
Coq Version 8.4 for the Clueless
(177 Hints)

Pierre Castéran Hugo Herbelin Florent Kirchner Benjamin Monate
Julien Narboux

January 14, 2013

Abstract

This note intends to provide an easy way to get acquainted with the Coq theorem prover. It
tries to formulate appropriate answers to some of the questions any newcomers will face, and to give
pointers to other references when possible.

Contents

1 Introduction 6

2 Presentation 6
1 What is Coq? . 6
2 Did you really need to name it like that? . 6
3 Is Coq a theorem prover? . 6
4 What are the other theorem provers? . 6
5 What do I have to trust when I see a proof checked by Coq? 6
6 Where can I find information about the theory behind Coq? 7
7 How can I use Coq to prove programs? . 7
8 How old is Coq? . 7
9 What are the Coq-related tools? . 7
10 What are the high-level tactics of Coq . 8
11 What are the main libraries available for Coq . 8
12 What are the mathematical applications for Coq? 8
13 What are the industrial applications for Coq? . 8

3 Documentation 8
14 Where can I find documentation about Coq? . 8
15 Where can I find this FAQ on the web? . 9
16 How can I submit suggestions / improvements / additions for this FAQ? 9
17 Is there any mailing list about Coq? . 9
18 Where can I find an archive of the list? . 9
19 How can I be kept informed of new releases of Coq? 9
20 Is there any book about Coq? . 9
21 Where can I find some Coq examples? . 9
22 How can I report a bug? . 9

4 Installation 9
23 What is the license of Coq? . 9
24 Where can I find the sources of Coq? . 9
25 On which platform is Coq available? . 9

1

5 The logic of Coq 10
5.1 General . 10

26 What is the logic of Coq? . 10
27 Is Coq’s logic intuitionistic or classical? . 10
28 Can I define non-terminating programs in Coq? 10
29 How is equational reasoning working in Coq? . 10

5.2 Axioms . 10
30 What axioms can be safely added to Coq? . 10
31 What standard axioms are inconsistent with Coq? 11
32 What is Streicher’s axiom K . 11
33 What is proof-irrelevance . 12
34 What about functional extensionality? . 12
35 Is Prop impredicative? . 12
36 Is Set impredicative? . 13
37 Is Type impredicative? . 13
38 I have two proofs of the same proposition. Can I prove they are equal? 13
39 I have two proofs of an equality statement. Can I prove they are equal? 13
40 Can I prove that the second components of equal dependent pairs are equal? . . . 13

5.3 Impredicativity . 13
41 Why injection does not work on impredicative Set? 13
42 What is a “large inductive definition”? . 14
43 Is Coq’s logic conservative over Coquand’s Calculus of Constructions? 14

6 Talkin’ with the Rooster 14
6.1 My goal is ..., how can I prove it? . 14

44 My goal is a conjunction, how can I prove it? . 14
45 My goal contains a conjunction as an hypothesis, how can I use it? 15
46 My goal is a disjunction, how can I prove it? . 16
47 My goal is an universally quantified statement, how can I prove it? 17
48 My goal contains an universally quantified statement, how can I use it? 17
49 My goal is an existential, how can I prove it? . 17
50 My goal is solvable by some lemma, how can I prove it? 18
51 My goal contains False as an hypothesis, how can I prove it? 18
52 My goal is an equality of two convertible terms, how can I prove it? 18
53 My goal is a let x := a in ..., how can I prove it? 19
54 My goal is a let (a, ..., b) := c in, how can I prove it? 19
55 My goal contains some existential hypotheses, how can I use it? 19
56 My goal contains some existential hypotheses, how can I use it and decompose my

knowledge about this new thing into different hypotheses? 19
57 My goal is an equality, how can I swap the left and right hand terms? 19
58 My hypothesis is an equality, how can I swap the left and right hand terms? . . . 20
59 My goal is an equality, how can I prove it by transitivity? 20
60 My goal would be solvable using apply;assumption if it would not create meta-

variables, how can I prove it? . 21
61 My goal is solvable by some lemma within a set of lemmas and I don’t want to

remember which one, how can I prove it? . 25
62 My goal is one of the hypotheses, how can I prove it? 26
63 My goal appears twice in the hypotheses and I want to choose which one is used,

how can I do it? . 26
64 What can be the difference between applying one hypothesis or another in the

context of the last question? . 27
65 My goal is a propositional tautology, how can I prove it? 27
66 My goal is a first order formula, how can I prove it? 27
67 My goal is solvable by a sequence of rewrites, how can I prove it? 27
68 My goal is a disequality solvable by a sequence of rewrites, how can I prove it? . . 28
69 My goal is an equality on some ring (e.g. natural numbers), how can I prove it? . 28

2

70 My goal is an equality on some field (e.g. real numbers), how can I prove it? . . . 29
71 My goal is an inequality on integers in Presburger’s arithmetic (an expression build

from +,-,constants and variables), how can I prove it? 30
72 My goal is an equation solvable using equational hypothesis on some ring (e.g.

natural numbers), how can I prove it? . 30
6.2 Tactics usage . 31

73 I want to state a fact that I will use later as an hypothesis, how can I do it? 31
74 I want to state a fact that I will use later as an hypothesis and prove it later, how

can I do it? . 33
75 What is the difference between Qed and Defined? 33
76 How can I know what a tactic does? . 33
77 Why auto does not work? How can I fix it? . 33
78 What is eauto? . 33
79 How can I speed up auto? . 33
80 What is the equivalent of tauto for classical logic? 33
81 I want to replace some term with another in the goal, how can I do it? 34
82 I want to replace some term with another in an hypothesis, how can I do it? . . . 34
83 I want to replace some symbol with its definition, how can I do it? 34
84 How can I reduce some term? . 34
85 How can I declare a shortcut for some term? . 34
86 How can I perform case analysis? . 34
87 How can I prevent the case tactic from losing information ? 34
88 Why should I name my intros? . 34
89 How can I automatize the naming? . 34
90 I want to automatize the use of some tactic, how can I do it? 35
91 I want to execute the proof with tactic only if it solves the goal, how can I do it? . 35
92 How can I do the opposite of the intro tactic? . 36
93 One of the hypothesis is an equality between a variable and some term, I want to

get rid of this variable, how can I do it? . 36
94 What can I do if I get “generated subgoal term has metavariables in it ”? 37
95 How can I instantiate some metavariable? . 37
96 What is the use of the pattern tactic? . 37
97 What is the difference between assert, cut and generalize? 37
98 What can I do if Coqcan not infer some implicit argument ? 37
99 How can I explicit some implicit argument ? . 37

6.3 Proof management . 38
100 How can I change the order of the subgoals? . 38
101 How can I change the order of the hypothesis? . 38
102 How can I change the name of an hypothesis? . 38
103 How can I delete some hypothesis? . 38
104 How can use a proof which is not finished? . 38
105 How can I state a conjecture? . 38
106 What is the difference between a lemma, a fact and a theorem? 38
107 How can I organize my proofs? . 38

7 Inductive and Co-inductive types 38
7.1 General . 38

108 How can I prove that two constructors are different? 38
109 During an inductive proof, how to get rid of impossible cases of an inductive

definition? . 39
110 How can I prove that 2 terms in an inductive set are equal? Or different? 39
111 Why is the proof of 0+n=n on natural numbers trivial but the proof of n+0=n is not? 39
112 Why is dependent elimination in Prop not available by default? 39
113 Argh! I cannot write expressions like “ if n <= p then p else n ”, as in any

programming language . 39

3

114 I wrote my own decision procedure for ≤, which is much faster than yours, but
proving such theorems as max equiv seems to be quite difficult 41

7.2 Recursion . 42
115 Why can’t I define a non terminating program? . 42
116 Why only structurally well-founded loops are allowed? 42
117 How to define loops based on non structurally smaller recursive calls? 42
118 What is behind the accessibility and well-foundedness proofs? 43
119 How to perform simultaneous double induction? 43
120 How to define a function by simultaneous double recursion? 44
121 How to perform nested and double induction? . 45
122 How to define a function by nested recursion? . 45

7.3 Co-inductive types . 46
123 I have a cofixpoint t := F (t) and I want to prove t = F (t). How to do it? 46

8 Syntax and notations 46
124 I do not want to type “forall” because it is too long, what can I do? 46
125 How can I define a notation for square? . 47
126 Why “no associativity” and “left associativity” at the same level does not work? . 47
127 How can I know the associativity associated with a level? 47

9 Modules 47

10 Ltac 47
128 What is Ltac? . 47
129 Is there any printing command in Ltac? . 47
130 What is the syntax for let in Ltac? . 47
131 What is the syntax for pattern matching in Ltac? 47
132 What is the semantics for “match goal”? . 48
133 Why can’t I use a “match goal” returning a tactic in a non tail-recursive position? 48
134 How can I generate a new name? . 48

11 Tactics written in OCaml 48
135 Can you show me an example of a tactic written in OCaml? 48
136 Is there a skeleton of OCaml tactic I can reuse somewhere? 48

12 Case studies 49
137 How to prove that 2 sets are different? . 49
138 Is there an axiom-free proof of Streicher’s axiom K for the equality on nat? 50
139 How to prove that two proofs of n<=m on nat are equal? 50
140 How to exploit equalities on sets . 51
141 I have a problem of dependent elimination on proofs, how to solve it? 51
142 And what if I want to prove the following? . 51

13 Publishing tools 52
143 How can I generate some latex from my development? 52
144 How can I generate some HTML from my development? 52
145 How can I generate some dependency graph from my development? 52
146 How can I cite some Coq in my latex document? 52
147 How can I cite the Coq reference manual? . 52
148 Where can I publish my developments in Coq? . 53
149 How can I read my proof in natural language? . 53

4

14 CoqIde 53
150 What is CoqIde? . 53
151 How to enable Emacs keybindings? . 53
152 How to enable antialiased fonts? . 53
153 How to use those Forall and Exists pretty symbols? 53
154 How to define an input method for non ASCII symbols? 53
155 How to customize the shortcuts for menus? . 54
156 What encoding should I use? What is this \x{iiii} in my file? 54
157 How to get rid of annoying unwanted automatic templates? 54

15 Extraction 54
158 What is program extraction? . 54
159 Which language can I extract to? . 54
160 How can I extract an incomplete proof? . 54

16 Glossary 55
161 Can you explain me what an evaluable constant is? 55
162 What is a goal? . 55
163 What is a meta variable? . 55
164 What is Gallina? . 55
165 What is The Vernacular? . 55
166 What is a dependent type? . 55
167 What is a proof by reflection? . 55
168 What is intuitionistic logic? . 55
169 What is proof-irrelevance? . 55
170 What is the difference between opaque and transparent? 55

17 Troubleshooting 55
171 What can I do when Qed. is slow? . 55
172 Why Reset Initial. does not work when using coqc? 55
173 What can I do if I get “No more subgoals but non-instantiated existential variables”? 56
174 What can I do if I get “Cannot solve a second-order unification problem”? 57
175 Why does Coq tell me that {x:A|(P x)} is not convertible with (sig A P)? . . . 57
176 I copy-paste a term and Coq says it is not convertible to the original term. Some-

times it even says the copied term is not well-typed. 57

18 Conclusion and Farewell. 57
177 What if my question isn’t answered here? . 57

5

1 Introduction

This FAQ is the sum of the questions that came to mind as we developed proofs in Coq. Since we are
singularly short-minded, we wrote the answers we found on bits of papers to have them at hand whenever
the situation occurs again. This is pretty much the result of that: a collection of tips one can refer to
when proofs become intricate. Yes, it means we won’t take the blame for the shortcomings of this FAQ.
But if you want to contribute and send in your own question and answers, feel free to write to us. . .

2 Presentation

1 What is Coq?

The Coq tool is a formal proof management system: a proof done with Coq is mechanically checked by
the machine. In particular, Coq allows:

• the definition of mathematical objects and programming objects,

• to state mathematical theorems and software specifications,

• to interactively develop formal proofs of these theorems,

• to check these proofs by a small certification “kernel”.

Coq is based on a logical framework called “Calculus of Inductive Constructions” extended by a modular
development system for theories.

2 Did you really need to name it like that?

Some French computer scientists have a tradition of naming their software as animal species: Caml,
Elan, Foc or Phox are examples of this tacit convention. In French, “coq” means rooster, and it sounds
like the initials of the Calculus of Constructions CoC on which it is based.

