Potrace: a polygon-based tracing algorithm

Peter Selinger

September 20, 2003

1 Introduction

Black-on-white images can be represented either as a bitmap a vector outline.
A bitmap represents an image as a grid of black or white pixélsvector outline
describes an image via an algebraic description of its ewatdypically in the form
of Bezier curves. The advantage of representing an imagevastar outline is that
it can be scaled to any size without loss of quality. Outlimages are independent
of the resolution of any particular output device. They aadipularly popular in the
description of fonts, which must be reproducible at manjedint sizes. Examples
of outline font formats include PostScript Type 1 fonts, 8fype, and Metafont. On
the other hand, most actual input and output devices, sushamers, displays, and
printers, ultimately produce or consume bitmaps. The m®oé converting a vector
outline to a bitmap is calletendering. The converse process of turning bitmaps into
outlines is calledracing.

Itis clear that no tracing algorithm can be perfect in an Alissense, as there are
in general many possible outlines that can give rise to theedaitmap. The process
of tracing cannot be used to generate information that isalteady present. On the
other hand, out of the many possible outlines that could gaeeto a given bitmap,
clearly some are more plausible or aesthetically pleasiag bthers. For example, a
common way of rendering bitmaps at a high resolution is tevdrach black pixel as
a precise square, which gives rise to “jaggies” or stairgadterns. Clearly, jaggies
are neither pleasant to look at, nor are they particularhugble interpretations of
the original image. There is probably no absolute measuvehat constitutes a good
tracing algorithm, but it seems clear that some algoritheslgetter results than others.

In this paper, we describe a tracing algorithm that is simgfiiicient, and tends to
produce excellent results. The algorithm is calRatrace, which stands fopolygon
tracer. However, the output of the algorithm is not a polygon, butreogth contour
made from Bezier curves. The name of the algorithm derivas the fact that it uses
polygons as an intermediate representation of images.

The Potrace algorithm is designed to work well on high resmiuimages. Thus, a
typical application is to produce a vector outline from a gamy or university logo that
has been scanned at a high resolution. Another possibleafph is the conversion of
bitmapped fonts to outline fonts, if the original bitmapgdedts are available at a high
enough resolution. No tracing algorithm will work well onryesmall scales, such as



(@) (b) (€) (d)

Figure 1: Corner detection. (a) the original bitmap; (b) toany corners; (c) too few
corners; (d) good corner detection.

bitmaps for a typical 10pt screen font rendered at 75dpi. &l@ it will do a decent
job of tracing non-exact shapes, such as scanned handywitzartoon drawings, even
at relatively moderate resolutions.

Any good tracing algorithm has to perform several functiohso of these func-
tions are to find the most plausible curve that approximatgs&ven outline, and to
detect corners. There is a tradeoff between these two gbidtso many corners are
detected, the output will look like a polygon and will no l@rgoe smooth. If too
few corners are detected, the output will look smooth burtamded. An example is
shown in Figure 1.

Another important function performed by a tracing alganitis to decide which
features of the bitmapped image are relevant, and whiclifesiare artifacts of the
scanning or rendering process. Those features that carplareed as artifacts should
be filtered out completely, because if even a slight hint ebéhfeatures remains, this
can lead to visible imperfections in the output. Considetraight line of positive,
but very small, slope. When rendered as a bitmap, such a lihead to a staircase
pattern, where the individual steps of the stair could befert. No matter how far the
steps are apart, the output should be a straight line, oitelsibe visually annoying.
This example also shows that tracing is not in general a lopatation, i.e., it cannot
be based on merely looking at fixed-size neighborhoods ofra.po

Although the Potrace algorithmis very efficient, it prodsioger output than other
comparable algorithms. For instance, Figure 2 comparesulmut of Potrace 1.0,
with its standard settings, to that of AutoTrace 0.31.1 theofreely available tracing
program (see http://autotrace.sourceforge.net/). Intiaddto its superior graphical
output, Potrace also compares favorably to AutoTrace mdesf speed and file size:
The bitmap in Figure 2 took Potrace 0.27 seconds to procesgared to 1.69 seconds
for AutoTrace. Potrace produces an EPS file of 15790 bytespaced to 39788 bytes
for AutoTrace.

