Waf user’s guide

Carlos Rafael Giani

Contents

1 Getting started|

Ju

2 The waf building process|
2.1 Inmitializationl
2.2 Custom command-line options| L e
2.2.1 Tool options| e e
2.2.2 Suboptions|
2.3 onfiguration| L L e e e
2.3.1 Toolsl e

[2.3.4 Configurators|
235 Sub configurations]ot oei
[2.3.6 Configure header|

O© 00 JUU ik WWwWwwwNoNoN

|

1 Getting started

In order to understand the basics of waf, let’s create a simple hello world project. It has only one source
file, main.cpp:

int main ()

{
std::cout << "Hello world";
return O;

Listing 1: the main.cpp hello world code

To build this, we need a waf build script, called a wscript. Here is the wscript for the hello world
program:

))

srcdir = .
’build’

blddir

def configure(conf):
conf.check_tool(’g++’)

def build(bld):
obj = bld.create_obj(’cpp’, ’program’)
obj.source = ’main.cpp’
obj.target = ’hello’

Listing 2: The hello world wscript

Let’s go line by line through it:

sredir: the root directory for all source files. The project’s entire source code is in this directory (or
in a subdirectory).

blddir: where to put the build results. Waf separates build output from source.
configure(conf): this function gets invoked when ”waf configure” is called. It handles the necessary
configuration steps, such as autodetection. In this script, configure calls conf.check_tool(’g++’), which
autodetects the programs cpp, g++, ar, and ranlib (some platforms call the C++ compiler cpp, some
g++). This step is necessary for waf to be able to build C++ programs. In Windows, the msve tool
would accomplish the same, but using Visual C, and not gcc.

build(bld): this function is called by waf once the actual building starts. In build(), build objects are
created; here, a build object called "obj” is created via calling bld.create_obj(’cpp’, ’program’). cre-
ate_obj() takes two arguments: the tool to use for object creation, and a tool-specific type specifier. Tool
”cpp” creates an object for building C++ projects and knows the types "shlib”, ”staticlib”, ”program”,
and a few others, but usually these three are used. ”shlib” tells ”cpp” to build a shared library (.so),
"staticlib” means a static library (.a), and ”program” builds an executable.

obj.source = 'main.cpp’: this line tells the object which source files to use for building. In this case,
only main.cpp is used; projects with several files can specify these as one string with the filenames being
whitespace-separated.

obj.target = ’hello’: the name of the target to build. The resulting executable will be called ”hello”.
1

This script is now able to autodetect the g++ compiler (and additional programs like ranlib) and build
the hello world program. First waf configure is called, which causes waf to call the configure() method.
Then, by calling waf build (or just waf) build() is called, and the program is built. For cleaning the build
result without deleting the autoconfiguration results, type waf clean. This deletes the build results only;
the configuration results remain. For fully removing all autogenerated files, waf distclean ist used.

2 The waf building process

Building with waf always follows these steps:
1. Init procedures are called
2. Custom command-line options are added
3. Configuration is done (by calling ”waf configure”)
4. Actual building takes place (command-line call ”waf build”, or just "waf”)
5. Shutdown procedures are called

As mentioned before, waf scripts are called wscripts. They are in fact python modules, and treated
as such. A wscript variant is wscript_build, which is a wscript with building code only.

2.1 Initialization

init() is called every time waf is run, except when running "waf dist” or ”"waf distclean”. Currently, it
has no designated use, but is available for wscripts. However, usually it is omitted in wscripts.