3 Is Coq a theorem prover?

Coq comes with decision and semi-decision procedures (propositional calculus, Presburger’s arithmetic,
ring and field simplification, resolution, ...) but the main style for proving theorems is interactively by
using LCF-style tactics.

4 What are the other theorem provers?

Many other theorem provers are available for use nowadays. Isabelle, HOL, HOL Light, Lego, Nuprl,
PVS are examples of provers that are fairly similar to Coq by the way they interact with the user. Other
relatives of Coq are ACL2, Agda/Alfa, Twelf, Kiv, Mizar, NqThm, Ωmega. . .

5 What do I have to trust when I see a proof checked by Coq?

You have to trust:

The theory behind Coq The theory of Coq version 8.0 is generally admitted to be consistent wrt
Zermelo-Fraenkel set theory + inaccessible cardinals. Proofs of consistency of subsystems of the
theory of Coq can be found in the literature.

The Coq kernel implementation You have to trust that the implementation of the Coq kernel mir-
rors the theory behind Coq. The kernel is intentionally small to limit the risk of conceptual or
accidental implementation bugs.

The Objective Caml compiler The Coq kernel is written using the Objective Caml language but it
uses only the most standard features (no object, no label ...), so that it is highly unprobable that
an Objective Caml bug breaks the consistency of Coq without breaking all other kinds of features
of Coq or of other software compiled with Objective Caml.

6

Your hardware In theory, if your hardware does not work properly, it can accidentally be the case
that False becomes provable. But it is more likely the case that the whole Coq system will be
unusable. You can check your proof using different computers if you feel the need to.

Your axioms Your axioms must be consistent with the theory behind Coq.

6 Where can I find information about the theory behind Coq?

The Calculus of Inductive Constructions The corresponding chapter and the chapter on modules
in the Coq Reference Manual.

Type theory A book [11] or some lecture notes [8].

Inductive types Christine Paulin-Mohring’s habilitation thesis [19].

Co-Inductive types Eduardo Giménez’ thesis [9].

Miscellaneous A bibliography about Coq

7 How can I use Coq to prove programs?

You can either extract a program from a proof by using the extraction mechanism or use dedicated tools,
such as Why, Krakatoa, Caduceus, to prove annotated programs written in other languages.

8 How old is Coq?

The first implementation is from 1985 (it was named CoC which is the acronym of the name of the
logic it implemented: the Calculus of Constructions). The first official release of Coq (version 4.10) was
distributed in 1989.

9 What are the Coq-related tools?

There are graphical user interfaces:

Coqide A GTK based GUI for Coq.

Pcoq A GUI for Coq with proof by pointing and pretty printing.

coqwc A tool similar to wc to count lines in Coq files.

Proof General A emacs mode for Coq and many other proof assistants.

ProofWeb The ProofWeb online web interface for Coq (and other proof assistants), with a focus on
teaching.

ProverEditor is an experimental Eclipse plugin with support for Coq.

There are documentation and browsing tools:

Helm/Mowgli A rendering, searching and publishing tool.

coq-tex A tool to insert Coq examples within .tex files.

coqdoc A documentation tool for Coq.

coqgraph A tool to generate a dependency graph from Coq sources.

There are front-ends for specific languages:

Why A back-end generator of verification conditions.

Krakatoa A Java code certification tool that uses both Coq and Why to verify the soundness of
implementations with regards to the specifications.

7

Caduceus A C code certification tool that uses both Coq and Why.

Zenon A first-order theorem prover.

Focal The Focal project aims at building an environment to develop certified computer algebra libraries.

Concoqtion is a dependently-typed extension of Objective Caml (and of MetaOCaml) with specifica-
tions expressed and proved in Coq.

Ynot is an extension of Coq providing a ”Hoare Type Theory” for specifying higher-order, imperative
and concurrent programs.

Ott is a tool to translate the descriptions of the syntax and semantics of programming languages to the
syntax of Coq, or of other provers.

10 What are the high-level tactics of Coq

• Decision of quantifier-free Presburger’s Arithmetic

• Simplification of expressions on rings and fields

• Decision of closed systems of equations

• Semi-decision of first-order logic

• Prolog-style proof search, possibly involving equalities

11 What are the main libraries available for Coq

• Basic Peano’s arithmetic, binary integer numbers, rational numbers,

• Real analysis,

• Libraries for lists, boolean, maps, floating-point numbers,

• Libraries for relations, sets and constructive algebra,

• Geometry

12 What are the mathematical applications for Coq?

Coq is used for formalizing mathematical theories, for teaching, and for proving properties of algorithms
or programs libraries.

The largest mathematical formalization has been done at the University of Nijmegen (see the Con-
structive Coq Repository at Nijmegen).

A symbolic step has also been obtained by formalizing in full a proof of the Four Color Theorem.

13 What are the industrial applications for Coq?

Coq is used e.g. to prove properties of the JavaCard system (especially by Schlumberger and Trusted
Logic). It has also been used to formalize the semantics of the Lucid-Synchrone data-flow synchronous
calculus used by Esterel-Technologies.

3 Documentation

14 Where can I find documentation about Coq?

All the documentation about Coq, from the reference manual [17] to friendly tutorials [15] and documen-
tation of the standard library, is available online. All these documents are viewable either in browsable
HTML, or as downloadable postscripts.

8

15 Where can I find this FAQ on the web?

This FAQ is available online at http://coq.inria.fr/doc/faq.html.

16 How can I submit suggestions / improvements / additions for this FAQ?

This FAQ is unfinished (in the sense that there are some obvious sections that are missing). Please send
contributions to Coq-Club.

17 Is there any mailing list about Coq?

The main Coq mailing list is coq-club@inria.fr, which broadcasts questions and suggestions about
the implementation, the logical formalism or proof developments. See http://sympa-roc.inria.fr/

wws/info/coq-club for subscription. For bugs reports see question 22.

18 Where can I find an archive of the list?

The archives of the Coq mailing list are available at http://sympa-roc.inria.fr/wws/arc/coq-club.

19 How can I be kept informed of new releases of Coq?

New versions of Coq are announced on the coq-club mailing list. If you only want to receive information
about new releases, you can subscribe to Coq on http://freshmeat.net/projects/coq/.

20 Is there any book about Coq?

The first book on Coq, Yves Bertot and Pierre Castéran’s Coq’Art has been published by Springer-Verlag
in 2004:

“This book provides a pragmatic introduction to the development of proofs and certified
programs using Coq. With its large collection of examples and exercises it is an invaluable
tool for researchers, students, and engineers interested in formal methods and the development
of zero-default software.”

21 Where can I find some Coq examples?

There are examples in the manual [17] and in the Coq’Art [2] exercises http://www.labri.fr/Perso/

~casteran/CoqArt/index.html. You can also find large developments using Coq in the Coq user
contributions: http://coq.inria.fr/contribs.

22 How can I report a bug?

You can use the web interface accessible at http://coq.inria.fr, link “contacts”.

4 Installation

23 What is the license of Coq?

Coq is distributed under the GNU Lesser General License (LGPL).

24 Where can I find the sources of Coq?

The sources of Coq can be found online in the tar.gz’ed packages (http://coq.inria.fr, link “down-
load”). Development sources can be accessed at http://coq.gforge.inria.fr/

25 On which platform is Coq available?

Compiled binaries are available for Linux, MacOS X, and Windows. The sources can be easily compiled
on all platforms supporting Objective Caml.

9

5 The logic of Coq

5.1 General

26 What is the logic of Coq?

Coq is based on an axiom-free type theory called the Calculus of Inductive Constructions (see Co-
quand [6], Luo [16] and Coquand–Paulin-Mohring [7]). It includes higher-order functions and predicates,
inductive and co-inductive datatypes and predicates, and a stratified hierarchy of sets.

27 Is Coq’s logic intuitionistic or classical?

Coq’s logic is modular. The core logic is intuitionistic (i.e. excluded-middle A ∨ ¬A is not granted by
default). It can be extended to classical logic on demand by requiring an optional module stating A∨¬A.

28 Can I define non-terminating programs in Coq?

All programs in Coq are terminating. Especially, loops must come with an evidence of their termination.
Non-terminating programs can be simulated by passing around a bound on how long the program is

allowed to run before dying.

29 How is equational reasoning working in Coq?

Coq comes with an internal notion of computation called conversion (e.g. (x + 1) + y is internally
equivalent to (x + y) + 1; similarly applying argument a to a function mapping x to some expression
t converts to the expression t where x is replaced by a). This notion of conversion (which is decidable
because Coq programs are terminating) covers a certain part of equational reasoning but is limited to
sequential evaluation of expressions of (not necessarily closed) programs. Besides conversion, equations
have to be treated by hand or using specialised tactics.

5.2 Axioms

30 What axioms can be safely added to Coq?

There are a few typical useful axioms that are independent from the Calculus of Inductive Constructions
and that are considered consistent with the theory of Coq. Most of these axioms are stated in the
directory Logic of the standard library of Coq. The most interesting ones are

• Excluded-middle: ∀A : Prop,A ∨ ¬A

• Proof-irrelevance: ∀A : Prop∀p1p2 : A, p1 = p2

• Unicity of equality proofs (or equivalently Streicher’s axiom K): ∀A∀xy : A∀p1p2 : x = y, p1 = p2

• Hilbert’s ε operator: if A 6= ∅, then there is εP such that ∃xP (x)→ P (εP)

• Church’s ι operator: if A 6= ∅, then there is ιP such that ∃!xP (x)→ P (ιP)

• The axiom of unique choice: ∀x∃!yR(x, y)→ ∃f∀xR(x, f(x))

• The functional axiom of choice: ∀x∃yR(x, y)→ ∃f∀xR(x, f(x))

• Extensionality of predicates: ∀PQ : A→ Prop, (∀x, P (x)↔ Q(x))→ P = Q

• Extensionality of functions: ∀fg : A→ B, (∀x, f(x) = g(x))→ f = g

Here is a summary of the relative strength of these axioms, most proofs can be found in directory
Logic of the standard library. The justification of their validity relies on the interpretability in set theory.

10

31 What standard axioms are inconsistent with Coq?

The axiom of unique choice together with classical logic (e.g. excluded-middle) are inconsistent in the
variant of the Calculus of Inductive Constructions where Set is impredicative.

As a consequence, the functional form of the axiom of choice and excluded-middle, or any form of the
axiom of choice together with predicate extensionality are inconsistent in the Set-impredicative version
of the Calculus of Inductive Constructions.

The main purpose of the Set-predicative restriction of the Calculus of Inductive Constructions is
precisely to accommodate these axioms which are quite standard in mathematical usage.

The Set-predicative system is commonly considered consistent by interpreting it in a standard set-
theoretic boolean model, even with classical logic, axiom of choice and predicate extensionality added.

32 What is Streicher’s axiom K

Streicher’s axiom K [13] is an axiom that asserts dependent elimination of reflexive equality proofs.

Coq < Axiom Streicher K :

Coq < forall (A:Type) (x:A) (P: x=x -> Prop),

Coq < P (eq refl x) -> forall p: x=x, P p.

In the general case, axiom K is an independent statement of the Calculus of Inductive Constructions.
However, it is true on decidable domains (see file Eqdep dec.v). It is also trivially a consequence of
proof-irrelevance (see 33) hence of classical logic.

Axiom K is equivalent to Uniqueness of Identity Proofs [13]

11

Coq < Axiom UIP : forall (A:Set) (x y:A) (p1 p2: x=y), p1 = p2.

Axiom K is also equivalent to Uniqueness of Reflexive Identity Proofs [13]

Coq < Axiom UIP refl : forall (A:Set) (x:A) (p: x=x), p = eq refl x.

Axiom K is also equivalent to

Coq < Axiom

Coq < eq rec eq :

Coq < forall (A:Set) (x:A) (P: A->Set) (p:P x) (h: x=x),

Coq < p = eq rect x P p x h.

It is also equivalent to the injectivity of dependent equality (dependent equality is itself equivalent
to equality of dependent pairs).

Coq < Inductive eq dep (U:Set) (P:U -> Set) (p:U) (x:P p) :

Coq < forall q:U, P q -> Prop :=

Coq < eq dep intro : eq dep U P p x p x.

Coq < Axiom

Coq < eq dep eq :

Coq < forall (U:Set) (u:U) (P:U -> Set) (p1 p2:P u),

Coq < eq dep U P u p1 u p2 -> p1 = p2.