2 Description of the Potrace algorithm

The Potrace algorithm transforms a bitmap into a vectoirmaith several steps. In the
first step, the bitmap is decomposed into a number of pathishvitrm the boundaries



Figure 2: A detail from the seal of Stanford University; thiégmal scanned image,
left; the output of AutoTrace, center; the output of Potraigght.

between black and white areas. In the second step, eactsgthrioximated by an op-
timal polygon. In the third step, each polygon is transfadrimto a smooth outline. In
an optional fourth step, the resulting curve is optimizeddiying consecutive Bezier
curve segments together where this is possible. Finallyptitput is generated in the
required format. The following subsections describe edthese steps in more detail.

2.1 Paths
2.1.1 Path decomposition

We imagine our bitmapped image to be placed on a coordinatersysuch that the
corners (and not the centers) of each pixel have integedotates. Let us further
assume that the background color of the image is white, amdofeground color is
black. By convention, the parts of the coordinate plane lieaputside the bitmap
boundaries are assumed to be filled with white pixels.

We now construct a directed graph from our bitmap as folldves.p be a point of
integer coordinates; such a point is adjacent to four pixEi& point is called aertex
if the four pixels are not all of the same color. Mfandw are vertices, we say that
there is aredge from v to w if the Euclidean distance betwegmndw is 1, and if the
straight line segment fromto w separates a black pixel from a white pixel, so that the
black pixel is to its left and the white pixel is to its right et traveling in the direction
fromvtow. Let us call the resulting directed gra@hwith the vertices and edges just
described.

A path is a sequence of verticdsy, ..., vy} such that there is an edge fromto
vi;1, foralli =0,...,n— 1, and such that all these edges are distinct. A path is called
closed if further, v, = vp. Thelength of a path is the number of edges in it, i.e.,The
goal of path decomposition is to decompose the g@jitito closed paths, i.e., to find
a set of closed paths in which each edg&afccurs exactly once.

Potrace uses the following straightforward method to dgmuse a bitmap into
paths. Start by picking a pair of adjacent pixels of differemior. This can be accom-
plished, for instance, by picking the leftmost black pixesbme row. The two chosen



Figure 3: The path extension algorithm

pixels meet at an edge; we orient this edge so that the blaekigito its left and the
white pixel is to its right. This edge defines a path of lengtk.oWe then continue to
extend this path in such a way that each new edge has a blagkamiits left and a
white pixel on its right, relative to the direction of the patn other words, we move
along the edges between pixels, and each time we hit a covaaither go straight or
turn left or right, depending on the colors of the surrougdiixels as shown in Fig-
ure 3. We continue until we return to the vertex where we athrat which point we
have defined a closed path.

Every time we have found a closed path, we remove it from taplgby inverting
all the pixel colors in its interior. This defines a new bitmé&pwhich we apply the
algorithm recursively until there are no more black pixelft.| The result is a set of
closed paths to be passed to the next phase of the Potracitadgorhe later phases
of the Potrace algorithm look at each path independently.

2.1.2 Turn policies

In the situation in Figure 3(d), we have a choice of whethetat@ a left turn or a
right turn. This choice has no effect on the success or faidfithe path decomposition
algorithm, as we will end up with a set of closed paths eithay.\iHowever, the choice
does have an effect on the shape of the closed paths chosen.

In the Potrace algorithm, the choice of whether to turn leftight is governed
by aturn policy, which can be defined via the t ur npol i cy command line option.
Possible turn policies aréeft, which always takes a left turnight, which always takes
a right turn,black, which prefers to connect black componenthite, which prefers
to connect white componentsinority, which prefers to connect the color (black or
white) that occurs least frequently within a given neighimard of the current position,
majority, which prefers to connect the color that occurs most fretiygeand random,
which makes a (more or less) random choice. The default tifoyps minority.

