A free Production Planning Library

MANUAL
VERSION 0.7.1
AuGUST 2009

frePPLe jdetaeye @users.sourceforge.net:

frePPLe 0.7.1

Manual version 0.7.1

This document is made available under the terms of the GNU Free Docu-
mentation Licence. See the appendix in this document for details.

You may:

1. make and distribute verbatim copies of these pages, provided that
the copyright notice and this permission notice are preserved on all
copies

2. copy and distribute modified versions of these pages under the condi-
tions for verbatim copies, provided that the entire resulting derived
work is distributed under the terms of a permission notice identical
to this one

3. copy and distribute translations of these pages into another lan-
guage, under the above conditions for modified versions

This document is distributed in the hope that it will be useful, but with-

out any warranty; without even the implied warranty of merchantability or
fitness for a particular purpose.

Typeset by Wikipublisher

Some rights reserved.
© 2009 frePPLe

http://www.frepple.com/pmwiki/pmwiki.php/Main/Frepple
Day of print: July 24, 2009, at 06:22 PM

http://www.frepple.com/pmwiki/pmwiki.php/Main/Frepple

CONTENTS

ore ibrary|

|User interface and database layery,

(1__Download and installl

1.1~ Installingon Windows|

T12

Compiling under windows|

[1.2 Installing on Linux, Unix and Cygwin|

2__User interfacel

2.1 Datamput]

22 Plananalysis| L

[3.3 Python Interpreter]. 0L

[3.3.1

command loadlibl.

[3.3.2

command readxml| oo L.

B33

command_readxmlstring| L.

[3.3.4

command erase|.

13
13
14
17
18
18
20
21
21

23
24
24
25

26
27
29
30
31
32
32
33

iii

Contents v

[3.3.5 command savel 33
[3.3.6 command_saveplan|. Lo 34
[3.377 command sizel 35
3.4 Global parameters|. 35
BAL _Fieldsdo 35
[3.4.2 Example XML structures|. 35
[3.4.3 Example Pythoncode| 36
B Buffed oo 36
BIT Feldso oo 36
13.5.2 buffer default. 38
[3.5.3 buffer_procure| L. 38
3.5.4 buffer mnfinmite]. L. 39
[3.5.5 Example XML structures|. 40
[3.5.6 Example Pythoncode| 40
B6 Calendad. 41
3.6.1 CalendarFieldsl. 0. 41
.62 BucketFieldsl 42
[3.6.3 Example XML structures|. 43
[3.6.4 Example Pythoncode| 43
B7Customer . . .« v v oo 43
BZI Heldso 43
[3.7.2 Example XML structures|. 44
[3.7.3 Example Pythoncode| 44
B8 Demand o 45
BRI _Fields oo 45
[3.8.2 Example XML structures|. 46
[3.8.3 Example Pythoncode| 46
BO _Flowl. e 47
.............................. 47
[3.9.2 Example XML structures|. 48
BIOTEml - - o oot e e e e e e e e 49
BIOT Fields o oo 49
[3.10.2 Example XML structures|. 50
[3.10.3 Example Pythoncode| 50
BITToad oo ot 51
BILT Helds 51
[3.11.2 Example XML structures|. 51
BI2ZLOCAHON . « « o v vt e e e e 53
BIZI Helddot 53
[3.12.2 Example XML structures|. 53
[3.12.3 Example Pythoncode| 54
................................ 54
BI3T Heldso 55
[3.13.2 operation_fixed_time| 57
[3.13.3 operation_time_per| 57
[3.13.4 operation_alternate| 58
[3.13.5 operation_routing|. 58
[3.13.6 Example XML structures|. 58

Manual version 0.7.1

Contents v
[3.13.7 Example Pythoncode| 59

[3.14 OperationPlan|, 60
30 50 D 7 60
[3.14.2 Example XML structures|. 61
[3.14.3 Example Pythoncode| 61
BISProbleml v oo 62
.............................. 62
BISZ2 Helds oo 63
[3.15.3 Example Pythoncode| 63

BI6 RESOUICE v ettt e e e e e 63
BIGT Felds oo oo 63
[3.16.2 resource default| 65
13.16.3 resource infinite] 65
[3.16.4 Example XML structures|. 65
[3.16.5 Example Pythoncode| 65
BITSOIVED - - o o o 66
BIZTI Helddo 66
[3.17.2 solver_mrp| 67
[3.17.3 Example XML structures|. 67
[3.17.4 Example Pythoncode| 68

[4 Solver algorithm| 69
M1 Solverfeatures| 70
BEITSolverd . . - o o oo e e 70
412 Demand......... 70
[4.1.3 Operation| L 70
414 Resourcel 70
IS Buffed. 70

4.2 Implementation details| 0 L. 71
4.2.1 Toplevelloop|. 73
422 Demandsolver 73
423 Buffersolved 74
[4.2.4 Operationsolver] 76
425 Flowsolver 78
426 Toadsolved 78
427 Resourcesolver. 78

.3 Cluster and level algorithm| 80
5___Extension modules| 84
5.1 Forecastmodulel. o oL 84
[5.1.1 Module configuration|. 87
[5.1.2 Demand subclass demand_forecasff 88
15.1.3 Solver solver forecast| 88
[5.1.4 Example XML structures|. 89
[5.1.5 Example Pythoncode| 89

2 AP w rvicemodulelo Lo 90
[5.2.1 Module configuration|., 90
5.2.2 Command command webservice| 91
[5.2.3 Example Pythoncode| 91

Manual version 0.7.1

Contents vi
5.3 REST webservicemodulef. 91
[5.4 Linear programming solver module| 93

[5.4.1 Technical implementation| 94
[6 Information for developers| 95
6.1 Codestructure]. 95
6 Object]. e 96
6.1.2 MetaDatal 96
|6.1.3 Date - DateRange - TimePeriod| 97
614 Timed 97
[6.1.5 Exception| 97
6.1.6 XML Serialization| 98
[6.1.7 Pythonbinding| 98
6.1.8 Command/. 98
619 Mutex]. 99
[6.1.10 HasNameandTreel 99
[6.1.11 HasHierarchy| 99
6.1.12 Teveled 99
6.2 Classdiagram| 99
63 Extensionmodules] oL 102
6.4 Portability| L 103
6.5 Versioncontroll 104
6.6 Styleguide| 104
................................. 104
[6.8 TInternationalization] 105
[6.9 ‘Translating the user interface| 106

[7_Unit tests| 107
I TestCallbacklot 108
[72 TestClusten i 108

T nstraints Leadtime 1| 109
(/4 TestConstraints Material 11 109

T nstraints Material 2o o Lo 109
(/.6 Test Constraints Material 3| 110
[7'7 Test Constraints Resource If. 110
[7.8 _Test Constraints Resource 2. 110
[7.9 Test Constraints Resource 3. 110
710 Test Constraints Resource 4l. 110
[Z.11 Test Constraints Resource 5|. 111
[12 TestDatetimel 111
I3 TeStDECtOn] . « « « v v v v et e e e e 111
[7.14 Test Demand Policy|. 111
[/.15 Test Flow Effectivel 112
[/16 TestForecast 1l 112
/17 TestForecast2l 113
[Z18 TestForecast3|l 113
[7.19 TestForecastd]l 114
[720 TestForecastSl 114
[7.21 TestJobshop|. 114

Manual version 0.7.1

Contents Vil

(/.22 Testload Effective] 114
F23 TestLPSOIVEr Tl. « « o v v o e e et e e e e e e 115
724 TestNamel oo 115
[7.25 Test Operation Available] 115
[7.26 TTest Operation Effective| 116
[7.27 Test Operation Pre Op| 116
[7.28 Test Operation Routing| 117
[7.29 Test Pegging|.o 117
(730 TestPython 1| 117
3T TeStPYON 2] . « « o o o o oo e e 118
[732 TestPython 3] o 118
33 TestProblems] v oo 118
734 TestProcure Il 118
[7.35 Test Safety Stock| oL 119
[7.36 'Test Sample Module| 119
737 TestSCAabIty 1| -« « o o o oo oo 119
[7.38 “Test Scalability 2| 119
[7.39 Test Scalability 3| 120
ZA0 TestXMI . . . o oot 120
AT Test XML Remote]l . . .« o oo oo e e e e e 120
(8 Appendices| 121
8.1 GNU [esser General Public Licensef 121
[8.2 GNU Free Documentation License| 129

Manual version 0.7.1

Introduction

FrePPLe aims at building a lightweight open source framework for modeling and
solving production planning problems.

Production planning software traditionally has been an area with plenty of home-
grown, extremely specialised and/or very primitive solutions.

Strangely enough, while creative and innovative open source solutions pop up in all
computing areas, production planning software still tends to be a very closed world
full of academic, proprietary and expensive solutions. Till now. ..

Frepple is the first open source production planning toolkit for your day-to-day plan-
ning problems.

For the developer community, the project is also trying to establish a common ground
framework for planning applications. Rather than rebuilding the basic foundation
from scratch over and over again, developers can now leverage a proven framework
to extend with their own extension modules.

New workflows and functionality can now be built much quicker and easier.

The word “free” in the project name refers to liberty, not price. Think of “freedom
of speech” rather than “free beer”: see the free software definition at http://www.gnu
.org/philosophy/free-sw.html.

1. Features (p[I)
2. Architecture (p3)
2.1. Core library (p[3))
2.2. User interface and database layer (p[9)

Features

FrePPLe has two main components.

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html

Introduction 2

1. The first one is a core library containing the model and the solving algorithms.
It is generic and can be used in a number of applications.

2. A second component is a flexible user interface and database layer to support
the core library. It takes care of the maintenance of input data, reporting of the
plan results, and data integration to other systems.

The key features of each component are:

1. FrePPLe core library

FrePPLe is a ‘library’ developed in C++.
It has no graphical user interface and requires to be deployed as part of
another application.
Different applications are envisioned:
— Standalone application for use on the command line
— Accessable from programming languages such as Java, Python, Perl
or Visual Basic.
The interface to Python is exceptionally rich and allows direct inter-
action with the objects.
— Can be linked into your own C or C++ application

Modeling and solving framework for discrete manufacturing environ-
ments.
Key modeling constructs are:
— Item
Buffer
Resource
Operation
Demand

Heuristic “MRP-like” solving algorithm respecting capacity, material
and lead time constraints.

XML-based data input and output, in addition to the public C++ APL

Very fast!
Performance and scalability have been a consideration from day one. ..

Extensible and customizable architecture.

New modeling constructs and solving algorithms can be developed in C++
and loaded as a plugin module.

Embeds Python as scripting language.

The embedded interpreter has access to the frePPLe objects in memory,
combined with the rich functionality of the Python libraries. The power-
ful combination allows flexible and performant scripting, integration and
customization.

Supported on Linux and Windows environments.

Licensed under the GNU lesser general public license.

2. FrePPLe user interface and database layer
A planning solution consist of much more than the core solver algorithms. ..
It includes data maintenance, reporting, data integration to other systems, work-
flows, job schedules, etc. ..

Manual version 0.7.1

Introduction 3

A front-end for the core library is required to meet these requirements with a
maximum of flexibility.

* Based on the Django web application framework.
Django is a high-level Python web framework that encourages rapid de-
velopment and clean, pragmatic design.
For frePPLe it provides an excellent toolkit:
— Flexible and portable modeling of database layer: powerful and intu-
itive object-relational mapper
— Flexible and performant framework for web applications: auto-
generated administration user interface, template system, cache sys-
tem, internationalization, . ..
— Performant and scalable

* Highly customizable and extendible.

* The web application infrastructure can be deployed on a web server, sup-
ported by a backend database.
It can also be installed as a standalone application on the user’s PC.

* Supports the PostgreSQL, MySQL, SQLite and Oracle databases.

* Full support for internationalization and localization.
The user interface supports unicode, which allows characters of any lan-
guage to be handled.
Reports can be translated to the user’s local language.

* Supported on Linux and Windows environments.

* Licensed under the GNU lesser general public license.

Architecture

The frePPLe components can be used in a number of different ways.

1. Core library (p3)
2. User interface and database layer (p[9)

Core library

The frePPLe binaries are a collection of shared libraries: a core library frepple.so
(frepple.dll on Windows) and an additional shared library for each extension module.
The extension modules are loaded dynamically as plugins by frePPLe.

The frePPLe shared library can be used in different ways by applications.

Below is a list of some common ways to deploy frePPLe, but additional scenarios are
definitely feasible.

The main development efforts are currently focussed on the first and the last two
scenarios.

Manual version 0.7.1

Introduction 4

Command line application

Frepple Command Ling
Application

| —
Frepple Shared Library

Extension Module 1

[]

Extension Module 2

XML Output Il
File{s)

4

A simple command-line application is available.

The application reads a set of XML files or from the standard input.

It executes all commands defined in the input data (which will typically also involve
some Python code to solve the model and write the results back into flat files or a
database) and then exits.

The program exit code reflects any processing errors.

Example usage:

frepple filel.xml
frepple file2.xml file3.xml
frepple dir with xml_files
command | frepple

Use the option “-help” or “-?7” to get a list of possible flags that can be passed on the
command line.

This command line application is used for all test cases.

Manual version 0.7.1

Introduction 5

Command line application with Python scripting

_.a"!
Frepple Command Line
Application
| I
Input data: Frepple Shared Library
Databasea, taxi
files, remote url,
g-mail, xmirpe, ... Eﬂhﬂn lm'.-:"rrﬂrelter
Custom acrpting logic
Rich libraries for

- Dalabase accass
| - Internet protocols such as
[fip, hiip. hilps, smip, pop,
: xmil-rpe, Soap, ..
DLITPLIT. data: - Various daLaF;c-rmatE: “mil,
,Da'aba“- - sV, encryption, comprassion,
files, remote url,

a-mall, xmlrpe, ...

In the previous setup the XML input and output files are supplied externally.

FrePPLe comes with an embedded interpreter for the Python language (see |http:
/Iwww.python.org).

Python is a dynamic object-oriented programming language. It comes with extensive
standard libraries for database access, a wide range of internet protocols (such as ftp,
http, https, smtp, pop, xml-rpc, soap, ...), various data formats (such as xml, csv,
compression, encryption), . ..

The Python interpreter has a rich API to access the frePPle objects in memory. This
allows custom logic to be implemented in an easy and flexible way, with full access
to the rich Python standard libraries.

For a majority of applications this will be the recommended setup.

Manual version 0.7.1

http://www.python.org
http://www.python.org

Introduction 6

Your C or C++ application links with frePPLe

Your C / C++ Application

Frepple Shared Library

Extension Module 1

[

a

Extension Module 2

)/

Your application can be link with the frePPLe shared library.

Use the header file plannerinterface.h for the high-level interface declarations.
Use header file frepple.h when you need low-level access.

Since frePPLe is coded in C++:

» C applications will need some wrapper code to catch exceptions correctly and
assure C linkage.

* Because of the C++ name mangling frePPLe and your application will need to
be compiled by the same compiler.

Manual version 0.7.1

Introduction 7

Your java/perl/ruby/VB/.NET application accesses the frePPLe shared library

Your Application written in:

- Visual Basic

- Java

- Perl .

- Python | Erepple Shared Library

- Ruby

Extension Module 1

[

-

Extension Module 2

%

Most modern languages and tools have the capability to access functions in shared
libraries.

SWIG (see http://www.swig.org/) is a tool that can help to generate the integration
code with a wide range of high-level languages, such as Java, Ruby, Perl, Tcl, PHP,

An example setup is provided in the subdirectory contrib/scripting.

When building applications in this way, remember that the scripting language will
load the frePPLe shared library and all memory allocated by frePPLe (which can be
quite a lot!) will be owned by the scripting language process. For large models this is
not be a very appropriate integration method.

Manual version 0.7.1

http://www.swig.org/

Introduction 8

Django frontend for frePPLe

@ Frepple Command Line
S @ @ Application
<

Frepple Shared Library

Apache
Web Server
Django Web App

___.ul"
= Python Interpreter

I~

Django (see http://www.djangoproject.com) is an impressive web application frame-
work written in the Python language.

It allows quick and easy definition of the data model, automatically creates a adminis-
tration user interface and allows you to construct performant and scalable web sites.

FrePPLe then reads from and writes into this Django database.

The sub directory contrib/django provides a reference Django model for frePPLe.

In a real-life implementation you will typically develop your own data model. You’ll
build web pages to support the user’s workflows, and then write the appropriate
mapping between your data model and the frePPLe internal data structures.

Manual version 0.7.1

http://www.djangoproject.com

Introduction 9

FrePPLe as a web service

Erepple Application Server

&

Internet [Intranet
HTTP / HTTPS { XML-RPC /
SOAR ! Carba

Frepple Shared Library

Extension Module 1

Extension M le 2

%

FrePPLe comes with extension modules that implement a SOAP or REST web
service.

In a Service Oriented Architecture, frePPLe will hold the plan information in memory
and make it available on-line. Other systems can use the service to query and update
the information to build composite applications.

Users can also directly access also the information from e.g. Excel (using the Office
Web Service Toolkit).

User interface and database layer

A planning solution consist of much more than the core solver algorithms. ..

It includes data maintenance, reporting, data integration to other systems, workflows,
job schedules, etc.

A front-end for the core library is required to meet these requirements with a maxi-
mum of flexibility.

FrePPLe includes a user interface based on the Django web application framework.
The user interface can be deployed in different architectures, depending on the re-
quirements. With increasing levels of scalability and performance, we can basically
distinguish the following three main scenario’s.

Manual version 0.7.1

Introduction 10

Standalone/all-in-one application

Python

- Web server:
PyCherry

- Web application:
Django

- Database:
S0Lite

Internet / Intrane

The windows installer includes a standalone application.
The application is an all-in-one installation containing:

* Python interpreter and Python libraries.

* Web server CherryPy, written in python.

* Django web application.

* Database SQLite, which is part of the Python standard library.

This one-stop installation package (< 10MB download) makes it very easy to get
started with frePPLe, as a tutorial or for educational purposes. It is also suitable to
deploy frePPLe as an application to a user’s PC.

This configuration can only be recommended for single-user access to small models.

Manual version 0.7.1

Introduction 11

Python application and a database

Python
- Wab server:

CherryPy
‘@ - Web application:

Dijango

ane

Database
PostgreS0L
My =00
Oracle

HTTP / HTTPS

Internet / Intr

The SQLite database does an excellent job for relatively small datasets. But for the
complex reporting queries used by frePPLe it is no match for the “real” database ap-
plications.

As a first measure for increasing scalability and performance of the application, the
database needs to be separated out. FrePPLe supports the Oracle, MySQL and post-
greSQL databases.

With this configuration a few users can simultanenously access frePPle.

Manual version 0.7.1

Introduction 12

Apache web server with mod_wsgi and a database

Apache web server
- module

mod_python
@ Django
<SS

Database
PostgreS0L
My =00
Oracle

Internet / Intrane
HTTP /HTTPS

This is the preferred deployment option for production servers!

Apache is now used as the web server. Using the mod_wsgi module it executes the
Django python code.
The Apache server assures excellent scalability, performance and security.

Medium-volume sites will typically have a single Apache web server and a single
database server.

High-volume sites with plenty of concurrent users can deploy additional components
to guarantee the right scalability and availability of the system: memory caches,
separated web servers for static and dynamic content, replicated databases, load
balanced web servers, enterprise authentication such as LDAP, ...

Manual version 0.7.1

CHAPTER

1

Download and install

The frePPLe project lives on the sourceforge.net open source software development
web site (see http://sourceforge.net/projects/frepple), where all release files and the
source code are hosted.

Here is a link to the download page:
http://sourceforge.net/project/showfiles.php?group_id=166214

The project distributes the following formats:

1.1

* Windows installer (32-bit)
* Source code tar-file for all platforms
* A VMware virtual machine with a fully configured demo environment on

Linux
Access to the Subversion source code repository for the latest developments

. Installing on Windows (p [13)

1.1. Windows installer (p

1.2. Compiling under windows (p

Installing on Linux, Unix and Cygwin (p

2.1. Build instructions (p[I8))

2.2. Compiling from the Subversion repository (p [20)
2.3. VMware virtual machine (p [21))

. Other platforms (p 21))

Installing on Windows

Windows installer (p

. Compiling under windows (p

13

http://sourceforge.net/projects/frepple
http://sourceforge.net/project/showfiles.php?group_id=166214

Download and install 14

1.1.1 Windows installer

Installing and uninstalling frePPLe is straightforward, and follows the normal Win-
dows conventions.

After accepting the license agreement, the installer will guide you to select:

* The components to install
* The installation directory
* The database connection parameters

With all options included the installation requires less than 25 MB of disk space.

1. Select the components to install.

Fp, frePPLe 0.5.0 Setup =100]

Choose Components
Choaose which Features of FrePPLe 0.5.0 wou wank bo install, m

Check the components you want to install and uncheck the components wou don't wank bo
install, Click Mext o continue,

— Descripkion
Installation For
development purposes

Select components to install: -+ | Bpplication
: Dcncumentaticln

: [Header files
[source code
[] Modules cade

Space required: 37.0MB

frePPLe 0,50

< Back I Mext = I Zancel

1. Select the installation directory.

Manual version 0.7.1

Download and install 15

Fp, frePPLe 0.5.0 Setup =100]

Choosze Inztall Location
Choaose the Folder in which bo install FrePPLe 0.5.0. m

Setup will install FrePPLe 0.5.0 in the Following Folder, To install in a different Folder, click
Browse and select another Folder, Click Mext bo continue.

Destination Folder

I Z:\Program Files\FrePPLe 0.5.0 Browse, .. |

Space required: 37.0MB
Space available: 29.6GE

frePPLe 0,50

< Back I Mext = I Zancel

1. Select the installation parameters.

Two types of parameters are specified during the installation:

1.1. language for the user interface

1.2. database connection parameters

FrePPLe supports the MysSQL, PostgreSQL, SQLite and Oracle databases.
The installer will detect which of those you have installed on you computer
and allow you to choose one. The SQLite database is included with frePPLe,
allowing you to get started very quickly.

For MySQL, Oracle and PostgreSQL you need to specify the database name,
the database user and its password, and the host and port number of the database
engine. The database and the database user have to be created by the database
administrator. The frePPLe database tables will be created when you first start
the server.

For SQLite you only need to specify the database name. You selections are
saved in the file server/settings.py. The file can later be edited with a text editor
when required.

Manual version 0.7.1

Download and install 16

Fp, frePPLe 0.5.0 Setup =100]

Language selection and databasze configuration

Specify the installakion parameters. m
User Intetface Language |English j
Diatabase Engine aCLike j

SOLike

Database Mame
PostaresoL
Qracle

Database ser

Database Password |

Database Host I Leave empty to use local host,

Database Paort I Leave empty to use the default,

These settings can be updated |ater in the file server/settings. py

frePPLe @,5,0
< Back I Inskall I Zancel

1. Finish
At the end of the installation you can choose to start the server immediately.
Pp| frePPLe 0.5.0 Setup - =] x|

Completing the frePPLe 0.5.0 Setup
Wizard

frePPLe 0.5.0 has been installed on wour computer,

lick. Finish to close this wizard.

[¥ Start the server right now

[T wiew documentation

= Back I Finish I Zancel

2. Start the server
FrePPLe’s user interface is web-based. You need to start the web server first:
either it was already started at the last step of the installation process, or you
can launch it later from the start menu.