2.2 Custom command-line options

It is possible to add custom command-line options to waf. For example, the hello world wscript with an
added option ”—foo-path” looks like this:

srcdir = ’.°
blddir = ’build’

import Params # necessary for custom options

def set_options(opt):
opt.add_option(’--foo-path’, type=’string’,
help=’some path’, default=’’, dest=’foopath’)

def configure(conf):
conf.check_tool(’g++’)
if Params.g_options.foopath:
print ’’Using foo path %s’’ % Params.g_options.foopath

def build(bld):
obj = bld.create_obj(’cpp’, ’program’)
obj.source = ’main.cpp’
obj.target = ’hello’

Listing 3: The hello world wscript with the custom option added

This script behaves like the original one, except that the ”waf configure —foo-path=/some/path” call
now causes waf to print ”Using foo path /some/path”.
The Params.g_options object is in fact a Python OptionParser, which is explained in detail in the Python
documentation. 9

2.2.1 Tool options

Some tools add their own commandline options. These tools need to be called in the set_options()
function, via the tool_options() functions:

opt.tool_options (’g++’)
Listing 4: Adding command-line options of the tool *g++’

2.2.2 Sub options

In complex projects, it is common that the source is partitioned in subdirectories. If some of the wscripts
in these directories contain set_options() functions too, then the opt.sub_options() function can be used
for recursing into these subdirectories.

opt.sub_options(’main graphics’)

Listing 5: Calling the set_options() functions of the wscripts in the directories 'main’ and ’graphics’

2.3 Configuration

Waf supplies a ”conf” object to the configure() function in a wscript, which contains a Python ”env”
dictionary. This dictionary contains all uselib variables, among others. Additionally, the conf object has
functions for creating enumerators and configurators, and the ”check_tool” function for detecting and
initializing tools.

2.3.1 Tools

Waf tools are utility code for common tasks. Often, they handle complex autodetection and/or add tools
for building. Internally, they reside in wafadmin/Tools/. Some tools are added via the conf.check_tool()
function, others are for internal use.

Of crucial importance is the check_tool() function takes two parameters; the first one is the tool name,
the second is optional and specifies a path where to look for the tool. At least one tool must be ran in
order to be able to build; for example, for being able to build C++ projects using g-++, check_tool(’g++")
must be called. Same with Visual C (check_tool('msvc’)) and so on.

Without this call, the first parameter of Build.create_obj() is meaningless (Waf does not know ’cpp’,
‘cc’, ete. unless one C++ tool like ’g++ or 'msvc’ is added). To be more specific, g4+, gee, msve handle
the compiler-specific details and add abstract 'cpp’ and ’cc’ tools to Waf, which are used for building.
(This is why internal tools like 'cpp’ and ’cc¢’ must not be added manually via check_tool by the wscript.)

The second parameter is a list of paths where to look for the tools mentioned in the first parameter.
This is useful for third-party tools not included in waf itself. Usually, this happens when a Waf tool
is modified in any way. For example, if one uses a custom ”"Foo.py” tool, which is located in the same
directory as the wscript, use ”check_tool("Foo’; [.’])”. Omitting the second parameter causes waf to use
the internal tools only.

A detailed list of the tools can be found in chapter 3.1.

2.3.2 Uselib variables

Configuration works with so-called uselib variables. The configure() functions in the wscripts define the
variables, the subsequent build step uses them (this will be explained in more detail in the Build chapter).

uselib variable names all have the same structure: vartype_varname

vartype is the type of the uselib variable. For example, CPPPATH is the type for C++ include paths.
varname is an unique name associated with the con?‘gents.

For example, ”CPPPATH_FT2” is the uselib variable for the C++ include paths of "FT2”.

Here is a list of variable types used in waf, along with a description of their usage and values:

e LIB : alibrary name. Used both for static and dynamic libraries. If a static and a dynamic library
with the same name exist, the dynamic one will be used. For example, env['LIB_.FT2’] = ’{t2’ results
in the Id linker flag 7 -1ft2 7. This type also accepts several library names, which must be specified
as a list. Example: ['X11’ , "Xxf86vm’ | becomes 7 -1X11 -1Xxf86vm 7.

e STATICLIB : unlike LIB, this type works for static libraries only. If only a dynamic library with
the specified name exists, it will not be linked.

e LIBPATH : path to a library. Usually used together with LIB. Can accept multiple paths as a list.

