue modulo an odd prime p. Numeri
allyit is equivalent to equation 9.1.{ Tom, don't be an ass, 
ite your sour
e here...!a(p�1)=2 � �1 if a is a quadrati
 non-residue.0 if a divides p.1 if a is a quadrati
 residue: (mod p) (9.1)Proof. Equation 9.1 
orre
tly identi�es the residue status of an integer amodulo a prime p. An integer a is a quadrati
 residue if the following equationhas a solution. x2 � a (mod p) (9.2)Consider the following equation.0 � xp�1 � 1 � n�x2�(p�1)=2 � a(p�1)=2o+ �a(p�1)=2 � 1� (mod p) (9.3)Whether equation 9.2 has a solution or not equation 9.3 is always true. Ifa(p�1)=2 � 1 � 0 (mod p) then the quantity in the bra
es must be zero. Byredu
tion, �x2�(p�1)=2 � a(p�1)=2 � 0�x2�(p�1)=2 � a(p�1)=2x2 � a (mod p) (9.4)As a result there must be a solution to the quadrati
 equation and in turna must be a quadrati
 residue. If a does not divide p and a is not a quadrati
residue then the only other value a(p�1)=2 may be 
ongruent to is �1 sin
e0 � ap�1 � 1 � (a(p�1)=2 + 1)(a(p�1)=2 � 1) (mod p) (9.5)One of the terms on the right hand side must be zero. QED2Arrg. What is the name of this?



9.3. JACOBI SYMBOL COMPUTATION 1779.3.1 Ja
obi SymbolThe Ja
obi symbol is a generalization of the Legendre fun
tion for any odd nonprime moduli p greater than 2. If p = Qni=0 pi then the Ja
obi symbol �ap� isequal to the following equation.�ap� = � ap0�� ap1� : : :� apn� (9.6)By inspe
tion if p is prime the Ja
obi symbol is equivalent to the Legendrefun
tion. The following fa
ts3 will be used to derive an eÆ
ient Ja
obi symbolalgorithm. Where p is an odd integer greater than two and a; b 2 Z the followingare true.1. �ap� equals �1, 0 or 1.2. �abp � = �ap�� bp�.3. If a � b then �ap� = � bp�.4. � 2p� equals 1 if p � 1 or 7 (mod 8). Otherwise, it equals �1.5. �ap� � � pa� � (�1)(p�1)(a�1)=4. More spe
i�
ally �ap� = � pa� if p � a �1 (mod 4).Using these fa
ts if a = 2k � a0 then�ap� = �2kp ��a0p �= �2p�k �a0p � (9.7)By fa
t �ve, �ap� = �pa� � (�1)(p�1)(a�1)=4 (9.8)3See HAC [2, pp. 72-74℄ for further details.



178 CHAPTER 9. NUMBER THEORETIC ALGORITHMSSubsequently by fa
t three sin
e p � (p mod a) (mod a) then�ap� = �p mod aa � � (�1)(p�1)(a�1)=4 (9.9)By putting both observations into equation 9.7 the following simpli�ed equa-tion is formed. �ap� = �2p�k �p mod a0a0 � � (�1)(p�1)(a0�1)=4 (9.10)The value of �p mod a0a0 � 
an be found by using the same equation re
ur-sively. The value of � 2p�k equals 1 if k is even otherwise it equals � 2p�. Using thisapproa
h the fa
tors of p do not have to be known. Furthermore, if (a; p) = 1then the algorithm will terminate when the re
ursion requests the Ja
obi symbol
omputation of � 1a0 � whi
h is simply 1.
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obi.Input. mp int a and p, a � 0, p � 3, p � 1 (mod 2)Output. The Ja
obi symbol 
 = �ap�.1. If a = 0 then1.1 
 01.2 Return(MP OKAY ).2. If a = 1 then2.1 
 12.2 Return(MP OKAY ).3. a0  a4. k  05. While a0:used > 0 and a00 � 0 (mod 2)5.1 k  k + 15.2 a0  ba0=2
6. If k � 0 (mod 2) then6.1 s 17. else7.1 r p0 (mod 8)7.2 If r = 1 or r = 7 then7.2.1 s 17.3 else7.3.1 s �18. If p0 � a00 � 3 (mod 4) then8.1 s �s9. If a0 6= 1 then9.1 p0  p (mod a0)9.2 s s �mp ja
obi(p0; a0)10. 
 s11. Return(MP OKAY ).Figure 9.6: Algorithm mp ja
obiAlgorithm mp ja
obi. This algorithm 
omputes the Ja
obi symbol for anarbitrary positive integer a with respe
t to an odd integer p greater than three.The algorithm is based on algorithm 2.149 of HAC [2, pp. 73℄.Step numbers one and two handle the trivial 
ases of a = 0 and a = 1respe
tively. Step �ve determines the number of two fa
tors in the input a. Ifk is even than the term � 2p�k must always evaluate to one. If k is odd than theterm evaluates to one if p0 is 
ongruent to one or seven modulo eight, otherwise



