
GBNP
computing Gröbner bases of

noncommutative polynomials

1.0.5

9 March 2022

A.M. Cohen

J.W. Knopper

A.M. Cohen
Email: A.M.Cohen@tue.nl

J.W. Knopper
Email: J.W.Knopper@tue.nl

Address: TU/e,
POB 513, 5600 MB Eindhoven, the Netherlands

mailto://A.M.Cohen@tue.nl
mailto://J.W.Knopper@tue.nl

GBNP 2

Abstract
We provide algorithms, written in the GAP 4 programming language, for computing Gröbner bases of non-
commutative polynomials, and some variations, such as a weighted and truncated version and a tracing facility.
In addition, there are algorithms for analyzing the quotient of a non-commutative polynomial algebra by a 2-
sided ideal generated by a set of polynomials whose Gröbner basis has been determined and for computing
quotient modules of free modules over quotient algebras.

The notion of algorithm is interpreted loosely: in general one cannot expect a non-commutative Gröbner ba-
sis algorithm to terminate, as it would imply solvability of the word problem for finitely presented (semi)groups.

This documentation gives a short description of the mathematical content, explains the functions of the
package, and provides more than twenty worked out examples.

Copyright
© 2001-2010 by Arjeh M. Cohen, Dié A.H. Gijsbers, Jan Willem Knopper, Chris Krook. Address: Discrete
Algebra and Geometry (DAM) group at the Department of Mathematics and Computer Science of Eindhoven
University of Technology.

Acknowledgements
• The package is based on an earlier version by Rosane Ushirobira.

• The bulk of the package is written by Arjeh M. Cohen and Dié A.H. Gijsbers.

• The theory is mainly taken from literature by Teo Mora [Mor94] and Edward L. Green [Gre99].

• From Version 0.8.3 on the package has three additional files (fincheck.g, tree.g graphs.g) with
routines for finding the Hilbert function and testing finite dimensionality when given a Gröbner basis by
Chris Krook [Kro03], based on work by Victor Ufnarovski [Ufn89].

• From Version 0.9 on the package is enriched with support for fields implemented in GAP and additional
prefix rules for quotient modules, as well as some speed improvements by Jan Willem Knopper. Knopper
has also formatted the documentation in GAPDoc [LN06].

• From Version 1.0 on the package is extended with NMO (for Noncommutative Monomial Orderings) by
Randall Cone. This enables the GBNP user to choose a wider selection of monomial orderings than the
standard one built into GBNP itself. Documentation on NMO can be found in the NMO manual [Con10].

Contents

1 Introduction 5
1.1 Installation . 5
1.2 Using the package . 5
1.3 Further documentation . 6

2 Description 7
2.1 Non-commutative Polynomials (NPs) . 7
2.2 Non-commutative Polynomials for Modules (NPMs) 8
2.3 Core functions . 8
2.4 About the implementation . 9
2.5 Tracing variant . 9
2.6 Truncation variant . 10
2.7 Module variant . 10
2.8 Gröbner basis records . 11
2.9 Quotient algebras . 11

3 Functions 13
3.1 Converting polynomials into different formats . 13
3.2 Printing polynomials in NP format . 16
3.3 Calculating with polynomials in NP format . 19
3.4 Gröbner functions, standard variant . 24
3.5 Finite-dimensional quotient algebras . 28
3.6 Finiteness and Hilbert series . 33
3.7 Functions of the trace variant . 36
3.8 Functions of the truncated variant . 39
3.9 Functions of the module variant . 43

4 Info Level 49
4.1 Introduction . 49
4.2 InfoGBNP . 49
4.3 InfoGBNPTime . 50

A Examples 51
A.1 Introduction . 51
A.2 A simple commutative Gröbner basis computation 52
A.3 A truncated Gröbner basis for Leonard pairs . 54