e STATICLIBPATH : path to a static library. Usually used together with STATICLIB. Can accept
multiple paths as a list.

e CPPPATH: C/C++ include paths (the ”-I” parameters in gce). Accepts multiple paths as a list.

e CXXDEFINES: C/C++ preprocessor defines (the ”-D” parameter in gec). Accepts multiple defines
as a list. This one should be used with care, since some platforms limit the amount of characters
a command-line call can have. It it therefore usually wiser to use a configuration header with the
defines in it. (It also cleans up the waf verbose output.)

e CCFLAGS: C compiler flags. The value is directly passed to the compiler. Note that this is
compiler-specific, which can be a problem with multiplatform projects. Example: envCCFLAGS_FT2’]
= ’-Wall -ansi -pedantic’.

o CXXFLAGS: C++ compiler flags. The value is directly passed to the compiler. Note that this is
compiler-specific, which can be a problem with multiplatform projects. Example: env[CXXFLAGS_FT2’]
= ’-Wall -ansi -pedantic’.

e LINKFLAGS: Linker flags. The value is directly passed to the linker. Note that this is linker-
specific, which can be a problem with multiplatform projects. Example: env[LINKFLAGS_FT2’]
= -fPIC".

The configure() function in a wscript is free to define the uselib variable contents in any way. Manual
setting is not common, however. Usually, configurators and tools are used. There are configurators for
autodetecting C++ headers, libraries, pkg-config packages, config-tools (like sdl-config), and others. Waf
tools (not to be confused with the aforementioned config-tools) are general utility packages which can
also include autodetection features; in fact, many tools use configurators for internal autodetection.

2.3.3 Global uselib variables

These uselib variables are valid everywhere; all build objects include these. They work exactly like
normal uselib variables, but lack a name. For example, env CXXFLAGS’] += [-Wall’] causes waf to
add the ~Wall’ C++ compiler flag to all build objects. A common use of these special uselib variables
is strict compiler behaviour. With gce, this is achieved by using the flags ’-ansi’ and ’-pedantic’. So,
env[CXXFLAGS’] += [-Wall -ansi -pedantic’] puts gce in the most strict mode, penalizing almost all
violations of the ISO C++ standard.

Note: As seen above, it is recommended to append (4+=) and not assign (=) a new value. waf may
have written something in the global uselib variables already, and this would be lost by assigning the new
value. Also do not forget to put the string in square brackets.

4

2.3.4 Configurators

As mentioned before, these are used for automating the detection of various components like libraries,
C++ headers, programs. They also fill the corresponding uselib variables with the autodetection results.
The basic usage is the same with all configurators:

1. Create the configurator
2. Fill in the values necessary for autodetecting

3. call the configurator’s run() function

Afterwards, the env dictionary contains the resulting uselib variables, if the autodetection was successful
(for example, if the desired header was found). A failure can have two results, depending on the value
of the configurator’s mandatory variable: Print a warning and continue, or stop waf and print an error
message.

headerconf = conf.create_header_configurator()

headerconf .name = ’GL/gl.h’

headerconf.path = [’/usr/X11R6/include’,’/usr/local/include ’]
headerconf .mandatory = 1

headerconf .message = ’This projects requires OpenGL.’
headerconf .run ()

Listing 6: Example header configurator usage

Configurators have variables, which need to be set with correct values for accomplishing the task. Some
variables are the same for all (or almost all) configurators, some are configurator-specific. The common
variables are:

e mandatory : if this is 1, a failure in autodetection results in waf stopping and printing an error
message defined in the message variable (see below). 0 means that a warning will be emitted, but
waf is not stopped. Default is 0. 1 should be used for components absolutely necessary for this
project, 0 for optional parts (for example, an audio player with optional support for mp3 decoding).

e message: the message to be printed if mandatory is set to 1 and the autodetection fails. This is
useful for helping out the user, for example when autodetection of library FT2 fails, the message
could contain some suggestions where to download this library and how to install it, or how to
install it in popular Unix distributions.

e define: the define to be added to the configure header once autoconfiguration is completed.

e uselib: the unique name of the uselib variable to set. Configurator results will be stored in uselib
variables with this name.

