A matrix morphism is a morphism that is defined by multiplication by a matrix. Elements of domain must either have a method vector() that returns a vector that the defining matrix can hit from the left, or be coercible into vector space of appropriate dimension.
EXAMPLES:
sage: from sage.modules.matrix_morphism import MatrixMorphism, is_MatrixMorphism
sage: V = QQ^3
sage: T = End(V)
sage: M = MatrixSpace(QQ,3)
sage: I = M.identity_matrix()
sage: m = MatrixMorphism(T, I); m
Morphism defined by the matrix
[1 0 0]
[0 1 0]
[0 0 1]
sage: is_MatrixMorphism(m)
True
sage: m.charpoly('x')
x^3 - 3*x^2 + 3*x - 1
sage: m.base_ring()
Rational Field
sage: m.det()
1
sage: m.fcp('x')
(x - 1)^3
sage: m.matrix()
[1 0 0]
[0 1 0]
[0 0 1]
sage: m.rank()
3
sage: m.trace()
3
AUTHOR:
Bases: sage.modules.matrix_morphism.MatrixMorphism_abstract
A morphism defined by a matrix.
Tell whether self is injective.
EXAMPLE:
sage: V1 = QQ^2
sage: V2 = QQ^3
sage: phi = V1.hom(Matrix([[1,2,3],[4,5,6]]),V2)
sage: phi.is_injective()
True
sage: psi = V2.hom(Matrix([[1,2],[3,4],[5,6]]),V1)
sage: psi.is_injective()
False
AUTHOR:
– Simon King (2010-05)
Tell whether self is surjective.
EXAMPLES:
sage: V1 = QQ^2
sage: V2 = QQ^3
sage: phi = V1.hom(Matrix([[1,2,3],[4,5,6]]), V2)
sage: phi.is_surjective()
False
sage: psi = V2.hom(Matrix([[1,2],[3,4],[5,6]]), V1)
sage: psi.is_surjective()
True
An example over a PID that is not .
sage: R = PolynomialRing(QQ, 'x')
sage: A = R^2
sage: B = R^2
sage: H = A.hom([B([x^2-1, 1]), B([x^2, 1])])
sage: H.image()
Free module of degree 2 and rank 2 over Univariate Polynomial Ring in x over Rational Field
Echelon basis matrix:
[ 1 0]
[ 0 -1]
sage: H.is_surjective()
True
This tests if Trac #11552 is fixed.
sage: V = ZZ^2
sage: m = matrix(ZZ, [[1,2],[0,2]])
sage: phi = V.hom(m, V)
sage: phi.lift(vector(ZZ, [0, 1]))
Traceback (most recent call last):
...
ValueError: element is not in the image
sage: phi.is_surjective()
False
AUTHORS:
Return a matrix that defines this morphism.
INPUT:
OUTPUT:
A matrix which represents the morphism, relative to bases for the domain and codomain. If the modules are provided with user bases, then the representation is relative to these bases.
Internally, Sage represents a matrix morphism with the matrix multiplying a row vector placed to the left of the matrix. If the option side='right' is used, then a matrix is returned that acts on a vector to the right of the matrix. These two matrices are just transposes of each other and the difference is just a preference for the style of representation.
EXAMPLES:
sage: V = ZZ^2; W = ZZ^3
sage: m = column_matrix([3*V.0 - 5*V.1, 4*V.0 + 2*V.1, V.0 + V.1])
sage: phi = V.hom(m, W)
sage: phi.matrix()
[ 3 4 1]
[-5 2 1]
sage: phi.matrix(side='right')
[ 3 -5]
[ 4 2]
[ 1 1]
TESTS:
sage: V = ZZ^2
sage: phi = V.hom([3*V.0, 2*V.1])
sage: phi.matrix(side='junk')
Traceback (most recent call last):
...
ValueError: side must be 'left' or 'right', not junk
Bases: sage.categories.morphism.Morphism
INPUT:
EXAMPLES:
sage: from sage.modules.matrix_morphism import MatrixMorphism
sage: T = End(ZZ^3)
sage: M = MatrixSpace(ZZ,3)
sage: I = M.identity_matrix()
sage: A = MatrixMorphism(T, I)
sage: loads(A.dumps()) == A
True
Return the base ring of self, that is, the ring over which self is given by a matrix.