180 CHAPTER 9. NUMBER THEORETIC ALGORITHMSit evaluates to �1. After the the � 2p�k term is handled the (�1)(p�1)(a0�1)=4is 
omputed and multiplied against the 
urrent produ
t s. The latter termevaluates to one if both p and a0 are 
ongruent to one modulo four, otherwiseit evaluates to negative one.By step nine if a0 does not equal one a re
ursion is required. Step 9.1
omputes p0 � p (mod a0) and will re
urse to 
ompute �p0a0 � whi
h is multipliedagainst the 
urrent Ja
obi produ
t.File: bn mp ja
obi.
As a matter of pra
ti
ality the variable a0 as per the pseudo-
ode is reprensentedby the variable a1 sin
e the 0 symbol is not valid for a C variable name 
hara
ter.The two simple 
ases of a = 0 and a = 1 are handled at the very beginning tosimplify the algorithm. If the input is non-trivial the algorithm has to pro
eed
ompute the Ja
obi. The variable s is used to hold the 
urrent Ja
obi produ
t.Note that s is merely a C \int" data type sin
e the values it may obtain aremerely �1, 0 and 1.After a lo
al 
opy of a is made all of the fa
tors of two are divided out andthe total stored in k. Te
hni
ally only the least signi�
ant bit of k is required,however, it makes the algorithm simpler to follow to perform an addition. Inpra
ti
e an ex
lusive-or and addition have the same pro
essor requirements andneither is faster than the other.Line 58 through 71 determines the value of � 2p�k. If the least signi�
ant bitof k is zero than k is even and the value is one. Otherwise, the value of s dependson whi
h residue 
lass p belongs to modulo eight. The value of (�1)(p�1)(a0�1)=4is 
ompute and multiplied against s on lines 71 through 74.Finally, if a1 does not equal one the algorithm must re
urse and 
ompute�p0a0�.{ Comment about default s and su
h...9.4 Modular InverseThe modular inverse of a number a
tually refers to the modular multipli
ativeinverse. Essentially for any integer a su
h that (a; p) = 1 there exist anotherinteger b su
h that ab � 1 (mod p). The integer b is 
alled the multipli
ativeinverse of a whi
h is denoted as b = a�1. Te
hni
ally speaking modular inversion



9.4. MODULAR INVERSE 181is a well de�ned operation for any �nite ring or �eld not just for rings and �eldsof integers. However, the former will be the matter of dis
ussion.The simplest approa
h is to 
ompute the algebrai
 inverse of the input. Thatis to 
ompute b � a�(p)�1. If �(p) is the order of the multipli
ative subgroupmodulo p then b must be the multipli
ative inverse of a. The proof of whi
h istrivial. ab � a�a�(p)�1� � a�(p) � a0 � 1 (mod p) (9.11)However, as simple as this approa
h may be it has two serious 
aws. Itrequires that the value of �(p) be known whi
h if p is 
omposite requires all ofthe prime fa
tors. This approa
h also is very slow as the size of p grows.A simpler approa
h is based on the observation that solving for the multi-pli
ative inverse is equivalent to solving the linear Diophantine4 equation.ab+ pq = 1 (9.12)Where a, b, p and q are all integers. If su
h a pair of integers hb; qi exist thanb is the multipli
ative inverse of a modulo p. The extended Eu
lidean algorithm(Knuth [1, pp. 342℄) 
an be used to solve su
h equations provided (a; p) = 1.However, instead of using that algorithm dire
tly a variant known as the binaryExtended Eu
lidean algorithm will be used in its pla
e. The binary approa
his very similar to the binary greatest 
ommon divisor algorithm ex
ept it willprodu
e a full solution to the Diophantine equation.9.4.1 General Case

4See LeVeque [?, pp. 40-43℄ for more information.