Here is a list of the configurators included in waf:

e Header configurator
Searches for a particular C++ header in a list of paths, and puts its path in a CPPPATH uselib
variable if found.

This configurator works by test-compiling this code (”someheader.h” is the wanted header):

// "header_code" contents are inserted here
#include "someheader.h"
int main ()
{
// custom_code contents are inserted here
return O0;

}

header_code and custom_code are explained below.

Its specific members:

— name : the name of the C++ header, including the file extension (”shared_ptr.hpp” for exam-
ple).

— path : the list of paths where to look for the header. An example would be [’ /usr/X11R6/include’,
’ Jusr /local /include’].

— nosystem : if this is set to 1, the standard include paths are not appended, that is the header
will not be searched in these standard paths. Default is 0.

— header_code: The code specified in this member will be inserted into the testcode before the
searched header is included (see the code above). This is necessary because some headers
expect other headers to be included before, other headers expect some preprocessor defines
etc. For example, jpeglib.h expects stdio.h to be included before. Default value is ’ ’.

— custom_code: Custom code which will be inserted into the testcode’s main() function. Default
value is " .

— libs: Libraries to be linked to the testprogram. Necessary when testing for boost.asio for
example; its header(s) require the pthread library to be linked, else a linker error occurs.
Default value is ’ .

— libpath: Paths where to find the aforementioned libraries. Default value is ’ .

Note that this configurator is capable of autodeducing a uselib variable name; if uselib isn’t set, it
uses the contents of name in uppercase, with the symbols ’.”, ’:’, 7/’ replaced by an underscore ’_.
So, in case of GL/gl.h uselib is set to 'GL_GL_H’.

Created by calling conf.create_header_configurator().

Library configurator
Searches for a library in a list of paths. It looks for both static and shared libraries (DLLs in
Windows). Its specific members:

— name : the name of the library, not including the platform-specific pre- and postfix (e.g. ’foo’
instead of ’libfoo.so’).

— path : the list of paths where to look for the library. An example would be [’/usr/X11R6/1ib’,
’ Jusr /local /1ib’].

Created by calling conf.create_library_configurator().

Configure tool configurator

Uses the values from configure tools (not to be confused with waf tools). Configure tools are package-
specific helpers used for determining the flags necessary for using the package. For example, the SDL
(http://www.libsdl.org) has ”sdl-config”. Calling ”sdl-config —cflags” returns the C/C++ compiler
flags necessary for using the SDL. This configurator can query such a tool and put its results into
the uselib variables. Its specific members:

— binary : the name of the configure tool to use. An example would be ”sdl-config”.

Unlike other configurators, this one is not capable of auto-deducing a uselib variable name, so it
must be set explicitely.

Created by calling conf.create_cfgtool_configurator().

Pkg-config configurator

This configurator makes use of the pkg-config system. pkg-config is a popular centralized database
for querying compiler flags. It works similar to a configure tool; for example, ”pkg-config —cflags
alsa” prints the cflags necessary for using ALSA. The flags are stored in .pc files, usually located in
/usr/lib/pkgconfig/. Its specific members: 6

— name Name of the .pc file. In the example above, it would be "alsa” (note that the .pc suffix
must not be added).

— wversion Minimum version of the package. If the present package is older, the configurator fails.
Default value is ”” (= all versions are ok).

— path Path to the .pc file. Internally, this value is passed to the ”PKG_CONFIG_PATH” environ-
ment variable when pkg-config is called. Default value is ”” - in this case PKG_CONFIG_PATH
is not set.

79

— binary Name and path to pkg-config. Default value is ”” (”pkg-config” is used).