33 What is proof-irrelevance

A specificity of the Calculus of Inductive Constructions is to permit statements about proofs. This leads
to the question of comparing two proofs of the same proposition. Identifying all proofs of the same
proposition is called proof-irrelevance:

∀A : Prop,∀pq : A, p = q

Proof-irrelevance (in Prop) can be assumed without contradiction in Coq. It expresses that only
provability matters, whatever the exact form of the proof is. This is in harmony with the common
purely logical interpretation of Prop. Contrastingly, proof-irrelevance is inconsistent in Set since there
are types in Set, such as the type of booleans, that provably have at least two distinct elements.

Proof-irrelevance (in Prop) is a consequence of classical logic (see proofs in file Classical.v and
Berardi.v). Proof-irrelevance is also a consequence of propositional extensionality (i.e. (A <-> B) ->

A=B, see the proof in file ClassicalFacts.v).
Proof-irrelevance directly implies Streicher’s axiom K.

34 What about functional extensionality?

Extensionality of functions is admittedly consistent with the Set-predicative Calculus of Inductive Con-
structions.

Let A, B be types. To deal with extensionality on A->B without relying on a general extensionality
axiom, a possible approach is to define one’s own extensional equality on A->B.

Coq < Definition ext eq (f g: A->B) := forall x:A, f x = g x.

and to reason on A->B as a setoid (see the Chapter on Setoids in the Reference Manual).

35 Is Prop impredicative?

Yes, the sort Prop of propositions is impredicative. Otherwise said, a statement of the form ∀A :
Prop, P (A) can be instantiated by itself: if ∀A : Prop, P (A) is provable, then P (∀A : Prop, P (A)) is.

12

36 Is Set impredicative?

No, the sort Set lying at the bottom of the hierarchy of computational types is predicative in the basic
Coq system. This means that a family of types in Set, e.g. ∀A : Set, A→ A, is not a type in Set and
it cannot be applied on itself.

However, the sort Set was impredicative in the original versions of Coq. For backward compatibility,
or for experiments by knowledgeable users, the logic of Coq can be set impredicative for Set by calling
Coq with the option -impredicative-set.

Set has been made predicative from version 8.0 of Coq. The main reason is to interact smoothly
with a classical mathematical world where both excluded-middle and the axiom of description are valid
(see file ClassicalDescription.v for a proof that excluded-middle and description implies the double
negation of excluded-middle in Set and file Hurkens Set.v from the user contribution Paradoxes at
http://coq.inria.fr/contribs for a proof that impredicativity of Set implies the simple negation of
excluded-middle in Set).

37 Is Type impredicative?

No, Type is stratified. This is hidden for the user, but Coq internally maintains a set of constraints
ensuring stratification.

If Type were impredicative then it would be possible to encode Girard’s systems U− and U in Coq and
it is known from Girard, Coquand, Hurkens and Miquel that systems U− and U are inconsistent [Girard
1972, Coquand 1991, Hurkens 1993, Miquel 2001]. This encoding can be found in file Logic/Hurkens.v

of Coq standard library.
For instance, when the user see ∀ X:Type, X->X : Type, each occurrence of Type is implicitly bound

to a different level, say α and β and the actual statement is forall X:Type(α), X->X : Type(β) with
the constraint α < β.

When a statement violates a constraint, the message Universe inconsistency appears. Example:
fun (x:Type) (y:∀ X:Type, X -> X) => y x x.

38 I have two proofs of the same proposition. Can I prove they are equal?

In the base Coq system, the answer is generally no. However, if classical logic is set, the answer is yes
for propositions in Prop. The answer is also yes if proof irrelevance holds (see question 33).

There are also “simple enough” propositions for which you can prove the equality without requiring
any extra axioms. This is typically the case for propositions defined deterministically as a first-order
inductive predicate on decidable sets. See for instance in question 139 an axiom-free proof of the unicity
of the proofs of the proposition le m n (less or equal on nat).

39 I have two proofs of an equality statement. Can I prove they are equal?

Yes, if equality is decidable on the domain considered (which is the case for nat, bool, etc): see Coq
file Eqdep_dec.v). No otherwise, unless assuming Streicher’s axiom K (see [13]) or a more general
assumption such as proof-irrelevance (see 33) or classical logic.

All of these statements can be found in file Eqdep.v.

40 Can I prove that the second components of equal dependent pairs are equal?

The answer is the same as for proofs of equality statements. It is provable if equality on the domain
of the first component is decidable (look at inj_right_pair from file Eqdep dec.v), but not provable
in the general case. However, it is consistent (with the Calculus of Constructions) to assume it is true.
The file Eqdep.v actually provides an axiom (equivalent to Streicher’s axiom K) which entails the result
(look at inj_pair2 in Eqdep.v).

5.3 Impredicativity

41 Why injection does not work on impredicative Set?

E.g. in this case (this occurs only in the Set-impredicative variant of Coq):

13

Coq < Inductive I : Type :=

Coq < intro : forall k:Set, k -> I.

Coq < Lemma eq jdef :

Coq < forall x y:nat, intro x = intro y -> x = y.

Coq < Proof.

Coq < intros x y H; injection H.

Injectivity of constructors is restricted to predicative types. If injectivity on large inductive types were
not restricted, we would be allowed to derive an inconsistency (e.g. following the lines of Burali-Forti
paradox). The question remains open whether injectivity is consistent on some large inductive types not
expressive enough to encode known paradoxes (such as type I above).

42 What is a “large inductive definition”?

An inductive definition in Prop or Set is called large if its constructors embed sets or propositions. As
an example, here is a large inductive type:

Coq < Inductive sigST (P:Set -> Set) : Type :=

Coq < existST : forall X:Set, P X -> sigST P.

In the Set impredicative variant of Coq, large inductive definitions in Set have restricted elimination
schemes to prevent inconsistencies. Especially, projecting the set or the proposition content of a large
inductive definition is forbidden. If it were allowed, it would be possible to encode e.g. Burali-Forti
paradox [10, 5].

43 Is Coq’s logic conservative over Coquand’s Calculus of Constructions?

Yes for the non Set-impredicative version of the Calculus of Inductive Constructions. Indeed, the im-
predicative sort of the Calculus of Constructions can only be interpreted as the sort Prop since Set is
predicative. But Prop can be

6 Talkin’ with the Rooster

6.1 My goal is ..., how can I prove it?

44 My goal is a conjunction, how can I prove it?

Use some theorem or assumption or use the split tactic.

Coq < Goal forall A B:Prop, A->B-> A/\B.

1 subgoal

============================

forall A B : Prop, A -> B -> A /\ B

Coq < intros.

1 subgoal

A : Prop

B : Prop

H : A

H0 : B

============================

A /\ B

Coq < split.

2 subgoals

A : Prop

14

B : Prop

H : A

H0 : B

============================

A

subgoal 2 is:

B

Coq < assumption.

1 subgoal

A : Prop

B : Prop

H : A

H0 : B

============================

B

Coq < assumption.

No more subgoals.

Coq < Qed.

intros.

split.

assumption.

assumption.

Unnamed thm is defined

45 My goal contains a conjunction as an hypothesis, how can I use it?

If you want to decompose your hypothesis into other hypothesis you can use the decompose tactic:

Coq < Goal forall A B:Prop, A/\B-> B.

1 subgoal

============================

forall A B : Prop, A /\ B -> B

Coq < intros.

1 subgoal

A : Prop

B : Prop

H : A /\ B

============================

B

Coq < decompose [and] H.

1 subgoal

A : Prop

B : Prop

H : A /\ B

H0 : A

H1 : B

============================

B

Coq < assumption.

No more subgoals.

Coq < Qed.

intros.

decompose [and] H.

15

assumption.

Unnamed thm0 is defined

46 My goal is a disjunction, how can I prove it?

You can prove the left part or the right part of the disjunction using left or right tactics. If you want
to do a classical reasoning step, use the classic axiom to prove the right part with the assumption that
the left part of the disjunction is false.

Coq < Goal forall A B:Prop, A-> A\/B.

1 subgoal

============================

forall A B : Prop, A -> A \/ B

Coq < intros.

1 subgoal

A : Prop

B : Prop

H : A

============================

A \/ B

Coq < left.

1 subgoal

A : Prop

B : Prop

H : A

============================

A

Coq < assumption.

No more subgoals.

Coq < Qed.

intros.

left.

assumption.

Unnamed thm1 is defined

An example using classical reasoning:

Coq < Require Import Classical.

Coq <

Coq < Ltac classical right :=

Coq < match goal with

Coq < | : |-?X1 \/ => (elim (classic X1);intro;[left;trivial|right])

Coq < end.

classical right is defined

Coq <

Coq < Ltac classical left :=

Coq < match goal with

Coq < | : |- \/?X1 => (elim (classic X1);intro;[right;trivial|left])

Coq < end.

classical left is defined

Coq <

Coq <

Coq < Goal forall A B:Prop, (~A -> B) -> A\/B.

1 subgoal

16

============================

forall A B : Prop, (~ A -> B) -> A \/ B

Coq < intros.

1 subgoal

A : Prop

B : Prop

H : ~ A -> B

============================

A \/ B

Coq < classical right.

1 subgoal

A : Prop

B : Prop

H : ~ A -> B

H0 : ~ A

============================

B

Coq < auto.

No more subgoals.

Coq < Qed.

intros.

classical right.

auto.

Unnamed thm2 is defined

47 My goal is an universally quantified statement, how can I prove it?

Use some theorem or assumption or introduce the quantified variable in the context using the intro

tactic. If there are several variables you can use the intros tactic. A good habit is to provide names for
these variables: Coq will do it anyway, but such automatic naming decreases legibility and robustness.

48 My goal contains an universally quantified statement, how can I use it?

If the universally quantified assumption matches the goal you can use the apply tactic. If it is an
equation you can use the rewrite tactic. Otherwise you can use the specialize tactic to instantiate
the quantified variables with terms. The variant assert(Ht := H t) makes a copy of assumption H

before instantiating it.

49 My goal is an existential, how can I prove it?

Use some theorem or assumption or exhibit the witness using the exists tactic.

Coq < Goal exists x:nat, forall y, x+y=y.

1 subgoal

============================

exists x : nat, forall y : nat, x + y = y

Coq < exists 0.

1 subgoal

============================

forall y : nat, 0 + y = y

Coq < intros.

1 subgoal

17

y : nat

============================

0 + y = y

Coq < auto.

No more subgoals.

Coq < Qed.

exists 0.

intros.

auto.

Unnamed thm3 is defined

50 My goal is solvable by some lemma, how can I prove it?

Just use the apply tactic.

Coq < Lemma mylemma : forall x, x+0 = x.

1 subgoal

============================

forall x : nat, x + 0 = x

Coq < auto.

No more subgoals.

Coq < Qed.

auto.

mylemma is defined

Coq <

Coq < Goal 3+0 = 3.

1 subgoal

============================

3 + 0 = 3

Coq < apply mylemma.

No more subgoals.

Coq < Qed.

apply mylemma.

Unnamed thm is defined

51 My goal contains False as an hypothesis, how can I prove it?

You can use the contradiction or intuition tactics.

52 My goal is an equality of two convertible terms, how can I prove it?

Just use the reflexivity tactic.

Coq < Goal forall x, 0+x = x.

1 subgoal

============================

forall x : nat, 0 + x = x

Coq < intros.

1 subgoal

x : nat

============================

0 + x = x

18

Coq < reflexivity.

No more subgoals.

Coq < Qed.

intros.

reflexivity.

Unnamed thm0 is defined

53 My goal is a let x := a in ..., how can I prove it?

Just use the intro tactic.

54 My goal is a let (a, ..., b) := c in, how can I prove it?

Just use the destruct c as (a,...,b) tactic.

55 My goal contains some existential hypotheses, how can I use it?

You can use the tactic elim with you hypotheses as an argument.

56 My goal contains some existential hypotheses, how can I use it and decompose my
knowledge about this new thing into different hypotheses?

Ltac DecompEx H P := elim H;intro P;intro TO;decompose [and] TO;clear TO;clear H.

57 My goal is an equality, how can I swap the left and right hand terms?

Just use the symmetry tactic.

Coq < Goal forall x y : nat, x=y -> y=x.

1 subgoal

============================

forall x y : nat, x = y -> y = x

Coq < intros.