EXAMPLES:
sage: sage.modules.matrix_morphism.MatrixMorphism((ZZ**2).endomorphism_ring(), Matrix(ZZ,2,[3..6])).base_ring()
Integer Ring
Return the characteristic polynomial of this endomorphism.
characteristic_polynomial and char_poly are the same method.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1])
sage: phi.characteristic_polynomial()
x^2 - 3*x + 2
sage: phi.charpoly()
x^2 - 3*x + 2
sage: phi.matrix().charpoly()
x^2 - 3*x + 2
sage: phi.charpoly('T')
T^2 - 3*T + 2
Return the characteristic polynomial of this endomorphism.
characteristic_polynomial and char_poly are the same method.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1])
sage: phi.characteristic_polynomial()
x^2 - 3*x + 2
sage: phi.charpoly()
x^2 - 3*x + 2
sage: phi.matrix().charpoly()
x^2 - 3*x + 2
sage: phi.charpoly('T')
T^2 - 3*T + 2
Return decomposition of this endomorphism, i.e., sequence of subspaces obtained by finding invariant subspaces of self.
See the documentation for self.matrix().decomposition for more details. All inputs to this function are passed onto the matrix one.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1])
sage: phi.decomposition()
[
Free module of degree 2 and rank 1 over Integer Ring
Echelon basis matrix:
[0 1],
Free module of degree 2 and rank 1 over Integer Ring
Echelon basis matrix:
[ 1 -1]
]
Return the determinant of this endomorphism.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1])
sage: phi.det()
2
Return the factorization of the characteristic polynomial.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1])
sage: phi.fcp()
(x - 2) * (x - 1)
sage: phi.fcp('T')
(T - 2) * (T - 1)
Compute the image of this morphism.
EXAMPLES:
sage: V = VectorSpace(QQ,3)
sage: phi = V.Hom(V)(matrix(QQ, 3, range(9)))
sage: phi.image()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1]
[ 0 1 2]
sage: hom(GF(7)^3, GF(7)^2, zero_matrix(GF(7), 3, 2)).image()
Vector space of degree 2 and dimension 0 over Finite Field of size 7
Basis matrix:
[]
Compute the image of the identity map on a ZZ-submodule:
sage: V = (ZZ^2).span([[1,2],[3,4]])
sage: phi = V.Hom(V)(identity_matrix(ZZ,2))
sage: phi(V.0) == V.0
True
sage: phi(V.1) == V.1
True
sage: phi.image()
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1 0]
[0 2]
sage: phi.image() == V
True
Returns the inverse of this matrix morphism, if the inverse exists.
Raises a ZeroDivisionError if the inverse does not exist.
EXAMPLES:
An invertible morphism created as a restriction of a non-invertible morphism, and which has an unequal domain and codomain.
sage: V = QQ^4
sage: W = QQ^3
sage: m = matrix(QQ, [[2, 0, 3], [-6, 1, 4], [1, 2, -4], [1, 0, 1]])
sage: phi = V.hom(m, W)
sage: rho = phi.restrict_domain(V.span([V.0, V.3]))
sage: zeta = rho.restrict_codomain(W.span([W.0, W.2]))
sage: x = vector(QQ, [2, 0, 0, -7])
sage: y = zeta(x); y
(-3, 0, -1)
sage: inv = zeta.inverse(); inv
Vector space morphism represented by the matrix:
[-1 3]
[ 1 -2]
Domain: Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[1 0 0]
[0 0 1]
Codomain: Vector space of degree 4 and dimension 2 over Rational Field
Basis matrix:
[1 0 0 0]
[0 0 0 1]
sage: inv(y) == x
True
An example of an invertible morphism between modules, (rather than between vector spaces).
sage: M = ZZ^4
sage: p = matrix(ZZ, [[ 0, -1, 1, -2],
... [ 1, -3, 2, -3],
... [ 0, 4, -3, 4],
... [-2, 8, -4, 3]])
sage: phi = M.hom(p, M)
sage: x = vector(ZZ, [1, -3, 5, -2])
sage: y = phi(x); y
(1, 12, -12, 21)
sage: rho = phi.inverse(); rho
Free module morphism defined by the matrix
[ -5 3 -1 1]
[ -9 4 -3 2]
[-20 8 -7 4]
[ -6 2 -2 1]
Domain: Ambient free module of rank 4 over the principal ideal domain ...