Manual version 0.7.1

Download and install 17

Point your browser to the URL shown in the server window, and you’re up and

running!
(3 nsis |
Adobe Reader 9 £ | Documentation

&) Opera ;ﬂ frePPLe web site
P e e
9 Safari Py Runs

All Programs # B frerriet Lninstall

pP|_ Run server

RBunning Frepple A.7.8 with database G:xtemp~frePPLe B.7.@%bhinfrepple.sglite

To access the server. point your browser to http:-/~-1922.168.8.137:808Q~

Three users are created by default: "admin', "fFrepple' and “"guest' (the password
iz egual to the user name?

Quit the sewrver with CTRL-C.

The installer provides:

* Command line application

» Server application which bundles a python interpreter, python libraries, web
server, django web application and database

* Documentation

Development libraries

* Source code

It is possible to have multiple installations in parallel on the same computer. They
need to be installed in different directories, and you need to set the environment vari-
able FREPPLE_HOME to point to the directory with the version you want to run.

1.1.2 Compiling under windows

Different options exist to compile Frepple under windows:

* Microsoft Visual C++ Compiler on the following page]
* Cygwin Compilet on the next page]

Note that executables and extension modules created by these compilers are not com-
patible with each other.

Manual version 0.7.1

Download and install 18

Compiling using Microsoft Visual C++ compiler

FrePPLe comes with Microsoft Visual C++ projects and workspaces to compile the
code.

The solution file is contrib/vc/frepple.sln and more detailed build instructions are
provided in the README.txt file in this directory.

The project configuration files are generated with version 9 of Visual C++ and (in the
Microsoft tradition) are not compatible with earlier releases. :-(

A free version of the compiler and the IDE, called “Visual C++ 2008 Express Edition”,
can be downloaded from the Microsoft website.

You will also need to install:
* Python 2.4,2.5 or 2.6
e Xerces-c 2.7,2.8 or 3.0

The include and library directories of these tools need to configured in Visual C++ de-
velopment environment: navigate to tools > options > VC++ directories to configure
these.

Compiling using the Cygwin compiler

Cygwin is a Linux-like environment for Windows. The Cygwin environment can be
downloaded free of charge from http://www.cygwin.com.

The build instructions on Cygwin are identical to the Linux and Unix platforms.

Compared to the other platforms and compilers, the Cygwin executables are consid-
erably slower.
Consider the Cygwin build as a test and development setup for a *nix environment.

1.2 Installing on Linux, Unix and Cygwin

1. Build instructions (p[I8)
2. Compiling from the Subversion repository (p[20)
3. VMware virtual machine (p 21))

1.2.1 Build instructions
The following describes the steps you need to build frePPLe.

1. Update your system with the development software packages.
* gcc, v3.4 or higher
Front end for the GNU compiler suite.
* gcc-c++, compatible with gec release
GNU C++ compiler.

Manual version 0.7.1

http://www.cygwin.com

Download and install 19

e xerces-c, v2.7,2.8 or 3.0
Xerces is a validating XML parser provided by the Apache Foundation.
You need to install the libraries as well as the development libraries.

* python v2.4 - v2.5-v2.6
Python is a modern, easy to learn interpreted programming language.
See http://www.python.org for more information. The language is used
to a) run the test suite, b) script custom logic in frePPLe and c) to run the
web application framework Django.
You need to install the language as well as the development libraries.

2. Issue the command ‘./configure’ in the installation directory to specify the build
options and detect the specifics of your platform.
Use the command ‘./configure —help’ to see the list of available options.

3. Issue the command ‘make all’ to compile the code.

4. Optionally, issue the command ‘make check’ to run the test suite.
Not all tests are currently passing, so you shouldn’t be worried about a couple
of failures. :-)

5. Issue the command ‘make install’ to install the files.

6. You can issue the command ‘make clean’ to free the disk space used during
the build and test phases.

7. Optionally, if you are interested in some of the add-ons in the contrib subdi-
rectory, follow the instructions in the README.txt file in each of the add-on
directory.

You may need to install additional software components for a certain add-on.
As a reference, here is a brief summary list of those components:

* Django, v1.1-beta revision 11211
A web application framework written in Python.
FrePPLe supports PostgreSQL, MySQL, Oracle and SQLite as the
database.
In addition Django needs the Python database driver for your database,
the apache web server (see http://httpd.apache.org/) and mod_python (see
http://www.modpython.org/).
Visit the Django website at http://www.djangoproject.com/ for full de-
tails.
Later Django versions may or may not work with frePPLe. ..

* SWIG, any version should do
SWIG is a software development tool that connects programs written in
C and C++ with a variety of high-level programming languages. SWIG
is used with different types of languages including common scripting lan-
guages such as Perl, PHP, Python, Tcl, Ruby and PHP.

* GLPK, any version should do
The GLPK (GNU Linear Programming Kit) package is intended for solv-
ing large-scale linear programming (LP), mixed integer programming
(MIP) and other related problems. It can be downloaded from http://www
.gnu.org/software/glpk/glpk.html

The following components are only relevant when working in Windows:

* NSIS, version greater or equal to 2.07

Manual version 0.7.1

http://www.python.org
http://httpd.apache.org/
http://www.modpython.org/
http://www.djangoproject.com/
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html

Download and install 20

NSIS, which stands for “Nullsoft Scriptable Installation System”,
is a free scriptable win32 installer/uninstaller system that doesn’t
suck and isn’t huge.

This program can be downloaded from http://nsis.sf.net and you’ll
only need it if you are planning to create a windows installation
package.

py2exe, 0.6.9 or later

Py2exe is a Python Distutils extension which converts Python
scripts into executable Windows programs, able to run without re-
quiring a Python installation.

The software is used only when creating the windows installer. It
can be downloaded from http://www.py2exe.org/.

CherryPy, version 2.6 or later

CherryPy is a pythonic, object-oriented HTTP framework.
FrePPLe uses it as web server embedded in the Windows stand-
alone application. The software is used only when creating the
windows installer. It can be downloaded from http://www.cherrypy
.org/.

1. Optionally, you can use the FREPPLE_HOME environment variable to point
to your installation directory.
See the section on environment variables (p[29) for other environment variables
that influence frePPLe and may need updating.

1.2.2 Compiling from the Subversion repository

To work with the code from the repository, follow the steps below.
Step 3 is the main difference with the build process from a distribution.

1. Your machine will need the following software components in addition to the
ones listed for compiling from a distribution file:

autoconf, v2.59 or later

Gnu Autoconf produces shell scripts to automatically configure software
source code packages. This makes the source code easier to port across
the different *nix flavors.

automake, v1.9.5 or later

Gnu Automake is a tool for automatically generating make-files.

libtool, v1.5 or later

Libtool hides the complexity of developing and using shared libraries for
different platforms behind a consistent and portable interface.

doxygen, any version should do

Extracts documentation from the C++ source code.

subversion, any version should do

Excellent version control tool.

2. Pick up the latest code from the repository with the command:

svn

checkout |https://frepple.svn.sourceforge.net/svnroot/frepple/trunk

<project_directory>
More information on working with the Sourceforge svn repositories can be

Manual version 0.7.1

http://nsis.sf.net
http://www.py2exe.org/
http://www.cherrypy.org/
http://www.cherrypy.org/
https://frepple.svn.sourceforge.net/svnroot/frepple/trunk

Download and install 21

found on http://sourceforge.net/scm/?type=svn&group_id=166214

The repository allows anonymous connections for checkouts and it is also
possible to browse it online from http://frepple.svn.sourceforge.net/viewvc
/frepple/

. Initialize the automake/autoconf/libtool scripts:

cd <project_directory>

make -f Makefile.dist prep

Now the configure script is up to date and you can follow the same steps as in
the section Build instructions (p[I8)) to compile the code.

. To refresh your environment with the changes from the repository:

cd <project_directory>
svn update

1.2.3 VMware virtual machine

A VMware virtual machine is available with a complete demo environment.
It is not intended to be used a production environment.

The setup is based on a Ubuntu Server Linux distribution and has the following main
software packages are:

Linux kernel 2.6.27

xerces-c 2.8.0

mysql 5.0.67

python 2.5.1

apache httpd 2.2.9

django 1.0.2

mod_python 3.3.1

VMware tools are not installed.

The machines is configured with two CPUs and SO0MB of RAM. Update the settings
to suit your hardware.

To get up and running:

1.3

1. Download and install the VMWare server from http://www.vmware.com/.

2. Download and unzip the virtual machine from the sourceforge site.

3.

4. When started the login screen will display the URL where you can browse the

Using the VMware console open the virtual machine “ubuntu.vmx” and start it.

demo environment.

Instructions about login details, user accounts, database instance, etc will be
displayed on the login screen. They are also available in the README.txt file
included with the virtual machine.

Other platforms

FrePPLe hasn’t been compiled on any other platforms.

Manual version 0.7.1

http://sourceforge.net/scm/?type=svn&group_id=166214
http://frepple.svn.sourceforge.net/viewvc/frepple/
http://frepple.svn.sourceforge.net/viewvc/frepple/
http://www.vmware.com/

Download and install 22

If you succeed in porting the code to another platform, please let us know and give us
a hand in updating this document.

In the developer documentation a section (p [I03)) is included listing some potential
portability issues.

Manual version 0.7.1

CHAPTER

2

User interface

The frePPLe user interface can be used with the following web browsers:

* Internet Explorer 6 and 7
* Firefox 3.0.x and 2.0.x
 Safari 3.2.x

* Opera 9.6x

FrePPLe uses Adobe Flash Player to display graphs in your browser. Users can down-
loaded it for free at http://www.adobe.com/products/flashplayer/.

The industry leading tool FusionCharts Free (see http://www.fusioncharts.com/free))
is used to generate these graphs.

The user interface has 3 distinct sub-applications.

1. Data input (p
This application is where the input data are maintained.

2. Plan analysis (p[24)
This is a collection of reports showing the frePPLe plan output.

3. Execute (p[25))
This application is about running tasks in different domains, such as database
operations, data loading, creating a new plan, etc. ..

Each of these applications should be seen as an example reference implementation,
rather than a complete and frozen solution. The input data model, the output reports
as well as the tasks will need customizing to meet your requirements.

At a later stage, frePPLe will probably package some focussed data models and
screens that match certain planning problem, certain industries and/or certain busi-
ness workflows.

23

http://www.adobe.com/products/flashplayer/
http://www.fusioncharts.com/free

User interface 24

2.1 Data input

The data input application uses the Django admin user interface out-of-the-box.
The default data model maps very closely with the internal representation in the freP-
PLe engine.

It is pretty easy and straightforward to extend/restructure the data model to match
your own domain model.

2.2 Plan analysis

The following reports are currently available:

¢ Inventory report
The report shows per buffer and per time bucket the inventory profile: the start-
ing inventory, the material consumed, the material produced and the ending
inventory.

* Resource report
This report shows the loading of the resources and allows editing the available
capacity.

* Demand report
This report shows per item and per time bucket the demand quantity, the sup-
plied quantity and the backlog (as the cumulative gap between the supply and
demand).
A drilldown report is also available to show the detailed data as a list.

* Forecast report
This report provides a convenient way to enter forecast numbers. When enter-
ing forecast numbers, the numbers will be disaggregated to the planning buck-
ets.
A drilldown report is also available to show the detailed data as a list.

* Operation report
The report shows for each time bucket and each operation the quantity started
and finished.
A drilldown report is also available to show the detailed data as a list.

e Supply Path / Where Used
This report follows the bill of material to show how a buffer is being replenished.
When called for a resource, it shows the operations using the resource and their
supply path.
The report can’t be called directly from the main menu, but it is accessed with
aright-click on an entity in the previous reports.

* Demand Pegging report
This report shows how material consumption and material production are
matched to each other and associated with independent demands.
The report can’t be called directly from the main menu, but it is accessed with
a right-click on a demand.

Manual version 0.7.1

User interface 25

* Performance indicator report
This report shows some key metrics of the generated plan: number of problems,
quantity of demand satisfied, lateness of demands, total inventory, etc. ..
The report allows quick review of the plan quality, comparisons between differ-
ent plans and validation of solver changes.

2.3 Execute

This screen allows you to perform a number of administrative actions and data manip-
ulations.

User permissions will typically be set to limit access to this screen to key users and/or
administrators.

The actions in brief that can be performed from this screen:

* Generate a plan.
This option runs the frePPLe planning engine with the input data from the
database. The planning results are exported back into the database.

* Erase the database.
This will delete all records from the database.

* Load a predefined dataset in the database.
A number of Django fixtures are available with some demo datasets.

* Generate a model.
For testing and benchmarking purposes it is extremely useful to be able to gen-
erate datasets with varying sizes and complexity. A few key parameters allow
you to create a sample model for such test purposes.

Manual version 0.7.1

CHAPTER

3
Modeling

This chapter describe the frePPLe data entities, their fields and relationships.
A couple of initial remarks:
* FrePPLe limits itself to the data fields that are relevant for planning.

An ERP or similar system is more transaction-oriented and will contain plenty
of more detailed information.

The frePPLe data model is designed to be pretty “atomic” in order to be as
generic as possible. Quite often an entity in a source system will map into a
collection or sequence of frePPLe entities.

For instance, frePPLe doesn’t have a model to represent a bill-of-material. In-
stead the material relations from the BOM are represented as flows on the man-
ufacturing operations.

* The native data format is XML.
FrePPLe doesn’t support namespaces in the XML-data:
— The XML-data should not be placed in any namespace.
— FrePPLe XML schema to validate the input data. See the files frepple.xsd
and frepple_core.xsd for the definition of the supported constructs.
— To support subclassing the namespace xsi must be defined as
“http://www.w3.0rg/2001/XMLSchema-instance”.
With the above in mind, the frePPLe XML files typically start with the follow-
ing lines:
<?xml version="1.0" encoding="UTF-8"?>
<plan xmlns:xsi=" http://www.w3.0rg/2001/XMLSchema-instance">

</plan>
* FrePPLe has a very rich Python API. Detailed programming and scripting of

the frePPLe application is possible in this way.

26

Modeling 27

For complex integration tasks and for customization of the algorithms using
Python is the recommended way of working.

* FrePPLe translates input data to the native encoding on your system (as set by
the LC_ALL environment variable on Linux, or the code page on Windows).
The string manipulations inside frePPLe are compatible with the UTF-8 Uni-
code encoding, but NOT with the UTF-16 or UTF-32 encoding.

Before diving into the details, have a look at the domain model diagram. It shows
clear and simple the main entities and their relationships.

Domain model (p
Environment variables (p [29))
Python Interpreter (p
Global parameters (p [35])
Buffer (p

Calendar (p A1)
Customer (p[A3)
Demand (p @3))

Flow (p

Item (pA9)

. Load (p[51)

. Location (p

. Operation (p[54)

. OperationPlan (p [60)

. Problem (p [62))

. Resource (p

. Solver (p [66))

PNk W

e e e e e

3.1 Domain model

Manual version 0.7.1

28

Modeling

pua+|

(Jubag+|

()serepdnoiaesip-,

()serepdnaldeuss|

()speomolgaieant,

(eziemui+

(2120 : 2p U1 ‘@jeq © LP U)pUIPUVIEISIESH]
do: o

(UeIguonessdo : 0 juejduonesedoansppe+|
ue|gpeoT : ()suejdpeoTieb+|

UE| MOl : ()SUEIdMOl 0B+,

Buo : ()seunuapiiobs|

uonesedo : (Juonesedoebi+

100 : ()308Y0+]

(e1eQ : p U)puZies+|
(e1€Q : p UUEISIESH
ebueyleq : ()seleqiobi

Uelguonessdo | 1eumor|
ajeq : 15d7T
s1eq : 1503

Tpuos]
(uibag+|

jeol) : (ublop1eb+

100q : (Jolqisea s+
Buws : (Juonduosaqieb|

Buus : (Joweniebs,
ebueyeleq : (Jebuealeqiob-|

wejqoid

100q : paxooT-
puewaq : puewag-
Jeoy : Aypueno-

ueiquopeiado

1009 : (}130npoIgsH]
100 : ()iaWNSuoDst+|

sbueyeleq | aAROBYT

Je0) : J0joe JeBes|
20In0seY : 89IN0SEY-
uonesado : uonessdo-|

SbuegaIeq : oAPay

uonesado : uonesador

Jeoy : Aygueno-
Joyng : Joyng-|

peo

moly

(3518} = 100G : 00Lpa¥o0] U)SUEIUONRIZA0R1RIaPH]

wajqoid : ()swolqosd1ab
UeldpeoT : ()suejdpeoTieby|
peoT : (Jspeoieb+|

Uopeiado © uoeooT]
Jepusien : 071

@inosey

Jo%ong : ()sjoong)ebs]
Jul 2 (31eq : P U)XapupBNONGPUL+

{Uonerd(- o U)uoneIedoanSanowas
(uonesado : 0 ujuonessdoansppe:|
(uonesado : o ujuonesadoadnganowass|
(uonesado : o uuoneradoadngppes|
uopesado : (Jsuonessdoansiebs
uopessdo : ()suonesedosadng)ebs|
ueiquopesado : () ueiduonesadoaieaio-,

(asiey = 1004 : 001 paY0O| Ul)sUe|duoneIadoalelep+|

780y (8N4} = 00Q © Ul Ul ‘Bjeq : ZP Ul 'S1EQ © | U)PUBHUOIOBH,
1201 : (318Q © P UNPUBHUOIEE]

wejqoid : ()swelqoidiebs,

Ue|gMOl4 : ()Sue|gmO|41a6+|

MO|4 : ()smo4186+

ejeq :(ejeqg: p
eleq : (eleQ: p

do 1 0
ue|guonesadQ : 0 ul)s|UeISUBYAMPUTIEB|

()speoebs|
()smoieb+|

(8518} = 100q : 001 pa0] ui)suelduonesadoaelep+K—— wey : way

UoRE20 : UoREdo T

uonesedo : uoesedoBuiNpoId-
soyng

UO}IE00T * UONEYO T
pouagawl] : 9oua-|

uonesado : uonessdo]

way

720} () Aijuenopauue|gjeb
() Aienoqueap|

(Ueiduonesado : o u)Aianeganowal
I

jeol) -

JeO} : WNWIUINOZIS-|
pouagew L : 8WI11SOd-|
poUSgoW L : BWI] aid-|

0 : 0 uAsenoappes|

Jewojsny

Joxong : (Bus : s uiiexongpuy uopesedo
19%ong : (e1e : p uIiBNONGPUY+
195008 : (TINN = Jeu0 : s Ui ‘ejeq : p uilieyongppes|
Jepusjed
Jepualeg : oiq

uopeso]

(PIOA - 1\ Ul "aIqeUUEld - d U)OAOSH

Janj08

Bums : uopduosaq
Buuys : awen-
ajeq : ueunD-

uelg

180} UBWAIUSUIN
pouadawi] : SSeusleTXe-
Jawoisng : JaWoISND-|

uopesedo : uoesedo-|
way : wail-

i : Aou]

Jeol : Ayueno-|

ojeq : ong

puewsq

Manual version 0.7.1

Modeling 29

3.2 Environment variables

A number of environment variables influence frePPLe.

Variable Description

FREPPLE_HOME FrePPLe uses the following configuration files during the
execution of the program:

* The file frepple.xsd points to the xsd schema for the
frePPLe XML files.

This xsd file typically references additional xsd files
located in the same directory.

e If present, the XML data in the file init.xml are
processed automatically when frePPLe is started.
This is the recommended place to load any standard
data entities your application may need.

* If present, the Python code in the file init.py is
executed automatically when frePPLe is started.
This is the recommended place to define any Python
functions or classes your application may need.
FrePPLe extension modules are also typcially
loaded in this file.

* Plugin module libraries.

FrePPLe searches the following directories in sequence to
locate these files.

 The current directory.

 The directory pointed to by the FREPPLE_HOME
environment variable.

* The data directory where the default configuration
files are installed.

This applies only for Linux and Unix platforms.

* The library directory where the default module
libraries are installed.

This applies only for Linux and Unix platforms.

* For the loading module libraries frePPLe also
searches the standard path for location shared
libraries.

Configuring this is platform dependent.

By setting the FREPPLE_HOME environment variable
you can control the directories where the application looks
for your application files.

Manual version 0.7.1

Modeling

30

Variable

Description

LC_ALL

FrePPLe stores string data internally using the encoding
associated with your locale.

This setting is important when dealing with non-ascii
characters in your data. Your locale needs to support all
characters being used, just as your database will also need
to support them.

Most modern Linux distributions have a default locale
that supports utf-8, which allows every possible
unicode character to be represented.

On Windows, this environment variable isn’t used and
frePPLe can only represent characters present in the
default windows code page.

TZ

FrePPLe uses the C-library functions for date and time
manipulations. These functions are respecting timezones
and daylight saving time, which can give sometimes give
unexpected results: twice a year you’ll find a day with 25
or 23 hours.

To disable any effects of daylight saving time, change the
TZ variable to a timezone without daylight saving time,
e.g. ‘BEST".

NUMBER_OF_PROCESSORS

Controls the maximum number of parallel threads that can
be used for a frePPLe command.

On windows platforms, this variable is automatically set to
the number of cpu’s and cores of your machine. On other
platforms it’ll need to be set explicitly.

When left unspecified, a default value of 1 is used: i.e.
sequential, single-threaded execution.

3.3 Python Interpreter

FrePPle embeds an interpreter for the Python language.

The full capabilities of this scripting language are accessible from frePPLe, and
Python also has access to the frePPLe objects in memory.

Python is thus a very powerful way to interact with frePPLe.

Python code can be executed in two ways:

* A XML processing instruction in XML data files.

<?xml version="1.0" encoding="UTEF-8" 2>
<plan xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >

<?python

Your python code goes here.

?>

</plan>

Manual version 0.7.1

Modeling 31

Python code in a file init.py, located in one of the frePPLe directories, is exe-
cuted automatically when frePPLe starts. This provides a clean mechanism to
define global Python functions and classes you application needs.

The interpreter is multi-threaded. Multiple python scripts can run in parallel. How-
ever, Python internally executes only one thread at a time and the interpreter switches
between the active threads.

A single, global interpreter instance is used. A global Python variable or function is
thus visible across multiple invocations of the Python interpreter.

A number of Python functions are defined:

command_loadlit below| dynamically loads an extension module.
command_readxml on the next page| processes a XML-file from the local file
system.

command_readxmlstring on the following page| processes a XML-formatted
string.

command_erasq on page[33|removes part of the model or plan from memory.
command_savd on page[33|saves the model to an XML-formatted file.
command_saveplarf on page[34] saves the most important plan information to a
file.

command_sizd on page [33] prints information about the memory size of the
model and other system parameters.

3.3.1 command_loadlib

This command dynamically loads an extension module.

Field Type Description

filename normalizedString Name of the shared library file to be loaded.

The operating system should allow frePPLe to
locate the file. The directories listed in the
following environment variable should include the
module shared library.

e LD_LIBRARY_PATH variable for Linux,
Solaris

» LIBPATH for AIX

* SHLIB_PATH for HPUX

* PATH for windows and cygwin

parameter parameter Initialization and configuration values that are

passed to the module’s initialization routine.
A parameter consists of a PARAMETER and
VALUE pair, as shown in the example below.

Manual version 0.7.1

Modeling

32

Example code:

<?python

frepple.loadmodule ("your_module.so",
parameterl="string value",
parameter2=100,
parameter3=True)

?>

3.3.2 command_readxml

This command reads and processes a XML-file from the local file system.