1 subgoal

x : nat

y : nat

H : x = y

============================

y = x

Coq < symmetry.

1 subgoal

x : nat

y : nat

H : x = y

============================

x = y

Coq < assumption.

No more subgoals.

Coq < Qed.

intros.

symmetry.

assumption.

Unnamed thm1 is defined

19

58 My hypothesis is an equality, how can I swap the left and right hand terms?

Just use the symmetryin tactic.

Coq < Goal forall x y : nat, x=y -> y=x.

1 subgoal

============================

forall x y : nat, x = y -> y = x

Coq < intros.

1 subgoal

x : nat

y : nat

H : x = y

============================

y = x

Coq < symmetry in H.

1 subgoal

x : nat

y : nat

H : y = x

============================

y = x

Coq < assumption.

No more subgoals.

Coq < Qed.

intros.

symmetry in H.

assumption.

Unnamed thm2 is defined

59 My goal is an equality, how can I prove it by transitivity?

Just use the transitivity tactic.

Coq < Goal forall x y z : nat, x=y -> y=z -> x=z.

1 subgoal

============================

forall x y z : nat, x = y -> y = z -> x = z

Coq < intros.

1 subgoal

x : nat

y : nat

z : nat

H : x = y

H0 : y = z

============================

x = z

Coq < transitivity y.

2 subgoals

x : nat

y : nat

z : nat

H : x = y

20

H0 : y = z

============================

x = y

subgoal 2 is:

y = z

Coq < assumption.

1 subgoal

x : nat

y : nat

z : nat

H : x = y

H0 : y = z

============================

y = z

Coq < assumption.

No more subgoals.

Coq < Qed.

intros.

transitivity y.

assumption.

assumption.

Unnamed thm3 is defined

60 My goal would be solvable using apply;assumption if it would not create meta-variables,
how can I prove it?

You can use eapply yourtheorem;eauto but it won’t work in all cases ! (for example if more than
one hypothesis match one of the subgoals generated by eapply) so you should rather use try solve

[eapply yourtheorem;eauto], otherwise some metavariables may be incorrectly instantiated.

Coq < Lemma trans : forall x y z : nat, x=y -> y=z -> x=z.

1 subgoal

============================

forall x y z : nat, x = y -> y = z -> x = z

Coq < intros.

1 subgoal

x : nat

y : nat

z : nat

H : x = y

H0 : y = z

============================

x = z

Coq < transitivity y;assumption.

No more subgoals.

Coq < Qed.

intros.

transitivity y; assumption.

trans is defined

Coq <

Coq < Goal forall x y z : nat, x=y -> y=z -> x=z.

1 subgoal

============================

21

forall x y z : nat, x = y -> y = z -> x = z

Coq < intros.

1 subgoal

x : nat

y : nat

z : nat

H : x = y

H0 : y = z

============================

x = z

Coq < eapply trans;eauto.

No more subgoals.

Coq < Qed.

intros.

eapply trans; eauto .

Unnamed thm4 is defined

Coq <

Coq < Goal forall x y z t : nat, x=y -> x=t -> y=z -> x=z.

1 subgoal

============================

forall x y z t : nat, x = y -> x = t -> y = z -> x = z

Coq < intros.

1 subgoal

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

x = z

Coq < eapply trans;eauto.

1 subgoal

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

t = z

Coq < Undo.

1 subgoal

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

22

============================

x = z

Coq < eapply trans.

2 subgoals

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

x = ?127

subgoal 2 is:

?127 = z

Coq < apply H.

1 subgoal

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

y = z

Coq < auto.

No more subgoals.

Coq < Qed.

intros.

eapply trans.

apply H.

auto.

Unnamed thm5 is defined

Coq <

Coq < Goal forall x y z t : nat, x=y -> x=t -> y=z -> x=z.

1 subgoal

============================

forall x y z t : nat, x = y -> x = t -> y = z -> x = z

Coq < intros.

1 subgoal

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

x = z

Coq < eapply trans;eauto.

1 subgoal

23

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

t = z

Coq < Undo.

1 subgoal

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

x = z

Coq < try solve [eapply trans;eauto].

1 subgoal

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

x = z

Coq < eapply trans.

2 subgoals

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

x = ?164

subgoal 2 is:

?164 = z

Coq < apply H.

1 subgoal

x : nat

y : nat

z : nat

t : nat

H : x = y

H0 : x = t

H1 : y = z

============================

y = z

24

Coq < auto.

No more subgoals.

Coq < Qed.

intros.

try (solve [eapply trans; eauto]).

eapply trans.

apply H.

auto.

Unnamed thm6 is defined

Coq <

61 My goal is solvable by some lemma within a set of lemmas and I don’t want to re-
member which one, how can I prove it?

You can use a what is called a hints’ base.

Coq < Require Import ZArith.

Coq < [Loading ML file z syntax plugin.cmxs ... done]

[Loading ML file quote plugin.cmxs ... done]

[Loading ML file newring plugin.cmxs ... done]

[Loading ML file omega plugin.cmxs ... done]

Coq < Require Ring.

Coq < Local Open Scope Z scope.

Coq < Lemma toto1 : 1+1 = 2.

1 subgoal

============================

1 + 1 = 2

Coq < ring.

No more subgoals.

Coq < Qed.

ring.

toto1 is defined

Coq < Lemma toto2 : 2+2 = 4.

1 subgoal

============================

2 + 2 = 4

Coq < ring.

No more subgoals.

Coq < Qed.

ring.

toto2 is defined

Coq < Lemma toto3 : 2+1 = 3.

1 subgoal

============================

2 + 1 = 3

Coq < ring.

No more subgoals.

Coq < Qed.

ring.

toto3 is defined

Coq <

25

Coq < Hint Resolve toto1 toto2 toto3 : mybase.

Coq <

Coq < Goal 2+(1+1)=4.

1 subgoal

============================

2 + (1 + 1) = 4

Coq < auto with mybase.

No more subgoals.

Coq < Qed.

auto with mybase.

Unnamed thm7 is defined

62 My goal is one of the hypotheses, how can I prove it?

Use the assumption tactic.

Coq < Goal 1=1 -> 1=1.

1 subgoal

============================

1 = 1 -> 1 = 1

Coq < intro.

1 subgoal

H : 1 = 1

============================

1 = 1

Coq < assumption.

No more subgoals.

Coq < Qed.

intro.

assumption.

Unnamed thm8 is defined

63 My goal appears twice in the hypotheses and I want to choose which one is used, how
can I do it?

Use the exact tactic.

Coq < Goal 1=1 -> 1=1 -> 1=1.

1 subgoal

============================

1 = 1 -> 1 = 1 -> 1 = 1

Coq < intros.

1 subgoal

H : 1 = 1

H0 : 1 = 1

============================

1 = 1

Coq < exact H0.

No more subgoals.

Coq < Qed.

intros.

exact H0.

Unnamed thm9 is defined

26

64 What can be the difference between applying one hypothesis or another in the context
of the last question?

From a proof point of view it is equivalent but if you want to extract a program from your proof, the
two hypotheses can lead to different programs.

65 My goal is a propositional tautology, how can I prove it?

Just use the tauto tactic.

Coq < Goal forall A B:Prop, A-> (A\/B) /\ A.

1 subgoal

============================

forall A B : Prop, A -> (A \/ B) /\ A

Coq < intros.

1 subgoal

A : Prop

B : Prop

H : A

============================

(A \/ B) /\ A

Coq < tauto.

No more subgoals.

Coq < Qed.

intros.

tauto.

Unnamed thm10 is defined

66 My goal is a first order formula, how can I prove it?

Just use the semi-decision tactic: firstorder.

67 My goal is solvable by a sequence of rewrites, how can I prove it?

Just use the congruence tactic.

Coq < Goal forall a b c d e, a=d -> b=e -> c+b=d -> c+e=a.

1 subgoal

============================

forall a b c d e : Z, a = d -> b = e -> c + b = d -> c + e = a

Coq < intros.

1 subgoal

a : Z

b : Z

c : Z

d : Z

e : Z

H : a = d

H0 : b = e

H1 : c + b = d

============================

c + e = a

Coq < congruence.

No more subgoals.

Coq < Qed.

27

intros.

congruence.

Unnamed thm11 is defined

68 My goal is a disequality solvable by a sequence of rewrites, how can I prove it?

Just use the congruence tactic.

Coq < Goal forall a b c d, a<>d -> b=a -> d=c+b -> b<>c+b.

1 subgoal

============================

forall a b c d : Z, a <> d -> b = a -> d = c + b -> b <> c + b

Coq < intros.

1 subgoal

a : Z

b : Z

c : Z

d : Z

H : a <> d

H0 : b = a

H1 : d = c + b

============================

b <> c + b

Coq < congruence.

No more subgoals.

Coq < Qed.

intros.

congruence.

Unnamed thm12 is defined

69 My goal is an equality on some ring (e.g. natural numbers), how can I prove it?

Just use the ring tactic.

Coq < Require Import ZArith.

Coq < Require Ring.

Coq < Local Open Scope Z scope.

Coq < Goal forall a b : Z, (a+b)*(a+b) = a*a + 2*a*b + b*b.

1 subgoal

============================

forall a b : Z, (a + b) * (a + b) = a * a + 2 * a * b + b * b

Coq < intros.

1 subgoal

a : Z

b : Z

============================

(a + b) * (a + b) = a * a + 2 * a * b + b * b

Coq < ring.

No more subgoals.

Coq < Qed.

intros.

ring.

Unnamed thm13 is defined

28

70 My goal is an equality on some field (e.g. real numbers), how can I prove it?

Just use the field tactic.

Coq < Require Import Reals.

[Loading ML file r syntax plugin.cmxs ... done]

[Loading ML file ring plugin.cmxs ... done]

[Loading ML file field plugin.cmxs ... done]

[Loading ML file fourier plugin.cmxs ... done]

Coq < Require Ring.

Coq < Local Open Scope R scope.

Coq < Goal forall a b : R, b*a<>0 -> (a/b) * (b/a) = 1.

1 subgoal

============================

forall a b : R, b * a <> 0 -> a / b * (b / a) = 1

Coq < intros.

1 subgoal

a : R

b : R

H : b * a <> 0

============================

a / b * (b / a) = 1

Coq < field.

1 subgoal

a : R

b : R

H : b * a <> 0

============================

a <> 0 /\ b <> 0

Coq < cut (b*a <>0 -> a<>0).

2 subgoals

a : R

b : R

H : b * a <> 0

============================

(b * a <> 0 -> a <> 0) -> a <> 0 /\ b <> 0

subgoal 2 is:

b * a <> 0 -> a <> 0

Coq < cut (b*a <>0 -> b<>0).

3 subgoals

a : R

b : R

H : b * a <> 0

============================

(b * a <> 0 -> b <> 0) -> (b * a <> 0 -> a <> 0) -> a <> 0 /\ b <> 0

subgoal 2 is:

b * a <> 0 -> b <> 0

subgoal 3 is:

b * a <> 0 -> a <> 0

Coq < auto.

2 subgoals

29

a : R

b : R

H : b * a <> 0

============================

b * a <> 0 -> b <> 0

subgoal 2 is:

b * a <> 0 -> a <> 0

Coq < auto with real.

1 subgoal

a : R

b : R

H : b * a <> 0

============================

b * a <> 0 -> a <> 0

Coq < auto with real.

No more subgoals.

Coq < Qed.

intros.

field.

cut (b * a <> 0 -> a <> 0).

cut (b * a <> 0 -> b <> 0).

auto.

auto with real.

auto with real.

Unnamed thm14 is defined

71 My goal is an inequality on integers in Presburger’s arithmetic (an expression build
from +,-,constants and variables), how can I prove it?

Coq < Require Import ZArith.

Coq < Require Omega.

Coq < Local Open Scope Z scope.

Coq < Goal forall a : Z, a>0 -> a+a > a.

1 subgoal

============================

forall a : Z, a > 0 -> a + a > a

Coq < intros.

1 subgoal

a : Z

H : a > 0

============================

a + a > a

Coq < omega.

No more subgoals.

Coq < Qed.

intros.

omega.

Unnamed thm15 is defined

72 My goal is an equation solvable using equational hypothesis on some ring (e.g. natural
numbers), how can I prove it?

You need the gb tactic (see Löıc Pottier’s homepage).

