Bases: sage.categories.category_singleton.Category_singleton
The category of euclidean domains constructive euclidean domain, i.e. one can divide producing a quotient and a remainder where the remainder is either zero or is “smaller” than the divisor
EXAMPLES:
sage: EuclideanDomains()
Category of euclidean domains
sage: EuclideanDomains().super_categories()
[Category of principal ideal domains]
TESTS:
sage: TestSuite(EuclideanDomains()).run()
Return True, since this in an object of the category of Euclidean domains.
EXAMPLES:
sage: Parent(QQ,category=EuclideanDomains()).is_euclidean_domain()
True
EXAMPLES:
sage: EuclideanDomains().super_categories()
[Category of principal ideal domains]