Field Type Description

filename normalizedString Name of the data file to be loaded.

validate boolean When set to true, the XML data are validated
against the XML-schema.
The default value is true, for security reasons.
When parsing large files with a trusted structure

setting this field to false will speed up the import.

Example code:

<?python
frepple.readXMLfile ("input.xml", True, True)
?>

3.3.3 command_readxmlstring

This command processes a XML-formatted data string.

Field Type Description

data string ~ XML-formatted data to be processed.

validate boolean When set to true, the XML data are validated
against the XML-schema.
The default value is true, for security reasons.
When processing large data strings with a trusted
structure setting this field to false will speed up the
execution.

Example code:

<?python
frepple.readXMLdata ("""’
<plan xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

Manual version 0.7.1

Modeling 33

<locations>
<location name="Location 1" action="R"/>
</locations>
</plan>''’,True, True)
?>

3.3.4 command_erase

Use this command to erase the plan or the entire model from memory.

Field Type Description
mode Plan When set to “model” the complete model is erased.
Model You will again have a completely empty model.

When set to “plan” only the plan information is

erased, ie all operationplans with their load- and
flowplans are removed (except the ones that are

locked).

Example code:

<?python
frepple.erase(False)
?>

3.3.5 command_save

This commands saves the model into an XML-formatted file.

Field Type Description

filename normalizedString Name of the output file.

Manual version 0.7.1

Modeling 34

Field Type Description

content STANDARD Controls the level of detail in the output:
PLAN
PLANDETAIL * STANDARD plan information is sufficient
for restoring the model from the output file.
This is the default mode.
* PLAN adds more detail about its plan with
each entity.
A buffer will report on its flowplans, a
resource reports on its loadplans, and a
demand on its delivery operationplans.
* PLANDETAIL goes even further and
includes full pegging information the output.
A buffer will report how the material is
supplied and which demands it satisfies, a
resource will report on how the capacity
used links to the demands, and a demand
shows the complete supply path used to
meet it.

headerstart string The first line of the XML output.
The default value is:

<?xml version="1.0" encoding="UTF-8"?>

headeratts ~ string Predefined attributes of the XML root-element.
The default value is:

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Example code:

<?python

frepple.savexXMLfile ("output.xml")

frepple.saveXMLfile ("detailedoutput.xml", "PLANDETAIL")
7>

3.3.6 command_saveplan

This command saves the most important plan information to a file.
It is used for the unit tests, but its’ usefullness in a real-life implementation is probably
limited.

Field Type Description

filename normalizedString Name of the output file.

Example code:

Manual version 0.7.1

Modeling 35

<?python
frepple.saveplan ("output.xml")
7>

3.3.7 command_size

This command prints information about the memory size of the model and other sytem
parameters.

Example code:

<?python
frepple.printsize()
?>

3.4 Global parameters

A number of global settings and parameters are described here.

3.4.1 Fields

Field Type Description

name normalizedString Model name.
Default is null.

description string Free format description.

current dateTime The ‘now’ date for the plan.
It distinguishes the past from the future.

logfile normalizedString File name where all output will be sent to.
If left unspecified, the output appears on the
standard output.
If the filename starts with ‘+’ an existing logfile
with the same name is being appended to, instead
of being overwritten.

3.4.2 Example XML structures

¢ (Global initialization section

<plan>
<name>Demo model</name>
<description>A demo model demonstrating frePPLe</description>
<current>2007-01-01T00:00:00</current>
<logfile>frepple.log</logfile>

</plan>

Manual version 0.7.1

Modeling

36

3.4.3 Example Python code

¢ Global initialization section

frepple.settings.name = "Plan name"
frepple.settings.description = "Plan description"

frepple.settings.current =
frepple.settings.logfile =

3.5 Buffer

A buffer is a storage for a item.

datetime.datetime (2007,1,1)
"frepple.log"

It represents a place where inventory of an item is kept.

Different types of buffers exist:

* buffer_defaulfon page[38}

The default buffer uses an “producing” operation to replenish it with additional

material.

* buffer_procurd on page |38

A buffer that is replenished by a supplier. A number of parameters control the
re-ordering policy: classic re-order point, fixed time ordering, fixed quantity

ordering, etc. ..
* buffer_infinitd on page[39

An infinite buffer has an infinite supply of the material is available.

3.5.1 Fields

Field Type Description

name non-empty string Name of the buffer.
This is the key field and a required attribute.

description string Free format description.

category normalizedString Free format category.

subcategory normalizedString Free format subcategory.

owner buffer Buffers can be organized in a hierarchical tree.
This field defines the parent buffer.
No specific planning behavior are currently linked
to such a hierarchy.

members list of buffer Buffers can be organized in a hierarchical tree.
This field defines a list of child buffers.

location location Location of the buffer.

Default is null.
The working hours and holidays for the buffer are

taken from the ‘available’ calendar of the location.

Manual version 0.7.1

Modeling

37

Field

Type

Description

item

item

Item being stored in the buffer.
Default is null.

onhand

double

Inventory level at the start of the time horizon.
Default is 0.

carrying_cost

double

The cost of carrying inventory in this buffer.

The value is an annual percentage of the item sales
price.

The default value is 1.0.

minimum

calendar

Refers to a calendar storing the desired minimum
inventory level, aka safety stock.

The solver treats this as a soft constraint, ie it tries
to meet this inventory level but will go below the
minimum level if required to meet the demand.

A problem is reported when the inventory drops
below this level.

The safety stock target is expressed as a quantity. If
you want to define a safety stock target as a time
value, you can set a post-operation time on the
producing operation of a buffer.

maximum

calendar

Refers to a calendar storing the maximum inventory
level.

This field is not used by the solver.

A problem is reported when the inventory level is
higher than this limit.

producing

operation

This operation will be instantiated by the solver to
replenish the buffer with additional material.

detectproblems

boolean

Set this field to false to supress problem detection
on this buffer.
Default is true.

flows

list of flow

Defines material flows consuming from or
producing into this buffer.

flowplans

list of flowplan

This field is populated during an export with the
plan results for this buffer. It shows the complete
inventory profile.

The field is export-only.

level

integer

Indication of how upstream/downstream this entity
is situated in the supply chain.

Lower numbers indicate the entity is close to the
end item, while a high number will be shown for
components nested deep in a bill of material.

The field is export-only.

Manual version 0.7.1

Modeling 38

Field Type Description

cluster integer The network of entities can be partitioned in
completely independent parts. This field gives the
index for the partition this entity belongs to.
The field is export-only.

action A Type of action to be executed:
C
AC (default) * A: Add an new entity, and report an error if
R the entity already exists.

* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.

¢ AC: Change an entity or create a new one if
it doesn’t exist yet.

* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.5.2 buffer_default

The default buffer uses an “producing” operation to replenish it.

No fields are defined in addition to the ones listed above.

3.5.3 buffer_procure

A procurement buffer is replenished by a supplier.

A number of parameters control the re-ordering policy: classic re-order point, fixed
time ordering, fixed quantity ordering, etc. ..

The parameters LEADTIME, MININVENTORY and MAXINVENTORY define a
replenishment with a classical re-orderpoint policy. The inventory profile will show
the typical sawtooth shape.

The parameters MININTERVAL and MAXINTERVAL put limits on the frequency
of replenishments. The inventory profile will have “teeth” of variable size but with a
controlled interval.

The parameters SIZE_MINIMUM, SIZE_MAXIMUM and SIZE MULTIPLE put
limits on the size of the replenishments. The inventory profile will have “teeth” of
controlled size but with variable intervals.

Playing with these parameters allows flexible and smart procurement policies to be
modelled.

Note that frePPLe doesn’t include any logic to set these parameters in an optimal way.
The parameters are to be generated externally and frePPLe only executes based on the
parameter settings.

At a later stage a module to compute these parameters could be added.

The PRODUCING field is unused for this buffer type.
Propagation through a bill of material will be stopped at a procurement buffer.

Manual version 0.7.1

39

Modeling

Field Type Description

leadtime duration Time taken between placing the purchase order
with the supplier and the delivery of the material.
When the “LEADTIME” constraint is enabled in
the solver, it won’t create any new procurement
orders that would need to start in the past.

fence duration Time window (from the current date of the plan)

during which procurement orders are expected to
be released.

When the “FENCE” constraint is enabled in the
solver, it won’t create any new operation plans in
this time fence. Only the externally supplied
existing procurement plans will then exist in this
time window.

mininventory Positive double

Inventory level triggering a new replenishment.
The actual inventory can drop below this value.

maxinventory Positive double

Inventory level to which we try to replenish.
The actual inventory can exceed this value.

mininterval duration

Minimum time between replenishments.

The order quantity will be increased such that it
covers at least the demand in the minimum interval
period. The actual inventory can exceed the target
set by the MinimumInventory parameter.

maxinterval duration

Maximum time between replenishments.

The order quantity will replenish to an inventory
value less than the maximum when this maximum
interval is reached.

size_minimum Positive double

Minimum quantity for a replenishment.

This parameter can cause the actual inventory to
exceed the target set by the MinimumInventory
parameter.

size_maximum Positive double

Maximum quantity for a replenishment.
This parameter can cause the maximum inventory
target never to be reached.

size_multiple Positive double

All replenishments are rounded up to a multiple of
this value.

3.5.4 Dbuffer_infinite

An infinite buffer has an infinite supply of the material is available.

The PRODUCING field is unused for this buffer type.
Propagation through a bill of material will be stopped at an infinite buffer.

Manual version 0.7.1

Modeling 40

3.5.5 Example XML structures
* Adding or changing a buffer

<plan>
<buffers>
<buffer name="item a @ location b">
<item name="item a" />
<location name="location b" />
<onhand>10</onhand>
</buffer>
</buffers>
</plan>

» Update the current inventory information of an existing buffer

<plan>
<buffers>
<pbuffer name="item a @ location b" onhand="100" action="C" />
</buffers>
</plan>

* Deleting a buffer

<plan>
<buffers>
<buffer name="item a @ location b" action="R"/>
</buffers>
</plan>

3.5.6 Example Python code
* Adding or changing a buffer

it = frepple.item(name="item a")

loc = frepple.location (name="location b")

buf = frepple.buffer(name="item a @ location b",
onhand=10, item=it, location=loc)

» Update the current inventory information of an existing buffer
buf = frepple.buffer (name="item a @ location b",
onhand=10, action=‘‘C’’)

* Deleting a buffer

buf = frepple.buffer (name="item a @ location b", action=‘‘R’’)

* Iterate over buffers, flows and flowplans

for b in frepple.buffers():
print "Buffer:", b.name, b.description, b.category
for 1 in b.flows:
print " Flow:", l.operation.name, l.quantity,
l.effective_start, l.effective_end
for 1 in b.flowplans:

Manual version 0.7.1

Modeling 41

print " Flowplan:", l.operationplan.operation.name,
l.quantity, l.date

3.6 Calendar

A calendar represents a value that is varying over time.

Calendars can be linked to multiple entities: a maximum capacity limit of a resource,
a minimum capacity usage of a resource, a minimum or maximum inventory limit of
a buffer, etc. ..

Different types of calendar exist:

* calendar_void:

A calendar without any value in its buckets.
* calendar_double:

A calendar storing double numbers.
* calendar_integer:

A calendar storing integer numbers.
* calendar_boolean:

A calendar storing boolean values.
* calendar_string:

A calendar storing string values.
* calendar_operation:

A calendar storing operation values.

A calendar has multiple buckets to define the values over time. To determine the
calendar value at a certain date the calendar will evaluate each of the buckets and
combine the results in the following way:

* A bucket is only valid from its "start" date (inclusive) till its "end" date (exclu-
sive).
Outside of this date range a bucket is never selected.

 If multiple bucket are effective on a date, the one with the lowest "priority"
value is taken.
In case buckets have the same priority, the value of the bucket with the latest
start date is selected.

¢ In case no bucket is effective on a certain date, the calendar will return the
"default" value.

3.6.1 Calendar Fields

Field Type Description

name non-empty string Name of the calendar.
This is the key field and a required attribute.

default Varies with the calendar type The default value of the calendar when no bucket is
effective.

Manual version 0.7.1

Modeling 42

Field Type Description
buckets List of bucket A list of a buckets.
action A Type of action to be executed:
ISC (default) * A: Add an new entity, and report an error if

R the entity already exists.
¢ C: Change an existing entity, and report an
error if the entity doesn’t exist yet.
AC: Change an entity or create a new one if
it doesn’t exist yet.
* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.6.2 Bucket Fields

Field Type Description

start dateTime Start date of the validity of this bucket.
When left unspecified, the entry is effective from
the infinite past.

end dateTime End date of the validity of this bucket.
When left unspecified, the entry is effective
indefinitely in the future.

name normalizedString Optional name of the bucket.
When left unspecified the default name is the start
date of the bucket.

priority integer Priority of this bucket when multiple buckets are
effective for the same date.
Lower values indicate higher priority.

value Varies with the calendar type The actual time-varying value.

action A Type of action to be executed:
C
AC (default) ¢ A: Add an new entity, and report an error if
R the entity already exists.

* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.

* AC: Change an entity or create a new one if
it doesn’t exist yet.

* R: Remove an entity, and report an error if
the entity doesn’t exist.

Manual version 0.7.1

Modeling 43

3.6.3 Example XML structures

* Adding or changing a calendar and its buckets

<plan>
<calendars>
<calendar name="cal" xsi:type="calendar_double">
<default>5</default>
<buckets>
<bucket start="2007-01-01T00:00:00" value="10"
priority="1"/>
<!-- This entry overrides the first one during February. —
<bucket start="2007-02-01T00:00:00" end="2007-03-01T00:00:00
value="20" priority="0"/>
</buckets>
</calendar >
</calendars>
</plan>

* Removing a calendar

<plan>
<calendars>
<calendar name="cal" action="R"/>
</calendars>
</plan>

3.6.4 Example Python code

* Adding or changing a calendar and its buckets

cal = frepple.calendar_double (name="cal", default=5)

* Removing a calendar

frepple.calendar (name="cal", action="R")

3.7 Customer

Demands are associated with a customer.

Customers can be organized in a hierarchical tree to represent the sales organization’s
structure.

FrePPLe uses customers only from reporting purposes, no real planning logic is cur-
rently linked to them.

3.7.1 Fields

Manual version 0.7.1

Modeling 44
Field Type Description
name non-empty string Name of the customer.
This is the key field and a required attribute.
description ~ string Free format description.
category normalizedString Free format category.

subcategory normalizedString Free format subcategory.

owner customer Customers are organized in a hierarchical tree.
This field defines the parent customer.

members list of customer Customers are organized in a hierarchical tree.
This field defines a list of child customer.

action A Type of action to be executed:
C
AC (default) * A: Add an new entity, and report an error if
R the entity already exists.

* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.

* AC: Change an entity or create a new one if
it doesn’t exist yet.

* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.7.2 Example XML structures

* Adding or changing a customer

<plan>
<customers>
<customer name="customer A" category="Direct"/>
</customers>
</plan>

* Deleting a customer

<plan>
<customers>
<customer name="customer A" action="R"/>
</customers>
</plan>

3.7.3 Example Python code

* Adding or changing a customer

cust = frepple.customer (name="customer A", category="Direct")
* Deleting a customer

Manual version 0.7.1

Modeling 45
cust = frepple.customer (name="customer A", action=‘‘R’’)
3.8 Demand
Define independent demands for items.
These can be actual customer orders, or forecasted demands.
3.8.1 Fields
Field Type Description
name non-empty string Name of the demand.
This is the key field and a required attribute.
description string Free format description.
category normalizedString Free format category.
subcategory normalizedString Free format subcategory.
owner demand Demands are organized in a hierarchical tree.
This field defines the parent demand.
members list of demand Demands are organized in a hierarchical tree.
This field defines a list of child demand.
quantity double Requested quantity.
item item Requested item.
due dateTime Due date of the demand.
priority integer Priority of the demand relative to the other
demands.
A lower number indicates higher priority.
The default value is 0.
operation operation Operation to be used to satisfy the demand.
If left unspecified the operation on the item will be
used.
customer customer Customer placing the demand.
detectproblems boolean Set this field to false to supress problem detection
on this demand.
Default is true.
maxlateness duration The maximum delay that can be accepted to satisfy

this demand.
The default value allows an infinite delay.

Manual version 0.7.1

Modeling

46

Field Type

Description

minshipment Positive double

The minimum quantity allowed for the shipment
operationplans that satisfy this demand.
The default is 0, allowing deliveries of any size.

action A
C
AC (default)
R

Type of action to be executed:

A: Add an new entity, and report an error if
the entity already exists.

* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.

AC: Change an entity or create a new one if
it doesn’t exist yet.

* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.8.2 Example XML structures

* Adding or changing demands

<plan>
<demands>
<demand name="order A">
<quantity>10</quantity>

<due>2007-01-10T00:00:00</due>

<priority>1</priority>
<item name="item 1" />

<!-- Don’t allow any delay —
<maxlateness>P0D</maxlateness>
<!-- Don’t create a delivery for less than 5 units —

<minshipment>5</minshipment>

</demand>

<demand name="order B" quantity="10"
due="2007-01-10T00:00:00" priority="1" >

<item name="item 1" />
</demand>
</demands>
</plan>

* Removing a demand

<plan>
<demands>

<demand name="order ABC" action="R"/>

</demands>
</plan>

3.8.3 Example Python code

* Adding or changing demands

Manual version 0.7.1

Modeling

47

it = frepple.item(name="item 1")
deml = frepple.demand(name="order A", quantity=10,
due=datetime.datetime (2007,01,10), priority=1, item=it,

Don’t allow any delay

maxlateness=0,

Don’t create a delivery for less than 5 units

minshipment=5)

dem2 = frepple.demand (name="order B", quantity=10,
due=datetime.datetime (2007,1,10), priority=1", item=it)

* Removing a demand

frepple.demand (name="order ABC", action="R")

* Iterating over all demands and their deliveries

for d in frepple.demands() :

print "Demand:", d.name, d.due, d.item.name, d.quantity
for i in d.operationplans:
print " Operationplan:", i.operation.name, i.quantity, i.end

3.9 Flow

Flows are used to model the consumption and production of material from buffers.

Two types of flows exist:

* FLOW_START: Flows that consume material at the start of an operationplan.
 FLOW_END: Flows that produce material at the end of an operationplan.

3.9.1 Fields

Field Type Description

buffer buffer Buffer from which material will be moved or
transferred into.
This is a required field.

operation operation Operation to which the material flow is associated.
This is a required field.

quantity double Material quantity being consumed or produced per

unit of the operationplan.

effective_start dateTime

Date after which the material consumption is valid.

Before this date the planned quantity is always 0.

effective_end dateTime

Date at which the material consumption becomes
invalid.

After this date (and also at the exact date) the
planned quantity is always 0.

Manual version 0.7.1

Modeling 48
Field Type Description
action A Type of action to be executed:
gC (default) ¢ A: Add an new entity, and report an error if
R the entity already exists.

* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.

¢ AC: Change an entity or create a new one if
it doesn’t exist yet.

* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.9.2 Example XML structures

* Defining a flow

<plan>
<flows>
<flow xsi:type="flow_start">
<buffer name="buffer component"/>
<operation name="operation B"/>
<quantity>- 2</quantity>
</flow>
</flows>
</plan>

* Defining a flow nested in an operation structure

<plan>
<operations>
<operation name="operation B">
<flows>
<flow xsi:type="flow_start">
<buffer name="buffer component"/>
<quantity>- 2</quantity>
</flow>
<flow xsi:type="flow_end">
<buffer name="buffer end item"/>
<quantity>1</quantity>
</flow>
</flows>
</operation>
</operations>
</plan>

* Defining a flow nested in a buffer structure

<plan>
<buffers>
<buffer name="buffer component">
<flows>
<flow xsi:type="flow_start">

Manual version 0.7.1

Modeling

49

<operation name="operation A"/>
<quantity>- 2</quantity>
</flow>
<flow xsi:type="flow_start">
<operation name="operation B"/>
<quantity>- 1</quantity>
</flow>
</flows>
</buffer>
</buffers>
</plan>

* Deleting a flow

<plan>
<flows>
<flow action="R">
<buffer name="buffer component"/>
<operation name="operation B"/>
</flow>
</flows>
</plan>

3.10 Item

An item represents an end product, intermediate product or a raw material.
Each demand is associated with an item.

A buffer is also associated with an item: it represents a storage of the item.

3.10.1 Fields

Field Type Description

name non-empty string Name of the item.
This is the key field and a required attribute.

description ~ string Free format description.

category normalizedString Free format category.

subcategory normalizedString Free format subcategory.

owner item Items are organized in a hierarchical tree.
This field defines the parent item.

members list of item Items are organized in a hierarchical tree.
This field defines a list of child items.

Manual version 0.7.1

50

Modeling
Field Type Description
operation operation This is the operation used to satisfy a demand for
this item.

If left unspecified the value is inherited from the
parent item.
See also the OPERATION field on the DEMAND.

price double Cost or price of the item.
Depending on the precise usage and business goal
it should be evaluated which cost to load into this

field: purchase cost, booking value, selling price. ..

For most applications the booking value is the
appropriate one.

action A Type of action to be executed:
C
AC (default) * A: Add an new entity, and report an error if

R the entity already exists.
* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.
* AC: Change an entity or create a new one if
it doesn’t exist yet.
* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.10.2 Example XML structures

* Adding or changing an item and its delivery operation

<plan>
<items>
<item name="item A">
<operation name="Delivery of item A"
xsi:type="operation_fixed_time">
<duration>24:00:00</duration>
</operation>
<owner name="Item class A"/>
</item>
</items>
</plan>

* Deleting an item

<plan>
<items>
<item name="item A" action="R"/>
</items>
</plan>

3.10.3 Example Python code

* Adding or changing an item and its delivery operation

Manual version 0.7.1

Modeling

oper = frepple.operation_fixed_time (name="Deliver item A",

duration=24*3600)

itl = frepple.item(name="Item class A")

it2

* Deleting an item

frepple.item(name="item A",

3.11 Load

frepple.item(name="item A", operation=oper, owner=itl)

action="R")

Loads are used to model the capacity consumption of an operation.

3.11.1 Fields

Field Type Description
resource resource Resource being loaded.
This is a required field.
operation operation Operation loading the resource.
This is a required field.
quantity double Load factor of the resource.

The default value is 1.0.

effective_start dateTime

Date after which the resource load is valid.
Before this date the planned quantity is always 0.

effective_end dateTime

Date at which the resource load becomes invalid.
After this date (and also at the exact date) the
planned quantity is always 0.

action A
C
AC (default)
R

Type of action to be executed:

¢ A: Add an new entity, and report an error if
the entity already exists.

* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.

* AC: Change an entity or create a new one if
it doesn’t exist yet.

* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.11.2 Example XML structures

* Defining a load

<plan>

Manual version 0.7.1

Modeling 52

<loads>
<load>
<resource name="machine A"/>
<operation name="operation B"/>
</load>
</loads>
</plan>

* Defining a load nested in an operation structure

<plan>
<operations>
<operation name="operation B">
<loads>
<load>
<resource name="machine A"/>
<usage>1</usage>
</load>
</loads>
</operation>
</operations>
</plan>

* Defining a load nested in a resource structure

<plan>
<resources>
<resource name="machine A">
<loads>
<load>
<operation name="operation B"/>
<usage>2</usage>
</load>
<load>
<operation name="operation C"/>
<usage>1</usage>
</load>
</loads>
</resource>
</resources>
</plan>

* Deleting a load

<plan>
<loads>
<load action="R">
<resource name="machine A"/>
<operation name="operation B"/>
</load>
</loads>
</plan>

Manual version 0.7.1

Modeling 53
3.12 Location

A location is a (physical or logical) place where resources, buffers and operations are
located.