The reason thablack and white are distinct turn policies fromight and left is
that some pixel colors may get inverted during the courséefgath decomposition
algorithm. Theblack andwhite policies look at the original pixel colors to determine
the direction of the turn.



@ o ® B
e aaiand IV e aan 3
EE ST

] 7f

(c) \\% (d) \\
T —— T T

[ —— L Tae

GIciE A e T

Figure 4: Examples of straight and non-straight paths. Tér&oes of the path are
shown as dots, and their 1/2-neighborhoods are shown asesqga), (b), and (d) are
straight, whereas (c) and (e) are not.

2.1.3 Despeckling

Despeckling can be performed by dropping all paths whosgiortconsists of fewer
thant pixels, for a given parameter The parametdrcan be set with the- t ur dsi ze
command line option. The area of the interior of a path carffi@ently computed by

the formula
Area:/ydx:/yx’dt.

2.2 Polygons

The second phase of the Potrace algorithm has as its inpasadcpath as defined in
Section 2.1. The output is an optimal polygon that approi@sithis path. We start by
making precise what is meant by “optimal” and by “approxiesit

2.2.1 Straight paths

Given two pointszg = (X, Yo) andz; = (x1,y1) in the coordinate plane, not necessar-
ily of integer coordinates, we define thenax-distance to bed(zy,z) = max{|x; —
Xol, Y1 — Yo|}. Thus, the set of points of max-distance at most 1/2 from tiatp
(1/2,1/2) is just the pixel centered é1/2,1/2).

For any two points, b in the coordinate plane, leb denote the straight line seg-
ment connecting andb. Herea andb are not required to have integer coordinates.

Given a non-closed path = {vo,...,vn} as in Section 2.1, we say that a line
segmentab approximates the path ifd(vp,a) < 1/2, d(vy,b) < 1/2, and for each
i=1,...,n— 1, there exists some poigtonab such thatd(v,¢;) < 1/2.

For a pathp = {vo,...,vn}, we say thedirection at indexi is viy1 — vi, where
i=0,...,n—1. There are four possible directior(§;, 1), (1,0), (0,—1), and(—1,0).
A path is calledstraight if it is approximated by some line segment, and not all four
directions occur irp.

Figure 4 shows some examples of straight and non-straighs paNote that in
this figure, the dots represent vertices in the path, whigkatithe corners, not at the



centers, of the pixels of the original bitmap. The squaresvshare not pixels, but
rather neighborhoods of path points.

Figure 4(e) shows an example of a path that is not straighipadsh it is approxi-
mated by some line segment. This is because all four direztocur in this path.

It is clear from the definition that if a path is straight, tremare all its subpaths.
In order to compute whether a given path is straight or notusethe stronger fact
that straightness is taiplewise property, in the following sense. Suppose that a given
pathp = {vp,...,vn} does not use all four directions. Thens straight if and only if
for all triples (i, j,k) of indices such that & i < j < k < n, there exists a point on
the straight line througls andv, such thad(vj,w) < 1. This observation gives rise to
a naive straightness testing algorithm that is of cubic demity in the worst case; it
proceeds simply by testing the above property for all teiej, k).

In the Potrace implementation, we use an optimization thaiva us to findall
straight subpaths of a given closed path of lengih time O(n?) in the worst case.
Briefly, the trick is to compute, for every pdir, j), aconstraint on the position of all
futurevy’s. If i is fixed andj is increasing, it suffices to check the constraint once for
eachj. Moreover, a constraint consist of at most two inequaliéied can be updated
and checked in constant time.

2.2.2 Polygons

Now consider a closed path= {vo,...,vn}. Recall thatv, = vp, so that this path
is of lengthn. Any pair of indices, j € {0,...,n— 1} defines a subpath; j, which
iSVi,...,vj if i < j, 0rvi,...,va_1,Vo,...,Vj if j <i. Letus writejei for thecyclic
differencebetweern andj, which is defined agei=j—iif i < j,andjei=j—i+nif

j <i. Thus, the length of the subpaph; is preciselyj e i. In the following discussion,
we often assume tacitly that additions and subtractionta&en modula.