30

6.2 Tactics usage

73 I want to state a fact that I will use later as an hypothesis, how can I do it?

If you want to use forward reasoning (first proving the fact and then using it) you just need to use the
assert tactic. If you want to use backward reasoning (proving your goal using an assumption and then
proving the assumption) use the cut tactic.

Coq < Goal forall A B C D : Prop, (A -> B) -> (B->C) -> A -> C.

1 subgoal

============================

forall A B C : Prop, Prop -> (A -> B) -> (B -> C) -> A -> C

Coq < intros.

1 subgoal

A : Prop

B : Prop

C : Prop

D : Prop

H : A -> B

H0 : B -> C

H1 : A

============================

C

Coq < assert (A->C).

2 subgoals

A : Prop

B : Prop

C : Prop

D : Prop

H : A -> B

H0 : B -> C

H1 : A

============================

A -> C

subgoal 2 is:

C

Coq < intro;apply H0;apply H;assumption.

1 subgoal

A : Prop

B : Prop

C : Prop

D : Prop

H : A -> B

H0 : B -> C

H1 : A

H2 : A -> C

============================

C

Coq < apply H2.

1 subgoal

A : Prop

B : Prop

C : Prop

D : Prop

31

H : A -> B

H0 : B -> C

H1 : A

H2 : A -> C

============================

A

Coq < assumption.

No more subgoals.

Coq < Qed.

intros.

assert (A -> C).

intro; apply H0; apply H; assumption.

apply H2.

assumption.

Unnamed thm16 is defined

Coq <

Coq < Goal forall A B C D : Prop, (A -> B) -> (B->C) -> A -> C.

1 subgoal

============================

forall A B C : Prop, Prop -> (A -> B) -> (B -> C) -> A -> C

Coq < intros.

1 subgoal

A : Prop

B : Prop

C : Prop

D : Prop

H : A -> B

H0 : B -> C

H1 : A

============================

C

Coq < cut (A->C).

2 subgoals

A : Prop

B : Prop

C : Prop

D : Prop

H : A -> B

H0 : B -> C

H1 : A

============================

(A -> C) -> C

subgoal 2 is:

A -> C

Coq < intro.

2 subgoals

A : Prop

B : Prop

C : Prop

D : Prop

H : A -> B

H0 : B -> C

H1 : A

H2 : A -> C

32

============================

C

subgoal 2 is:

A -> C

Coq < apply H2;assumption.

1 subgoal

A : Prop

B : Prop

C : Prop

D : Prop

H : A -> B

H0 : B -> C

H1 : A

============================

A -> C

Coq < intro;apply H0;apply H;assumption.

No more subgoals.

Coq < Qed.

intros.

cut (A -> C).

intro.

apply H2; assumption.

intro; apply H0; apply H; assumption.

Unnamed thm17 is defined

74 I want to state a fact that I will use later as an hypothesis and prove it later, how can
I do it?

You can use cut followed by intro or you can use the following Ltac command:

Ltac assert_later t := cut t;[intro|idtac].

75 What is the difference between Qed and Defined?

These two commands perform type checking, but when Defined is used the new definition is set as
transparent, otherwise it is defined as opaque (see 170).

76 How can I know what a tactic does?

You can use the info command.

77 Why auto does not work? How can I fix it?

You can increase the depth of the proof search or add some lemmas in the base of hints. Perhaps you
may need to use eauto.

78 What is eauto?

This is the same tactic as auto, but it relies on eapply instead of apply.

79 How can I speed up auto?

You can use info auto to replace auto by the tactics it generates. You can split your hint bases into
smaller ones.

80 What is the equivalent of tauto for classical logic?

Currently there are no equivalent tactic for classical logic. You can use Gödel’s “not not” translation.

33

81 I want to replace some term with another in the goal, how can I do it?

If one of your hypothesis (say H) states that the terms are equal you can use the rewrite tactic. Otherwise
you can use the replace with tactic.

82 I want to replace some term with another in an hypothesis, how can I do it?

You can use the rewrite in tactic.

83 I want to replace some symbol with its definition, how can I do it?

You can use the unfold tactic.

84 How can I reduce some term?

You can use the simpl tactic.

85 How can I declare a shortcut for some term?

You can use the set or pose tactics.

86 How can I perform case analysis?

You can use the case or destruct tactics.

87 How can I prevent the case tactic from losing information ?

You may want to use the (now standard) case eq tactic. See the Coq’Art page 159.

88 Why should I name my intros?

When you use the intro tactic you don’t have to give a name to your hypothesis. If you do so the
name will be generated by Coq but your scripts may be less robust. If you add some hypothesis to your
theorem (or change their order), you will have to change your proof to adapt to the new names.

89 How can I automatize the naming?

You can use the Show Intro. or Show Intros. commands to generate the names and use your editor
to generate a fully named intro tactic. This can be automatized within xemacs.

Coq < Goal forall A B C : Prop, A -> B -> C -> A/\B/\C.

1 subgoal

============================

forall A B C : Prop, A -> B -> C -> A /\ B /\ C

Coq < Show Intros.

A B C H H0 H1

Coq < (*

Coq < A B C H H0

Coq < H1

Coq < *)

Coq < intros A B C H H0 H1.

1 subgoal

A : Prop

B : Prop

C : Prop

H : A

H0 : B

34

H1 : C

============================

A /\ B /\ C

Coq < repeat split;assumption.

No more subgoals.

Coq < Qed.

intros A B C H H0 H1.

repeat split; assumption.

Unnamed thm18 is defined

90 I want to automatize the use of some tactic, how can I do it?

You need to use the proof with T command and add . . . at the end of your sentences.
For instance:

Coq < Goal forall A B C : Prop, A -> B/\C -> A/\B/\C.

1 subgoal

============================

forall A B C : Prop, A -> B /\ C -> A /\ B /\ C

Coq < Proof with assumption.

1 subgoal

============================

forall A B C : Prop, A -> B /\ C -> A /\ B /\ C

Coq < intros.

1 subgoal

A : Prop

B : Prop

C : Prop

H : A

H0 : B /\ C

============================

A /\ B /\ C

Coq < split...

No more subgoals.

Coq < Qed.

intros.

split...

Unnamed thm19 is defined

91 I want to execute the proof with tactic only if it solves the goal, how can I do it?

You need to use the try and solve tactics. For instance:

Coq < Require Import ZArith.

Coq < Require Ring.

Coq < Local Open Scope Z scope.

Coq < Goal forall a b c : Z, a+b=b+a.

1 subgoal

============================

forall a b : Z, Z -> a + b = b + a

Coq < Proof with try solve [ring].

1 subgoal

35

============================

forall a b : Z, Z -> a + b = b + a

Coq < intros...

No more subgoals.

Coq < Qed.

intros...

Unnamed thm20 is defined

92 How can I do the opposite of the intro tactic?

You can use the generalize tactic.

Coq < Goal forall A B : Prop, A->B-> A/\B.

1 subgoal

============================

forall A B : Prop, A -> B -> A /\ B

Coq < intros.

1 subgoal

A : Prop

B : Prop

H : A

H0 : B

============================

A /\ B

Coq < generalize H.

1 subgoal

A : Prop

B : Prop

H : A

H0 : B

============================

A -> A /\ B

Coq < intro.

1 subgoal

A : Prop

B : Prop

H : A

H0 : B

H1 : A

============================

A /\ B

Coq < auto.

No more subgoals.

Coq < Qed.

intros.

generalize H.

intro.

auto.

Unnamed thm21 is defined

93 One of the hypothesis is an equality between a variable and some term, I want to get
rid of this variable, how can I do it?

You can use the subst tactic. This will rewrite the equality everywhere and clear the assumption.

36

94 What can I do if I get “generated subgoal term has metavariables in it ”?

You should use the eapply tactic, this will generate some goals containing metavariables.

95 How can I instantiate some metavariable?

Just use the instantiate tactic.

96 What is the use of the pattern tactic?

The pattern tactic transforms the current goal, performing beta-expansion on all the applications featur-
ing this tactic’s argument. For instance, if the current goal includes a subterm phi(t), then pattern t

transforms the subterm into (fun x:A => phi(x)) t. This can be useful when apply fails on matching,
to abstract the appropriate terms.

97 What is the difference between assert, cut and generalize?

PS: Notice for people that are interested in proof rendering that assertand pose (and cut) are not
rendered the same as generalize (see the HELM experimental rendering tool at http://helm.cs.

unibo.it, link HELM, link COQ Online). Indeed generalize builds a beta-expanded term while
assert, pose and cut uses a let-in.

(* Goal is T *)

generalize (H1 H2).

(* Goal is A->T *)

... a proof of A->T ...

is rendered into something like

(h) ... the proof of A->T ...

we proved A->T

(h0) by (H1 H2) we proved A

by (h h0) we proved T

while

(* Goal is T *)

assert q := (H1 H2).

(* Goal is A *)

... a proof of A ...

(* Goal is A |- T *)

... a proof of T ...

is rendered into something like

(q) ... the proof of A ...

we proved A

... the proof of T ...

we proved T

Otherwise said, generalize is not rendered in a forward-reasoning way, while assert is.

98 What can I do if Coqcan not infer some implicit argument ?

You can state explicitely what this implicit argument is. See 99.

99 How can I explicit some implicit argument ?

Just use A:=term where A is the argument.
For instance if you want to use the existence of “nil” on nat*nat lists:

exists (nil (A:=(nat*nat))).

37

6.3 Proof management

100 How can I change the order of the subgoals?

You can use the Focus command to concentrate on some goal. When the goal is proved you will see the
remaining goals.

101 How can I change the order of the hypothesis?

You can use the Move ... after command.

102 How can I change the name of an hypothesis?

You can use the Rename ... into command.

103 How can I delete some hypothesis?

You can use the Clear command.

104 How can use a proof which is not finished?

You can use the Admitted command to state your current proof as an axiom. You can use the admit

tactic to omit a portion of a proof.

105 How can I state a conjecture?

You can use the Admitted command to state your current proof as an axiom.

106 What is the difference between a lemma, a fact and a theorem?

From Coq point of view there are no difference. But some tools can have a different behavior when
you use a lemma rather than a theorem. For instance coqdoc will not generate documentation for the
lemmas within your development.

107 How can I organize my proofs?

You can organize your proofs using the section mechanism of Coq. Have a look at the manual for further
information.

7 Inductive and Co-inductive types

7.1 General

108 How can I prove that two constructors are different?

You can use the discriminate tactic.

Coq < Inductive toto : Set := | C1 : toto | C2 : toto.

toto is defined

toto rect is defined

toto ind is defined

toto rec is defined

Coq < Goal C1 <> C2.

1 subgoal

============================

C1 <> C2

Coq < discriminate.

No more subgoals.

38

Coq < Qed.

discriminate.

Unnamed thm22 is defined

109 During an inductive proof, how to get rid of impossible cases of an inductive defini-
tion?

Use the inversion tactic.

110 How can I prove that 2 terms in an inductive set are equal? Or different?

Have a look at decide equality and discriminate in the Reference Manual.

111 Why is the proof of 0+n=n on natural numbers trivial but the proof of n+0=n is not?

Since + (plus) on natural numbers is defined by analysis on its first argument

Coq < Print plus.

plus =

fix plus (n m : nat) {struct n} : nat :=

match n with

| 0%nat => m

| S p => S (plus p m)

end

: nat -> nat -> nat

Argument scopes are [nat scope nat scope]

The expression 0+n evaluates to n. As Coq reasons modulo evaluation of expressions, 0+n and n are
considered equal and the theorem 0+n=n is an instance of the reflexivity of equality. On the other side,
n+0 does not evaluate to n and a proof by induction on n is necessary to trigger the evaluation of +.

112 Why is dependent elimination in Prop not available by default?

This is just because most of the time it is not needed. To derive a dependent elimination principle
in Prop, use the command Scheme and apply the elimination scheme using the using option of elim,
destruct or induction.

113 Argh! I cannot write expressions like “ if n <= p then p else n ”, as in any pro-
gramming language

The short answer : You should use le lt dec n p instead.

The long answer: That’s right, you can’t. If you type for instance the following “definition”:

Coq < Definition max (n p : nat) := if n <= p then p else n.

Toplevel input, characters 33-39:

> Definition max (n p : nat) := if n <= p then p else n.

> ^^^^^^

Error: The term "n <= p" has type "Prop" which is not a (co-)inductive type.