182 CHAPTER 9. NUMBER THEORETIC ALGORITHMSAlgorithm mp invmod.Input. mp int a and b, (a; b) = 1, p � 2, 0 < a < p.Output. The modular inverse 
 � a�1 (mod b).1. If b � 0 then return(MP VAL).2. If b0 � 1 (mod 2) then use algorithm fast mp invmod.3. x jaj; y  b4. If x0 � y0 � 0 (mod 2) then return(MP VAL).5. B  0; C  0; A 1; D  16. While u:used > 0 and u0 � 0 (mod 2)6.1 u bu=2
6.2 If (A:used > 0 and A0 � 1 (mod 2)) or (B:used > 0 and B0 � 1 (mod 2)) then6.2.1 A A+ y6.2.2 B  B � x6.3 A bA=2
6.4 B  bB=2
7. While v:used > 0 and v0 � 0 (mod 2)7.1 v  bv=2
7.2 If (C:used > 0 and C0 � 1 (mod 2)) or (D:used > 0 and D0 � 1 (mod 2)) then7.2.1 C  C + y7.2.2 D  D � x7.3 C  bC=2
7.4 D  bD=2
8. If u � v then8.1 u u� v8.2 A A� C8.3 B  B �D9. else9.1 v  v � u9.2 C  C �A9.3 D  D �B10. If u 6= 0 goto step 6.11. If v 6= 1 return(MP VAL).12. While C � 0 do12.1 C  C + b13. While C � b do13.1 C  C � b14. 
 C15. Return(MP OKAY ).Algorithm mp invmod. This algorithm 
omputes the modular multi-



9.5. PRIMALITY TESTS 183pli
ative inverse of an integer a modulo an integer b. This algorithm is a vari-ation of the extended binary Eu
lidean algorithm from HAC [2, pp. 608℄. Ithas been modi�ed to only 
ompute the modular inverse and not a 
ompleteDiophantine solution.If b � 0 than the modulus is invalid and MP VAL is returned. Similarly ifboth a and b are even then there 
annot be a multipli
ative inverse for a andthe error is reported.The astute reader will observe that steps seven through nine are very similarto the binary greatest 
ommon divisor algorithm mp g
d. In this 
ase the othervariables to the Diophantine equation are solved. The algorithm terminateswhen u = 0 in whi
h 
ase the solution isCa+Db = v (9.13)If v, the greatest 
ommon divisor of a and b is not equal to one then thealgorithm will report an error as no inverse exists. Otherwise, C is the modularinverse of a. The a
tual value of C is 
ongruent to, but not ne
essarily equal to,the ideal modular inverse whi
h should lie within 1 � a�1 < b. Step numberstwelve and thirteen adjust the inverse until it is in range. If the original inputa is within 0 < a < p then only a 
ouple of additions or subtra
tions will berequired to adjust the inverse.File: bn mp invmod.
Odd ModuliWhen the modulus b is odd the variables A and C are �xed and are not requiredto 
ompute the inverse. In parti
ular by attempting to solve the DiophantineCb+Da = 1 only B and D are required to �nd the inverse of a.The algorithm fast mp invmod is a dire
t adaptation of algorithmmp invmodwith all all steps involving either A or C removed. This optimization will halvethe time required to 
ompute the modular inverse.9.5 Primality TestsA non-zero integer a is said to be prime if it is not divisible by any other integerex
luding one and itself. For example, a = 7 is prime sin
e the integers 2 : : : 6do not evenly divide a. By 
ontrast, a = 6 is not prime sin
e a = 6 = 2 � 3.



184 CHAPTER 9. NUMBER THEORETIC ALGORITHMSPrime numbers arise in 
ryptography 
onsiderably as they allow �nite �eldsto be formed. The ability to determine whether an integer is prime or not qui
klyhas been a viable subje
t in 
ryptography and number theory for 
onsiderabletime. The algorithms that will be presented are all probablisti
 algorithms inthat when they report an integer is 
omposite it must be 
omposite. However,when the algorithms report an integer is prime the algorithm may be in
orre
t.As will be dis
ussed it is possible to limit the probability of error so wellthat for pra
ti
al purposes the probablity of error might as well be zero. Forthe purposes of these dis
ussions let n represent the 
andidate integer of whi
hthe primality is in question.9.5.1 Trial DivisionTrial division means to attempt to evenly divide a 
andidate integer by smallprime integers. If the 
andidate 
an be evenly divided it obviously 
annot beprime. By dividing by all primes 1 < p � pn this test 
an a
tually provewhether an integer is prime. However, su
h a test would require a prohibitiveamount of time as n grows.Instead of dividing by every prime, a smaller, more mangeable set of primesmay be used instead. By performing trial division with only a subset of theprimes less than pn + 1 the algorithm 
annot prove if a 
andidate is prime.However, often it 
an prove a 
andidate is not prime.The bene�t of this test is that trial division by small values is fairly eÆ
ient.Spe
ially 
ompared to the other algorithms that will be dis
ussed shortly. Theprobability that this approa
h 
orre
tly identi�es a 
omposite 
andidate whentested with all primes upto q is given by 1� 1:12ln(q) . The graph (??, will be addedlater) demonstrates the probability of su

ess for the range 3 � q � 100.At approximately q = 30 the gain of performing further tests diminishesfairly qui
kly. At q = 90 further testing is generally not going to be of anypra
ti
al use. In the 
ase of LibTomMath the default limit q = 256 was 
hosensin
e it is not too high and will eliminate approximately 80% of all 
andidateintegers. The 
onstant PRIME SIZE is equal to the number of primes in thetest base. The array prime tab is an array of the �rst PRIME SIZE primenumbers.Algorithm mp prime is divisible. This algorithm attempts to deter-mine if a 
andidate integer n is 
omposite by performing trial divisions.File: bn mp prime is divisible.