We now want to construct a polygon from the closed patkie say that there is a
possible segment fromi to j if jei < n—3and the subpatfy_1 j1 is straight in the
sense of the previous definition. In other words, a subpatfesponds to a possible
segment if it can be extended by one point in either directind still be straight.
This peculiar “clipping” of a vertex from both ends of a styfai path is important to
the overall quality of the output of the Potrace algorithnitheut it, there would be
strange behavior around the corners.

Note that any path of length 3 is straight in the sense of 8e@i2.1, thus it is
guaranteed that there is always a possible segmentiftoim 1.

A polygon, for the purpose of this phase of the algorithm, is a sequehde-
dicesip < i1 < ... <im-1 such that there is a possible segment frigno iy, for
k=0,...,m—2, and fromy_1 toip. Figure 5 shows a path and two possible polygons
for it.

Note that the polygon segments shown in Figure 5 do not dgtiiave to approx-
imate their corresponding subpaths in the sense of the medségments of Figure 4.
They simply represent the fact that an approximating lirggrent exists.



: Lﬂl ? : ﬂI/ 1
1\) \ *db ynlle 1\\ \ TR Andie
NI L1 ™ T LT \ I A& (] I
\ / /
N LY andly miRNEN ARy mlllay,
1 N /
N\ y 1 i A 7
ol . o A
’)YT T7Ll 1 L] 1l ‘A.q\
AW 7 TN A

Figure 5: An optimal and a non-optimal polygon for a path

2.2.3 Penalties

Out of all possible polygons, we now want to find an optimal.o@&ir primary cri-
terion for optimality is the number of segments: a polygothwiewer segments is
considered more optimal than one with more segments. Inr&iguthe left polygon
has 14 segments, whereas the right one has 17 segmentsthihlest, polygon is more
optimal than the right one.

Among the polygons of the same number of segments, someilareste prefer-
able than others. We associate to every possible segnpengHy. Given a possible
segment fromi to j, associate to it the straight line segm&; (shown in blue in
Figure 5). The penalty associated with the segment is equiilet Euclidean length
of Vivj, times the standard deviation of the Euclidean distancésegbath points from
Vivj. In symbols, the penalty is equal to

1 L
P'aj :|Vj—Vi|'$ jei—FlI(zdISt(Vk’r\/j)Z’
=

wheredist(a,bc) denotes the Euclidean distance of a point from a straigat kmd it
is understood that the sum counts froto j in a cyclic manner. In words, the further
the path points stray from the segment, the greater the fgenal

The formula forR j was chosen because it can be computed efficiently; namely, le
(X,y) =Vj—Vvi and(X,y) = (Vi +V;j)/2. Then we have

R.j = vV cx2 4 2bxy + ay?,

where
a = E()—2%E(x)+ %,
b = E(XYk) —XE(X) — YE(Yk) + X,
c = E(R)-2EW+Y-

HereE(x2) = Jeﬁ i X2 is the expected value af fork=i,..., j, and similarly
for the other E” notations.

Note that the sums can be computed ahead of time, by makirgeadhsums of
the formzf<:0 Ok, for each quantitygy to be summed. After making such tables, which



takes time and space linear in the length of the given pathaliove formula foP,
can be computed in constant time for each givend .

2.2.4 Optimal polygon

We can regard the given closed paith- {vo,...,vn} as a directed graph with vertices
0,...,n—1, where there is an arrow fromto j if there is a possible segment from
i to j. To each sequendg — i1 — ... — ik of arrows, we can associate a penalty,
which is an ordered paitk, P), wherek is the number of arrows in the sequence, and
P is the sum of their numerical penalties as discussed in @e2tP.3. Penalties are
compared lexicographically, i.dk, P) is preferable tqk’, P) if eitherk < k', ork =K
andP < P'.

In this way, the problem of finding an optimal polygon reduttethe problem of
finding an optimal cycle in a directed graph. We use a variért standard graph-
theoretic algorithm to solve this problem efficiently. Oribe graph has been com-
puted, an optimal cycle can be found in tir®nm), wheren is the size of the input
path, andnis the length of the longest possible segment.

