EXAMPLES:
sage: M = ModularForms(Gamma1(13),2); M
Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
sage: M.eisenstein_subspace()
Eisenstein subspace of dimension 11 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
sage: M == loads(dumps(M))
True
sage: M.cuspidal_subspace()
Cuspidal subspace of dimension 2 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
Bases: sage.modular.modform.space.ModularFormsSpace, sage.modular.hecke.submodule.HeckeSubmodule
A submodule of an ambient space of modular forms.
Bases: sage.modular.modform.submodule.ModularFormsSubmodule
INPUT:
ambient_module – ModularFormsSpace
submodule – a submodule of the ambient space.
dual_module – (default: None) ignored
submodule is Hecke equivariant
EXAMPLES:
sage: M = ModularForms(Gamma1(13),2); M
Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
sage: M.eisenstein_subspace()
Eisenstein subspace of dimension 11 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field