As Coq says, the term “ n <= p ” is a proposition, i.e. a statement that belongs to the mathematical
world. There are many ways to prove such a proposition, either by some computation, or using some
already proven theoremas. For instance, proving 3 − 2 ≤ 245503 is very easy, using some theorems on
arithmetical operations. If you compute both numbers before comparing them, you risk to use a lot of
time and space.

On the contrary, a function for computing the greatest of two natural numbers is an algorithm which,
called on two natural numbers n and p, determines wether n ≤ p or p < n. Such a function is a decision
procedure for the inequality of nat. The possibility of writing such a procedure comes directly from de
decidability of the order ≤ on natural numbers.

39

When you write a piece of code like “ if n <= p then ... else ... ” in a programming language
like ML or Java, a call to such a decision procedure is generated. The decision procedure is in general a
primitive function, written in a low-level language, in the correctness of which you have to trust.

The standard Library of the system Coq contains a (constructive) proof of decidability of the order
≤ on nat : the function le lt dec of the module Compare dec of library Arith.

The following code shows how to define correctly min and max, and prove some properties of these
functions.

Coq < Require Import Compare dec.

Coq <

Coq < Definition max (n p : nat) := if le lt dec n p then p else n.

max is defined

Coq <

Coq < Definition min (n p : nat) := if le lt dec n p then n else p.

min is defined

Coq <

Coq < Eval compute in (min 4 7).

= 4

: nat

Coq <

Coq < Theorem min plus max : forall n p, min n p + max n p = n + p.

1 subgoal

============================

forall n p : nat, min n p + max n p = n + p

Coq < Proof.

1 subgoal

============================

forall n p : nat, min n p + max n p = n + p

Coq < intros n p;

Coq < unfold min, max;

Coq < case (le lt dec n p);

Coq < simpl; auto with arith.

No more subgoals.

Coq < Qed.

intros n p; unfold min, max; case (le lt dec n p); simpl; auto with arith.

min plus max is defined

Coq <

Coq < Theorem max equiv : forall n p, max n p = p <-> n <= p.

1 subgoal

============================

forall n p : nat, max n p = p <-> n <= p

Coq < Proof.

1 subgoal

============================

forall n p : nat, max n p = p <-> n <= p

Coq < unfold max; intros n p; case (le lt dec n p);simpl; auto.

2 subgoals

n : nat

p : nat

============================

40

n <= p -> (p = p <-> n <= p)

subgoal 2 is:

p < n -> (n = p <-> n <= p)

Coq < intuition auto with arith.

1 subgoal

n : nat

p : nat

============================

p < n -> (n = p <-> n <= p)

Coq < split.

2 subgoals

n : nat

p : nat

l : p < n

============================

n = p -> n <= p

subgoal 2 is:

n <= p -> n = p

Coq < intro e; rewrite e; auto with arith.

1 subgoal

n : nat

p : nat

l : p < n

============================

n <= p -> n = p

Coq < intro H; absurd (p < p); eauto with arith.

No more subgoals.

Coq < Qed.

unfold max; intros n p; case (le lt dec n p); simpl; auto.

intuition auto with arith.

split.

intro e; rewrite e; auto with arith.

intro H; absurd (p < p); eauto with arith.

max equiv is defined

114 I wrote my own decision procedure for ≤, which is much faster than yours, but
proving such theorems as max equiv seems to be quite difficult

Your code is probably the following one:

Coq < Fixpoint my le lt dec (n p :nat) {struct n}: bool :=

Coq < match n, p with 0, => true

Coq < | S n’, S p’ => my le lt dec n’ p’

Coq < | , => false

Coq < end.

my le lt dec is recursively defined (decreasing on 1st argument)

Coq <

Coq < Definition my max (n p:nat) := if my le lt dec n p then p else n.

my max is defined

Coq <

Coq < Definition my min (n p:nat) := if my le lt dec n p then n else p.

my min is defined

For instance, the computation of my max 567 321 is almost immediate, whereas one can’t wait for
the result of max 56 32, using Coq’s le lt dec.

41

This is normal. Your definition is a simple recursive function which returns a boolean value. Coq’s
le lt dec is a certified function, i.e. a complex object, able not only to tell wether n ≤ p or p < n,
but also of building a complete proof of the correct inequality. What make le lt dec inefficient for
computing min and max is the building of a huge proof term.

Nevertheless, le lt dec is very useful. Its type is a strong specification, using the sumbool type (look
at the reference manual or chapter 9 of [1]). Eliminations of the form “ case (le lt dec n p) ” provide
proofs of either n ≤ p or p < n, allowing to prove easily theorems as in question 113. Unfortunately, this
not the case of your my le lt dec, which returns a quite non-informative boolean value.

Coq < Check le lt dec.

le lt dec

: forall n m : nat, {n <= m} + {m < n}

You should keep in mind that le lt dec is useful to build certified programs which need to compare
natural numbers, and is not designed to compare quickly two numbers.

Nevertheless, the extraction of le lt dec towards OCaml or Haskell, is a reasonable program for
comparing two natural numbers in Peano form in linear time.

It is also possible to keep your boolean function as a decision procedure, but you have to establish
yourself the relationship between my le lt dec and the propositions n ≤ p and p < n:

Coq < Theorem my le lt dec true :

Coq < forall n p, my le lt dec n p = true <-> n <= p.

Coq <

Coq < Theorem my le lt dec false :

Coq < forall n p, my le lt dec n p = false <-> p < n.

7.2 Recursion

115 Why can’t I define a non terminating program?

Because otherwise the decidability of the type-checking algorithm (which involves evaluation of programs)
is not ensured. On another side, if non terminating proofs were allowed, we could get a proof of False:

Coq < (* This is fortunately not allowed! *)

Coq < Fixpoint InfiniteProof (n:nat) : False := InfiniteProof n.

Coq < Theorem Paradox : False.

Coq < Proof (InfiniteProof O).

116 Why only structurally well-founded loops are allowed?

The structural order on inductive types is a simple and powerful notion of termination. The consistency
of the Calculus of Inductive Constructions relies on it and another consistency proof would have to be
made for stronger termination arguments (such as the termination of the evaluation of CIC programs
themselves!).

In spite of this, all non-pathological termination orders can be mapped to a structural order. Tools
to do this are provided in the file Wf.v of the standard library of Coq.

117 How to define loops based on non structurally smaller recursive calls?

The procedure is as follows (we consider the definition of mergesort as an example).

• Define the termination order, say R on the type A of the arguments of the loop.

Coq < Definition R (a b:list nat) := length a < length b.

• Prove that this order is well-founded (in fact that all elements in A are accessible along R).

Coq < Lemma Rwf : well founded R.

42

• Define the step function (which needs proofs that recursive calls are on smaller arguments).

Definition split (l : list nat)

: {l1: list nat | R l1 l} * {l2 : list nat | R l2 l}

:= (* ... *) .

Definition concat (l1 l2 : list nat) : list nat := (* ... *) .

Definition merge_step (l : list nat) (f: forall l’:list nat, R l’ l -> list nat) :=

let (lH1,lH2) := (split l) in

let (l1,H1) := lH1 in

let (l2,H2) := lH2 in

concat (f l1 H1) (f l2 H2).

• Define the recursive function by fixpoint on the step function.

Coq < Definition merge := Fix Rwf (fun => list nat) merge step.

118 What is behind the accessibility and well-foundedness proofs?

Well-foundedness of some relation R on some type A is defined as the accessibility of all elements of A
along R.

Coq < Print well founded.

well founded =

fun (A : Type) (R : A -> A -> Prop) => forall a : A, Acc R a

: forall A : Type, (A -> A -> Prop) -> Prop

Argument A is implicit

Argument scopes are [type scope]

Coq < Print Acc.

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop :=

Acc intro : (forall y : A, R y x -> Acc R y) -> Acc R x

For Acc: Argument A is implicit

For Acc intro: Arguments A, R are implicit

For Acc: Argument scopes are [type scope]

For Acc intro: Argument scopes are [type scope]

The structure of the accessibility predicate is a well-founded tree branching at each node x in A along
all the nodes x’ less than x along R. Any sequence of elements of A decreasing along the order R are
branches in the accessibility tree. Hence any decreasing along R is mapped into a structural decreasing
in the accessibility tree of R. This is emphasised in the definition of fix which recurs not on its argument
x:A but on the accessibility of this argument along R.

See file Wf.v.

119 How to perform simultaneous double induction?

In general a (simultaneous) double induction is simply solved by an induction on the first hypothesis
followed by an inversion over the second hypothesis. Here is an example

Coq < Inductive even : nat -> Prop :=

Coq < | even O : even 0

Coq < | even S : forall n:nat, even n -> even (S (S n)).

even is defined

even ind is defined

Coq <

Coq < Inductive odd : nat -> Prop :=

Coq < | odd SO : odd 1

Coq < | odd S : forall n:nat, odd n -> odd (S (S n)).

odd is defined

odd ind is defined

43

Coq <

Coq < Lemma not even and odd : forall n:nat, even n -> odd n -> False.

1 subgoal

============================

forall n : nat, even n -> odd n -> False

Coq < induction 1.

2 subgoals

============================

odd 0 -> False

subgoal 2 is:

odd (S (S n)) -> False

Coq < inversion 1.

1 subgoal

n : nat

H : even n

IHeven : odd n -> False

============================

odd (S (S n)) -> False

Coq < inversion 1. apply IHeven; trivial.

1 subgoal

n : nat

H : even n

IHeven : odd n -> False

H0 : odd (S (S n))

n0 : nat

H2 : odd n

H1 : n0 = n

============================

False

No more subgoals.

In case the type of the second induction hypothesis is not dependent, inversion can just be replaced
by destruct.

120 How to define a function by simultaneous double recursion?

The same trick applies, you can even use the pattern-matching compilation algorithm to do the work for
you. Here is an example:

Coq < Fixpoint minus (n m:nat) {struct n} : nat :=

Coq < match n, m with

Coq < | O, => 0

Coq < | S k, O => S k

Coq < | S k, S l => minus k l

Coq < end.

minus is recursively defined (decreasing on 1st argument)

Coq < Print minus.

minus =

fix minus (n m : nat) {struct n} : nat :=

match n with

| 0 => 0

| S k => match m with

| 0 => S k

| S l => minus k l

end

44

end

: nat -> nat -> nat

Argument scopes are [nat scope nat scope]

In case of dependencies in the type of the induction objects t1 and t2, an extra argument stating
t1 = t2 must be given to the fixpoint definition

121 How to perform nested and double induction?

To reason by nested (i.e. lexicographic) induction, just reason by induction on the successive components.

Double induction (or induction on pairs) is a restriction of the lexicographic induction. Here is an
example of double induction.

Coq < Lemma nat double ind :

Coq < forall P : nat -> nat -> Prop, P 0 0 ->

Coq < (forall m n, P m n -> P m (S n)) ->

Coq < (forall m n, P m n -> P (S m) n) ->

Coq < forall m n, P m n.

1 subgoal

============================

forall P : nat -> nat -> Prop,

P 0 0 ->

(forall m n : nat, P m n -> P m (S n)) ->

(forall m n : nat, P m n -> P (S m) n) -> forall m n : nat, P m n

Coq < intros P H00 HmS HSn; induction m.

2 subgoals

P : nat -> nat -> Prop

H00 : P 0 0

HmS : forall m n : nat, P m n -> P m (S n)

HSn : forall m n : nat, P m n -> P (S m) n

============================

forall n : nat, P 0 n

subgoal 2 is:

forall n : nat, P (S m) n

Coq < (* case 0 *)

Coq < induction n; [assumption | apply HmS; apply IHn].

1 subgoal

P : nat -> nat -> Prop

H00 : P 0 0

HmS : forall m n : nat, P m n -> P m (S n)

HSn : forall m n : nat, P m n -> P (S m) n

m : nat

IHm : forall n : nat, P m n

============================

forall n : nat, P (S m) n

Coq < (* case Sm *)

Coq < intro n; apply HSn; apply IHm.

No more subgoals.

122 How to define a function by nested recursion?

The same trick applies. Here is the example of Ackermann function.