We remark that it is this optimization step that makes oup@igm non-local,
because we have to consider an entire path at once; eachf plaget aptimal polygon
depends potentially on all the other parts. The previous@hahich computes a path
from a bitmapped image, and the following phase, which faanss a polygon into a
vector outline, are strictly local, in that they only lookeafiew adjacent points at a time.

2.3 From polygonsto vector outlines

The final phase of the algorithm transforms the polygon oleiin the previous phase
into a smooth vector outline. In a preliminary step, we aidjus position of the vertices

of the polygon to fit the original bitmap as best as possible.the main step, we

calculate corners and curves based on the lengths of adj@mersegments and the
angles between them.

2.3.1 Vertex adjustments

The output of the previous phase of the algorithm is a poly{den. . ,im—1} associated
to a closed patfvy,...,vn}. We refer to the indiceg,...,im_1, as well as to their
associated points,,..., Vi, ,, as thevertices of the polygon. As our polygon s cyclic,
we follow the usual convention of taking indices moduoio

For the purpose of calculating penalties, we have placeddttexi of the polygon
precisely at the corresponding path pointwhich is a point with integer coordinates
in the coordinate plane (i.e., located at a meeting poinbaf pixels in the original
bitmap). While this placement of vertices allowed us to ghte penalties efficiently,
it is not necessarily the optimal arrangement. We now aat®¢d each vertei a
pointag in the coordinate plane, not necessarily of integer coattéis such thaiy is
nearv;,, and such that, for any two consecutive vertigeandiy, 1 of the polygon, the
resulting line segmergiax 1 is reasonably close to the original subpath. .., vi,. ;.



Figure 6: A typical Bezier curve

We use the following algorithm for placing the poias for each consecutive pair
of verticesix andix,1, calculate the straight linky 1 that optimally approximates
the pointsy,...,Vi.,, in the sense that it minimizes the squares of their Eudtidea
distances to the line. Now if_1, ik, andix,1 are consecutive vertices, then we ideally
want to placesy at the intersection dfy_1 x andLy k1. However, we do not wargy
to be too far from the original vertex,. Thus, we letax be a point in the unit square
with max-distancel(ay, vi, ) < 1/2 such that the sum of the square of the Euclidean
distances fronay to Lx—1 x andLy k1 is minimal. In particular, if the intersection of
Lk—1k andLy k41 lies in this unit square, then we plaagat the intersection; else, we
place it at a point near, that is “close” to the intersection.

Calculatingay is easy, as it simply amounts to minimizing a quadratic fiomct
on a square. Also, the straight ling .1 is easily computed from the data points
Vi, -+, Viy,; Dy using a standard method of “best fit”: this line passesutinothe
center of gravity(E(x),E(yk)), wherek = iy, ...,ik+1, and its slope is given by the

eigenvector of the larger eigenvalue of the maéb{rgl 2 ) where

a = E(XJ-Z)—E(Xj 2,
b = E(Xyj)—EX)E(yj),
c = E(j)-E@y)*

2.3.2 A classof Bezier curves

The purpose of this section is to make a simple, yet usefudrobtion about Bezier
curves. Recall that a Bezier curve is given by four contrah{sxy, z1, 2>, z3, and by the
parametric equation= (1—1t)320+ 3t(1—1)%z + 3t?(1—t)z +t3z. For the purposes
of our analysis, we restrict ourselves to the case wherettaiglst lines througtzgzy
and througtesz, intersect at a poin (i.e., they are not parallel). Further, we restrict
ourselves to curves that agenvex and change direction by less than 180 degrees; this
means that; lies betweergy ando, and thatz lies betweerrs ando. The situation

is as shown in Figure 6. By a linear transformation of the dowte system, we can
assume thaty = (—1,0), z3 = (1,0), ando= (0,1). Any Bezier curve of this particular
form is uniquely determined by two parametat$ < [0,1] such that; = (—1+a,a)
andz = (1—3,B). Figure 7 gives an overview of the Bezier curves in this stadided