— wariables You could also check for extra values in a pkg-config file. Use this value to define
which values should be checked and defined. Several formats for this value are supported:
* string with spaces to separate a list
x list of values to check (define name will be upper(uselib” ”value_name))

* a list of [value_name, override define_name]

Default value is [].
Created by calling conf.create_pkgconfig_configurator().

o Test configurator

e 0SX framework configurator

2.3.5 Sub configurations

Like the sub options, wscripts in subdirectories may contain configure() functions as well. To call these,
use conf.sub_config(). It works analogous to opt.sub_options().

2.3.6 Configure header

Waf can autogenerate a C/C++ header file with preprocessor defines in it. This is the aforementioned
alternative to the CXXDEFINES uselib variable type.

The conf.write_config_header() function writes all defines present in the environment (conf.env). New
defines can be added by using conf.add_define(). This function expects a name for the define as first and
its value as second parameter. If a define with the same name already exists, it is overwritten.

All configurators add a define, most can autogenerate a name for one. Its value is 1 if the configurator
succeeded or 0 if it failed. These defines’ names always start with "HAVE_”. So, a library configurator
looking for the library ”GL” would add the define "HAVE_GL”, with 1 as a value if the GL library was
found.

It is also possible to use a custom define name. The define configurator variable provides this. If it is
empty, waf autogenerates the define name (if possible), otherwise it uses the one specified in the define
variable. See chapter 2.3.4 for details.

There are additional functions for handling defines:

1. is_defined(define) : This returns nonzero if the specified define exists, zero otherwise.
2. get_define(define) : Returns the value of the specified define, or zero if this define does not exist.
conf.add_define (’DEBUG’, 1)

conf.write_config_header (’config.h’)

Listing 7: Configure header example

The example above adds a define called ” DEBUC?”, and sets its value to 1. The resulting header code:

/* configuration created by waf */
#ifndef _CONFIG_H_WAF
#define _CONFIG_H_WAF

#define DEBUG 1
#endif /* _CONFIG_H_WAF x/

Listing 8: Configure header example

This resulting config.h header would be located in blddir/default/config.h (blddir is the directory
where the build results are put).

2.4 Building

Building works by making use of build objects. In wscripts, a build() function always gets an object of
type Build supplied as the function’s only parameter (in the example in chapter 1, the object is called
"bld”). This object can create build objects. The wscript has to call the create_obj function in Build to
create the right build objects, and supply them with data. As an example this build() function is used:

def build(bld):

obj = bld.create_obj(’cpp’, ’program’)
obj.source = ’example.cpp’

obj.target = ’example’

obj.uselib = ’ABC FT2’

Listing 9: The example build() function

bld is the object of type Build. The first parameter of create_obj specifies the tool to be used for
building. Waf has several tools for building various kinds of projects (see chapter 3.1 for a list of all
tools).
The second parameter is tool-specific. In this case, it defines which type to use. The cpp tool knows
these types: program, staticlib, shlib, bundle, plugin (the last two being OSX specific).
After this call, an object is returned. Waf also registers this object in an internal list. When all objects
are created and properly set with valid values, waf calls the tools, which create tasks. These tasks handle
calling the compiler, copying the build results, deleting generated files when calling . /waf (dist)clean etc.

build() functions in subdirectories can be called by using bld.add_subdirs(). This function accepts multiple
whitespace-separated directories as one string, like ’src src2’.

The following lines set the build object data:

e source contains all source files to be processed. Common are the whitespace-separated and end-of-
line separated representations. An example of the former would be ’a.cpp b.cpp’, and one of the
latter would be

a.cpp
b.cpp

Often, one does not want to specify all source files, instead simply telling in which dir to look
for them is desired. For this, find_sources_in_dirs() exist. So, writing obj.find_sources_in_dirs(”.”)
instead of obj.source = ’example.cpp’ above are equivalent. This is especially handy if the project
has one directory containing many source files

8

e target specifies the target name. The type of the target is directly related to the type of the build.
In case of C++, the target is an executable if the type is ”program”, a shared library (DLL in
windows) if 7shlib”, a static library if ”staticlib”, an OSX bundle if ”bundle” and a OSX plugin if
"plugin” (the latter two equal ”shlib” in Unix and Windows). Note that the target name should not
include platform-specific pre- and suffixes, since Waf attaches them automatically; a shlib target
”foo” will result in a shared library ”libfoo.so” in Unix, and "foo.dll” in Windows.

e uselib is the key to making use of autoconfiguration. Any uselib variable whose name is in this string
will be attached to this build object. Multiple names are whitespace-separated. In the example
above, the uselibs ”ABC” and "FT2” are attached to the build object. In case uselibs do not exist,
waf ignores this silently.