FrePPLe uses locations from reporting purposes, and the ‘available’ calendar is used
to model the working hours and holidays of resources, buffers and operations.

3.12.1 Fields

Field Type Description

name non-empty string Name of the location.
This is the key field and a required attribute.

description string Free format description.

category normalizedString Free format category.

subcategory normalizedString Free format subcategory.

available calendar_boolean A calendar that defines the working hours and
holidays for the location.
All operations, buffers and resources at this
location will use it.

owner location Locations are organized in a hierarchical tree.
This field defines the parent location.

members list of location Locations are organized in a hierarchical tree.
This field defines a list of child locations.

action A Type of action to be executed:
C
AC (default) * A: Add an new entity, and report an error if

R the entity already exists.

C: Change an existing entity, and report an

error if the entity doesn’t exist yet.

AC: Change an entity or create a new one if

it doesn’t exist yet.

¢ R: Remove an entity, and report an error if
the entity doesn’t exist.

3.12.2 Example XML structures

* Adding or changing a location

<plan>
<locations>
<location name="site A">
<category>cat A</category>

Manual version 0.7.1

Modeling 54

<owner name="Manufacturing sites"/>
</location>
</locations>
</plan>

 Alternate format of the previous example

<plan>
<locations>
<location name="Manufacturing sites">
<members>
<location name="site A" category="cat A"/>
</members>
</location>
</locations>
</plan>

* Deleting a location

<plan>
<locations>
<location name="site A" action="R"/>
</locations>
</plan>

3.12.3 Example Python code

* Adding or changing a location

locl = frepple.location (name="Manufacturing sites")
loc2 frepple.location(name="site A", category="cat A", owner=locl)

* Deleting a location

frepple.location(name="site A", action="R")

3.13 Operation

An operation represents an activity: these consume and produce material, take time
and also require capacity.

An operation consumes and produces material, modeled through flows.
An operation requires capacity, modeled through loads.

Different operation types exist:

* operation_fixed_timd on page[57}
Models an operation with a duration that is independent of the quantity. A good
example is a transport or a procurement operation.

* operation_time_pef on page[>/
Models an operation where the duration increases linear with the quantity. A
good example is a manufacturing operation where the duration is determined
by the production rate of a machine.

Manual version 0.7.1

Modeling

55

* operation_alternatd on page|S7/|

Models a choice between different operations.

* operation_routing on page|33|

Models a sequence a number of ‘step’ sub-operations, to be executed sequen-

tially.

3.13.1 Fields

Field Type Description

name non-empty string Name of the operation.
This is the key field and a required attribute.

description string Free format description.

category normalizedString Free format category.

subcategory normalizedString Free format subcategory.

location location Location of the operation.
Default is null.
The working hours and holidays for the operation
are taken from the ‘available’ calendar of the
location.

owner operation Operations can be organized in a hierarchical tree.
This field defines the parent operation.

fence duration Time window from the current date of the plan

during which all operationplans are expected to be
frozen / released.

When the “FENCE” constraint is enabled in the
solver, it won’t create any new operation plans in
this time fence. Only the externally supplied
operationplans will then exist in this time window.

size_minimum

positive double

A minimum size for operationplans.
A request for a lower quantity will be rounded up.

size_multiple

positive double

A lotsize quantity for operationplans.

cost

double

The cost of executing this operation, per unit of the
operation_plan. Depending on what the operation
models, this represents transportation costs,
manufacturing costs, material procurement costs,
delivery costs, etc. ..

The default value is 1.0.

Manual version 0.7.1

Modeling

56

Field

Type

Description

pretime

duration

A pre-operation time, used as a buffer for uncertain
material supply.

The solver will try to position material supply for
operation plans early by the time specified here.
This is a soft constraint, ie it can be violated if
required to meet the demand in time.

Resources are not loaded during the pre-operation
time.

posttime

duration

A post-operation time, used as a buffer for
uncertain capacity or operation duration.

The solver will try to respect this time as a soft
constraint. Ie when required to meet demand on
time the post-operation time can be violated.
Resources are not loaded during the post-operation
time.

This field is used to model time-based safety stock
targets. It is typically set for the producing
operation of a certain buffer.

If you want to model a safety stock quantity, you
can use the minimum field on the buffer.

detectproblems

boolean

Set this field to false to skip problem detection on
this operation.
The default value is true.

loads

list of load

A list of all resources loaded by this operation.

flows

list of flow

A list of all buffers where material is consumed
from or produced into.

level

integer

Indication of how upstream/downstream this entity
is situated in the supply chain.

Lower numbers indicate the entity is close to the
end item, while a high number will be shown for
components nested deep in a bill of material.

The field is export-only.

cluster

integer

The network of entities can be partitioned in
completely independent parts. This field gives the
index for the partition this entity belongs to.

The field is export-only.

Manual version 0.7.1

Modeling 57

Field Type Description
action A Type of action to be executed:
C
AC (default) * A: Add an new entity, and report an error if

R the entity already exists.
* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.
¢ AC: Change an entity or create a new one if
it doesn’t exist yet.
* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.13.2 operation_fixed_time

Models an operation with a fixed duration regardless of the quantity.
E.g. a transport operation.

This is the default operation type.

Field Type Description

duration duration Duration of the operation.
The default value is 0.

3.13.3 operation_time_per

Models an operation where the duration changes linear with the quantity.
E.g. a production operation.

The total duration of the operation plan is the sum of:

* A fixed DURATION.
* A variable duration, computed as the operationplan quantity multiplied by a
DURATION_PER.

Field Type Description

duration duration Fixed component of the duration of the
operationplan.
The default value is 0.

duration_per duration Variable component of the duration of the
operationplan.
The default value is 0.

Manual version 0.7.1

Modeling 58

3.13.4 operation_alternate

Models a choice between different operations.
It has a list of alternate sub-operations listed, each with a priority.

Field Type Description
alternates List of alternate List of alternate sub-operations, each with their
priority.
Alternate fields:
Field Type Description
operation operation Sub-operation.
priority integer Priority of this alternate.

Lower numbers indicate higher priority.

When the priority is equal to 0, this alternate is
considered unavailable and it can’t be used for
planning.

effective_start dateTime Earliest allowed start date for using this alternate.

effective_end dateTime Latest allowed end date for using this alternate.

3.13.5 operation_routing

Models a sequence a number of ‘step’ sub-operations, to be executed sequentially.

Field Type Description

steps List of operation Lists all sub-operations in the order of execution.

3.13.6 Example XML structures
* Adding or changing operations

<plan>
<operations>
<operation name="buy item X from supplier"
xsi:type="operation_fixed_time">
<duration>P1D</duration>
</operation>
<operation name="make item X"

Manual version 0.7.1

Modeling 59

xsi:type="operation_time_per">
<duration>PT1H</duration>
<duration_per>PT5M</duration_per>
</operation>
<operation name="make or buy item X"
xsi:type="operation_alternate">
<alternates>
<alternate>
<operation name="make item X" />
<priority>1</priority>
</alternate>
<alternate>
<operation name="buy item X from supplier" />
<priority>2</priority>
</alternate>
</alternates>
</operation>
<operation name="make subassembly"
xsi:type="operation_routing">
<steps>
<operation name="make subassembly step 1"
duration="PT1H"/>
<operation name="make subassembly step 2"
duration="PT5M"/>
</steps>
</operation>
</operations>
</plan>

* Deleting an operation

<plan>
<operations>
<operation name="make item X" action="R"/>
</operations>
</plan>

3.13.7 Example Python code
* Adding or changing operations

opl = frepple.operation_fixed_time (name="buy item X from supplier",
duration=24+*3600)
frepple.operation_time_per (name="make item X",
duration=3600, duration_per=60%*5)
op3 = frepple.operation_alternate (name="make or buy item X")
op3.addAlternate (operation=opl, priority=1)
op3.addAlternate (operation=op2, priority=2,
effective_end=datetime.datetime (2009,10,10))
opd4 = frepple.operation_routing(name="make subassembly")
op4.addStep (
frepple.operation_fixed_time (name="make subassembly step 1"
,duration=3600),
frepple.operation_fixed_time (name="make subassembly step 2"
,duration=300)

op2

Manual version 0.7.1

Modeling 60

)

* Deleting an operation

frepple.operation (name="make item X", action="R")

* Iterate over operations, loads and flows

for o in frepple.operations():
print ‘‘Operation:’’, o.name, o.description, o.category
for 1 in o.loads:
print ‘' Load:’’, l.resource.name, l.quantity,
l.effective_start, l.effective_end
for 1 in o.flows:
print ‘' Flow:’’, l.buffer.name, l.quantity,
l.effective_start, l.effective_end

3.14 OperationPlan

Used to model an existing or planned activity.
This can represent work-in-progress, in-transit shipments, planned material receipts,
frozen manufacturing plans, etc. ..

3.14.1 Fields

Field Type Description

operation non-empty string Name of the operation.
This field is required when no identifier is provided.

id unsignedLong Unique identifier of the operationplan.
If left unspecified an identifier will be automatically
generated.
This field is required when updating existing
instances.

start dateTime Start date.

end dateTime End date.

demand demand Points to the demand being satisfied with this
operationplan.
This field is only non-null for the actual delivery
operationplans.

quantity double Quantity being planned.

locked boolean A locked operation plan is not allowed to be

changed any more by any solver algorithm.

Manual version 0.7.1

Modeling 61
Field Type Description
owner operation_plan Points to a parent operationplan.
The default is NULL.

action A Type of action to be executed:

C

AC (default) e A: Add an new entity, and report an error if

R the entity already exists.

* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.

* AC: Change an entity or create a new one if
it doesn’t exist yet.

* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.14.2 Example XML structures

* Adding an operationplan to represent a planned receipt of material

<plan>
<operationplans>
<operationplan operation="Purchase component A">
<quantity>100</quantity>
<start>2007-01-10T00:00:00</start>
<locked>true</locked>
</operationplan>
</operationplans>
</plan>

* Deleting an operationplan

<plan>
<operationplans>
<operationplan 1d="1020" action="R"/>
</operationplans>
</plan>

3.14.3 Example Python code

* Adding an operationplan to represent a planned receipt of material

op = frepple.operation(name="Purchase component A", action="C")
opplan = frepple.operationplan (operation=op,
quantity=100, start=datetime.datetime (2007,1,10), locked=True)

* Deleting an operationplan

frepple.operationplan (id="1020",action="R")

* Iterate over operationplans

for i in frepple.operationplans():
print i.operation.name, i.quantity, i.start, i.end

Manual version 0.7.1

Modeling

62

3.15

Problem

FrePPLe will automatically detect problems and inconsistencies in the plan.

Problem detection can optionally be disabled on entities by setting the field “DE-
TECTPROBLEMS?” to false.

Problems are export-only, i.e. you can’t read them as input.

3.15.1 Types

Problem Entity Problem Category Description

demand unplanned No plan exists yet to satisfy this demand.

demand excess A demand is planned for more than the requested
quantity.

demand short A demand is planned for less than the requested
quantity.

demand late A demand is satisfied later than the accepted
tolerance after its due date

demand early A demand is planned earlier than the accepted
tolerance before its due date.

resource overload A resource is being overloaded during a certain
period of time.

resource underload A resource is loaded below its minimum during a
certain period of time.

buffer material excess A buffer is carrying too much material during a
certain period of time.

buffer material shortage A buffer is having a material shortage during a
certain period of time.

operationplan before current Flagged when an operationplan is being planned in
the past, i.e. it starts before the current date of the
plan.

operationplan before fence Flagged when an operationplan is being planned
before its fence date, i.e. it starts 1) before the
current date of the plan plus the release fence of the
operation and 2) after the current date of the plan.

operationplan precedence Flagged when the sequence of two operationplans

in a routing isn’t respected.

Manual version 0.7.1

Modeling 63
3.15.2 Fields

Field Type Description

name normalizedString Problem type.

description normalizedString Description of the problem.

weight double A number expressing the seriousness of the
problem.

start dateTime Date at which the problem starts.

end dateTime Date at which the problem ends.

3.15.3 Example Python code

* Iterate over all problems

for i in frepple.problems():
print i.entity, i.name, i.description, i.start, i.end, i.weight

3.16 Resource

Resources represent capacity.
They represent a machine, a worker or a group of workers, or some logical limits.

A calendar refers to a time-phased maximum limit of the resource usage.
Operations will consume capacity using loads.

Different types of resources exist:

* resource_defaulf on page |65

A default resource is constrained with a maximum available capacity.

* resource_infinitd on page [65]

An infinite resource has no capacity limit.

3.16.1 Fields

Field Type Description

name non-empty string Name of the resource.
This is the key field and a required attribute.

description string Free format description.

category normalizedString Free format category.

Manual version 0.7.1

Modeling

64

Field

Type

Description

subcategory

normalizedString

Free format subcategory.

owner

resource

Resources can be organized in a hierarchical tree.
This field defines the parent resource.

No specific planning behavior is currently linked to
such a hierarchy.

members

list of resource

Resources can be organized in a hierarchical tree.
This field defines a list of child resources.

location

location

Location of the resource.

Default is null.

The working hours and holidays for the resource
are taken from the ‘available’ calendar of the
location.

maximum

calendar

Refers to a calendar storing the available capacity.
A problem is reported when the resource load
exceeds than this limit.

cost

double

The cost of using 1 unit of this resource for 1 hour.
The default value is 1.0.

detectproblems

boolean

Set this field to false to suppress problem detection
on this resource.
Default is true.

loads

list of load

Defines the capacity of the operations.

loadplans

list of loadplan

This field is populated during an export with the
plan results for this resource. It shows all the
resource load profile.

The field is export-only.

level

integer

Indication of how upstream/downstream this entity
is situated in the supply chain.

Lower numbers indicate the entity is close to the
end item, while a high number will be shown for
components nested deep in a bill of material.

The field is export-only.

cluster

integer

The network of entities can be partitioned in
completely independent parts. This field gives the
index for the partition this entity belongs to.

The field is export-only.

Manual version 0.7.1

Modeling 65
Field Type Description
action A Type of action to be executed:
EC (default) * A: Add an new entity, and report an error if

R the entity already exists.
* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.
¢ AC: Change an entity or create a new one if
it doesn’t exist yet.
* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.16.2 resource_default

A default resource is constrained with a maximum available capacity.

No fields are defined in addition to the ones listed above.

3.16.3 resource_infinite

An infinite resource has no capacity limit.
It is useful to monitor the loading or usage.

The MAXIMUM field is unused for this resource type.

3.16.4 Example XML structures

* Adding or changing a resource

<plan>
<resources>
<resource name="machine X">
<maximum name="capacity calendar for machine X" />
</resource>
</resources>
</plan>

* Deleting a resource

<plan>
<resources>
<resource name="machine X" action="R"/>
</resources>
</plan>

3.16.5 Example Python code

* Adding or changing a resource

Manual version 0.7.1

Modeling 66

cal = frepple.calendar (name="capacity calendar for machine X")
res = frepple.resource (name="machine X", maximum=cal)

* Deleting a resource

frepple.resource (name="machine X", action="R")

* Iterater over resources, loads and loadplans

for r in frepple.resources():
print ‘‘Resource:’’, r.name, r.description, r.category
for 1 in r.loads:
print ‘' Load:’’, l.operation.name, l.quantity,
l.effective_start, l.effective_end
for 1 in r.loadplans:
print ‘' Loadplan:’’, l.operationplan.operation.name,
l.quantity, l.startdate, l.enddate, l.operationplan.id

3.17 Solver

A solver represents modules of functionality that manipulate the model.
Examples are solvers to generate a plan, solvers to compute safety stocks, solvers to
create production or purchase orders, etc. . .

Only one solver is included in the core library: solver_mrg on the following pagel
which uses a heuristic algorithm to generate plans.
Other solvers are implemented as optional modules.

For running a solver see the command command_solve.

3.17.1 Fields

Field Type Description

name non-empty string Name of the solver.
This is the key field and a required attribute.

loglevel 0-3 Amount of logging and debugging messages:

* 0: Silent operation. Default logging level.
* 1: Show minimum output.

 2: Show standard output.

* 3: Show debugging output.

Manual version 0.7.1

Modeling 67
Field Type Description
action A Type of action to be executed:
EC (default) * A: Add an new entity, and report an error if
R the entity already exists.

* C: Change an existing entity, and report an
error if the entity doesn’t exist yet.

¢ AC: Change an entity or create a new one if
it doesn’t exist yet.

* R: Remove an entity, and report an error if
the entity doesn’t exist.

3.17.2 solver_mrp

Field Type

Description

constraints unsignedShort

Sum up the values of the constraints you want to
enable in the solver:

1: Lead times, ie don’t plan in the past

2: Material supply, ie don’t allow inventory
values to go negative

4: Capacity, ie don’t allow to overload

8: Operation fences, ie don’t allow to create
plans in the frozen fence of operations

maxparallel Positive integer Specifies the number of parallel threads the solver

creates during planning.
The default value depends on whether the solver is
run in verbose mode or not:

* In normal mode the solver uses as many
threads as specified by the
NUMBER_OF_PROCESSORS
environment variable.

When the logging level is different from O
the solver runs in a single thread to avoid
mangling the debugging output. of different

3.17.3 Example XML structures

* Adding or changing a solver

<plan>
<solvers>

<solver name="MRP" xsi-type="solver_mrp">

Manual version 0.7.1

Modeling

68

<constraints>7</constraints>
<maxparallel>2</maxparallel>
</solver>
</solvers>
</plan>

* Deleting a solver

<plan>
<solvers>
<solver name="MRP" action="R"/>
</solvers>
</plan>

3.17.4 Example Python code

* Adding or changing a solver, and running it

sol = frepple.solver_mrp(name="MRP", constraints=7, maxparallel=2)
sol.solve ()

* Deleting a solver

frepple.solver (name="MRP", action="R")

Manual version 0.7.1

CHAPTER

4

Solver algorithm

Different solvers and algorithms can be used with the frePPle models.

FrePPLe comes with a default solver that is documented in this chapter.
It is based on a heuristic algorithm, structured in a clear ask-reply pattern between the
different entities.

The algorithm can create different types of plans. With the following three flags, a
total of 8 combinations are possible:

* Material constrained or not:

Supply of raw material can be treated as finite or infinite.
 Capacity constrained or not:

Production capacity can be treated as finite or infinite.
* Lead time constrained or not:

Allow or disallow plans to be created in the past.

It is possible to build create extensions to the solver, or to create a completely new
solver altogether. The solvers can be loaded as plugin modules without touching or
recompiling the main application.

1. Solver features (p
2. Implementation details (p
2.1. Top level loop (p[73))
2.2. Demand solver (p[73)
2.3. Buffer solver (p
2.4. Operation solver (p[76)
2.5. Flow solver (p
2.6. Load solver (p
2.7. Resource solver (p
3. Cluster and level algorithm (p

69

Solver algorithm 70

4.1 Solver features

In brief, here are the main features of the solver:

4.1.1 Solver

* Ability to create unconstrained plans.

* Ability to respect following constraints: material supply, available capacity,
lead time, release time fence.

* Ability to run in multi-threaded mode. Different threads are solving indepen-
dent sub-problems.

4.1.2 Demand

* Demand priorities are recognized, such that constraints impact the lowest rank-
ing demands only.
The default ranking is based on the priority attribute and the due date.

* Ability to respect different demand policies: In case of a constraint a demand
can be allowed to be satisfied late or not. Satisfying the demand in multiple
parts can be allowed or not.

4.1.3 Operation

* Models multiple operation types.
— Operations with fixed duration.
Operations with variable duration, depending on quantity.
Alternate operations: When a demand can’t be met from the primary op-
eration the solver will plan on alternative operations.
Date-effective operations: Depending on the start date (or end date) dif-
ferent operations are used.
Multi-step operations: An operation can have multiple sub-operations that
need to be executed in sequence.
* The operations can be planned as a multiple of the lot-size quantity.
* A minimum size can be enforced when planning an operation.
* Pre- and post-operation times used as soft constraints (ie they are respected
when feasible but will be reduced when required to meet the demand in time).

4.1.4 Resource

* Resources loaded during the complete duration of an operation.
* Resources with finite or infinite capacity.
 Capacity shortages are solved by moving operations early.

4.1.5 Buffer

* Material consumption or production happens at the start or at the end of opera-
tions.

Manual version 0.7.1

Solver algorithm 71

* Buffers with finite or infinite material supply.

* Ability to specify a desired minimum inventory level, aka safety stock. The
minimum level can be time dependent and is treated as a soft constraint (ie
will be respected when feasible, but will be violated when constraints prevent
meeting it).

4.2 Implementation details

The algorithm solves demand per demand. The demand is thus sorted in descending
order of priority, and next these demands are planned one after the other.

When planning a single demand, the algorithm basically consists of a set of recursive
functions structured in a ask-reply pattern, as illustrated in the example below. The
indention is such that the ask and its matching reply are represented at the same level.

Every demand has a certain delivery operation associated with it ,either
directly or indirectly by specifying a delivery operation for the requested
item. The demand asks this operation for the requested quantity on the
due date of the demand.

(*) The operation first checks for the lead time constraints.

The operation will ask each of the loads to verify the ca-
pacity availability.

The operation will ask each of the flows to check the avail-
ability of consumed materials.

A load passes on the question and asks the resource.

The resource reply indicates whether the
capacity is available or not.

The load uses the resource reply to reply to the
operation.

A flow passes on the question too and asks the
buffer.

The buffer checks the inventory situation.

If material is available no further recur-
sion is required.

If the required material isn’t available
the buffer will ask an operation for a new
replenishment. Each buffer has a field indi-
cating which operation is to be used to gen-
erate replenishments.

Depending on the buffer inventory pro-
file, safety stock requirements, etc... the

Manual version 0.7.1

Solver algorithm 72

operation may be asked for different quanti-
ties and on different dates than the original
demand.

When an operation is asked to generate
a replenishment it evaluates the lead
time, material and capacity constraints.
This results in a nested ask-sequence
similar as the one described earlier -
marked with (¥)

The maximum recursion
depth will be the same as the
number of levels in the bill-of-
material of the end item.

In some cases the iteration
can be stopped at an intermediate
level. Eg. When sufficient inven-
tory is found in a buffer and no re-
plenishment needs to be asked: a
positive reply can be returned im-
mediately.

Eg. When an operation would
need to be planned in the past
(ie lead time constraint violated)
a negative reply can be returned
immediately.

The operation collects the replies
from all its flows, loads and -indirectly-
from all entities nested at the deeper re-
cursion levels. A final reply of the op-
eration is generated.

Based on the reply of the replenishing
operation the buffer evaluates whether or
not the replenishments are possible, and
replies back to the flow. Sometimes a buffer
may need to ask multiple times for a replen-
ishment before an answer can be returned.

The flow picks up the buffer reply and replies to
the operation.

From the reply of all its loads and flows the operation
compiles a reply and returns it to the demand. The interaction
of material, lead time and capacity constraint are pretty com-

Manual version 0.7.1

Solver algorithm 73

plex and an operation may require several ask-reply iterations
over its flows and loads before a final answer can be returned.