)

>
D
%

)
%
0

O

%

)
)
>
P

)
-
P
)
P

>
D
D
P

%
D
%

>
b

Figure 7: A 2-parameter family of Bezier curves

form for all values ofa andf that are multiples of 0.2. In the illustration, the control
pointsz; andz, are shown as red dots. We can see immediately from the dkimstrthat
the Bezier curves in any particular horizontal row are ViigisEmost indistinguishable,
except perhaps in the case wheror (3 are very close to 0. We will see that our
algorithm never produces Bezier curves witndf3 very small, so that we can ignore
the latter possibility. It follows that we do not lose anyargsting curves if we restrict
ourselves to the cage = (3. This eliminates one degree of freedom from the set of
possible Bezier curves that we need to consider, and thingptifies our task of finding
optimal curves.

We should emphasize that we do not claim that all Bezier cur@gemble the ones
shown in Figure 7. Rather, this is the capdo a linear transformation. Thus, ifzg and
zz are given, there are two degrees of freedom in the placementad one additional
degree of freedom in the choicef By settinga = 3, a fourth degree of freedom has

10



/7

\b,-\
by

b4 b4 b4 by

(@ a<055 (b) a=065 (c) a=09 (d) a>1

Figure 8: Corner detection and smoothing

been eliminated.

An interesting fact is that the area enclosed between a Beaige of the above
form and thex-axis is equal to3;(2a + 28 — aB), or (4 — (2—a)(2—B)). From
Figure 7, we find that two curves look very similar if they evsg areas of equal size.
Thus, we may approximate any curve with parameteend3 by a new curve with
equal parametes = ' =2—/(2—a)(2—pB).

Another interesting measure of a Bezier curve is the heifjits dighest point. In
casen = 3, the highest point is reached whiea 1/2, and itsy-coordinate is 8 /4.

2.3.3 Smoothing and corner analysis

The input to the last phase of the algorithm is the adjustégbpo from Section 2.3.1.
Suppose the vertices of this polygon ase. ..,ax_1. Letby,...,bx_1 be the midpoints
of the edges of the polygon, i.d, = (a +a11)/2. For each, we now consider the
cornerb;_1..3;..b;, and we decide whether to approximate it by a smooth curve, as
shown by the blue line in Figure 8(a)—(c), or by a sharp arageshown in Figure 8(d).

We proceed as follows. First, we draw a unit square centeréetgointa;. Next,
we find the linel; that is parallel tdy_1b;, that touches the square aroumgand that
is as close as possible to the line1b;. Letc be the point wherg; intersectdy_1a;,
and lety be the quotient of the lengths bf ;¢ andb;_1a;. Leta = 4y/3 and consider
the Bezier curve (of the kind discussed in Section 2.3.2neatingb;_1 andb; with
parameteo. This curve is tangent to the three lingsia;, Li, andab;.

We use the parametetjust calculated to perform corner detection and to detegmin
the final curve frombj_1 to bj. There are two cases. df < 1, then we draw a smooth
Bezier curve at this vertex, as shown in Figure 8(a)—(cix # 1, there is no convex
Bezier curve connectinlg_; andb; and tangent td;. In this case, we have detected
a corner and we connelst_1 andb; via two straight line segments that meetatas
shown in Figure 8(d).

Corner detection can be customized via the so-calteder threshold parameter
Omax, Which is configurable via the- al phamax command line option. If this param-

11



eter is set, then a vertex will be roundedi amax, and a corner itx > amax. Thus,
smaller values ofimax lead to more corners, as in Figure 1(b), and larger valuek lea
to more rounded shapes, as in Figure 1(c). The default valugd = 1. If amax < O,
then no smoothing is performed and the output of Potrace adyapn. If omax > 4/3,
then there will be no corners at all and the output is an evieeyarsmooth curve.