Codomain: Ambient free module of rank 4 over the principal ideal domain ...
sage: rho(y) == x
True
A non-invertible morphism, despite having an appropriate domain and codomain.
sage: V = QQ^2
sage: m = matrix(QQ, [[1, 2], [20, 40]])
sage: phi = V.hom(m, V)
sage: phi.is_bijective()
False
sage: phi.inverse()
Traceback (most recent call last):
...
ZeroDivisionError: matrix morphism not invertible
The matrix representation of this morphism is invertible over the rationals, but not over the integers, thus the morphism is not invertible as a map between modules. It is easy to notice from the definition that every vector of the image will have a second entry that is an even integer.
sage: V = ZZ^2
sage: q = matrix(ZZ, [[1, 2], [3, 4]])
sage: phi = V.hom(q, V)
sage: phi.matrix().change_ring(QQ).inverse()
[ -2 1]
[ 3/2 -1/2]
sage: phi.is_bijective()
False
sage: phi.image()
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1 0]
[0 2]
sage: phi.lift(vector(ZZ, [1, 1]))
Traceback (most recent call last):
...
ValueError: element is not in the image
sage: phi.inverse()
Traceback (most recent call last):
...
ZeroDivisionError: matrix morphism not invertible
The unary invert operator (~, tilde, “wiggle”) is synonymous with the inverse() method (and a lot easier to type).
sage: V = QQ^2
sage: r = matrix(QQ, [[4, 3], [-2, 5]])
sage: phi = V.hom(r, V)
sage: rho = phi.inverse()
sage: zeta = ~phi
sage: rho.is_equal_function(zeta)
True
TESTS:
sage: V = QQ^2
sage: W = QQ^3
sage: U = W.span([W.0, W.1])
sage: m = matrix(QQ, [[2, 1], [3, 4]])
sage: phi = V.hom(m, U)
sage: inv = phi.inverse()
sage: (inv*phi).is_identity()
True
sage: (phi*inv).is_identity()
True
Tell whether self is bijective.
EXAMPLES:
Two morphisms that are obviously not bijective, simply on considerations of the dimensions. However, each fullfills half of the requirements to be a bijection.
sage: V1 = QQ^2
sage: V2 = QQ^3
sage: m = matrix(QQ, [[1, 2, 3], [4, 5, 6]])
sage: phi = V1.hom(m, V2)
sage: phi.is_injective()
True
sage: phi.is_bijective()
False
sage: rho = V2.hom(m.transpose(), V1)
sage: rho.is_surjective()
True
sage: rho.is_bijective()
False
We construct a simple bijection between two one-dimensional vector spaces.
sage: V1 = QQ^3
sage: V2 = QQ^2
sage: phi = V1.hom(matrix(QQ, [[1, 2], [3, 4], [5, 6]]), V2)
sage: x = vector(QQ, [1, -1, 4])
sage: y = phi(x); y
(18, 22)
sage: rho = phi.restrict_domain(V1.span([x]))
sage: zeta = rho.restrict_codomain(V2.span([y]))
sage: zeta.is_bijective()
True
AUTHOR:
Determines if two morphisms are equal functions.
INPUT:
OUTPUT:
Returns True precisely when the two morphisms have equal domains and codomains (as sets) and produce identical output when given the same input. Otherwise returns False.
This is useful when self and other may have different representations.
Sage’s default comparison of matrix morphisms requires the domains to have the same bases and the codomains to have the same bases, and then compares the matrix representations. This notion of equality is more permissive (it will return True “more often”), but is more correct mathematically.
EXAMPLES:
Three morphisms defined by combinations of different bases for the domain and codomain and different functions. Two are equal, the third is different from both of the others.