9.5. PRIMALITY TESTS 185Algorithm mp prime is divisible.Input. mp int aOutput. 
 = 1 if n is divisible by a small prime, otherwise 
 = 0.1. for ix from 0 to PRIME SIZE do1.1 d n (mod prime tabix)1.2 If d = 0 then1.2.1 
 11.2.2 Return(MP OKAY ).2. 
 03. Return(MP OKAY ).Figure 9.7: Algorithm mp prime is divisibleThe algorithm defaults to a return of 0 in 
ase an error o

urs. The valuesin the prime table are all spe
i�ed to be in the range of a mp digit. The tableprime tab is de�ned in the following �le.File: bn prime tab.
Note that there are two possible tables. When an mp digit is 7-bits longonly the primes upto 127 may be in
luded, otherwise the primes upto 1619 areused. Note that the value of PRIME SIZE is a 
onstant dependent on thesize of a mp digit.9.5.2 The Fermat TestThe Fermat test is probably one the oldest tests to have a non-trivial probabilityof su

ess. It is based on the fa
t that if n is in fa
t prime then an � a (mod n)for all 0 < a < n. The reason being that if n is prime than the order of themultipli
ative sub group is n� 1. Any base a must have an order whi
h dividesn� 1 and as su
h an is equivalent to a1 = a.If n is 
omposite then any given base a does not have to have a period whi
hdivides n � 1. In whi
h 
ase it is possible that an 6� a (mod n). However, thistest is not absolute as it is possible that the order of a base will divide n � 1whi
h would then be reported as prime. Su
h a base yields what is known as aFermat pseudo-prime. Several integers known as Carmi
hael numbers will be apseudo-prime to all valid bases. Fortunately su
h numbers are extremely rareas n grows in size.



186 CHAPTER 9. NUMBER THEORETIC ALGORITHMSAlgorithm mp prime fermat.Input. mp int a and b, a � 2, 0 < b < a.Output. 
 = 1 if ba � b (mod a), otherwise 
 = 0.1. t ba (mod a)2. If t = b then2.1 
 = 13. else3.1 
 = 04. Return(MP OKAY ).Figure 9.8: Algorithm mp prime fermatAlgorithm mp prime fermat. This algorithm determines whether anmp int a is a Fermat prime to the base b or not. It uses a single modularexponentiation to determine the result.File: bn mp prime fermat.
9.5.3 The Miller-Rabin TestThe Miller-Rabin (
itation) test is another primality test whi
h has tighter errorbounds than the Fermat test spe
i�
ally with sequentially 
hosen 
andidateintegers. The algorithm is based on the observation that if n � 1 = 2kr and ifbr 6� �1 then after upto k � 1 squarings the value must be equal to �1. Thesquarings are stopped as soon as �1 is observed. If the value of 1 is observed�rst it means that some value not 
ongruent to �1 when squared equals onewhi
h 
annot o

ur if n is prime.Algorithm mp prime miller rabin. This algorithm performs one trialround of the Miller-Rabin algorithm to the base b. It will set 
 = 1 if thealgorithm 
annot determine if b is 
omposite or 
 = 0 if b is provably 
omposite.The values of s and r are 
omputed su
h that a0 = a� 1 = 2sr.If the value y � br is 
ongruent to �1 then the algorithm 
annot prove ifa is 
omposite or not. Otherwise, the algorithm will square y upto s� 1 timesstopping only when y � �1. If y2 � 1 and y 6� �1 then the algorithm 
anreport that a is provably 
omposite. If the algorithm performs s� 1 squaringsand y 6� �1 then a is provably 
omposite. If a is not provably 
omposite thenit is probably prime.



9.5. PRIMALITY TESTS 187Algorithm mp prime miller rabin.Input. mp int a and b, a � 2, 0 < b < a.Output. 
 = 1 if a is a Miller-Rabin prime to the base a, otherwise 
 = 0.1. a0  a� 12. r n13. 
 0; s 04. While r:used > 0 and r0 � 0 (mod 2)4.1 s s+ 14.2 r br=2
5. y  br (mod a)6. If y 6� �1 then6.1 j  16.2 While j � (s� 1) and y 6� a06.2.1 y  y2 (mod a)6.2.2 If y = 1 then goto step 8.6.2.3 j  j + 16.3 If y 6� a0 goto step 8.7. 
 18. Return(MP OKAY ).Figure 9.9: Algorithm mp prime miller rabinFile: bn mp prime miller rabin.
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