next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000102703 seconds elapsed
 -- 0.00128531 seconds elapsed
 -- 0.000309004 seconds elapsed
 -- 0.000110381 seconds elapsed
 -- 0.00120015 seconds elapsed
 -- 0.000297975 seconds elapsed
 -- 0.000102584 seconds elapsed
 -- 0.000103447 seconds elapsed
 -- 0.000271552 seconds elapsed
 -- 0.000105385 seconds elapsed
 -- 0.0010828 seconds elapsed
 -- 0.000286467 seconds elapsed
 -- 0.000106556 seconds elapsed
 -- 0.00108633 seconds elapsed
 -- 0.000282202 seconds elapsed
 -- 0.00010268 seconds elapsed
 -- 0.00100728 seconds elapsed
 -- 0.000279187 seconds elapsed
 -- 0.000105533 seconds elapsed
 -- 0.00109958 seconds elapsed
 -- 0.000287446 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000105672 seconds elapsed
 -- 0.00124125 seconds elapsed
 -- 0.000281576 seconds elapsed
 -- 0.000106896 seconds elapsed
 -- 0.00113606 seconds elapsed
 -- 0.000284667 seconds elapsed
 -- 0.000099447 seconds elapsed
 -- 0.00105079 seconds elapsed
 -- 0.000293151 seconds elapsed
 -- 0.000103416 seconds elapsed
 -- 0.00105263 seconds elapsed
 -- 0.000285028 seconds elapsed
 -- 0.000105222 seconds elapsed
 -- 0.00103079 seconds elapsed
 -- 0.000283257 seconds elapsed
 -- 0.00010669 seconds elapsed
 -- 0.00115081 seconds elapsed
 -- 0.00029597 seconds elapsed
 -- 0.000118462 seconds elapsed
 -- 0.00141446 seconds elapsed
 -- 0.00030359 seconds elapsed
 -- 0.000112046 seconds elapsed
 -- 0.00121466 seconds elapsed
 -- 0.000304843 seconds elapsed
 -- 0.00010931 seconds elapsed
 -- 0.00111086 seconds elapsed
 -- 0.000294994 seconds elapsed
 -- 0.000111346 seconds elapsed
 -- 0.00109733 seconds elapsed
 -- 0.000295977 seconds elapsed
 -- 0.00010965 seconds elapsed
 -- 0.00106286 seconds elapsed
 -- 0.000292823 seconds elapsed
 -- 0.000110738 seconds elapsed
 -- 0.00116278 seconds elapsed
 -- 0.000303256 seconds elapsed
 -- 0.000116443 seconds elapsed
 -- 0.00171793 seconds elapsed
 -- 0.000547077 seconds elapsed
 -- 0.000111453 seconds elapsed
 -- 0.00170863 seconds elapsed
 -- 0.000552306 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.