sage: B = matrix(QQ, [[-3, 5, -4, 2],
... [-1, 2, -1, 4],
... [ 4, -6, 5, -1],
... [-5, 7, -6, 1]])
sage: U = (QQ^4).subspace_with_basis(B.rows())
sage: C = matrix(QQ, [[-1, -6, -4],
... [ 3, -5, 6],
... [ 1, 2, 3]])
sage: V = (QQ^3).subspace_with_basis(C.rows())
sage: H = Hom(U, V)
sage: D = matrix(QQ, [[-7, -2, -5, 2],
... [-5, 1, -4, -8],
... [ 1, -1, 1, 4],
... [-4, -1, -3, 1]])
sage: X = (QQ^4).subspace_with_basis(D.rows())
sage: E = matrix(QQ, [[ 4, -1, 4],
... [ 5, -4, -5],
... [-1, 0, -2]])
sage: Y = (QQ^3).subspace_with_basis(E.rows())
sage: K = Hom(X, Y)
sage: f = lambda x: vector(QQ, [x[0]+x[1], 2*x[1]-4*x[2], 5*x[3]])
sage: g = lambda x: vector(QQ, [x[0]-x[2], 2*x[1]-4*x[2], 5*x[3]])
sage: rho = H(f)
sage: phi = K(f)
sage: zeta = H(g)
sage: rho.is_equal_function(phi)
True
sage: phi.is_equal_function(rho)
True
sage: zeta.is_equal_function(rho)
False
sage: phi.is_equal_function(zeta)
False
TEST:
sage: H = Hom(ZZ^2, ZZ^2)
sage: phi = H(matrix(ZZ, 2, range(4)))
sage: phi.is_equal_function('junk')
Traceback (most recent call last):
...
TypeError: can only compare to a matrix morphism, not junk
AUTHOR:
Determines if this morphism is an identity function or not.
EXAMPLES:
A homomorphism that cannot possibly be the identity due to an unequal domain and codomain.
sage: V = QQ^3
sage: W = QQ^2
sage: m = matrix(QQ, [[1, 2], [3, 4], [5, 6]])
sage: phi = V.hom(m, W)
sage: phi.is_identity()
False
A bijection, but not the identity.
sage: V = QQ^3
sage: n = matrix(QQ, [[3, 1, -8], [5, -4, 6], [1, 1, -5]])
sage: phi = V.hom(n, V)
sage: phi.is_bijective()
True
sage: phi.is_identity()
False
A restriction that is the identity.
sage: V = QQ^3
sage: p = matrix(QQ, [[1, 0, 0], [5, 8, 3], [0, 0, 1]])
sage: phi = V.hom(p, V)
sage: rho = phi.restrict(V.span([V.0, V.2]))
sage: rho.is_identity()
True
An identity linear transformation that is defined with a domain and codomain with wildly different bases, so that the matrix representation is not simply the identity matrix.
sage: A = matrix(QQ, [[1, 1, 0], [2, 3, -4], [2, 4, -7]])
sage: B = matrix(QQ, [[2, 7, -2], [-1, -3, 1], [-1, -6, 2]])
sage: U = (QQ^3).subspace_with_basis(A.rows())
sage: V = (QQ^3).subspace_with_basis(B.rows())
sage: H = Hom(U, V)
sage: id = lambda x: x
sage: phi = H(id)
sage: phi([203, -179, 34])
(203, -179, 34)
sage: phi.matrix()
[ 1 0 1]
[ -9 -18 -2]
[-17 -31 -5]
sage: phi.is_identity()
True
TEST:
sage: V = QQ^10
sage: H = Hom(V, V)
sage: id = H.identity()
sage: id.is_identity()
True
AUTHOR:
Determines if this morphism is a zero function or not.
EXAMPLES:
A zero morphism created from a function.
sage: V = ZZ^5
sage: W = ZZ^3
sage: z = lambda x: zero_vector(ZZ, 3)
sage: phi = V.hom(z, W)
sage: phi.is_zero()
True
An image list that just barely makes a non-zero morphism.
sage: V = ZZ^4
sage: W = ZZ^6
sage: z = zero_vector(ZZ, 6)
sage: images = [z, z, W.5, z]
sage: phi = V.hom(images, W)
sage: phi.is_zero()
False
TEST:
sage: V = QQ^10
sage: W = QQ^3
sage: H = Hom(V, W)
sage: rho = H.zero()
sage: rho.is_zero()
True
AUTHOR:
Compute the kernel of this morphism.
EXAMPLES:
sage: V = VectorSpace(QQ,3)
sage: id = V.Hom(V)(identity_matrix(QQ,3))
sage: null = V.Hom(V)(0*identity_matrix(QQ,3))
sage: id.kernel()
Vector space of degree 3 and dimension 0 over Rational Field
Basis matrix:
[]
sage: phi = V.Hom(V)(matrix(QQ,3,range(9)))
sage: phi.kernel()
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2 1]
sage: hom(CC^2, CC^2, matrix(CC, [[1,0], [0,1]])).kernel()
Vector space of degree 2 and dimension 0 over Complex Field with 53 bits of precision
Basis matrix:
[]
EXAMPLES:
sage: V = ZZ^2; phi = V.hom(V.basis())
sage: phi.matrix()
[1 0]
[0 1]
sage: sage.modules.matrix_morphism.MatrixMorphism_abstract.matrix(phi)
Traceback (most recent call last):
...