The answer of the operation indicates how much of the requested
quantity can be satisfied on the requested date.

Depending on the planning result and the demand parameters (such
as allow/disallow satisfying the demand late or in multiple deliveries) we
can now decide to commit all operation plans created during the whole
ask-reply sequence.

If we’re not happy with the reply the operation plans created are un-
done again and we can go back to the first step and ask for the remaining
material or at a later date.

The answer in each of the above steps consists of 1) ask-quantity and 2) ask-date.
The reply used in each of the above steps consists of 1) reply-quantity and 2) reply-
date. The reply-quantity represents how much of the requested quantity can be made
available at the requested date. The reply-date is useful when the ask can not -or only
partially- be met: it then indicates the earliest date when the missing quantity might
be possible.

In the above sequence the steps are described at a very high level.
In the following sections each of the different ask-reply steps are now explained in
further detail.

Top Ievel loop (p
Demand solver (p

Buffer solver (p
Operation solver (p
Flow solver (p
Load solver (p
Resource solver (p

Nk wD -

4.2.1 Top level loop

Delete the existing operation-plans, as far as they aren’t locked.

Identify the clusters to be planned.

Categorize the demand to be planned by cluster and sort them by priority.
Create parallel threads for the planning.

In each planning thread, loop through all demands.

Call demand—solve()
4.2.2 Demand solver

Ignore the demand if quantity is O
Erase previous delivery operation plans, except the ones that are locked
Loop until the full demand quantity is planned.

Manual version 0.7.1

Solver algorithm 74

Call operation—ask(missing quantity,due date), where operation is the
demand’s or the items delivery operation

If planned quantity = requested quantity, or the demand planning pol-
icy allows planning the demand in parts or shorts then

Commit the operation plan creation
Else
Clear the list of scheduled operation plans
If planned quantity > O then

// This last step is required to make sure all supply-
ing paths are planned for the quantity of the most
constraining path

Call operation—ask(planned quantity, due date)
Commit the operation plan creation
Update the planned quantity for the next iteration in the loop

Exit the loop if the demand can’t be planned late

4.2.3 Buffer solver

Standard buffer

Buffer is asked for a quantity Q at the date D For each flowplan on the buffer
If the on-hand value is positive

Set the variable ExtralnventoryDate if it is not set before. This
variable stores the date when there is additional, unallocated
inventory available.

Else if the on-hand value is negative

Compute the shortage as current onhand required minimum
quantity + known shortage from previous dates

If a producing operation exists

Try to get extra supply for the shorted quantity. This
replenishment will update the onhand value of the
current flowplan

If the onhand is still less than the required minimum quan-
tity - the known shortage

This situation happens when the producing operation can’t
replenish the buffer enough, or when all supply in a buffer
without producing operation has been exhausted.

Manual version 0.7.1

Solver algorithm 75

Increase the variable storing the known shortage at previ-
ous dates.

Reset the ExtralnventoryDate if it was set.

If there is a shortage, a producing operation exists and the above loop
didn’t already do the following

Try to get more supply at the requested date.

Not only can this reduce the shortage, but also important
is the next-date returned by the producing operation.

Note that if this step creates more supply to meet the de-
mand, that supply is not positioned such that inventory is min-
imized. The flowplan loop does minimize the inventory by
replenishing only when the inventory drops below the mini-
mum.

The final results are now:
Returned quantity: requested quantity shortages
Returned date:
= requested date if there is no shortage
Or = reply date of the producing operation

Or = ExtralnventoryDate if that is less than the operation reply date

todo Not up to date with the pre-op time loop. ..

Procurement buffer
Find the date of the latest locked procurement plan. No additional will be created
before this date. Loop through all dates.

Keep track of the total consumed and produced quantities.

Calculate the current inventory as the difference between these quan-
tities.

If this date is within the minimum timeframe from the previous pur-
chasing operation.

If the inventory goes negative and the plan is material con-
strained.

Record the earliest time for an additional purchase
as the next ask date.

Move to the next date.

If the inventory is above the minimum inventory level and we have
not reached the maximum interval between purchases.

Manual version 0.7.1

Solver algorithm 76

Move to the next date.

If we are the earliest new purchase date where a new purchase can be
created and the inventory is below the minimum inventory level.

Try to increase the quantity of the previous purchase to avoid
that the inventory falls below the minimum inventory level.

Record the next ask date if this resizing fails to bring the
inventory above 0.

Create a new purchase to bring the inventory back to the maximum
inventory level.

This is done by updating the date and the quantity of an already exist-
ing purchase or by creating a new one.

Remember the earliest and latest date for the next purchase.

Delete eventual purchases that have become redundant. Report the answer quantity
and the next ask date.

Infinite buffer

Always reply for the full quantity.

4.2.4 Operation solver

Fixed time operation

Operation is asked for a quantity Q at the date D
Create an operation plan
If lead time constraints are enabled and the operation plan is planned in the past

Calculate the earliest date the operation can be completed

Return a promise with quantity O and the next ask date computed
above

If capacity constraints are enabled
Loop until no capacity overloads are found
Loop over all loadplans
Ask the resource solver to check for overloads

If a capacity constraint is found, the resource
solver will move the operation plan to an earlier date
or resize it.

We then restart the loop over the loadplans

If the operation plan is found to be capacity infeasible

Return a promise with quantity 0

Manual version 0.7.1

Solver algorithm 77

For each consuming flowplans

Ask the buffer for the planned quantity on the requested date.
If material constraints are enabled we update Qremaining and Dupdated.

Return the accumulated promise quantity

Time-per operation

The steps are very similar to the fixed_time operations, with the difference that the
calculations for the feasible quantity is more complex.

Alternate operation

Operation is asked for a quantity Q at the date D
Remaining quantity = Q

Next ask date = infinite future

Loop through all alternate sub operations

If the alternate is not effective on the ask date, skip this alternate
Create top operation plan descriptor
Call Operation—ask(Remaining quantity, D)
If some quantity could be planned along the alternate

Check for material and capacity constraints on the top opera-
tion plan

Reduce the remaining quantity

Break out of the loop if the requested quantity is com-
pletely planned

Else

If the next ask date of the alternate is less than the current
minimum, update the next ask date

If the total quantity planned over all alternates is less than the requested quantity

Repeat the loop over all alternate sub operations, but evaluate only alter-
nates whose effectivity ends before the ask date

Return the planned quantity and the next ask date

Routing operation

Operation is asked for a quantity Q at the date D

Create the top operation plan

Check the flowplans and loadplans of the top operation plan
Initialize Q2 to Q and D2 to D

For all steps of the routing

Manual version 0.7.1

Solver algorithm 78

Call operation—ask(Q2,D2)
Update Q2 if planned quantity < Q2

Update D2 with the operation time

4.2.5 Flow solver

If the requested date is outside of the effective date range of the flow
Reply that the request can be met without problems.

Ask the buffer to generate the reply for the quantity and date. If the buffer reply is of
quantity O and the next ask date is later than the effectivity end date

Limit the next ask date to the effectivity end date

Return the promised quantity and next ask date.

4.2.6 Load solver

If the requested date is outside of the effective date range of the load
Reply that the request can be met without problems.

Ask the resource to generate the reply for the quantity and date. If the resource reply
is of quantity 0 and the next ask date is later than the effectivity end date

Limit the next ask date to the effectivity end date

Return the promised quantity and next ask date.

4.2.7 Resource solver

Standard resource
The sequence below show the interaction between the functions checkOperationCa-
pacity(OperationPlan*), Solve(Load*) and Solve(Resource*).

An operationplan is asked to check for capacity problems (not for a date & quantity)
Loop through all loadplans of the operationplan

Call the load solver

If this is not an ending loadplan or it has a zero quantity, move
on to the next loadplan

Call the resource solver
/I Look if the operationplan overloads the resource
Set HasOverload to false. (*)
Start recursing backwards in the timeline starting

from the ending loadplan

Manual version 0.7.1

Solver algorithm 79

While HasOverload is still false and not yet at
the very start

If the resource loading > maximum
Break out of the while loop

/I Solve any overloads by reducing the opera-
tionplan quantity

If HasOverload and there is a period where the
resource isn’t overloaded yet

Resize the operationplan to fit in this time
window

If the resizing is successful
There is no longer an overload problem
Set HasOverload to false
Else

Restore the original time and quantity
of the operationplan

/I Solve any overloads by using earlier capacity
If HasOverload

Search going back in time till the resource
loading < maximum

If available capacity was found

Move the operation plan to end at that
time in the timeline

Go back to the step marked with
)
Else

Reply quantity will be zero: No avail-
able capacity was found

// Look for overloads, and try to solve them using
later capacity

If the reply quantity is O

Find the date after the ask date where the
load drops below the maximum (**)

Move the operationplan such that it
starts at this date

If the operationplan still overloads the
resource

Manual version 0.7.1

Solver algorithm 80

Go back to step (**) and try another,
later date

Else

Reply quantity is O and the reply next-
date is the end date of the moved oper-
ationplan

If in the above loop the operation plan is moved to a new date, the complete loop over
all loadplans must be repeated.

Infinite resource

The loop is similar to the above, except that the resource solver will always reply an
okay.

4.3 Cluster and level algorithm

Resources, operations and buffers are connected with each other with loads and flows.
An operation has a collection of loads and flows. Each flow establishes a connection
with a buffer, and each load a connection with a resources. The entities thus constitute
a network graph. In this network context we define clusters and level as follows.

A cluster is a set of connected entities. When a network path across loads and flows
exists between 2 entities they belong to the same cluster. When no such path exists
they are effectively situated in independent sub-networks and clusters.

Internally, each cluster is represented by a number.

Clusters allow us to group entities and are very useful in multithreaded environment:
since the clusters are completely independent we can use different threads to solve
each cluster as a separate subproblem.

Material flows in the network have a direction. This creates a sense of direction in our
network which is expressed by the level concept.

An operation consumes and produces material, as defined by the flow entities (aka bill
of material or recipe).

In this context the level is a number that is defined such that the level of a consumed
material buffer is always higher than the level of the produced material buffer. The
demand is normally (but not exclusively!) placed on the material buffers with level 0,
and the level number increases as we recurse through the different levels in the bill of
material.

Raw materials have the highest level number.

The level and cluster number are helpful for the various solver algorithms. They
provide valuable information about the structure of the network.

Manual version 0.7.1

Solver algorithm 81

Levlel 3 Le\iel 2 Level 1 Levlel 0

f 1 I | | : 1 T 1
/N Ty \ [

/s

Dalivery 4

L

Cluster1

Resource

Cluster2
|

The algorithm used to compute the level and cluster information is based on a walk
through the network: We select an unmarked operation and recurse through the loads
and flows to find all connected entities, updating the cluster and level information as
we progress.

For efficiency, the algorithm is implemented as a lazy function, i.e. the information
is only computed when the user is retrieving the value of a level or cluster field. The
algorithm is not incremental (yet), but computes the information for the complete
network in a single pass: a change to a single entity will trigger re-computation of all
level and cluster information for all entities.

Note: An updated algorithm has been designed for the cluster computation. Its advan-
tage compared to the current implementation is a much better effiency in the case of
frequent model updates. The computation will be completely incremental, compared
to the single pass for all entities in the current implementation.

The detailed flow of the algorithm is as follows:

// Initialisation

Lock the function

Reset the level and cluster to —1 on all resources, operations and buffers
Reset the total number of clusters

/I Main loop
Loop through all operations

If the operation has no producing flow
Activate the level computation
If the operation isn’t part of a cluster yet
Activate the cluster computation
Increment the cluster counter

If both cluster and level computation are inactive, move on to the next
operation

Push the current operation on the recursion stack, with level O or —1

Manual version 0.7.1

Solver algorithm 82

Loop until the stack is empty
Pop an operation from the recursion stack
Pop the value of cur_level from the stack
Loop through the sub operations and super operations
If their level is less than the current level

Push sub operation on the stack, with the
same level as the current operation

Set the level and cluster fields
Else if cluster is not set yet

Push sub operation on the stack, with —1 as
the level

Set the cluster field
Loop through all loadplans of the operation

If level search is active and the resource level is less
than the level of the current operation

Update the level of the resource
If the cluster of the resource is not set yet
Set the cluster of the resource

Loop through all operations that are
loading the resource

If operation cluster isn’t set yet

Push the operation on the stack,
level -1

Set the cluster of the opera-
tion

Loop through all flows of the current operation

If this is a consuming flow and level_search is active
and the level of the buffer is less than the current
level +1

Level recursion is required

If level recursion is required or the cluster of the
buffer is not set yet

Set the cluster of the buffer

Loop through all flows connected to the
buffer

Manual version 0.7.1

Solver algorithm 83

If it is a consuming flow and level
search recursion was enabled

todo incomplete documentation

// Catch buffers missed by the main loop
Loop through all buffers which don’t have any flow at all.
Increment the total number of clusters
Set the cluster number to the new cluster
/I Catch resources missed by the main loop
Loop through all resources which don’t have any load at all.
Increment the total number of clusters
Set the cluster number to the new cluster

// Finalization
Unlock the function

Manual version 0.7.1

CHAPTER

5

Extension modules

FrePPLe can easily be extended with modules that are loaded at runtime.
This chapter describes the modules that are provided with frePPLe.

To load an extra module, you need to update the following 2 files in the FREP-
PLE_HOME directory:

* Add a loadlib command in the file init.xml. This file is automatically executed
when frePPLe starts.

 Edit the file frepple.xsd to include an additional XML schema file. The new
file defines the new XML data types that are enabled by the new module.

The default version of these files enables the forecast module only.

The C++ code required to create a custom module is described in the developer section
of this manual: Extension modules (p[I02). An example is also availabe in the Test
Sample Module (p[I19)

1. Forecast module (p [84)
2. SOAP webservice module (p[90)

3. REST webservice module (p
4. Linear programming solver module (p [93))

5.1 Forecast module

The forecast module provides the following functionality for representing forecasted
future demand:

* A new demand type to model forecasts.
A calendar model is used to divide the time horizon into a number of time

84

Extension modules 85

buckets. A demand is automatically created for each time bucket.
See the example below.

* A forecasting algorithm to extrapolate historical demand data to the future.
The following classical forecasting methods are implemented:
— single exponential smoothing, which is applicable for constant demands
— double exponential smoothing, which is applicable for trended demands
— moving average, which is applicable when there is little demand history
to rely on
The forecast method giving the smallest mean absolute deviation (aka “mad”-
error) will be automatically picked to produce the forecast.
The algorithm will automatically tune the parameters for the forecasting
methods (i.e. alfa for the single exponential smoothing, or alfa and gamma for
the double exponential smoothing) to their optimal value. The user can specify
minimum and maximum boundaries for the parameters and the maximum
allowed number of iterations for the algorithm.

Input Sales history:
80 units last September
100 units last October
90 units last November

120 units last December

RESL,”t Sales forecast:

100 units in January

* Functionality for distributing / profiling forecast numbers into smaller time
buckets.
This functionality allows to translate between different time granularities.
The forecast entered by the sales department could for instance be in monthly
buckets, while the manufacturing department requires the forecast to be
in weekly or even daily buckets to generate accurate manufacturing and
procurement plans.
Another usage is to model a delivery date profile of the customers. Each bucket
has a weight that is used to model situations where the demand is not evenly
spread across buckets: e.g. when more orders are expected due on a monday
than on a friday, or when a peak of orders is expected for delivery near the end
of a month.

Manual version 0.7.1

Extension modules 86

Input Sales Forecast:

100 wunits in January

Result Manufacturing demand:
Forecast of 25 units in Week 1
Forecast of 25 units in Week 2
Forecast of 25 units in Week 3

Forecast of 25 units in Week 4

* A solver for netting orders from the forecast.
As customer orders are being received they need to be deducted from the
forecast to avoid double-counting it. The netting solver will for each order
search for a matching forecast and reduce the remaining net quantity of the
forecast.
For example, assume the forecast for customer A in January is 100 pieces, and
we have already received orders of 20 from the customer.
Without the netting algorithm the demand in January will be 120 pieces, which
is (very likely) not correct.
The netting solver will deduct the orders of 20 from the forecast. The total
demand that is planned in January will then be equal to 100: 80 remaining
forecast + 20 orders.
The solver algorithm has logic to match a demand with the most appropriate
forecast, and can also consider netting in previous and subsequent time buckets.

|nput Sales Forecast: 100 units in January

Customer orders already received: 20 units in week 2

Result Manufacturing demand:
Forecast of 25 units in Week 1
Forecast of 5 units in Week 2
Customer order 20 units in Week 2
Forecast of 25 units in Week 3

Forecast of 25 units in Week 4

* The different functionalities areas can be used together.

Depending on your business process and needs you can also choose not to use
them all.

The module enables the following new objects:

e demand_forecasfon page[88]is a specialized representation of the demand.

Manual version 0.7.1

Extension modules 87

* solver_forecast on the following page|is a solver for performing the forecast
netting calculations.

5.1.1 Module configuration
The module support the following configuration parameters:

* Net_CustomerThenltemHierarchy:
As part of the forecast netting a demand is assiociated with a certain forecast.
When no matching forecast is found for the customer and item of the demand,
frePPLe looks for forecast at higher level customers and items.
This flag allows us to control whether we first search the customer hierarchy
and then the item hierarchy, or the other way around.
The default value is true, ie search higher customer levels before searching
higher levels of the item.

* Net_MatchUsingDeliveryOperation:
Specifies whether or not a demand and a forecast require to have the same
delivery operation to be a match.
The default value is true.

¢ Net_NetEarly:
Defines how much time before the due date of an order we are allowed to search
for a forecast bucket to net from.
The default value is 0, meaning that we can net only from the bucket where the
demand is due.

* Net_NetLate:
Defines how much time after the due date of an order we are allowed to search
for a forecast bucket to net from.
The default value is 0, meaning that we can net only from the bucket where the
demand is due.

* Forecast_Iterations:
Specifies the maximum number of iterations allowed for a forecast method to
tune its parameters.
Only positive values are allowed and the default value is 10.
Set the parameter to 1 to disable the tuning and generate a forecast based on the
user-supplied parameters.

* Forecast_madAlfa:
Specifies how the MAD forecast error is weighted for different time buckets.
The MAD value in the most recent bucket is 1.0, and the weight decreases
exponentially for earlier buckets.
Acceptable values are in the interval 0.5 and 1.0, and the default is 0.95.

* Forecast_SKkip:
Specifies the number of time series values used to initialize the forecasting
method. The forecast error in these bucket isn’t counted.

* Forecast_MovingAverage_buckets
This parameter controls the number of buckets to be averaged by the moving
average forecast method.

Manual version 0.7.1

Extension modules 88

* Forecast_SingleExponential_initialAlfa,
Forecast_SingleExponential_minAlfa,
Forecast_SingleExponential_maxAlfa:

Specifies the initial value and the allowed range of the smoothing parameter in
the single exponential forecasting method.

The allowed range is between 0 and 1. Values lower than about 0.05 are not
advisible.

* Forecast_DoubleExponential_initialAlfa,
Forecast_DoubleExponential_minAlfa,
Forecast_DoubleExponential_maxAlfa:

Specifies the initial value and the allowed range of the smoothing parameter in
the double exponential forecasting method.

The allowed range is between 0 and 1. Values lower than about 0.05 are not
advisible.

* Forecast_DoubleExponential_initialGamma,
Forecast_DoubleExponential_minGamma,
Forecast_DoubleExponential_maxGamma:

Specifies the initial value and the allowed range of the trend smoothing param-
eter in the double exponential forecasting method.
The allowed range is between 0 and 1.

5.1.2 Demand subclass demand_forecast

All fields available on the demand model are allowed on a forecast.
In particular the item and customer field are important, since these are used to match
a demand with a certain forecast for netting.

The following fields are available in addition to the demand fields.

Field Type Description

calendar non-empty string Name of the calendar used to define time buckets
for distributing the forecast numbers.

discrete boolean Specifies whether forecast should be rounded to
integer numbers.
The default value is true.

bucket xml Speficies the forecast value for a date range.
buckets See example below.

5.1.3 Solver solver_forecast

This solver runs the forecast netting calculations.
The solver loops through the demands in order of their priority, and for each demand

Manual version 0.7.1

Extension modules 89

a matching forecast is searched. When a matching forecast is identified, the solver
looks for a time bucket to net from: first in the bucket where it is due, then in earlier
buckets within the chosen time window, and finally in later buckets within the chosen
time window. The net forecast in the forecast buckets is decreased.

Note the the profiling of the forecast is not handled by this solver. The profiling
happens during the data load, i.e. when the forecast demand is read in.

In addition to the regular solver fields, the following fields are available.

Field Type Description

loglevel 0-2 Amount of logging and debugging messages:

* 0: Silent operation. Default logging level.

* 1: Log demands being netted and the
matching forecast.

e 2: Same as 1, plus details on forecast
buckets being netted.

5.1.4 Example XML structures

* Forecast input

<plan>
<demands>
<demand name="Forecast 1" xsi:type="demand_forecast">
<item name="Product 1" />
<customer name="Customer 1" />
<calendar name="planningbuckets" />
<discrete>true</discrete>
<buckets>
<bucket>
<start>Monday, 1 January 2007T00:00:00</start>
<end>Thursday, 1 February 2007T00:00:00</end>
<total>200</total>
</bucket>
<bucket>
<start>Thursday, 1 February 2007T00:00:00</start>
<end>Thursday, 1 March 2007T00:00:00</end>
<total>200</total>
</bucket>
</buckets>
</demand>
</demands>
</plan>

5.1.5 Example Python code

* Adding or changing a forecast

Manual version 0.7.1

Extension modules 90

it = frepple.item(name="item")

cust = frepple.customer (name="customer")

cal = frepple.calendar (name="planningbuckets")

fcst = frepple.demand_forecast (name="My forecast",
item=it, customer=cust, calendar=cal)

* Loading the module

frepple.loadmodule ("mod_forecast.so",
Net_CustomerThenItemHierarchy=True,
Net_MatchUsingDeliveryOperation=True,
Net_NetEarly="P7D",
Net_NetLate="P7D")

* Creating a time series forecast
The first argument is the demand history in previous buckets.
The second argument are the time buckets where we want to create a forecast
value.

thebuckets = [i.start for i in thecalendar.buckets]
fcst.timeseries([10,12,9,11,8,15,19,11], thebuckets)

* Netting customer orders from the forecast

frepple_forecast.solver_forecast (name="Netting", loglevel=l).solve()

5.2 SOAP webservice module

This module implements a multi-threaded SOAP webservice server.

Using the webservice frePPLe can make the plan information on-line accessible to
other systems and users, and also receive updated information. In a Service Oriented
Architecture (SOA) such data exchanges are used to build composite applications:
data from different services is combined to build rich and flexible applications.

The module is coded in C++ using the excellent gSOAP toolkit. FrePPLe currently
provides only a basic service setup, and doesn’t support any of the more advanced
gSOAP functionalities, such as HTTPS/SSL, compression, HTTP cookies, SOAP
Headers, HTTP basic authentication. ..

The supported SOAP operations also provide only a limited interface to the frePPLe
functionality.

The module enables the following new objects:

» command_webservicd on the next page|is a command to run the web service.

5.2.1 Module configuration

The module support the following configuration parameters:

Manual version 0.7.1

Extension modules 91

* port:
The port number used by the webservice.
When left unspecified, the default port number is 6262.