Continuing with the example above, if a ?CPPPATH_FT2” uselib variable exists, its contents are at-
tached to the build object’s c++ include path list. This is how autoconfiguration works; configure()
creates uselib variables, build() adds their contents to the build objects.

The three lines above are not all members available in build objects. Here is the full list:
e source, target, uselib: already explained above.

e name: Build objects can (and should) be named. This is for internal references, and especially
handy for the uselib_local variable.

o uselib_local: Similar to uselib, this defines the local dependencies of a build object. If program A
depends on static library B, both being created in the same project, and library B is named 'b’ (e.g.
obj.name = ’b’), then program A should use ”obj.uselib_local = 'b’ ”. This way waf makes sure B
is built before A, and B gets linked to A.

Note: uselib_local must be in the right order, e.g. if a build object uses the libraries A and B,
and lib A uses parts of lib B, uselib_local must be A B’. This is necessary for ensuring proper
linking.

e includes: a string of whitespace-separated paths where project specific C/C++ header files are
kept. This is C/C++ specific and necessary for tracking header dependencies; if one of the headers
stored in one of these paths is modified, waf rebuilds the source files using the modified file(s).

o unit_test: if this is set to 1, this build object classifies as a unit test. Default value is 0. Only useful
if the result of the build object is an executable. See chapter 3.2, unit tests for more.

2.5 Shutdown

shutdown() is called every time waf is run, except when running ”waf dist” or "waf distclean”. It is useful
for performing unit tests and/or copying files. It is optional, and can be omitted.

3 Additional waf features
3.1 Waf tools

Here is a list of tools included in waf:
e bison
e cs

e docbook

o flex

e g++ Tool for building C++ projects using the GNU C++ compiler. Adds a build tool ”cpp”
capable of building various types of C++ projects. The type is specified in create_obj after ’cpp’. For
example, a C++ project of the "program” type will be created like this: obj = bld.create_obj(’cpp’,
'program’)

The supported types:

— program Executables (they get a ”.exe” suffix in Windows).

— shlib Shared libraries (called DLLs - dynamic link libraries - in Windows). Pre- and suffix vary
between platforms; Unix and Unix derivatives use ”lib” as pre- and ”.so” as suffix, Windows
uses no pre- and ”.dll” as suffix.

— staticlib Static libraries. These have the same naming convention in Unix as shared libraries,
in Windows they end with ”.1ib” instead of ”.dll”.

— bundle OSX-specific (equals shlib on other platforms).
— plugin OSX-specific (equals shlib on other platforms).

e gcc Tool for building C projects using the GNU C compiler. Adds a build tool ’cc’ capable of
building the same types g++ supports.

e Gnome
e java
e KDES3

e msvc A C++ building tool, using Microsoft’s Visual C compiler. It adds both a "cc” and a ”cpp”
build tool, since it is able to build both C and C++ projects. Like g4+, it supports various types
of C/C++ projects. These types equal those of g++, as does create_obj() call.

CAUTION: Do not use msve and gcc/q++ at the same time. Doing so results in un-
defined behaviour, since both msvc and gee/g++ try to set the cc/cpp build tools. If you
want to support multiple compilers, make it possible to select one via a command-line
option instead.