NotImplementedError: this method must be overridden in the extension class
Returns the nullity of the matrix representing this morphism, which is the dimension of its kernel.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom(V.basis())
sage: phi.nullity()
0
sage: V = ZZ^2; phi = V.hom([V.0, V.0])
sage: phi.nullity()
1
Returns the rank of the matrix representing this morphism.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom(V.basis())
sage: phi.rank()
2
sage: V = ZZ^2; phi = V.hom([V.0, V.0])
sage: phi.rank()
1
Restrict this matrix morphism to a subspace sub of the domain.
The codomain and domain of the resulting matrix are both sub.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([3*V.0, 2*V.1])
sage: phi.restrict(V.span([V.0]))
Free module morphism defined by the matrix
[3]
Domain: Free module of degree 2 and rank 1 over Integer Ring
Echelon ...
Codomain: Free module of degree 2 and rank 1 over Integer Ring
Echelon ...
sage: V = (QQ^2).span_of_basis([[1,2],[3,4]])
sage: phi = V.hom([V.0+V.1, 2*V.1])
sage: phi(V.1) == 2*V.1
True
sage: W = span([V.1])
sage: phi(W)
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[ 1 4/3]
sage: psi = phi.restrict(W); psi
Vector space morphism represented by the matrix:
[2]
Domain: Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[ 1 4/3]
Codomain: Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[ 1 4/3]
sage: psi.domain() == W
True
sage: psi(W.0) == 2*W.0
True
Restrict this matrix morphism to a subspace sub of the codomain.
The resulting morphism has the same domain as before, but a new codomain.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([4*(V.0+V.1),0])
sage: W = V.span([2*(V.0+V.1)])
sage: phi
Free module morphism defined by the matrix
[4 4]
[0 0]
Domain: Ambient free module of rank 2 over the principal ideal domain ...
Codomain: Ambient free module of rank 2 over the principal ideal domain ...
sage: psi = phi.restrict_codomain(W); psi
Free module morphism defined by the matrix
[2]
[0]
Domain: Ambient free module of rank 2 over the principal ideal domain ...
Codomain: Free module of degree 2 and rank 1 over Integer Ring
Echelon ...
An example in which the codomain equals the full ambient space, but with a different basis:
sage: V = QQ^2
sage: W = V.span_of_basis([[1,2],[3,4]])
sage: phi = V.hom(matrix(QQ,2,[1,0,2,0]),W)
sage: phi.matrix()
[1 0]
[2 0]
sage: phi(V.0)
(1, 2)
sage: phi(V.1)
(2, 4)
sage: X = V.span([[1,2]]); X
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 2]
sage: phi(V.0) in X
True
sage: phi(V.1) in X
True
sage: psi = phi.restrict_codomain(X); psi
Vector space morphism represented by the matrix:
[1]
[2]
Domain: Vector space of dimension 2 over Rational Field
Codomain: Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 2]
sage: psi(V.0)
(1, 2)
sage: psi(V.1)
(2, 4)
sage: psi(V.0).parent() is X
True
Restrict this matrix morphism to a subspace sub of the domain. The subspace sub should have a basis() method and elements of the basis should be coercible into domain.
The resulting morphism has the same codomain as before, but a new domain.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([3*V.0, 2*V.1])
sage: phi.restrict_domain(V.span([V.0]))
Free module morphism defined by the matrix
[3 0]
Domain: Free module of degree 2 and rank 1 over Integer Ring
Echelon ...
Codomain: Ambient free module of rank 2 over the principal ideal domain ...
sage: phi.restrict_domain(V.span([V.1]))
Free module morphism defined by the matrix
[0 2]...
Return the trace of this endomorphism.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([V.0+V.1, 2*V.1])
sage: phi.trace()
3
Return True if x is a Matrix morphism of free modules.
EXAMPLES:
sage: V = ZZ^2; phi = V.hom([3*V.0, 2*V.1])
sage: sage.modules.matrix_morphism.is_MatrixMorphism(phi)
True
sage: sage.modules.matrix_morphism.is_MatrixMorphism(3)
False