EXAMPLES:
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.base_ring()
Rational Field
sage: S = LaurentSeriesRing(GF(17)['x'], 'y')
sage: S
Laurent Series Ring in y over Univariate Polynomial Ring in x over
Finite Field of size 17
sage: S.base_ring()
Univariate Polynomial Ring in x over Finite Field of size 17
EXAMPLES:
sage: R = LaurentSeriesRing(QQ, 'x'); R
Laurent Series Ring in x over Rational Field
sage: x = R.0
sage: g = 1 - x + x^2 - x^4 +O(x^8); g
1 - x + x^2 - x^4 + O(x^8)
sage: g = 10*x^(-3) + 2006 - 19*x + x^2 - x^4 +O(x^8); g
10*x^-3 + 2006 - 19*x + x^2 - x^4 + O(x^8)
You can also use more mathematical notation when the base is a field:
sage: Frac(QQ[['x']])
Laurent Series Ring in x over Rational Field
sage: Frac(GF(5)['y'])
Fraction Field of Univariate Polynomial Ring in y over Finite Field of size 5
Here the fraction field is not just the Laurent series ring, so you can’t use the Frac notation to make the Laurent series ring.
sage: Frac(ZZ[['t']])
Fraction Field of Power Series Ring in t over Integer Ring
Laurent series rings are determined by their variable and the base ring, and are globally unique.
sage: K = Qp(5, prec = 5)
sage: L = Qp(5, prec = 200)
sage: R.<x> = LaurentSeriesRing(K)
sage: S.<y> = LaurentSeriesRing(L)
sage: R is S
False
sage: T.<y> = LaurentSeriesRing(Qp(5,prec=200))
sage: S is T
True
sage: W.<y> = LaurentSeriesRing(Qp(5,prec=199))
sage: W is T
False
Bases: sage.rings.laurent_series_ring.LaurentSeriesRing_generic, sage.rings.ring.IntegralDomain
Initialization
TESTS:
sage: TestSuite(LaurentSeriesRing(ZZ,'t')).run()
Bases: sage.rings.laurent_series_ring.LaurentSeriesRing_generic, sage.rings.ring.Field
Initialization
TESTS:
sage: TestSuite(LaurentSeriesRing(QQ,'t')).run()
Bases: sage.rings.ring.CommutativeRing
Univariate Laurent Series Ring
EXAMPLES:
sage: K, q = LaurentSeriesRing(CC, 'q').objgen(); K
Laurent Series Ring in q over Complex Field with 53 bits of precision
sage: loads(K.dumps()) == K
True
sage: P = QQ[['x']]
sage: F = Frac(P)
sage: TestSuite(F).run()
When the base ring is a field, the ring
is a CDVF, that is
a field equipped with a discrete valuation for which it is complete.
The appropriate (sub)category is automatically set in this case:
sage: k = GF(11)
sage: R.<x> = k[[]]
sage: F = Frac(R)
sage: F.category()
Category of complete discrete valuation fields
sage: TestSuite(F).run()
Returns the laurent series ring over R in the same variable as self, assuming there is a canonical coerce map from the base ring of self to R.
EXAMPLES:
sage: K.<x> = LaurentSeriesRing(QQ, default_prec=4)
sage: K.base_extend(QQ['t'])
Laurent Series Ring in x over Univariate Polynomial Ring in t over Rational Field
EXAMPLES:
sage: K.<x> = LaurentSeriesRing(QQ, default_prec=4)
sage: R = K.change_ring(ZZ); R
Laurent Series Ring in x over Integer Ring
sage: R.default_prec()
4
EXAMPLES:
sage: R.<x> = LaurentSeriesRing(GF(17))
sage: R.characteristic()
17
Sets the precision to which exact elements are truncated when necessary (most frequently when inverting)
EXAMPLES:
sage: R.<x> = LaurentSeriesRing(QQ, default_prec=5)
sage: R.default_prec()
5
EXAMPLES:
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.gen()
x
EXAMPLES:
sage: K.<x> = LaurentSeriesRing(QQ, sparse=True)
sage: K.is_dense()
False
Laurent series rings are inexact.
EXAMPLES:
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.is_exact()
False
A Laurent series ring is a field if and only if the base ring is a field.
TESTS:
sage: LaurentSeriesRing(QQ,'t').is_field()
True
sage: LaurentSeriesRing(ZZ,'t').is_field()
False
EXAMPLES:
sage: K.<x> = LaurentSeriesRing(QQ, sparse=True)
sage: K.is_sparse()
True
If this is the Laurent series ring , return the Laurent
polynomial ring
.
EXAMPLES:
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.laurent_polynomial_ring()
Univariate Laurent Polynomial Ring in x over Rational Field
Laurent series rings are univariate.
EXAMPLES:
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.ngens()
1
If this is the Laurent series ring , return the
polynomial ring
.
EXAMPLES:
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field
If this is the Laurent series ring , return the
power series ring
.
EXAMPLES:
sage: R = LaurentSeriesRing(QQ, "x")
sage: R.power_series_ring()
Power Series Ring in x over Rational Field
Return the residue field of this Laurent series field if it is a complete discrete valuation field (i.e. if the base ring is a field, in which base it is also the residue field).
EXAMPLES:
sage: R.<x> = LaurentSeriesRing(GF(17))
sage: R.residue_field()
Finite Field of size 17
sage: R.<x> = LaurentSeriesRing(ZZ)
sage: R.residue_field()
Traceback (most recent call last):
...
TypeError: The base ring is not a field
Sets the default precision.
This operation should be discouraged: parents should be immutable and this function may be deprecated in the future.
TESTS:
sage: R.<x> = LaurentSeriesRing(QQ)
sage: R.set_default_prec(3)
sage: 1/(x^5-x^7)
x^-5 + x^-3 + O(x^-2)
Return a uniformizer of this Laurent series field if it is a discrete valuation field (i.e. if the base ring is actually a field). Otherwise, an error is raised.
EXAMPLES:
sage: R.<t> = LaurentSeriesRing(QQ)
sage: R.uniformizer()
t
sage: R.<t> = LaurentSeriesRing(ZZ)
sage: R.uniformizer()
Traceback (most recent call last):
...
TypeError: The base ring is not a field
TESTS:
sage: from sage.rings.laurent_series_ring import is_LaurentSeriesRing
sage: K.<q> = LaurentSeriesRing(QQ)
sage: is_LaurentSeriesRing(K)
True