* threads:
Specifies the number of worker threads to create to serve requests.
The default value is 10.

5.2.2 Command command_webservice

This command runs the multi-threaded webservice. Since the command will wait for-
ever for incoming connections this command should be called as the latest command
in the command sequence.

Field Type Description

verbose boolean When enabled the status of
the service is echoed during
operation.
The default is false.

5.2.3 Example Python code

* Loading the module:

frepple.loadmodule ("mod_webservice.so", port=6262, threads=10)

* Running the webservice:

frepple.webservice ()

5.3 REST webservice module

This module implements a multi-threaded REST webservice server.

Using the webservice frePPLe can make the plan information on-line accessible to
other systems and users, and also receive updated information. In a Service Oriented
Architecture (SOA) such data exchanges are used to build composite applications:
data from different services is combined to build rich and flexible applications.

The module is coded in Python using the excellent CherryPy HTTP framework, which
needs to be installed seperately. The webservice provides full read and write access
to all frePPLe objects.

The module enables the following new objects:

* Python function RESTwebservice(address, port)
This function starts the service on the address and port specified.

Manual version 0.7.1

Extension modules 92

The default port is 8080 and the address of the default network card is detected
by default.

The XML messages have the structure as described in the modeling section.

The following URLS serve information files:

http://<address>:<port>/frepple.xsd:

Returns the main XSD schema definition of the frePPLe XML format.

This XSD schema defines the top level structure.
http://<address>:<port>/frepple_core.xsd:

Returns the XSD schema definition of the XML format of the frePPLe objects.
This XSD schema file is included from the previous one.

HTTP GET-requests to the following URLs are used to read information from freP-

PLe:

http://<address>:<port>/:

Returns the complete model
http://<address>:<port>/buffer/:

Returns all buffers.
http://<address>:<port>/buffer/<name>/:
Returns the specific buffer.
http://<address>:<port>/calendar/:

Returns all calendars.
http://<address>:<port>/calendar/<name>/:
Returns the specific calendar.
http://<address>:<port>/customer/:
Returns all customers.
http://<address>:<port>/customer/<name>/:
Returns the specific customer.
http://<address>:<port>/demand/:

Returns all demands.
http://<address>:<port>/demand/<name>/:
Returns the specific demand.
http://<address>:<port>/flow/:

Returns all flows.
http://<address>:<port>/item/:

Returns all items.
http://<address>:<port>/item/<name>/:
Returns the specific item.
http://<address>:<port>/load/:

Returns all loads.
http://<address>:<port>/location/:

Returns all locations.
http://<address>:<port>/location/<name>/:
Returns the specific location.
http://<address>:<port>/operation/:
Returns all operations.

Manual version 0.7.1

Extension modules 93

http://<address>:<port>/operation/<name>/:
Returns the specific operation.
http://<address>:<port>/operationplan/:
Returns all operationplans.
http://<address>:<port>/operationplan/<id>/:
Returns the specific operationplan.
http://<address>:<port>/problem/:

Returns all problems.
http://<address>:<port>/resource/:

Returns all resources.
http://<address>:<port>/resource/<name>/:
Returns the specific resource.

HTTP POST- and PUT-requests to the following URLSs are used to write information
to frePPLe.

Multiple fields can be specified as parameters to the URL.

The web service return the string “OK” or a description of the error(s) found.

5.4

http://<address>:<port>/:

Create or update entities in frePPLe.

The uploaded XML document can create, update or delete objects of any type.
http://<address>:<port>/buffer/<name>/?<field>=<value>:
Create or update a buffer.
http://<address>:<port>/calendar/<name>/?<field>=<value>:
Create or update a calendar.
http://<address>:<port>/customer/<name>/?<field>=<value>:
Create or update a customer.
http://<address>:<port>/demand/<name>/?<field>=<value>:
Create or update a demand.
http://<address>:<port>/item/<name>/? <field>=<value>:
Create or update a item.
http://<address>:<port>/location/<name>/? <field>=<value>:
Create or update a location.
http://<address>:<port>/operation/<name>/?<field>=<value>:
Create or update a operation.
http://<address>:<port>/operationplan/<id>/?<field>=<value>:
Create or update a operationplan.
http://<address>:<port>/resource/<name>/?<field>=<value>:
Create or update a resource.

Linear programming solver module

This module implements a linear programming solver.
The solver is intended primarly for prototyping purposes. A linear programming
model can quickly be built and validated in a generic way.

Important: This solver module is licensed under the GPL, which is different from
the GLPL license normally used by frePPLe.

Manual version 0.7.1

Extension modules 94

The module uses the “GNU Linear Programming Kit” library (aka GLPK) to solve
the LP model

The solver works as follows:

* The solver expects a model file and a data file as input.
The model file represents the mathematical representation of the problem to
solve. It can be edited to meet your specfic business problem.
The data file holds the data to be loaded into the problem. If no data file is
specified, the data section in the model file is used instead.
The user needs to create these files. A convenient way to generate the data file
is to use the Python module. See the unit test Ip_solverl for an example.

* The solver solves for a number of objectives in sequence.
After solving an objective’s optimal value, the solver freezes the objective value
as a constraint and start for the next objective. Subsequent objectives can thus
never yield a solution that is suboptimal for the previous objectives.

* After solving for all objectives the solution is written to a solution file.
The user is responsible for all processing of this solution file. A convenient way
is again to use the Python module.

The unit test Ip_solver]l shows how a capacity allocation problem is solved with the
module.
Different business problems will obviously require a different formulation.

5.4.1 Technical implementation

The module is based on the GLPK (GNU Linear Programming Kit) package. More
information on the package can be found on http://www.gnu.org/software/glpk/glpk
.html.

Go through the following steps for a typical usage of this solver:

* Load the Python and the LPsolver modules with commands as follows in the
init.xml file:

frepple.loadmodule ("mod_lp_solver.so")

» Copy your model file and Python code into your SFREPPLE_HOME directory.
Assume the function exportData is used for exporting the data file, and the
function importSolution is used to read the solution file.

* Export the data files, run the solver and import the solution with the following
Python commands:

exportData ("mymodel.dat")
1p = frepple.solver_lp(loglevel=2,
modelfile="mymodel.mod",
datafile="mymodel.dat",
solutionfile="mymodel.sol",
minimum=True,
objective=["column_name_1", "column_name_2", "column_name_3"])
lp.solve()
importSolution ("mymodel.sol")

Manual version 0.7.1

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html

CHAPTER

6

Information for developers

This chapter discusses some topics of interest to developers working on extending,
customizing or maintaining frePPLe.

Code structure (p[95)

Class diagram (p
Extension modules (p[T02))

Portability (p

Version control (p[104)
Style guide (p[104)
Security (p[104))
Internationalization (p [I05])

Translating the user interface (p[L06))

WPeNAan kWD

6.1 Code structure

This chapter provides a high level description of the code structure.
It provides brief notes that helps a developer find his/her way in the detailed C++ API
reference and Class diagram (p[99) .

Three layers can be distinguished:

« Utility classes which provide infrastructure-like services as a foundation for
the next layers.
— Object on the following page| as an abstract base class for all frePPLe
objects.
— Metadatq on the next page|about objects.
— Date, DateRange and TimePeriod on page 07| for dealing with dates and
times.

95

file:/reference/index.html
file:/reference/index.html

Information for developers 96

Timer on the next page|for measuring execution time.
XML serializatio on page[98]for reading and writing XML data.
Python binding on page 08| for interfacing with Python.
Command on page 08| for executing state changes.
Exception classeq on the next page|for reporting error conditions.
Mutex on page[99| provides support for concurrent access to memory ob-
jects in a multihtreaded environment.
- HasName and Tred on page[99| for representing entities with a name and
storing them in a binary tree container.
— HasHierarchyf on page 99 allows objects be structured in a hierarchical
tree, ie to refer to a parent and have children.
- Leveled on page 99 for representing entities that are connected in a net-
work graph.
* Model classes which represent the core modeling objects.
See the chapter Modeling (p for the details.
They are structured as a base class (or Category) with one or more concrete
implementations (or Classes).
» Extension classes which inherit from the core model classes and implement
specific new models or solver techniques.
See the section Extension modules (p[102)) for more details.

6.1.1 Object

Object is an abstract base class.
It handles to following capabilities:

* Metadata: All subclasses publish metadata about their structure and the mem-
ory they consume.

* Concurrency: Locking of objects is required in multithreaded environments.
The implementation of the locking mechanism is delegated to the LockManager
class, and this class provides only a pointer to a lock object and convenience
guard classes.

» Callbacks: When objects are created, changing or deleted, interested classes or
objects can get a callback notification.

* Serialization: Objects need to be persisted and later restored.

Subclasses that don’t need to be persisted can skip the implementation of the
writeElement method.

6.1.2 MetaData

FrePPLe uses a two level structure to group metadata:

* A MetaCategory represents an entity type. The metacategory will implement
a container for all instances of this type, and also a handler method to control
persistence of the objects.

E.g. “Buffer”

Manual version 0.7.1

Information for developers 97

* A MetaClass represents a concrete class. It belongs to a certain MetaCategory,
and contains a factory method to generate objects.
E.g. “BufferDefault”, “BufferMinMax”, “BufferInfinite”. ..

* MetaData is the abstract base class for the concrete class MetaClass and Meta-
Category.

After creating an MetaClass or MetaData object it needs to be registered, typically in
the initialization of the library.

6.1.3 Date - DateRange - TimePeriod

These classes allow easy and intuitive manipulation of dates, durations and date
ranges.

The classes are implemented as a thin wrapper around the standard ansi C time func-
tions and provides time accuracy of 1 second.

Durations are formatted according to ISO8601.

An example:

Date start = Date::now();

TimePeriod duration ("P1D");

Date end = d + t;

DateRange dr (start, end);

cout << d << " " <Kt <" " <K dr << endl;

The C library is respecting daylight saving time (DST). Depending on the timezone
configured on your computer, you will have two days a year which last 23 or 25 hours
instead of the regular 24 hours.

This means that “midnight on day 1 + “24 hours” will not always give you “midnight
on day 2”!

6.1.4 Timer

This is a class to measure the excution time of the application with (at least) millisec-
ond precision.
An example:

Timer t;

do_something();

cout << "something took " << t << " seconds" << endl;
t.restart();

do_something_else();

cout << "something else took " << t << " seconds" << endl;

6.1.5 Exception

FrePPLe uses 3 exception classes to report errors. Each of the classes inherits from
std::exception.

Manual version 0.7.1

Information for developers 98

* A DataException is thrown when data errors are found.
The expected handling of this error is to catch the exception and allow the
execution of the program to continue.

* A RuntimeException is thrown when the library runs into problems that are
specific at runtime.
These could either be memory problems, threading problems, file system prob-
lems, etc. .. Errors of this type can be caught by the client applications and the
application can continue in most cases.

* A LogicException is thrown when the code runs into an unhandled and unex-
pected situation.
The normal handling of this error is to exit the program, and report the problem.
This exception always indicates a bug in the program code.

6.1.6 XML Serialization

The Object base class provides the following methods that need to be implemented
by serializable clasess:

* The beginElement is called by the parser when reading the start of a tag.

* The endElement event is called by the parser when reading the end of a tag or
attribute.

* The writeElement is called when serializing the object.

FrePPLe uses the SAX parser from Xerces-C to parse and validate input XML data.
The class XMLImput is a wrapper around the parser. It receives the SAX events and
makes the appropriate calls to the frePPLe objects.

Subclasses are available to parse a file or a string.

Writing XML output is done with the XMLQOutput class which provides methods to
write a header, elements and attributes. Subclasses are available to write to a file or a
string.

6.1.7 Python binding

A couple of utility classes are available to simplify the use of the Python C-api in the
frePPLe C++ code.

* The PythonObject class handles two-way translation between the data types
between C++ and Python.

» The template class PythonExtension is used to define Python extensions.

The PythonType class is a wrapper around the type information in Python.

The PythonInterpreter class maintains the Python interpreter.

6.1.8 Command

This class implements the design pattern with the same name. All state changes in the
application are expected to be encapsulated in objects of this class.

Manual version 0.7.1

Information for developers 99

The CommandList class works as a wrapper for a collection of other commands, fol-
lowing the classic composite design pattern.

This allows command hierarchies to be constructed, which can be executed in se-
quence or in parallel.

6.1.9 Mutex

Working with frePPLe in a multithreaded environment requires special control over
concurrent acces to the objects in memory.

* Mutex allows exclusive access to a object.
Depending on your platform it is implement as a thin wrapper around a Win-
dows critical_section or as pthread pthread_mutex_t.

* ScopeMutexLock is a convenience class that makes it easy (and exception-
safe) to lock a mutex in a scope.

* The CommandList (described above) has the capability to execute commands
in parallel by spawning seperate threads.

6.1.10 HasName and Tree
The classes represent classes which use a std::string / name as a unique identifier.

The Tree class is implemented as a red-black binary tree, using HasName objects as
the nodes (i.e. intrusive container).

6.1.11 HasHierarchy

The class allows allows objects be structured in a hierarchical tree. A HasName object
can point to a single parent and it maintains a linked list of children.

6.1.12 Leveled

The model classes Operation, Buffer, Resource, Load and Flow are the key objects
that are used to represent the network.

The first three represent the actual entities, while Load and Flow represent associa-
tions/links between the entities.

See the section Cluster and level algorithm (p[80) for the details.

6.2 Class diagram

Manual version 0.7.1

100

Information for developers

(eIanop : p u)<< Jojesedd
(120} : § Ut)<< Jojesadol
(Buns : s up)<< Jojesadol
u)<< Jojesado]
(Pouagai]. : 1 u<< Jojesedo|
(e1eq : p u)<< Jojesado|

(1004 : q Uf)<< Jojesadol
ur)<< Jojesadol
@jqnop : ()aignoqyed|

1eo} : ()leol)ef)

Buuys : ()BuLnsieb|

Ju1 : (hupeb|

pouegeuw] : ()poLsedeuutjeb|

ejeq : (Jereqyeb

100q : ()joogheb|

6uoj : ()BuoTieb|

100q : (piomAay : 3 uys|

1004 : (, Jeup : [eA Ul *, JBYD : GUYE U)SIQUAY|
1By : (, JeYd : O u)quny|

(xaINW : W uypoTxenpyedoog]

yooTxemnpadoos

(tooqun]
(o0

[[(Bums : ns wjBumsIndino TN [Buns

s uopiindino x|

BusindinoTINX

_ _

ounndinoINX |

(199090 : ur ujesied| (199190 : s uesied]
(Buigs : p unBumsINdurINX| (aiandurn|
(Bumsindup x| (Buws : 9 upanAAndupTNX _
Buws - ereg Buus : aweNa||
BumsindurInx lindul TN

1009 : ()puz108[qOs|
(Jeieqeinides)

(1081q0 : S Ul “Weans| : | ujesied
(1001q0 : s un)esied|

109[q0 : (S1walqonaud|

100190 : ()

(Juswaz210ub|
(Jumopinys|
(100190 : s U)oL peal|

o €= 71N+

2= 43QVYIHON+
L = 3ONIHIIN+

[
8poN : (Buns : u un)puy
(9poN : U u)asess)

(Buws : u ujesesd|

SPON : (Bus : wu upuesu

(BUMIS ZA U ‘PIOMASY| €} Ul BULLS : LA Ul ‘PIOMABY ©
(Buoj : 1 Ut *promAay :
(Buws : 1 ur ‘piomAsy :
(918q : 1 Ul ‘piomAay :

(10lq0 : 1 Ul *promAay 11 uBuLSEILM|
(PouadauwiL - 1 ‘piomfey : 3 upBuLSEIM
(sbuexforeq : 1l piomey : 3

(19910 0 Ul ‘PIOMABY - } U)IEPESHUIANUSWRIZEM

L 1By : (JoweNeB| 0=17Nv43a+
L Jeyo : ()eleqion| apoN
Qur Jeyd : 2 uneleappy| ndurTnx «uopeseWNUS»
(s 20 10 uy) (LINV43 = 8pop : w ui 8la0
ol - ()]
JomATINX Jojesa) : ()++
o (pua) (Buwis : 2 Ul “piomAay : €} Ui “Buo] pauBisun : 1S uj ‘piomAsy :
J0jesa) : (Juibaq (Buws : gs ui ‘promAey) : g ul ‘Buiys : |s ul ‘piomAe) :

(Buo : | Ul “piomAa) :
(Buws s Uy ‘piomAey ©
(s1eq : p ul ‘piomAey :

21 Ul "promAey : |y

Jepuale) : Jepuajed)

Jon108d1

21Ul ‘plomAay 1 1}
21 ur‘promAey : 1y
21 ul ‘piomkay : |

100G : ()PaUEAISU0DBOUBS]
100q : (JpaulensuoWpeaTs)

100q : ()pauiensuooleLsIes|
1004 : ()pauresuos|

U “piomAayy :

HOYS : SjuleLjsuod)

: un &
1 ut ‘promAey; : 1 uBuungem

J9AI0SdHIN

a1
23 u)busaum|
Ul “piomAay : 3 u)BuLSaILM]
Ul “piomAay :) u)BuLSalLM]

0 U “plomAay : 1 U uBWo|IBIUM
1080 : ()108lqosnolnaideb|
108140 : (JalqoNueLNOIe|
(welqopu3|

2) Ul ‘piomkay : |3 uioslqoulbeg|

o

[(PO : A U *aiqeUUEId : o U)enos]
| 10008 |

uopdeoxgowpuny

g
21 Ul "promAsy : |} upalgouibeg|

(Buiys : s ur)uswuolAuIpuedxs|

21Ul ‘promAay : |3 ulalgouibag|
(p1omAayy : } uoalgouibag|

@poN::2a1L

o081

Mo Ul ', Jeyd

ssejOelel : (U : u)sseropuy]
SSeIOBION : (, Jeyo : u)sseiopuy
dnosb ur *, Jeyp : sweu uKioBajeoialsibol

piomAay : beidnoib
BuLs : dnosf|
[IsseioeloN : sessep)

fioBajeoelap

1000 : (20K LUOUIA : O)= Jojesado)
(193100Ad : 1 u)ApeayadAl
) ddl

<PoUDaasNS T
(100G © J9p 1 ‘PIOA : Wi I, JeYD © wiu U, JBY : 10 ui)sseroiasiBel

SSEDEPIN

Buws : (, Jeyo 1 c;mamuwwﬁﬂ
Buws : |

07 - s10558001|
To1091IGAWOH|

Ums -

JuswuonAUg

Buus :

ndInoTINX

aiqeAdoguon

(weauso : 0 Jnoul)>>Jojesado|
(Pouadawi : } ul)=-ojesedol
(Pouadawi] :) ui)=+iojesadol

ToTovaPo0aN)
1004 : (poUsgaWLL : } Ui)==Iojesadol

()spoddns|
(Ji1eopoddns|
dd

SSeIoPUG| 100q : (poagewi] : } ur)=<iojesadol
(Jsesserommd| 100q : (poLadewi] : } ul)=>Iojesadol
BejadAy] 100q : (pouadawiy : } uj)<iojesado
Buigs : odky) 100 : (pouadawi] : | u)>Jojesadol

poujsnAIooey (Buws : s u)asied

[

(IS
()sou

(Wean1s0 - 0 1nou)>>J0jesadol
1oy : (Jpasdera|

oIl TWXPERNPUBWILOD
al

m ez|Sue|dpPUBIWIOD

e

eseigpuewiwod

ue|quoneiadQeAoNPUBLILIOD

ue|quoneiadoeleleapUBLILIOD

BupsTWXPERNPUEWILIOD

Bums - onen|
s : aigeve|
AuZjospuewIwIo)

Buuys : sweNAzeiqr
Aieiqripeopuewion

o [(Weanso - 0 1ou)>>10esado -
P coomin pre— mcmwo, :mumw_ 1009 : (joiuigs Ueiguonesado ()uelguonesedoieh — e
(Jomeresyioddns| pouedewiL : (1eq : p ul)-iojessd
(JomeyeByioddns (0 = Buoj : | upouagowiL] (Pouadawl] : 1 uj)=-iojeiado aAjoSpUBLILIOD
(ounyajeaojieap uijoojjeapyoddns| € = INOWTH+] pouadawil ﬁo:m%zﬁ) :;nto_msmo Buis : surpwo)
&5;%.: uooges| 18U - ()BUIpooUTUoGAdIeH] Z=39NVHO aav+| M._mmnn_ (Pt w ¢_ -iojeied > _‘
maﬂﬂi.w (Jesegyes| 1081q0Ad : ()aInpopieB| | = IONVHOH (weanso : 0 Jnoul)>>Jojesado]) "Jooq : ()isoesadol ue|daespuewWo)
(" ujpourapppe e y 0=0qv 1000 (e1eq : p uuliim 100 : (312q : 4 u)=jiojesedo pauBIsun : (joz13
108(q0adA LA : (Woalqo adky (1240 < puo wapmoaa uonoy 100q : (eBueyereq : p uloassal 100G : (31eq : § u)==lojesado oo : (idwel BuLS © JUsjuoD)
(U1 : 8215 u)adA LuoyIAd| (szieny) Luone.suiney Buws : ()uins| 1004 : (91eq : q u)=<iopesado (PUBWIWOD : O Up)ppe| Buws : SnyIepeaH
A AA%E%_»Q _zhvuoﬁmmo 100q : (21eq : q Ul)<iojesado) jellesedxeN[Buus : pejsiepes|
d poLadewl] :) uf)=-iojesado| s o N
100q : (81eq : q ui)=>Jojesadol Buiys : swenaj4
adfuoyihd Youre (poLagwi } ui)=+.0jesadol : : 100 : Jou3UOOqY|
NTNX1eD| P ds 1 +10) 0oq : (81eq): d
S 3 apug| (e1eq 2 @ Ul ‘ajeq : s u)puzpUYLEISIES| fooa(era * Sy | JsMpuewiwon snespuewwod
ous - (10o2i5190) Buuls : (Jainqunybuiais PoLagaWL : (Juoneinp) BULS T(JJeuojeb \va
oWITTNX : & Ul IndUTAX - X UusWorEpus Buns - (! joleq : s q e
o i Buuss : (WueweigpuIBuLnS (9100 2 "9e0 s wpoBueyoieg Bus : (buins ooq: (opckef]
(LINV43Q = PO : W Uy ‘pIOMARY : 1 Ul INAINOTIIX © X UIuSWSIIBUM] Bubis : (G 5 0o cmmﬂmn (0es ‘U ug “ay vy *Aep u) ‘uow Ul 'seaf uljeleq| (Juonduoseque|
AoaEIoN - (16K 11oB T, e TS uusEy s - soeiedeg|
1edeen :. L Buwys : (Jowenob| sjeq : pug (Buwss : s u)areq waww“m
100G : USPPIH| (Buws : 0 up)piomAay| 9jed : Jers| ()a1eq .
wola0 promAes] eBucaoIa 4 pn 1004 ; 850qs64
puewwon