Coq < Fixpoint ack (n:nat) : nat -> nat :=

Coq < match n with

Coq < | O => S

45

Coq < | S n’ =>

Coq < (fix ack’ (m:nat) : nat :=

Coq < match m with

Coq < | O => ack n’ 1

Coq < | S m’ => ack n’ (ack’ m’)

Coq < end)

Coq < end.

ack is recursively defined (decreasing on 1st argument)

7.3 Co-inductive types

123 I have a cofixpoint t := F (t) and I want to prove t = F (t). How to do it?

Just case-expand F (t) then complete by a trivial case analysis. Here is what it gives on e.g. the type of
streams on naturals

Coq < CoInductive Stream (A:Set) : Set :=

Coq < Cons : A -> Stream A -> Stream A.

Stream is defined

Coq < CoFixpoint nats (n:nat) : Stream nat := Cons n (nats (S n)).

nats is corecursively defined

Coq < Lemma Stream unfold :

Coq < forall n:nat, nats n = Cons n (nats (S n)).

1 subgoal

============================

forall n : nat, nats n = Cons n (nats (S n))

Coq < Proof.

1 subgoal

============================

forall n : nat, nats n = Cons n (nats (S n))

Coq < intro;

Coq < change (nats n = match nats n with

Coq < | Cons x s => Cons x s

Coq < end).

1 subgoal

n : nat

============================

nats n = match nats n with

| Cons x s => Cons x s

end

Coq < case (nats n); reflexivity.

No more subgoals.

Coq < Qed.

intro; change (nats n = match nats n with

| Cons x s => Cons x s

end).

case (nats n); reflexivity.

Stream unfold is defined

8 Syntax and notations

124 I do not want to type “forall” because it is too long, what can I do?

You can define your own notation for forall:

46

Notation "fa x : t, P" := (forall x:t, P) (at level 200, x ident).

or if your are using CoqIde you can define a pretty symbol for for all and an input method (see 153).

125 How can I define a notation for square?

You can use for instance:

Notation "x ^2" := (Rmult x x) (at level 20).

Note that you can not use: Notation "x
2

" := (Rmult x x) (at level 20). because “2” is an
iso-latin character. If you really want this kind of notation you should use UTF-8.

126 Why “no associativity” and “left associativity” at the same level does not work?

Because we relie on Camlp4 for syntactical analysis and Camlp4 does not really implement no associa-
tivity. By default, non associative operators are defined as right associative.

127 How can I know the associativity associated with a level?

You can do “Print Grammar constr”, and decode the output from Camlp4, good luck !

9 Modules

10 Ltac

128 What is Ltac?

Ltac is the tactic language for Coq. It provides the user with a high-level “toolbox” for tactic creation.

129 Is there any printing command in Ltac?

You can use the idtac tactic with a string argument. This string will be printed out. The same applies
to the fail tactic

130 What is the syntax for let in Ltac?

If xi are identifiers and ei and expr are tactic expressions, then let reads:

let x1:=e1 with x2:=e2...with xn:=en in expr.

Beware that if expr is complex (i.e. features at least a sequence) parenthesis should be added around it.
For example:

Coq < Ltac twoIntro := let x:=intro in (x;x).

twoIntro is defined

131 What is the syntax for pattern matching in Ltac?

Pattern matching on a term expr (non-linear first order unification) with patterns pi and tactic expres-
sions ei reads:

match expr with p1 => e1 |p2 => e2 ... |pn => en | => en+1 end.

Underscore matches all terms.

47

132 What is the semantics for “match goal”?

The semantics of match goal depends on whether it returns tactics or not. The match goal expression
matches the current goal against a series of patterns: hyp1. . .hypn |- ccl. It uses a first-order unification
algorithm and in case of success, if the right-hand-side is an expression, it tries to type it while if the
right-hand-side is a tactic, it tries to apply it. If the typing or the tactic application fails, the match

goal tries all the possible combinations of hypi before dropping the branch and moving to the next one.
Underscore matches all terms.

133 Why can’t I use a “match goal” returning a tactic in a non tail-recursive position?

This is precisely because the semantics of match goal is to apply the tactic on the right as soon as a
pattern unifies what is meaningful only in tail-recursive uses.

The semantics in non tail-recursive call could have been the one used for terms (i.e. fail if the tactic
expression is not typable, but don’t try to apply it). For uniformity of semantics though, this has been
rejected.

134 How can I generate a new name?

You can use the following syntax: let id:=fresh in ...
For example:

Coq < Ltac introIdGen := let id:=fresh in intro id.

introIdGen is defined

11 Tactics written in OCaml

135 Can you show me an example of a tactic written in OCaml?

Have a look at the skeleton “Hello World” tactic from the next question. You also have some examples
of tactics written in OCaml in the “plugins” directory of Coq sources.

136 Is there a skeleton of OCaml tactic I can reuse somewhere?

The following steps describe how to write a simplistic “Hello world” OCaml tactic. This takes the form
of a dynamically loadable OCaml module, which will be invoked from the Coq toplevel.

1. In the plugins directory of the Coq source location, create a directory hello. Proceed to create a
grammar and OCaml file, respectively plugins/hello/g_hello.ml4 and plugins/hello/coq_hello.ml,
containing:

• in g_hello.ml4:

(*i camlp4deps: "parsing/grammar.cma" i*)

TACTIC EXTEND Hello

| ["hello"] -> [Coq_hello.printHello]

END

• in coq_hello.ml:

let printHello gl =

Tacticals.tclIDTAC_MESSAGE (Pp.str "Hello world") gl

2. Create a file plugins/hello/hello_plugin.mllib, containing the names of the OCaml modules
bundled in the dynamic library:

Coq_hello

G_hello

3. Append the following lines in plugins/plugins{byte,opt}.itarget:

48

• in pluginsopt.itarget:

hello/hello_plugin.cmxa

• in pluginsbyte.itarget:

hello/hello_plugin.cma

4. In the root directory of the Coq source location, modify the file Makefile.common:

• add hello to the SRCDIR definition (second argument of the addprefix function);

• in the section “Object and Source files”, add HELLOCMA:=plugins/hello/hello_plugin.cma;

• add $(HELLOCMA) to the PLUGINSCMA definition.

5. Modify the file Makefile.build, adding in section “3) plugins” the line:

hello: $(HELLOCMA)

6. From the command line, run make hello, then make plugins/hello/hello_plugin.cmxs.

The call to the tactic hello from a Coq script has to be preceded by Declare ML Module "hello_plugin",
which will load the dynamic object hello_plugin.cmxs. For instance:

Declare ML Module "hello_plugin".

Variable A:Prop.

Goal A-> A.

Proof.

hello.

auto.

Qed.

12 Case studies

137 How to prove that 2 sets are different?

You need to find a property true on one set and false on the other one. As an example we show how to
prove that bool and nat are discriminable. As discrimination property we take the property to have no
more than 2 elements.

Coq < Theorem nat bool discr : bool <> nat.

Coq < Proof.

Coq < pose (discr :=

Coq < fun X:Set =>

Coq < ~ (forall a b:X, ~ (forall x:X, x <> a -> x <> b -> False))).

Coq < intro Heq; assert (H: discr bool).

Coq < intro H; apply (H true false); destruct x; auto.

Coq < rewrite Heq in H; apply H; clear H.

Coq < destruct a; destruct b as [|n]; intro H0; eauto.

Coq < destruct n; [apply (H0 2); discriminate | eauto].

Coq < Qed.

49

138 Is there an axiom-free proof of Streicher’s axiom K for the equality on nat?

Yes, because equality is decidable on nat. Here is the proof.

Coq < Require Import Eqdep dec.

Coq < Require Import Peano dec.

Coq < Theorem K nat :

Coq < forall (x:nat) (P:x = x -> Prop), P (eq refl x) -> forall p:x = x, P p.

Coq < Proof.

Coq < intros; apply K dec set with (p := p).

Coq < apply eq nat dec.

Coq < assumption.

Coq < Qed.

Similarly, we have

Coq < Theorem eq rect eq nat :

Coq < forall (p:nat) (Q:nat->Type) (x:Q p) (h:p=p), x = eq rect p Q x p h.

Coq < Proof.

Coq < intros; apply K nat with (p := h); reflexivity.

Coq < Qed.

139 How to prove that two proofs of n<=m on nat are equal?

This is provable without requiring any axiom because axiom K directly holds on nat. Here is a proof
using question 138.

Coq < Require Import Arith.

Coq < Scheme le ind’ := Induction for le Sort Prop.

Coq < Theorem le uniqueness proof : forall (n m : nat) (p q : n <= m), p = q.

Coq < Proof.

Coq < induction p using le ind’; intro q.

Coq < replace (le n n) with

Coq < (eq rect (fun n0 => n <= n0) (le n n) eq refl).

Coq < 2:reflexivity.

Coq < generalize (eq refl n).

Coq < pattern n at 2 4 6 10, q; case q; [intro | intros m l e].

Coq < rewrite <- eq rect eq nat; trivial.

Coq < contradiction (le Sn n m); rewrite <- e; assumption.

Coq < replace (le S n m p) with

Coq < (eq rect (fun n0 => n <= n0) (le S n m p) eq refl).

Coq < 2:reflexivity.

Coq < generalize (eq refl (S m)).

Coq < pattern (S m) at 1 3 4 6, q; case q; [intro Heq | intros m0 l HeqS].

Coq < contradiction (le Sn n m); rewrite Heq; assumption.

Coq < injection HeqS; intro Heq; generalize l HeqS.

Coq < rewrite <- Heq; intros; rewrite <- eq rect eq nat.

Coq < rewrite (IHp l0); reflexivity.

Coq < Qed.

50

140 How to exploit equalities on sets

To extract information from an equality on sets, you need to find a predicate of sets satisfied by the
elements of the sets. As an example, let’s consider the following theorem.

Coq < Theorem interval discr :

Coq < forall m n:nat,

Coq < {x : nat | x <= m} = {x : nat | x <= n} -> m = n.

We have a proof requiring the axiom of proof-irrelevance. We conjecture that proof-irrelevance can be
circumvented by introducing a primitive definition of discrimination of the proofs of {x : nat | x <= m}.

The proof can be found in file interval discr.v in this directory.

141 I have a problem of dependent elimination on proofs, how to solve it?

Coq < Inductive Def1 : Set := c1 : Def1.

Coq < Inductive DefProp : Def1 -> Prop :=

Coq < c2 : forall d:Def1, DefProp d.

Coq < Inductive Comb : Set :=

Coq < c3 : forall d:Def1, DefProp d -> Comb.

Coq < Lemma eq comb :

Coq < forall (d1 d1’:Def1) (d2:DefProp d1) (d2’:DefProp d1’),

Coq < d1 = d1’ -> c3 d1 d2 = c3 d1’ d2’.

You need to derive the dependent elimination scheme for DefProp by hand using Scheme.

Coq < Scheme DefProp elim := Induction for DefProp Sort Prop.

Coq < Lemma eq comb :

Coq < forall d1 d1’:Def1,

Coq < d1 = d1’ ->

Coq < forall (d2:DefProp d1) (d2’:DefProp d1’), c3 d1 d2 = c3 d1’ d2’.

Coq < intros.

Coq < destruct H.

Coq < destruct d2 using DefProp elim.

Coq < destruct d2’ using DefProp elim.

Coq < reflexivity.

Coq < Qed.

142 And what if I want to prove the following?

Coq < Inductive natProp : nat -> Prop :=

Coq < | p0 : natProp 0

Coq < | pS : forall n:nat, natProp n -> natProp (S n).

Coq < Inductive package : Set :=

Coq < pack : forall n:nat, natProp n -> package.

Coq < Lemma eq pack :

Coq < forall n n’:nat,

Coq < n = n’ ->

Coq < forall (np:natProp n) (np’:natProp n’), pack n np = pack n’ np’.

Coq < Scheme natProp elim := Induction for natProp Sort Prop.

Coq < Definition pack S : package -> package.

Coq < destruct 1.

Coq < apply (pack (S n)).

51

Coq < apply pS; assumption.

Coq < Defined.

Coq < Lemma eq pack :

Coq < forall n n’:nat,

Coq < n = n’ ->

Coq < forall (np:natProp n) (np’:natProp n’), pack n np = pack n’ np’.

Coq < intros n n’ Heq np np’.

Coq < generalize dependent n’.

Coq < induction np using natProp elim.

Coq < induction np’ using natProp elim; intros; auto.

Coq < discriminate Heq.

Coq < induction np’ using natProp elim; intros; auto.

Coq < discriminate Heq.

Coq < change (pack S (pack n np) = pack S (pack n0 np’)).

Coq < apply (f equal (A:=package)).

Coq < apply IHnp.

Coq < auto.