After corners have been detected, the valua @ further adjusted to be between
0.55and 1. The lower boura > 0.55 was chosen to prevent the curve from becoming
too “flat”. Allowing a < 0.55 often leads to strange looking images. The upper bound
of 1 ensures that the resulting Bezier curve segment is gonve

The valuen = 0.55 was chosen because it tends to give a good approximat#n to
circle in case the input is a regular polygon. It was chosdietolose to the theoretical
value

0o = g(\/i— 1) ~ 0.552285

which gives the best possible approximation by a Bezierecsegment to a quarter cir-
cle. More precisely, the Bezier curve with control poirts= (1,0), z1 = (1,00), 2 =
(0o, 1), andzz = (0,1) lies between the unit circle and the circle of radius 1.0@%37
Thus, this curve deviates from a true circle (of median rg)dily less than 0.01363%.
Although this approximation of a quarter circle by a Beziarve segment is well-
known, the exact bound is difficult to find in the literaturer instance, Faux and Pratt
[1, p.134] falsely give this value as 0.13%, due to an appasgrographical error,
whereas Knuth [2, p.14] gives it only as “less than 0.06%".

Note that our corner detection algorithm has the followingperty: Corners are
favored both by sharp angles and by long segments. Thus, teeta@ecorner if two
short segments meet at a very sharp angle, and also if twdaegysegments meet at
a slight angle.

2.4 Curveoptimization

The output of the previous phase of the Potrace algorithter abrner analysis and
smoothing, is a curve consisting of Bezier curve segmerdssaaight line segments.
The resulting curve is very close to the final output of Paraldowever, there is an
optional last phase of the algorithm, the curve optimizapbase, which attempts to
further optimize the curve by joining adjacent Bezier cuisggments together if this is
possible. Curve optimization only makes very small charigeke shape of the final
curve; small enough that the difference is not normallyblési However, the resulting
curve consists of fewer segments, and thus can be reprdsaote compactly in the
final output of the program. If curve optimization is not desdl, it can be disabled by
giving the- - | ongcur ve command line option to Potrace.

The curve optimization algorithm is based on a few simplagdeFirst, we only
attempt to join adjacent curved segments, never straighsiegments or corners. Sec-
ond, we only join adjacent curve segments that agree in adyyee., they all curve
to the right or all to the left. Third, we only join adjacentrea segments if the to-
tal change in direction is less than 179 degrees. (We do rite gllow 180 degrees,
in order to avoid unbounded quantities in the computatiaiews). This leaves us to
consider a sequence of segments like the one shown in blugune.

12



Figure 9: Curve optimization

The question is whether we can find a single Bezier curve foprio by, that ap-
proximates the given sequence of shorter Bezier curvesp&apthere was such a
curveC. Clearly,C would have to be tangent tma; anda,b,. We can thus find the
pointO wherebpa; anda,by, intersect. Following our discussions in Section 2.3.2 thi
leaves only one degree of freedom in the curve to be consideaenely the parameter
a. If we impose the further requirement that the area enclbgetie curveC should
be equal to the total area enclosed by the original curve eatgrand the linéghy,
then this uniquely determines the parameteRecall from Section 2.3.2 that the areas
in question are easily calculated. This leaves us with aueiBezier curve€ that is a
candidate for approximating the given segments. It is shiowed in Figure 9.

It remains to check whethé€ractually is an acceptable approximation to the given
curve segments, and if yes, to assign it a numerical pendlydo this by a simple
tangency check. For each-1,...,n—1, we find the poing onC where the tangent
to C is parallel togjg 1. We letd; be the Euclidean distance gnfto the line segment
@@ ;1. Further, foreach=1,...,n, we find the poinZ onC where the tangent © is
parallel tob;_1b;. We letd be the Euclidean distance #fto the line segmerit; define
in Section 2.3.3, counted positiveZf is on the same side &f; asa;, and otherwise
negative.

We say that the approximationasceptableif all d; < ¢, d’ > —¢, and the orthog-
onal projection of; onto the linega 1 lies betweerg; anda;, 1. Here, the value is
a constant called thtelerance of the curve optimization algorithm; it is pre-set to 0.2,
and it can be altered via the opt t ol er ance option.