Manual version 0.7.1

101
sosse|) uonejuswa|dw|

poliadewul] : Jeguonein|
pouadgeuw] : uone.ng|

Aueawelqoid

[vouswerora [veonorouerora

sesse|) [9pon

r

sesse|) aseq joelsqy

Information for developers

_ 1agawiuopesado 4
i i L pauuE|djONPUBWIAQWSIGOId
(uonesado : 0 :,;omm%_w%mi
i ejepauLE|gWe|qoId i sjeqwolqold soueI00gWalqoId Bupnoyueigu (vonedu. o " enugupeyng
Bugnoyuonessdo
[Aueapeuueiquoiqord SS90X3Walqoid JuBLNJaI04egWRIq0Id | i | POBaBWIL : [BNIBIUILNIXEN
sjeusayyuelguoesado ouagBLL
[pouagauir] : uogeing| 1eoy : aidNNNBZIS
20} | WNWIXEaZ
P] outLpoxiuoneiodo 4 Soou wnaony
1e01) : (1yBIOMILG, (O Yooy :
100q : ()aqiseas| SOIEPENOIGESi (120} : y U ‘uonesadQ : do iAol Je0))
Buus : (Juonduoseqie| c%wwmnm:wﬁ:_w Jeo) : (uopesado : o uAiuoLien| pousdaWIL : swipea
Buwys : (JoweNjed) PE0] :w_u__m " (120} : oLd Ul “UoneIadO : O Ul)ejewalYPPE] pouBdaWI] : 80Us4
sBueyaleq : (Jebueyaleqiod (6180 : 20 U1 ‘518G ¢ 1P UYPUIPUYLEISIOS] arewsoyyuopesado ainooiduayng
weiqoid (nesedo : o ul "
(uejduonesado : o ujue|duonesadoansppe
Bus : 1 U)K
HA m:smm _:;;uoﬁ%wm ue|dpeon : ()sueldpeoTieb| 1009 : (oeuo)]
(a1eq : p u)anges| 1009 (jueissl) veamed. cw_wa_sm_uuﬁM ajeq : ()ajeqieb|
Uo| : ()Jonuspi B
(uopesedo : o ujuonesadoies| 100 : (%03Uo) (62 = 100q : dpuno1 Ul Jeol © b UUENDIRS|
(ui : § u)Aougies| a1eq : (joieqiot| g] _uonesedo : (uonesadoron) onpunes e A_.Em,) mac
PPN colt hypicay Uelguopesado : (Juelduonesadoes . 1014 - (WOI199)
(eoy 1y uApuenoies| | peon: (peoniah (o1 : p UpUZS ’ uejgmoly
(wa : 1 u)wayies uejdpeo] (©rea- p uerSion
Jepualed : Jepualed) sBueysled : (Jseleqio o
Jsesalod v Uelguonesado : Jeumo)|
ajeq : 154
aleq : ()puzyeb| o Mm.n__u %Amuﬁ
sleq : (uersief)
1eoy : () nueng 6] T 19uj0d BpUSIED puewsaq : puewaq| L
() Kienjoqeayo| V ' d| Jeoy : Ajpuenp)|
(uejquonessdo : 0 uAienagenowa) ane|
(uelduoneiado : o ui)Aienegppef Buuys : awen| ueiduonesedo 100q : ()189NPOI:
10} - JUBWdSUIN] Jo%ong L 100q : ()1BWNSUOD
pouadjawl] : SsausleTXe - ¥ sbuegaleq : oAy
8Os : JwiolsNo| - 1eoy : Aipueno
Uonesede : uoneiedo sbuexaleq : onoay| 783800 : 0 U)UOREIadOaNSBAOLIB] Jeyng : Jayng
v wey : wel Joona - ()sieyongien) Jeoy : lopegabesn| ' (uonesado : o ujjuopesedoansppel + | uopesado : uoperedo
Jur - Ayloud . Jur 2 (ejeq : p ui)xepupedoNgPUY| 90IN0SBY : 82IN0SSY| (uonesedo : o ujuonessdosednganousa) wora
Jeo : Aueno| Jo¥ong : (BuLs - 5 uojesado : uojesado) (uoyesado : o ujuoperedoiedi
“1eq : on| g (o1ea - peon uogesedo : ()suopesadoqnSiatle, |
puews 10%0ng : (TINN = JBYd : S Ul *ejeq : p ujieyongppe| uoneiado : (jsuogesadosedns;ef N L
a ! ue|guopesado : () ueiquogesadoaleao| L
Jepuajed . @jeq : (a1eQ : P U ‘uB|duoneIad(: O ul)s|puzuayMLEISIb|
. aleq : (aleq : p ul nesedo : o (os]
" €] = 1004 00 pao0] U)SUEIUONEIRd0a19(aR)
. ; (8sfe = 1004 : 001 Pax0O] Ui)SUE|duONEsBdOBIIED| 180l (BNt = 100G £ UL U1 "918q : 2P U1 ‘518 ¢ 1P U)PUBHUOIOB
()speoTiof) Jeoy (81eq : p U)pUBHUOOB
. i ()smoyf1eb| walqold : ()swa|qoid)eh|
. L + [(ostey = 1o0q - 0o Lpaxool u)sueiguonesedoaIalap] Uoneoo : uopesoT| Uegmol4 : ()SuBlgmol1eB
welqoid : ()swaiqoidied pouagewr : soued| | * 01 (Jsmol 106
UelgpeoT : ()sueldpeoTiab| Jeoy : TonseoT Uoneoo]
Bums - Uondiessd] [[uonesado : uonesedo] [| Jepusien : s|qeliey| peoT : ()speoTiof) Jeol : wnwiuezIS| wey ; wayy
Bus : oweN _ wey 4 i Jewoysng i Uoneiadg : uoneao| poliagaw | : w1 }sog — Loneisdo : uonesadoBupO
o1 : juen)) Jepualeg : oz poLadawl] : auwi1id| g
el soInosay uopesado . eung
y
Jiojesa)| : ()pus)
Lo - (ubed] H0US paubIsun - ()jera 1AUDIEIBIHIRD)|
yiys o adA : ()sioquispiof| 5
apoN : (Buugs : u u)pu (odAL : & uIBuMOIeS - LOR0B}2QWIBIG0IdBIGEsI
' zawoz,;siwﬂm - Tured adAL : (Jloumoef) OPON: UOREI00SSY (uonoerequiaiqoidaiqeus " :&mﬁw_cu_b &Mﬂh%wm
(Buws : u ujesess) 100q : (Jdnoups) 1009 : pabueyo)| Jur: ()jonaod
SpON : (Buuls : wu uuies Bupis : AioBajegans|
= Buys : oweu| Buins - KIoboien = i seisnp)
'L owensel Bums : uopduosaq| {Jubaq|
|||||||| N (100q : q u)paBueyDIas| [onaTsEH
Bums - (owenioD I odhL L ___1____ Ayoweseisen ()swaiqoigarepdn|

\\\\\\\\ | | .

Manual version 0.7.1

Information for developers 102

6.3 Extension modules

FrePPLe is designed as an extendable framework.

Additional modeling and solver modules can be loaded at runtime without recompil-
ing the library.

Such extension modules can be shipped with frePPLe, or can be developed by third
parties. Modules can be open source or have a commercial license.

An simple example is available in the testcase sample_module (p[119).

FrePPLe currently includes three examples of such extension modules: a module
implementing a python interpreter, a forecast class implementing a special type of
demand, and a solver using a linear programming algorithm.

The steps below define how a custom extension can be build on the framework.

* The proper way to build extension is by creating modules.
Other ways of extending the package may technically be possible, but are not
recommended.
Copying the code and header structure from an existing module is the quickest
and easiest start.

* Create your own header files, and include the frePPLe header file planner.h to
have access to the frePPLe objects.
A simple header file can look like this:

#include "frepple.h"
using namespace frepple;

namespace your_module

{
MODULE_EXPORT const char* initialize(
const CommandLoadLibrary::ParameterListé& z
)i

your classes and function definitons

* Create your own C++ implementation files, which will include your customized
header file.
It is important is to include an initialize() method, and use it to register your
extension in the frePPLe framework. The method is automatically called when
the module is loaded.

#include "your_module.h"
namespace your_module

{

MODULE_EXPORT const char* initialize(
const CommandLoadLibrary::ParameterLists z

)

your initialization code goes here

Manual version 0.7.1

Information for developers 103

}

your method and class implementations go here

* Compile your code as a loadable module.
The command line options and arguments vary for each compiler and platform.
For gcc I use the options “-module -shrext .so -avoid-version”, adding also “-
no-undefined” when running under Cygwin.
To keep things simple and transparant please use the .so extension for you mod-
ules and place them in the SFREPPLE_HOME directory.

* Update the init.xml or init.py file to load your module with the “frep-
ple.loadmodule” Python function.
Keyword arguments to this function are passed to the initialize() funtion when
the module is loaded.

» Update the file frepple.xsd by defining the XML constructs enabled by your
module.
To keep things clean and modular, it is recommended to do this by including a
seperate xsd file rather than directly entering the definition in the file.

6.4 Portability

The project is compiled and tested only for 32-bit and 64-bit linux and Windows
environments, with Linux being the primary development platform. The project uses
the GNU autotools build system to provide a maximum of portability.

Porting to other platforms is encouraged - you’ll have all required support in helping
with this.

Here are some areas where porting may be a bit challenging:

* Availability of a modern C++ compiler which supports STL, templates and
template specialization.

* File system functions such as fstat, paths, directory listings

* Availability of the Pthreads library for threading.
FrePPLe currently only supports the Windows threading functions and the
Pthreads.

* Shared libraries
Currently the code only supports the dlopen (Solaris, Linux and various BSD
flavors) and LoadLibrary (Windows) functions.

* Availability of the Xerces-C XML parser.
* Availability of the Python language.

Manual version 0.7.1

Information for developers 104

6.5 Version control

The software changes are tracked with subversion on the Sourceforge site.
The subversion repository allows anonymous access. Use the following command to
checkout the latest version of the code:

svn co https://frepple.svn.sourceforge.net/svnroot/frepple/trunk frepple

The repository content can also be browsed online at fhttp://frepple.svn.sourceforge
.net/viewvc/frepple/

Complete detailed instructions are available on http://sourceforge.net/svn/?group_id
=166214.

A example subversion configuration is available in the file subversion.config for con-
venience. In particular the section on the automatic properties is of interest when
adding files to the project.

6.6 Style guide

To enforce the same formatting of the source code the astyle tool is used.
See http://astyle.sourceforge.net/ for more information.

The following formatting options are used:

-- style=ansi

-- indent=spaces=2

-- indent-classes

-- indent-switches

-- min-conditional-indent=2
-- one-line=keep-statements
-- one-line=keep-blocks

-- max-instatement-indent=2
-- convert-tabs

Astyle does a pretty decent job, but reviewing the astyle changes before committing
them is still required: astyle sometimes misses the point. ..

6.7 Security

When frePPLe is used in a networked multi-user environment, security is very impor-
tant.
The frePPLe C++ code is developed with security in mind.

Here are some notes and considerations on this topic:
* FrePPLe can validate incoming XML data with an XML-schema. Invalid data
will be rejected and an error message is generated.

The XML Schema files frepple.xsd and frepple_core.xsd define the valid struc-
tures.

Manual version 0.7.1

http://frepple.svn.sourceforge.net/viewvc/frepple/
http://frepple.svn.sourceforge.net/viewvc/frepple/
http://sourceforge.net/svn/?group_id=166214
http://sourceforge.net/svn/?group_id=166214
http://astyle.sourceforge.net/

Information for developers 105

When integrating frePPLe with other systems it is strongly recommended to
validate the incoming XML data against a small and well-controlled subset of
the default XML-schema.

* The python XML processing instruction allows execution of arbitrary python
statements with the privilege of the user running the frePPLe executable.
While allowing a maximum of flexiblity for configuring and customizing freP-
PLe, it also creates an open door to access your system. Access to this com-
mand should be restricted, and/or frePPLe should be run by a user account with
limited privileges.

* When using Django, its standard web authentication mechanism is relatively
weak.

In secure environments, consider using HTTPS and plugging in a different au-
thentication mechanism.

6.8 Internationalization

This section contains some notes on topics relevant for the internationalization.

1. It is highly recommended to use UTF-8 as the encoding of character data.
Using it consistently for your locale, XML-files and databases helps in avoid-
ing headaches and sleepless nights.

2. When creating a database for the Django user interface, make sure the character
encoding properly support utf-8.
When using MySQL, this is easiest don by setting the database parameter “de-
fault character set” to “utf-8” and “default collate” to “utf§8_general_ci”.
When using Oracle, this is controlled through the database “character set” and
“national character set”.
PostgreSQL provides the ‘encoding’ setting on the database.
SQLite is unicode-ready by default.

3. Xerces-C will transcode the input XML data from the input encoding (typically
specified with a <?xml1 version="1.0" encoding=“UTF-8” ?> header line)
to the locale of your *nix shell or Windows environment.

Xerces-C has intrinsic support for ASCII, UTF-8, UTF-16 (Big/Small En-
dian), UTF-32(Big/Small Endian), EBCDIC code pages IBM037, IBM1047
and IBM1140 encodings, ISO-8859-1 (aka Latin1) and Windows-1252.

This means that it can parse input XML files in these encodings. For more
exotic encodings a special configuration and compilation is required: see the
Xerces-C documentation for more details.

4. Internally frePPLe stores string data in the locale of your environment: see the
documentation on the setlocale C function.
For most modern Linux distributions the default setting is a UTF-8 encoded
locale, meaning that every unicode character can be represented. The environ-
ment variable LC_ALL can be used to specify a suitable locale.
On windows the default locale is some ANSI default codepage (which can rep-
resent a limited set of characters only).

Manual version 0.7.1

Information for developers 106

5. When exporting data out of frePPLe, no data conversion to specific encodings

is done.
All output will be in the locale of your environment.

FrePPLe internally uses byte-based string manipulation routines, not character-
based.

For UTF-8 encoding and the single-byte codepages this works fine, but with
multi-byte encodings such UTF-16 and UTF-32 this won’t work any more.
Such encodings are NOT supported by frePPLe.

6.9 Translating the user interface

This section provides step by step instructions on how to translate the user interface
to your favorite language.

1.

You’ll need to install a gettext catalogs (.po files) editor.
Highly recommended is the poedit tool, which can be downloaded from http:
/Iwww .poedit.net/

. Copy the directory contrib\django\freppledb\locale\nl to a new subdirectory

with the name of your language code.
The possible language codes can be found on http://www.w3.org/TR/REC

~html40/struct/dirlang.html#langcodes

. Use poedit to open the files django.po and djangojs.po in the directories you

just copied.

Translating the strings in the file will take a while.

Some words already have been translated by the Django project. A comment
marks those and you can skip translating those.

Make sure you keep the HTML in your translations valid.

. Edit the file contrib\django\freppledb\settings.py.

Add the language code and description to the variable LANGUAGES.

. You can now test the translations, after a restart of the web server.

FrePPLe will detect the language setting of your browser, so you need to con-
figure your browser to have the new language as the preferred one.

. The installer also needs updating to recognize the new language.

The files contrib\installer\parameters.ini and contrib\installer\frepple.nsi need
straightforward editing.

The frePPle team is very keen on supporting additional languages. If you have ques-
tions or problems with any of the above we’ll be glad to help you forward.

Manual version 0.7.1

http://www.poedit.net/
http://www.poedit.net/
http://www.w3.org/TR/REC-html40/struct/dirlang.html
http://www.w3.org/TR/REC-html40/struct/dirlang.html

CHAPTER

7
Unit tests

These pages document the test suite available in the ‘test’ subdirectoy. The tests can
be categorized in the following functional categories:

 Unit tests, which verify the behavior specific parts of the code.
» Performance tests, which focus on the performance (memory and/or cpu-time).
» Samples, which demonstrate the real-life usage of the tool.

The test suite is run by the runtest.py script in the test subdirectory. You need to have
Python installed on your machine to run the test suite.
Example usage:

runtest.py:
Run all tests

runtest.py —-- exclude not_this_test:
Run all tests, except the ones you choose to skip
runtest.py —— vcc:

Run all tests on Windows
runtest.py A B:

Run the tests A and B
runtest.py -- debug A:

Run the test A, verbosely showing its output
runtest.py —-- help:

Print information on the script and its options

The tests described here only test the core library.
A seperate test suite exists for the Django user interface.

Test Callback (p[108)

Test Cluster (p[108)

Test Constraints Leadtime 1 (p[109)
Test Constraints Material 1 (p [I09)

L=

107

Unit tests 108

5. Test Constraints Material 2 (p [I09)
6. Test Constraints Material 3 (p [L10)
7. Test Constraints Resource 1 (p[T10)
8. Test Constraints Resource 2 (p[I10)
9. Test Constraints Resource 3 (p[T10)

10. Test Constraints Resource 4 (p[110)

11. Test Constraints Resource 5 (p[TT1))

12. Test Datetime (p[T11)

13. Test Deletion (p[IT1)

14. Test Demand Policy (p[IT1))

15. Test Flow Effective (p[I12)

16. Test Forecast 1 (p[I12)

17. Test Forecast 2 (p[I13))

18. Test Forecast 3 (p[I13)

19. Test Forecast 4 (p[L14)

20. Test Forecast 5 (p[114)

21. Test Jobshop (p[114)

22. Test Load Effective (p[[14)

23. Test LP Solver 1 (p[IT3)

24. Test Name (p[I13))

25. Test Operation Available (p[T13))

26. Test Operation Effective (p[T16)

27. Test Operation Pre Op (p[116)

28. Test Operation Routing (p[IT7)

29. Test Pegging (p[117)

30. Test Python 1 (p[I17)
31. Test Python 2 (p[I18)

32. Test Python 3 (p[118)

33. Test Problems (p[118)

34. Test Procure 1 (p[T18)

35. Test Safety Stock (p[I19)
36. Test Sample Module (p[I19)
37. Test Scalability 1 (p[T19)
38. Test Scalability 2 (p[T19)
39. Test Scalability 3 (p[120)
40. Test XML (p[120)

41. Test XML Remote (p[120)

7.1 Test Callback

This test verifies the event publishing and subscription mechanism.

7.2 Test Cluster

This test verifies the correctness of the clustering algorithm.
A network is built with a whole range of possible interconnections between operations,

Manual version 0.7.1

Unit tests 109

buffers and resources.

7.3 Test Constraints Leadtime 1

This test verifies the solver behavior for lead time constraints. Demands are placed
on the network such that operations are planned in the past in the unconstrained plan.
Demands are appropriately shorted or planned late in the constrained plan to solve the
problems.

hip End Item
Make Subassembly Make End ltem Dsurla?lon Y day
Duration 1 day + 0.5 day/piece Duration 7 days
Raw Material Subassembly End item
Inventory: 20 Inventory: 15 Inventory: 0

A first order for 7 units is due on day 3 after the current date.
It is planned to be delivered late on day 8: the production of the end item starts on the
current date, and takes 7 days. The delivery takes an additional day.

A second order for 14 units is due on day 11.

The inventory of the subassembly is now depleted and 6 new subassemblies need to
be produced. These subassemblies are due on day 3.

In the 2 days between the current date and the due date of the subassemblies 2 units
can be produced. There are 3 subassembly operations are planned in parallel, each
for 2 units, starting on the current day and finishing on day 3.

Sufficient raw material is available in inventory for the subassemblies.

The order is delivered on time.

7.4 Test Constraints Material 1

This test verifies the behavior of the buffer solver for the case where no producing
operation is defined.
Four variations of a base scenario are tested:

* 3 consumers, ordered in chronological order

* 3 consumers, not ordered in chronological order

* extra supply arriving at a different date, causing a late order

* extra supply arriving at a different date, but already partially used up

7.5 Test Constraints Material 2

This model tests the buffer solver code in situations where a supplying operation is
available.

1. A simple test of a material constraint when the quantity-per of the flows is
different than 1.

Manual version 0.7.1

Unit tests 110

2. Identical to 1, but now including also now enforcing integer quantities.

3. Same as 1, but now the make operation consumes from 2 more materials.

4. Similar to 3, but with an updated supply picture on the additional materials.
The constraining material is first b, then c and then b again.

5. Based on 1, but with of an alternate producing operation and different quantities
on each alternate.

6. Based on 1, but with a routing producing operation with multiple flows.

7.6 Test Constraints Material 3

This model test the buffer solver code in situations where the minimum onhand limit
is varying.

1. Scenario of a constant, non-zero limit.

2. Same as 1, but now the supply is limited. The inventory target can’t be reached
and all supply is used to satisfy demand.

Same as 1, but with minimum target varying DEcreasing over time.

4. Same as 3, but with minimum target varying INcreasing over time.

(98]

7.7 Test Constraints Resource 1

A simple capacity problem that can be resolved by moving operation plans early.

7.8 Test Constraints Resource 2

A capacity shortage where operation plans are moved earlier till they are in the past.
The associated demands are then shorted.

7.9 Test Constraints Resource 3

A capacity problem where a single operation loads multiple resources. This test case
also has capacity limits varying over time.

7.10 Test Constraints Resource 4

This test shows how capacity constraints are solved in situations with a complex load
profile and with interaction between material and capacity constraints.

A few solver loops are required to fill the available capacity slots and minimize the
lateness.

Manual version 0.7.1

Unit tests 111

7.11 Test Constraints Resource 5

In this test the resource capacity varies heavily over time.

The test case verifies the resource solver is capable of using every single bit of capacity
available on the resource. The capacity search is done for two situations: once with a
search backward in time, and another one forward in time.

This test also verifies the logic used by calendars to select the bucket that is in effect
on a certain day.

7.12 Test Datetime

FrePPLe uses some wrapper classes around the C date and time functions.
These are tested here: conversions to and from strings, additions, ...

7.13 Test Deletion

This test verifies the capability to delete parts of the model. After loading the model
different entities are one-by-one being deleted. After each delete we replan and save
the model to make sure the deletion is working correctly: an incorrect delete would
crash the application!

7.14 Test Demand Policy

The test verifies the demand policies.

The supply situation is such that half of the demand can be met in time, and half of it
late:

* Demand: 20 on due date 5 Jan
* Supply: 10 available as inventory, and 10 arriving on 10 Jan

The demand policy controls how the demand is allowed to be planned in such a con-
strained situation:

* Case A:
The default policy is to allow demands to be planned without any limits on the
timing and quantity of the deliveries.
Result: Delivery of 10 units on 5 Jan and a second delivery on 10 Jan.
* Case B:
No lateness is allowed.
Result: A delivery of 10 units on 5 Jan.
* Case C:
Lateness is allowed, but we only accept a delivery for the full requested quan-
tity.
Result: A delivery of 20 units on 10 Jan.

Manual version 0.7.1

Unit tests 112

* Case D:
No lateness is allowed, and we also only accept a delivery for the full requested
quantity.
Result: No delivery planned.
* Case E:
The maximum allowed delivery date is jan 7, without any restriction on the
delivered quantity.
Result: A delivery of 10 units on 5 Jan
* Case F:
The minimum quantity shipped is 11, without any restriction on the delivery
date.
In this case the onhand on jan 5 is increased to 15.
Result: A delivery of 20 units on 10 Jan

7.15 Test Flow Effective

This test verifies the behavior of date effective flows:

* case 1: effectivity on consuming flows of a delivery operation
This scenario models a situation where an old product is being replaced by a
new version starting from a certain date.

* case 2: date-effective material consumption with constrained supply
The supply of date effective component A is constrained. Extra supply arrives
only after the end of the effectivity of the component. This extra supply is
ignored since the flow is not effective any more at that time.

* case 3: date-effective producing flow
This scenario models a so-called learning curve: the production of a new prod-
uct becomes more efficient as time progresses.
The operation “3. make end item” produces a variable number of units of the
end item. In january it produces 0.7 units, in februari it produces 0.8 units and
from then onwards it produces 1.0 units.