Coq < Qed.

13 Publishing tools

143 How can I generate some latex from my development?

You can use coqdoc.

144 How can I generate some HTML from my development?

You can use coqdoc.

145 How can I generate some dependency graph from my development?

You can use the tool coqgraph developped by Philippe Audebaud in 2002. This tool transforms de-
pendancies generated by coqdep into ’dot’ files which can be visualized using the Graphviz software
(http://www.graphviz.org/).

146 How can I cite some Coq in my latex document?

You can use coq tex.

147 How can I cite the Coq reference manual?

You can use this bibtex entry:

@Manual{Coq:manual,

title = {The Coq proof assistant reference manual},

author = {\mbox{The Coq development team}},

organization = {LogiCal Project},

note = {Version 8.2},

year = {2009},

url = "http://coq.inria.fr"

}

52

148 Where can I publish my developments in Coq?

You can submit your developments as a user contribution to the Coq development team. This ensures
its liveness along the evolution and possible changes of Coq.

You can also submit your developments to the HELM/MoWGLI repository at the University of
Bologna (see http://mowgli.cs.unibo.it). For developments submitted in this database, it is possible
to visualize the developments in natural language and execute various retrieving requests.

149 How can I read my proof in natural language?

You can submit your proof to the HELM/MoWGLI repository and use the rendering tool provided by
the server (see http://mowgli.cs.unibo.it).

14 CoqIde

150 What is CoqIde?

CoqIde is a gtk based GUI for Coq.

151 How to enable Emacs keybindings?

Depending on your configuration, use either one of these two methods

• Insert gtk-key-theme-name = "Emacs" in your coqide-gtk2rc file. It should be in $XDG_CONFIG_DIRS/coq

dir. This is done by default.

• If in Gnome, run the gnome configuration editor (gconf-editor) and set key gtk-key-theme to
Emacs in the category desktop/gnome/interface.

152 How to enable antialiased fonts?

Set the GDK_USE_XFT variable to 1. This is by default with Gtk >= 2.2. If some of your fonts are not
available, set GDK_USE_XFT to 0.

153 How to use those Forall and Exists pretty symbols?

Thanks to the notation features in Coq, you just need to insert these lines in your Coq buffer:
Notation "∀ x : t, P" := (forall x:t, P) (at level 200, x ident).

Notation "∃ x : t, P" := (exists x:t, P) (at level 200, x ident).

Copy/Paste of these lines from this file will not work outside of CoqIde. You need to load a
file containing these lines or to enter the ∀ using an input method (see 154). To try it just use
Require Import utf8 from inside CoqIde. To enable these notations automatically start coqide with

coqide -l utf8

In the ide subdir of Coq library, you will find a sample utf8.v with some pretty simple notations.

154 How to define an input method for non ASCII symbols?

• First solution: type <CONTROL><SHIFT>2200 to enter a forall in the script widow. 2200 is the
hexadecimal code for forall in unicode charts and is encoded as in UTF-8. 2203 is for exists. See
http://www.unicode.org for more codes.

• Second solution: rebind <AltGr>a to forall and <AltGr>e to exists.

Under X11, one can add those lines in the file /.xmodmaprc :

! forall

keycode 24 = a A a A U2200 NoSymbol U2200 NoSymbol

! exists

keycode 26 = e E e E U2203 NoSymbol U2203 NoSymbol

53

and then run xmodmap /.xmodmaprc.

Alternatively, if your version of xmodmap does not support unicode, you need to use something like

xmodmap -e "keycode 24 = a A F13 F13"

xmodmap -e "keycode 26 = e E F14 F14"

and then to add

bind "F13" {"insert-at-cursor" ("∀")}
bind "F14" {"insert-at-cursor" ("∃")}
to your ”binding ”text”” section in coqiderc-gtk2rc. The last arguments to bind between ”” are
the UTF-8 encodings for 0x2200 and 0x2203. You can compute these encodings using the lablgtk2
toplevel with

Glib.Utf8.from_unichar 0x2200;;

Further symbols can be bound on higher Fxx keys or on even on other keys you do not need .

155 How to customize the shortcuts for menus?

Two solutions are offered:

• Edit $XDG_CONFIG_HOME/coq/coqide.keys (which is usually $HOME/.config/coq/coqide.keys)
by hand or

• Add ”gtk-can-change-accels = 1” in your coqide-gtk2rc file. Then from CoqIde, you may select a
menu entry and press the desired shortcut.

156 What encoding should I use? What is this \x{iiii} in my file?

The encoding option is related to the way files are saved. Keep it as UTF-8 until it becomes important
for you to exchange files with non UTF-8 aware applications. If you choose something else than UTF-8,
then missing characters will be encoded by \x{....} or \x{........} where each dot is an hex. digit. The
number between braces is the hexadecimal UNICODE index for the missing character.

157 How to get rid of annoying unwanted automatic templates?

Some users may experiment problems with unwanted automatic templates while using Coqide. This
is due to a change in the modifiers keys available through GTK. The straightest way to get rid of the
problem is to edit by hand your coqiderc (either /home/<user>/.config/coq/coqiderc under Linux,
or
C:\Documents and Settings\<user>\.config\coq\coqiderc under Windows) and replace any oc-
curence of MOD4 by MOD1.

15 Extraction

158 What is program extraction?

Program extraction consist in generating a program from a constructive proof.

159 Which language can I extract to?

You can extract your programs to Objective Caml and Haskell.

160 How can I extract an incomplete proof?

You can provide programs for your axioms.

54

16 Glossary

161 Can you explain me what an evaluable constant is?

An evaluable constant is a constant which is unfoldable.

162 What is a goal?

The goal is the statement to be proved.

163 What is a meta variable?

A meta variable in Coq represents a “hole”, i.e. a part of a proof that is still unknown.

164 What is Gallina?

Gallina is the specification language of Coq. Complete documentation of this language can be found in
the Reference Manual.

165 What is The Vernacular?

It is the language of commands of Gallina i.e. definitions, lemmas, . . .

166 What is a dependent type?

A dependant type is a type which depends on some term. For instance “vector of size n” is a dependant
type representing all the vectors of size n. Its type depends on n

167 What is a proof by reflection?

This is a proof generated by some computation which is done using the internal reduction of Coq (not
using the tactic language of Coq (Ltac) nor the implementation language for Coq). An example of tactic
using the reflection mechanism is the ring tactic. The reflection method consist in reflecting a subset of
Coq language (for example the arithmetical expressions) into an object of the Coq language itself (in
this case an inductive type denoting arithmetical expressions). For more information see [14, 12, 3] and
the last chapter of the Coq’Art.

168 What is intuitionistic logic?

This is any logic which does not assume that “A or not A”.

169 What is proof-irrelevance?

See question 33

170 What is the difference between opaque and transparent?

Opaque definitions can not be unfolded but transparent ones can.

17 Troubleshooting

171 What can I do when Qed. is slow?

Sometime you can use the abstract tactic, which makes as if you had stated some local lemma, this
speeds up the typing process.

172 Why Reset Initial. does not work when using coqc?

The initial state corresponds to the state of coqtop when the interactive session began. It does not make
sense in files to compile.

55

173 What can I do if I get “No more subgoals but non-instantiated existential variables”?

This means that eauto or eapply didn’t instantiate an existential variable which eventually got erased
by some computation. You may backtrack to the faulty occurrence of eauto or eapply and give the
missing argument an explicit value. Alternatively, you can use the commands Show Existentials. and
Existential. to display and instantiate the remainig existential variables.

Coq < Lemma example show existentials : forall a b c:nat, a=b -> b=c -> a=c.

1 subgoal

============================

forall a b c : nat, a = b -> b = c -> a = c

Coq < Proof.

1 subgoal

============================

forall a b c : nat, a = b -> b = c -> a = c

Coq < intros.

1 subgoal

a : nat

b : nat

c : nat

H : a = b

H0 : b = c

============================

a = c

Coq < eapply eq trans.

2 subgoals

a : nat

b : nat

c : nat

H : a = b

H0 : b = c

============================

a = ?144

subgoal 2 is:

?144 = c

Coq < Show Existentials.

Existential 1 =

?146 : [a : nat b : nat c : nat H : a = b H0 : b = c |- ?144 = c]

Existential 2 =

?145 : [a : nat b : nat c : nat H : a = b H0 : b = c |- a = ?144]

Existential 3 =

?144 : [a : nat b : nat c : nat H : a = b H0 : b = c |- nat]

Coq < eassumption.

1 subgoal

a : nat

b : nat

c : nat

H : a = b

H0 : b = c

============================

b = c

Coq < assumption.

No more subgoals.

56

Coq < Qed.

intros.

eapply eq trans.

eassumption.

assumption.

example show existentials is defined

174 What can I do if I get “Cannot solve a second-order unification problem”?

You can help Coq using the pattern tactic.

175 Why does Coq tell me that {x:A|(P x)} is not convertible with (sig A P)?

This is because {x:A|P x} is a notation for sig (fun x:A => P x). Since Coq does not reason up to
η-conversion, this is different from sig P.

176 I copy-paste a term and Coq says it is not convertible to the original term. Sometimes
it even says the copied term is not well-typed.

This is probably due to invisible implicit information (implicit arguments, coercions and Cases annota-
tions) in the printed term, which is not re-synthesised from the copied-pasted term in the same way as
it is in the original term.

Consider for instance (@eq Type True True). This term is printed as True=True and re-parsed as
(@eq Prop True True). The two terms are not convertible (hence they fool tactics like pattern).

There is currently no satisfactory answer to the problem. However, the command Set Printing All

is useful for diagnosing the problem.
Due to coercions, one may even face type-checking errors. In some rare cases, the criterion to hide

coercions is a bit too loose, which may result in a typing error message if the parser is not able to find
again the missing coercion.

18 Conclusion and Farewell.

177 What if my question isn’t answered here?

Don’t panic :-). You can try the Coq manual [17] for a technical description of the prover. The
Coq’Art [2] is the first book written on Coq and provides a comprehensive review of the theorem prover
as well as a number of example and exercises. Finally, the tutorial [15] provides a smooth introduction
to theorem proving in Coq.

57

References

[1] Yves bertot and Pierre Castéran. Coq’Art. Springer-Verlag, 2004. To appear.

[2] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development, Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS series.
Springer Verlag, 2004.

[3] Samuel Boutin. Using reflection to build efficient and certified decision pro cedures. In M. Abadi
and T. Ito, editors, Proceedings of TACS’97, volume 1281 of LNCS. Springer-Verlag, 1997.

[4] David Carlisle, Scott Pakin, and Alexander Holt. The Great, Big List of LATEX Symbols, February
2001.

[5] Thierry Coquand. Une Théorie des Constructions. PhD thesis, Université Paris 7, January 1985.

[6] Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information and Computation,
76(2/3), 1988.

[7] Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In P. Martin-Löf and
G. Mints, editors, Proceedings of Colog’88, volume 417 of Lecture Notes in Computer Science. Sprin-
ger-Verlag, 1990.

[8] Gilles Dowek. Théorie des types. Lecture notes, 2002.

[9] Eduardo Giménez. Un Calcul de Constructions Infinies et son application a la vérification de
systèmes communicants. thèse d’université, Ecole Normale Supérieure de Lyon, December 1996.

[10] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application à
l’élimination des coupures dans l’analyse et la théorie des types. In Proceedings of the 2nd Scandi-
navian Logic Symposium. North-Holland, 1970.

[11] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambrige Tracts in Theoretical
Computer Science, Cambridge University Press, 1989.

[12] John Harrison. Meta theory and reflection in theorem proving:a survey and cri tique. Technical
Report CRC-053, SRI International Cambridge Computer Science Research Center, 1995.

[13] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In Proceedings
of the meeting Twenty-five years of constructive type theory. Oxford University Press, 1998.

[14] Doug Howe. Computation meta theory in nuprl. In E. Lusk and R. Overbeek, editors, The Proceed-
ings of the Ninth International Conference of Autom ated Deduction, volume 310, pages 238–257.
Springer-Verlag, 1988.

[15] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq Proof Assistant A Tutorial,
2004.

[16] Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of Edinburgh, 1990.

[17] The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2004.
Version 8.0.

[18] Tobias Oetiker. The Not So Short Introduction to LATEX2e, January 1999.

[19] Christine Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre Supérieur. Habili-
tation à diriger les recherches, Université Claude Bernard Lyon I, December 1996.

58

