REFERENCES:
[NCSF] | (1, 2, 3, 4) Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, Noncommutative Symmetric Functions, Adv. Math. 112 (1995), no. 2, 218-348. |
Returns the coefficient as defined in [NCSF].
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_ell
sage: coeff_ell(Composition([1,1,1]), Composition([2,1]))
2
sage: coeff_ell(Composition([2,1]), Composition([3]))
2
Returns the coefficient as defined in [NCSF].
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_lp
sage: coeff_lp(Composition([1,1,1]), Composition([2,1]))
1
sage: coeff_lp(Composition([2,1]), Composition([3]))
1
Returns the coefficient as defined in [NCSF].
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_pi
sage: coeff_pi(Composition([1,1,1]), Composition([2,1]))
2
sage: coeff_pi(Composition([2,1]), Composition([3]))
6
Returns the coefficient as defined in [NCSF].
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_sp
sage: coeff_sp(Composition([1,1,1]), Composition([2,1]))
2
sage: coeff_sp(Composition([2,1]), Composition([3]))
4
Returns the statistic for the expansion of the Monomial basis element indexed by two compositions, as in formula (36) of Tevlin’s “Noncommutative Analogs of Monomial Symmetric Functions, Cauchy Identity, and Hall Scalar Product”.
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import m_to_s_stat
sage: m_to_s_stat(QQ,Composition([2,1]), Composition([1,1,1]))
-1
sage: m_to_s_stat(QQ,Composition([3]), Composition([1,2]))
-2
Returns the number of Immaculate tableau of shape shape_comp and content content_comp.
INPUT:
OUTPUT:
EXAMPLES:
sage: from sage.combinat.ncsf_qsym.combinatorics import number_of_fCT
sage: number_of_fCT(Composition([3,1]), Composition([1,3]))
0
sage: number_of_fCT(Composition([1,2,1]), Composition([1,3]))
1
sage: number_of_fCT(Composition([1,1,3,1]), Composition([2,1,3]))
2