® 0ST
o Ocaml

e Qt3 Qt3 support tool. Needs a C++ tool, so for using the Qt3 tool, ’g+-+’ or 'msvc’ need to be
initialized via check_tool() as well.
This tool provides a build tool "qt3” for use with bld.create_obj(). The build types equal the
g+-+/msve ones. So, for building a Qt3 program, use bld.create_obj(’qt3’, 'program’).
The tool tries to autodetect Qt3. However, some installations cannot be autodetected because of
unusual paths and/or different naming. For this, the tool also adds custom command-line options
(visible via calling ”waf —help”). Support for automatic moc calling is also included; however, the
C++ source files must have this line at the end:

#include "headername.moc"

This is necessary to let waf know when to invoke moc. A class using Qt signals is always defined in
a header, and its methods are defined in a source file. For example, a class "Foo” is being defined
in ”foo.h” and its methods defined in a file "foo.cpp”. Foo contains some Qt slots, so moc has to
process the header. For this, the line

#include "foo.moc"

10

needs to be added at the end of foo.cpp. (foo.moc, because the header name is ”f00”, omitting the
extension). Note: it is important that waf can actually reach the header, so it has to be ensured
that the include paths are correct. obj.includes may have to be adjusted for this (see chapter 2.4
for an explanation of obj.includes). Also, the Qt3 tool must be called in the set_options() function
by calling ’opt.tool_options(’Qt3’)’ (see chapter 2.2.1 for more about opt.tool_options().

e (t) Qt4 support tool, behaves like the Qt3 one. The Qt3 and Qt4 tools can be used in the same
wscript (e.g. calling conf.check_tool(”g++ Qt3 Qt4”) is valid). Like the Qt3 tool, it must be called
in the set_options() function.

o Tex
e yacc

Note that these are not all tools present in wafadmin/Tools/; the internal ones have been left out.

3.2 Unit tests

Unit testing works in waf by making use of the unit_test variable in build objects (this variable has been
explained in chapter 2.4 above). The unit test is meant to be ran in the shutdown() function. You need
to import the ”UnitTest” module first. Using it is quite straightforward:

1. First create a unit_test instance.

2. Call unit_test.run(); this calls all projects marked as unit tests (e.g. obj.unit_test set to 1). Note
that run() does not output anything.

3. Now, either read the test results manually (they are stored in the unit_test instance), or call
unit_test.printt_results(), which writes the results to stdout with formatting.

Here is an example:

def shutdown ():
import UnitTest

unittest = UnitTest.unit_test ()

unittest.run()
unittest.print_results ()

The output from the print_results() call in this example:

Running unit tests
default/src/testprogram 0K
Successful tests: 1 (100.0%)
Failed tests: 0 (0.0%)
Erroneous tests: 0 (0.0%)
Total number of tests: 1

Unit tests finished

unit_test has some members, returncode_ok for determining the unit test ”OK” return code, and the
others are filled in with data by the run() method.

11

returncode_ok: The "OK” return code. If a unit test returns this code, it is counted as being
successful, else the unit test run will be seen as failed. Default value is 0. Note that if you want to
set another code, this has to be done before run() is called.

num_tests_ok: Contains the amount of successful unit test runs.

num_tests_failed: Contains the amount of failed unit test runs.

num._tests_err: Contains the amount of failed erroneous test runs (for example a crashed unit test).
total_num_tests: The total amount of unit tests. Equals num_tests_ok + num_tests_failed + num _tests_err.

maz_label_length: Labels are names for the unit test; in the example above, ”default/src/testpro-
gram” is a label. maz_label_length contains the largest label; this is useful for pretty-print output.

12

	1 Getting started
	2 The waf building process
	2.1 Initialization
	2.2 Custom command-line options
	2.2.1 Tool options
	2.2.2 Sub options

	2.3 Configuration
	2.3.1 Tools
	2.3.2 Uselib variables
	2.3.3 Global uselib variables
	2.3.4 Configurators
	2.3.5 Sub configurations
	2.3.6 Configure header

	2.4 Building
	2.5 Shutdown

	3 Additional waf features
	3.1 Waf tools
	3.2 Unit tests

