We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : h=carpetBettiTables(a,b)
-- 0.00479794 seconds elapsed
-- 0.0130209 seconds elapsed
-- 0.0460518 seconds elapsed
-- 0.0233144 seconds elapsed
-- 0.00738077 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
0: 1 . . . . . . . . .
1: . 36 160 315 288 . . . . .
2: . . . . . 288 315 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
2 => total: 1 36 167 370 476 476 370 167 36 1
0: 1 . . . . . . . . .
1: . 36 160 322 336 140 48 7 . .
2: . . 7 48 140 336 322 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
3 => total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : HashTable
|
i3 : T= carpetBettiTable(h,3)
0 1 2 3 4 5 6 7 8 9
o3 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o3 : BettiTally
|
i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o4 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i5 : elapsedTime T'=minimalBetti J
-- 0.17221 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o5 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o5 : BettiTally
|
i6 : T-T'
0 1 2 3 4 5 6 7 8 9
o6 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o6 : BettiTally
|
i7 : elapsedTime h=carpetBettiTables(6,6);
-- 0.00934088 seconds elapsed
-- 0.038695 seconds elapsed
-- 0.214256 seconds elapsed
-- 2.15086 seconds elapsed
-- 0.772614 seconds elapsed
-- 0.0826221 seconds elapsed
-- 0.0137887 seconds elapsed
-- 6.53193 seconds elapsed
|
i8 : keys h
o8 = {0, 2, 3, 5}
o8 : List
|
i9 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o9 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o9 : BettiTally
|
i10 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o10 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o10 : BettiTally
|