For an acceptable curve, we define penalty to be the sum of the squares of
all the distancesl, andd;. Finally, we use a standard graph-theoretic algorithm for

13



shortest path search to decompose a given sequence of egmeists into acceptable
approximations, optimizing first the number of segmensnitine total penalty.

2.5 Output generation
25.1 Scaling and rotation

The Potrace algorithm has produced a family of curves, e&ahhach consists of
Bezier segments and straight line segments. The endpaidtsamntrol points of these
segments are arbitrary points in the coordinate plane. mdpg on the chosen back-
end and parameters, Potrace now performs a linear transfiom{to scale the image
to the desired size, and possibly to rotate it).

2.5.2 Redundancy coding

When using one of the PostScript backends (PostScript o), BRBrace uses a very
compact numerical format to represent Bezier curves in thput. To do so, it takes
advantage of redundancies in the curve parameters. Iniplen®& parameters are
needed to describe each Bezier curve segment (1 endpoi@t@drol points). How-
ever, by eliminating redundancies in these parametersaé®otan encode each seg-
ment by using only 3 to 4 real numbers. One degree of freedanbeaeliminated
because we only use curves with= 3, see Section 2.3.2. Another degree of freedom
can be eliminated because the pdinalways lies on the line segmesg 1, see Sec-
tion 2.3.3. A third degree of freedom can often be elimindtechusd; is actually half
way betweers; anda; ;1 for those curve segments that were not affected by the curve
optimization step of Section 2.4.

This redundancy coding of Bezier curves is only performetienPostScript back-
end, because it takes advantage of the macro capabilitite dfostScript language.
Redundancy coding can be turned off with the ongcodi ng option, resulting in
longer, but more readable output.

2.5.3 Quantization

For most backends, the final coordinates, which are real rtsnhrequantized, which
means they are rounded to the closest 1/10 pixel. Thus, timeuof decimal digits
needed to represent each coordinate is reduced by effgqiieeing all control points
on a very fine grid. The coordinates of the points can then hgubas integers. The
default quantization constant of 1/10 usually gives goatilts; however, it is config-
urable via the - uni t command line option.

3 A complete example

A complete example of a run of the Potrace algorithm is shawRigure 10. Part
(a) shows the original bitmap. In part (b), note how the diéfeminority” turn policy

keeps the black outlines along the outside of the figure attedewhile at the same
time keeping the white outlines inside the figure's hair @xtad as well. Also note

14



(a) (b)

(© (d)

(e)

Figure 10: A complete example. (a) the original bitmap, (@hpdecomposition and
optimal polygon, (c) vertex adjustment, corner analysisl smoothing, (d) curve op-
timization, (e) the final output.

15



that a speckle of size 1, inside the figure’s hair, has beeovech Part (b) also shows
the optimal polygon calculated for each path componentt (Bashows the adjusted
polygon vertices, relative to the underlying bitmap, whishshown in grey. Each
vertex is surrounded by its unit square. Also, the line segslg from Section 2.3.3
are shown, and the parameteiis written inside the unit square of each vertex; this
is best seen by looking at the page at a very high magnificatidkcrobat Reader.
Corner analysis is performed at this step; note that forghrticular bitmap, only very
few corners are detected. Generally, corner analysis wieker at higher resolutions.
Smoothing is then performed; the resulting Bezier curverssgs and line segments
are shown in blue. Part (d) shows the result of curve optitiwimathe original curve
is shown in blue, and the optimized curve is shown in red. Rwd ohdicate the new
segment boundaries. Note that the number of segments hasdrkeced from 112 to
68, or by 40%. The final result of the algorithm is shown in FPa)t

Debugging output in the style of Figure 10(b)—(d) can be poedl by giving the
command line optionsd1 through- d3 to Potrace.

References

[1] I. D. Faux and M. J. PrattComputational Geometry for Design and Manufacture.
Ellis Horwood Series in Mathematics and its Applicationsgljter: G. M. Bell.
Ellis Horwood, New York, NY, USA, 1979.

[2] D. E. Knuth. The METAFONTbook, volume C of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

16