7.16 Test Forecast 1

The first step in the forecast netting process is associating each actual order with a
forecast it can net from.
This test case test this matching algorithm.

A customer hierarchy is modeled as follows: “grandparent customer” > “parent cus-
tomer” > “customer”.

An item hierarchy is modeled as follows: ‘“grandparent item” > “parent item” >
“item”.

Forecasts are defined at various combinations of these levels.

Actual orders are then looking for a matching forecast in these hierarchies.

Different scenarios are being validated:

Manual version 0.7.1

Unit tests 113

* A: an order matches a forecast at ‘customer’+’item’ level

* B: an order matches a forecast at ‘item’ level

* C: an order matches a forecast at ‘parent customer’ + ‘item’ level

* D: an order matches a forecast at ‘customer’ + ‘parent item’ level

* E: an order matches a forecast at ‘parent customer’ + ‘parent item’ level

7.17 Test Forecast 2

This test verifies the forecast distribution functionality.
This functionality allows specifying the forecast for a certain date range. FrePPLe
then breaks it down into smaller time buckets that are used for planning.

This functionality is typically used to translate between the time granularity of the
sales department (which creates a sales forecast per e.g. calendar month) and the
manufacturing department (which creates manufacturing and procurement plans in
weekly or daily buckets).

Another usage is to model a delivery date profile of the customers. Each bucket has a
weight that is used to model situations where the demand is not evenly spread across
buckets: e.g. when more orders are expected due on a monday than on a friday, or
when a peak of orders is expected for delivery near the end of a month.

Two example scenarios are tested:

» The forecast value is specfied for a date range of 4 weeks.
For planning in frePPLe the forecast is automatically spread over 21 daily buck-
ets and a weekly bucket. Among the daily buckets, saturdays and sundays don’t
get any forecast. Also, mondays are busier than fridays and get a bigger share
of the forecast.

* The forecast value is specified in calendar months. For planning in frePPLe the
forecast is spread over weeks.
Since the week and month boundaries don’t align, the forecast is proportionally
split across all intersecting weeks.

7.18 Test Forecast 3

This test verifies the forecast netting behavior.

Actual orders are searching a matching forecast, and then look for available net fore-
cast in the forecast buckets. The search for net forecast first looks backwards in time
and then forward in time, respecting the parameters Net_Early and Net_Late which
define the allowed time fence.

The test also verifies that the saved xml-file can be read in again at a later stage,
producing an identical model.

Manual version 0.7.1

Unit tests 114
7.19 Test Forecast 4

This test verifies how the forecast distribution works with discrete forecasts.

A forecast of 1 over a date range of 28 daily buckets will result in a O zero forecast for
all days, except for the middle one.

A forecast of 2 over the same date range will give 2 buckets with a forecast of 1: a
first one on the 7th day and a second one on the 21st day.

The test case has a couple more examples on the above.

7.20 Test Forecast 5

A number of cases are tested for the forecast generation based on a time series of
historical data.

* A simple constant demand

* A simple trended demand

* A very irregular demand

* The historical demand is first trended and then constant

* The historical demand is first constant and then a trend starts
* A forecast with a seasonal demand pattern

* A forecast with very little historical data

7.21 Test Jobshop

This test models the classic Fisher and Thompson 10x10 scheduling problem, also
known as the “mt10” scheduling problem.

Ten demands each have a routing over ten different machines. The machine sequence
and the processing time is different for each demand.

The optimal solution for this highly constrained and combinatorial problem is 930
hours.The frePPLe solver is called iteratively to search for the optimal solution. The
best solution found by frePPLe is currently 1056 hours, 13% over the optimum.

7.22 Test Load Effective

This model verifies the behavior of date effective loads:

 case 1: unconstrained situation where operationplans intersect in various ways
with the effective period.

* case 2: similar to 1 but with a capacity constraint, which is solved by producing
early.

* case 3: similar to 1 but with a capacity constraint, which causes demand to be
satisfied late.

Manual version 0.7.1

Unit tests 115
7.23 Test LP Solver 1

This test shows how the linear programming solver is used to solve a capacity alloca-
tion problem in an optimal way.

The problem input consists of:

* A set of time buckets.

* A set of demands, each with a due bucket, a quantity and a priority.

* A set of resources, each with an available capacity per time bucket.

* A set of loads, i.e. demands requiring some time on one or more resources.

The problem is subject to the following constraints:

* For each time bucket and each resource:
sum of capacity used by each demand <= capacity available in the resource
bucket

* For each demand:
sum of planned quantities in different buckets <= requested demand quantity

The LP problem solves for a hierarchy of goals.

* Minimize the shortness of demand of priorities 1, 2 and 3
* Minimize the lateness of demand of priorities 1, 2 and 3
* Minimize the early use of capacity (ie use capacity before the due date)

7.24 Test Name

This test reviews the data structure that is used for storing all named entities: func-
tionality of the insertion, deletion and search operations, as well as their scalability.

The time for these operations properly fits a logaritmic profile, as expected with a
binary tree data structure. A testing routine for this profile is also included in the test,
but it isn’t part of the regression tests since it isn’t easy to produce a good pass-fail
criterion.

7.25 Test Operation Available

This test verifies that availability calendars are respected on operations.
A number of availability situations are modeled:

* A FixedTime operation in a location that is unavailable over 2 holiday periods.

* A FixedTime operation in a location that is available only for 2 periods.

* A TimePer operation in a location that is unavailable over 2 holiday periods.

* A TimePer operation in a location that is available only for 2 periods.

* A complex case combining material, capacity, lead time and availability con-
straints.

Manual version 0.7.1

Unit tests 116
7.26 Test Operation Effective

This test checks the code for alternate operations where date effectivity is involved.

The end product in this test can be produced in 2 locations. In a first part of the
horizon location A is the only allowed source, while in the last part of the horizon
only sourcing from location B is possible.

Three situations are tested:

1. No constraints and we have demands in different parts of the horizon.

2. A demand due in the first part of the horizon is delayed such that it spans into
the second part of the horizon.

3. A demand due in the second part of the horizon requires capacity in the first
part of the effectivity horizon.

7.27 Test Operation Pre Op

This test verifies the behavior of pre-operation and post-operation delays.
These are as delay times before and after an operation, which the solver tries to respect
but can violate if required.

1. Make ltem .
Case 1 Duration: 7 days 1. Deliver ltem

Post-Operation delay 7 days Duration: 0 day

1. item
Irventary: 0

2. Make ltem ;
Case 2 Duration: 1 day + 1day * gty g Ef“\ff%rdhem
Post-Operation delay: 7 days uration: W day

[J—/N—]
2. item
Irveritory: 0

3. Make ltem ;
Case 3 Duration: 7 days gurgt?ol::%rdléem
Post-Operation delay: 7 days . Y

3. item

Raw haterial Inventory: O

Irevertory: 10

Extra supply arriving an jan 11

C 4 4. Make ftem level 2 4. Make ftem level 1)
ase Duration: 7 days Durstion: 7 days 4. Deliver ltern
Post-Operation delay: 7 days Post-Operation delay: 7 days Duration: O cay

4. ltern level 2 4. ltern level 1
Irvertory; 0 Irvertory: 0

Several cases are included in this test:

1. Post-operation time on a fixed-time operation.
The post-operation time is respected when possible, but when running against

Manual version 0.7.1

Unit tests 117

a lead time constraint the post-operation time is reduced to meet the demand
on-time / asap.

2. Post-operation time on a time-per operation.
The constraint is again a lead time constraint.

3. Post-operation time on fixed-time operation.
This time the constraint is the late supply of raw material supply. It causes the
post-operation time to be reduced.

4. Post-operation time on multiple levels in the supply path.
The supply path is four levels deep, and a post-operation time is set at each
level.
In case of material of lead time constraints the post-operation time on the most
upstream operation/operations (i.e. operations deeper in the bill of material)
is/are shrunk first.

7.28 Test Operation Routing

A routing operation is is built up from a number of suboperations that are executed in
sequence. This test verifies the behavior of routing operations.

The test plans the routing with different material, capacity and lead time constraints.

Agzemble Operator AEE Operator ©
LS

| [|
| /) |
| / b Assemble product |

-\‘ ; _\ :

Component D Step A / Step B\ Step C Deliver
Duration 1 dag:'fl" Dur ation 1 &gy + 1dayihiece Durgtion 1 day Duration O day
B A

i

Component A Component B Component
Procured

7.29 Test Pegging

Verifies the correctness of the material pegging. Material streams are traced upstream
and downstream and printed to the output.

7.30 Test Python 1

This test verifies and demonstrates the embedded Python interpreter.
It verifies:

* Executing Python code as XML processing instruction.

Manual version 0.7.1

Unit tests 118

* Executing Python code in a seperate source file.

* Performance comparison of data loading in different ways.
 Catching of exceptions thrown from frePPLe C++ code.

* Executing Python code in different threads

No pass/fail criterion is present in this test.

7.31 Test Python 2

This test shows how we can access frePPLe objects from Python.

7.32 Test Python 3

This test shows how we can use Python to create a frePPLe model: we can create
objects, access existing objects and change objects.

7.33 Test Problems

Verifies that problems objects are created and deleted properly when the model is
being updated in various ways.

7.34 Test Procure 1

This unit test verifies the behavior of procurement buffers in a number of scenario’s.
The different cases are:

Base scenario.

Procure in multiples.

Procurement with miniumum size, maximum size and in multiples.

Invalid parameters for size constraints.

Procurement with minimum and maximum interval.

The full monty. Procurement with minimum interval, maximum interval, mini-
umum size, maximum size and in multiples.

Procurement with fixed interval.

8. Procurement in fixed quantity.

9. Procurement in fixed quantity with fixed interval.

A S

~

In all these cases the demand is directly placed on the procured item (i.e. no bill of of
material is involved at all) and the demand pattern is also identical.
The test runs first an unconstrained plan, followed by a constrained plan.

Manual version 0.7.1

Unit tests 119
7.35 Test Safety Stock

This test demonstrates the capabilities to model and plan safety stocks in frePPLe.

There are 2 ways:

1. Quantity-based safety stock.
A minimum calendar on a buffer defines the desired minimum stock level,
which can vary over time.
The solver tries to replenish to this level when replenishing the buffer, but han-
dles it as a soft constraint only.
The buffer flags a problem when the inventory drops below the minimum target.
2. Time-based safety stock.
A post-operation time on an operation defines a time delay after the end of the
operation.
The solver tries to respect this delay, but handles it as a soft constraint only.
No problem is shown when the post-operation time is shrunk or reduced.

7.36 Test Sample Module

A simple example on how to define an extension module for Frepple.
The example defines a new operation type that can be used to represent transportation
operations easier.

7.37 Test Scalability 1

Tests the scalability of the data loading, running an MRP plan (including the clustering
algorithm) and saving the plan. The network in this case consists of a lot of parallel
clusters, which can be solved in parallel. See also the test scalability_2

The algorithms scale linearly with the model size, while the mayor underlying data
structures are binary trees which scale logarithmically with the model size... The
result is a runtime that combines both. In summary, one could say that the system
scales a bit worse than linear, but definately not quadratic or worse.

7.38 Test Scalability 2

In this test a model is created based on parametrizable values of:

* Number of clusters.
e Number of demands per cluster.
* Depth of the supply chain, i.e. number of levels.

Comparing the runtime with different values of these parameters allows to gain a
better understanding of the factors that are impacting memory and runtime most sig-
nificantly

Manual version 0.7.1

Unit tests 120

The algorithms scale linearly with the model size, while the mayor underlying data
structures are binary trees which scale logarithmically with the model size... The
result is a runtime that combines both. It depends on the data set, the platform and the
compiler how your model will scale.

7.39 Test Scalability 3

This test is designed to verify the scalability of the timeline data structure. The net-
work consists of a single buffer with a very simple operation producing into it. Since
the timeline data structure is currently based on a linear list the scalability of the time-
line is expected to be bad... A quadratic increase in the runtimes can be observed A
more scalable data structure has been designed to provide a more scalable implemen-
tation.

7.40 Test XML

This is a test for the XML parser routines. The test consists of a complex xml docu-
ment to be parsed and processed:

* XML tags 8 nested levels deep
* ignore-element sections

7.41 Test XML Remote

This test uses the HTTP protocol to pick up XML-data from the URL http://frepple
.sourceforge.net/test/xml_remote.xml.
The test is implemented using the urllib2 Python library.

Manual version 0.7.1

http://frepple.sourceforge.net/test/xml_remote.xml
http://frepple.sourceforge.net/test/xml_remote.xml

CHAPTER

8

Appendices

1. GNU Lesser General Public License (p[121)
2. GNU Free Documentation License (p [I29)

8.1 GNU Lesser General Public License

Version 2.1, February 1999

Copyright © 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

This is the first released version of the Lesser GPL. It also counts as the successor of
the GNU Library Public License, version 2, hence the version number 2.1.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee
your freedom to share and change free software—to make sure the software is free
for all its users.

This license, the Lesser General Public License, applies to some specially designated
software packages—typically libraries—of the Free Software Foundation and other
authors who decide to use it. You can use it too, but we suggest you first think care-
fully about whether this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

121

Appendices 122

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish); that you
receive source code or can get it if you want it; that you can change the software and
use pieces of it in new free programs; and that you are informed that you can do these
things.

To protect your rights, we need to make restrictions that forbid distributors to deny
you these rights or to ask you to surrender these rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the library or if you modify
it.

For example, if you distribute copies of the library, whether gratis or for a fee, you
must give the recipients all the rights that we gave you. You must make sure that they,
too, receive or can get the source code. If you link other code with the library, you
must provide complete object files to the recipients, so that they can relink them with
the library after making changes to the library and recompiling it. And you must show
them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2)
we offer you this license, which gives you legal permission to copy, distribute and/or
modify the library.

To protect each distributor, we want to make it very clear that there is no warranty
for the free library. Also, if the library is modified by someone else and passed on,
the recipients should know that what they have is not the original version, so that the
original author’s reputation will not be affected by problems that might be introduced
by others.

Finally, software patents pose a constant threat to the existence of any free program.
We wish to make sure that a company cannot effectively restrict the users of a free
program by obtaining a restrictive license from a patent holder. Therefore, we insist
that any patent license obtained for a version of the library must be consistent with
the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU Gen-
eral Public License. This license, the GNU Lesser General Public License, applies
to certain designated libraries, and is quite different from the ordinary General Pub-
lic License. We use this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the
original library. The ordinary General Public License therefore permits such linking
only if the entire combination fits its criteria of freedom. The Lesser General Public
License permits more lax criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does Less to pro-
tect the user’s freedom than the ordinary General Public License. It also provides
other free software developers Less of an advantage over competing non-free pro-
grams. These disadvantages are the reason we use the ordinary General Public Li-

Manual version 0.7.1

Appendices 123

cense for many libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve
this, non-free programs must be allowed to use the library. A more frequent case is
that a free library does the same job as widely used non-free libraries. In this case,
there is little to gain by limiting the free library to free software only, so we use the
Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permis-
sion to use the GNU C Library in non-free programs enables many more people to
use the whole GNU operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the users’ freedom,
it does ensure that the user of a program that is linked with the Library has the freedom
and the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow.
Pay close attention to the difference between a “work based on the library” and
a “work that uses the library”. The former contains code derived from the library,
whereas the latter must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which
contains a notice placed by the copyright holder or other authorized party saying it
may be distributed under the terms of this Lesser General Public License (also called
“this License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions
and data) to form executables.

The “Library”, below, refers to any such software library or work which has been dis-
tributed under these terms. A “work based on the Library” means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library
or a portion of it, either verbatim or with modifications and/or translated straightfor-
wardly into another language. (Hereinafter, translation is included without limitation
in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifi-
cations to it. For a library, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used
to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing

Manual version 0.7.1

Appendices 124

it). Whether that is true depends on what the Library does and what the program that
uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stat-
ing that you changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge
to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of
data to be supplied by an application program that uses the facility, other
than as an argument passed when the facility is invoked, then you must
make a good faith effort to ensure that, in the event an application does
not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function
or table used by this function must be optional: if the application does
not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered in-
dependent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you dis-
tribute the same sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribu-
tion of derivative or collective works based on the Library.

Manual version 0.7.1

Appendices 125

In addition, mere aggregation of another work not based on the Library with the Li-
brary (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must alter all
the notices that refer to this License, so that they refer to the ordinary GNU General
Public License, version 2, instead of to this License. (If a newer version than version
2 of the ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the or-
dinary GNU General Public License applies to all subsequent copies and derivative
works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place
satisfies the requirement to distribute the source code, even though third parties are
not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this Li-
cense. Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that work

Manual version 0.7.1

Appendices 126

also fall under Section 6, whether or not they are linked directly with the Library
itself.

6. As an exception to the Sections above, you may also combine or link a “work
that uses the Library” with the Library to produce a work containing portions of the
Library, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering
for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-
readable source code for the Library including whatever changes were
used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with
the complete machine-readable “work that uses the Library”, as object
code and/or source code, so that the user can modify the Library and then
relink to produce a modified executable containing the modified Library.
(Itis understood that the user who changes the contents of definitions files
in the Library will not necessarily be able to recompile the application to
use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Li-
brary. A suitable mechanism is one that (1) uses at run time a copy of the
library already present on the user’s computer system, rather than copy-
ing library functions into the executable, and (2) will operate properly
with a modified version of the library, if the user installs one, as long
as the modified version is interface-compatible with the version that the
work was made with.

¢) Accompany the work with a written offer, valid for at least three
years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from
a designated place, offer equivalent access to copy the above specified
materials from the same place.

e) Verify that the user has already received a copy of these materials
or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

Manual version 0.7.1

Appendices 127

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side
in a single library together with other library facilities not covered by this License,
and distribute such a combined library, provided that the separate distribution of the
work based on the Library and of the other library facilities is otherwise permitted,
and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities. This must
be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that
part of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sub-
license, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. There-
fore, by modifying or distributing the Library (or any work based on the Library), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,
link with or modify the Library subject to these terms and conditions. You may not
impose any further restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute the Library
at all. For example, if a patent license would not permit royalty-free redistribution of
the Library by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Library.

Manual version 0.7.1

Appendices 128

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system which is
implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Library specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Library does not specify
a license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for per-
mission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH

Manual version 0.7.1

Appendices 129

YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

8.2 GNU Free Documentation License

Version 1.2, November 2002

Copyright © 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth
Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and use-
ful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in

Manual version 0.7.1

Appendices 130

duration, to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text
may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an other-
wise Transparent file format whose markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, I&IEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the

Manual version 0.7.1

Appendices 131

title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History™.)
To “Preserve the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed cov-
ers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard

Manual version 0.7.1

Appendices 132

network protocols a complete Transparent copy of the Document, free of added ma-
terial. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under pre-
cisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which should,
if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the terms
of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and publisher
of the Modified Version as given on the Title Page. If there is no sec-
tion Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then

Manual version 0.7.1

Appendices 133

add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before
the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or ded-
ications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

Manual version 0.7.1

Appendices 134

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant Sections of your combined work in
its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such sec-
tion unique by adding at the end of it, in parentheses, the name of the original author
or publisher of that section if known, or else a unique number. Make the same adjust-
ment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Doc-
ument, then if the Document is less than one half of the entire aggregate, the Docu-
ment’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of

Manual version 0.7.1

Appendices 135

these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:
Copyright © YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

Manual version 0.7.1

http://www.gnu.org/copyleft/

frePPLe 0.7.1 136

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-

leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

http://www.frepple.com/pmwiki/pmwiki.php/Main/Frepple
Page collection published July 24, 2009, at 06:22 PM
Typeset by Wikipublisher

Manual version 0.7.1

http://www.frepple.com/pmwiki/pmwiki.php/Main/Frepple

	Introduction
	Features
	Architecture
	Core library
	User interface and database layer

	Download and install
	Installing on Windows
	Windows installer
	Compiling under windows

	Installing on Linux, Unix and Cygwin
	Build instructions
	Compiling from the Subversion repository
	VMware virtual machine

	Other platforms

	User interface
	Data input
	Plan analysis
	Execute

	Modeling
	Domain model
	Environment variables
	Python Interpreter
	command_loadlib
	command_readxml
	command_readxmlstring
	command_erase
	command_save
	command_saveplan
	command_size

	Global parameters
	Fields
	Example XML structures
	Example Python code

	Buffer
	Fields
	buffer_default
	buffer_procure
	buffer_infinite
	Example XML structures
	Example Python code

	Calendar
	Calendar Fields
	Bucket Fields
	Example XML structures
	Example Python code

	Customer
	Fields
	Example XML structures
	Example Python code

	Demand
	Fields
	Example XML structures
	Example Python code

	Flow
	Fields
	Example XML structures

	Item
	Fields
	Example XML structures
	Example Python code

	Load
	Fields
	Example XML structures

	Location
	Fields
	Example XML structures
	Example Python code

	Operation
	Fields
	operation_fixed_time
	operation_time_per
	operation_alternate
	operation_routing
	Example XML structures
	Example Python code

	OperationPlan
	Fields
	Example XML structures
	Example Python code

	Problem
	Types
	Fields
	Example Python code

	Resource
	Fields
	resource_default
	resource_infinite
	Example XML structures
	Example Python code

	Solver
	Fields
	solver_mrp
	Example XML structures
	Example Python code

	Solver algorithm
	Solver features
	Solver
	Demand
	Operation
	Resource
	Buffer

	Implementation details
	Top level loop
	Demand solver
	Buffer solver
	Operation solver
	Flow solver
	Load solver
	Resource solver

	Cluster and level algorithm

	Extension modules
	Forecast module
	Module configuration
	Demand subclass demand_forecast
	Solver solver_forecast
	Example XML structures
	Example Python code

	SOAP webservice module
	Module configuration
	Command command_webservice
	Example Python code

	REST webservice module
	Linear programming solver module
	Technical implementation

	Information for developers
	Code structure
	Object
	MetaData
	Date - DateRange - TimePeriod
	Timer
	Exception
	XML Serialization
	Python binding
	Command
	Mutex
	HasName and Tree
	HasHierarchy
	Leveled

	Class diagram
	Extension modules
	Portability
	Version control
	Style guide
	Security
	Internationalization
	Translating the user interface

	Unit tests
	Test Callback
	Test Cluster
	Test Constraints Leadtime 1
	Test Constraints Material 1
	Test Constraints Material 2
	Test Constraints Material 3
	Test Constraints Resource 1
	Test Constraints Resource 2
	Test Constraints Resource 3
	Test Constraints Resource 4
	Test Constraints Resource 5
	Test Datetime
	Test Deletion
	Test Demand Policy
	Test Flow Effective
	Test Forecast 1
	Test Forecast 2
	Test Forecast 3
	Test Forecast 4
	Test Forecast 5
	Test Jobshop
	Test Load Effective
	Test LP Solver 1
	Test Name
	Test Operation Available
	Test Operation Effective
	Test Operation Pre Op
	Test Operation Routing
	Test Pegging
	Test Python 1
	Test Python 2
	Test Python 3
	Test Problems
	Test Procure 1
	Test Safety Stock
	Test Sample Module
	Test Scalability 1
	Test Scalability 2
	Test Scalability 3
	Test XML
	Test XML Remote

	Appendices
	GNU Lesser General Public License
	GNU Free Documentation License