3

GBNP 4

A.4 The truncated variant on two weighted homogeneous polynomials 56
A.5 The order of the Weyl group of type E6 . 60
A.6 The gcd of some univariate polynomials . 63
A.7 From the Tapas book . 65
A.8 The Birman-Murakami-Wenzl algebra of type A3 67
A.9 The Birman-Murakami-Wenzl algebra of type A2 71
A.10 A commutative example by Mora . 75
A.11 Tracing an example by Mora . 77
A.12 Finiteness of the Weyl group of type E6 . 78
A.13 Preprocessing for Weyl group computations . 80
A.14 A quotient algebra with exponential growth . 81
A.15 A commutative quotient algebra of polynomial growth 83
A.16 An algebra over a finite field . 85
A.17 The dihedral group of order 8 . 87
A.18 The dihedral group of order 8 on another module 90
A.19 The dihedral group on a non-cyclic module . 91
A.20 The icosahedral group . 93
A.21 The symmetric inverse monoid for a set of size four 96
A.22 A module of the Hecke algebra of type A3 over GF(3) 99
A.23 Generalized Temperley-Lieb algebras . 102
A.24 The universal enveloping algebra of a Lie algebra 103
A.25 Serre’s exercise . 106
A.26 Baur and Draisma’s transformations . 107
A.27 The cola gene puzzle . 109

References 118

Index 119

Chapter 1

Introduction

This package, named GBNP for Gröbner Bases for Non-commutative Polynomials, is intended for
computing in (associative) non-commutative algebras with a finite presentation. Starting from a free
algebra A on a finite number of generating variables, the reader can specify a finite set G of polynomi-
als in these variables, in order to study the quotient algebra of A by the (2-sided) ideal of A generated
by G.

This documentation gives a short description of the mathematical content in Chapter
2, explains the functions of the package in Chapter 3, and provides more than twenty
four worked out examples in Appendix A. It is available as an HTML document at
https://gap-packages.github.io/gbnp/doc/chap0.html.

1.1 Installation

To install GBNP, first download GBNP-1.0.5.tar.gz from
https://gap-packages.github.io/gbnp/, then unpack GBNP-1.0.5.tar.gz in the pkg
subdirectory of your GAP installation (or in the pkg subdirectory of any other GAP root direc-
tory, for example one added with the -l argument) with the following command: tar -xvzf
GBNP-1.0.5.tar.gz.

GBNP is then loaded with the GAP command

gap> LoadPackage("GBNP");

1.2 Using the package

If you wish to compute a Gröbner basis, create a list of NPs (non-commutative polynomials in NP
format), as described in Section 2.1. This can be done either directly or by use of the transition
functions described in Section 3.1. To run the standard algorithm use the functions from Section
3.4. With these functions, you can try and find a Gröbner basis. The word try is included because the
algorithm for computing Gröbner bases is not guaranteed to terminate. Printing issues for polynomials
in NP format are discussed in Section 3.2. If the Gröbner basis is found and the dimension of the
quotient algebra Q (see Section 2.9) is finite, you can find a basis of monomials for Q with the functions
in Section 3.5. For a more advanced analysis of Q, such as a proof of finite or infinite dimensionality,
or for determining its growth or its partial Hilbert series, use the functions from Section 3.6 .

5

https://gap-packages.github.io/gbnp/doc/chap0.html
https://gap-packages.github.io/gbnp/

GBNP 6

There are three variants of the Gröbner basis algorithm, the truncated version, the trace version,
and the module version. In the (weighted) homogeneous case (described in Section 2.6), the truncated
version, given by the functions described in Section 3.8, computes the part of a Gröbner basis up to
an indicated weight. The trace version (described in Section 2.5), given by the functions described
in Section 3.7, computes an expression of the polynomials of the Gröbner basis found in terms of
the original generators. The module version (described in Sections 2.2, 2.7, and 2.8), given by the
functions described in Section 3.9, computes a Gröbner basis for a submodule of a free Q-module of
finite rank.

Read the example files in Chapter A for inspiration. The source of the files can be perused for
auxiliary functions, which are often used in the main functions but not deemed necessary for a first
time user.

1.3 Further documentation

The reports [Coh07], [Kro03], and [Kno04] can be downloaded from the web at these addresses:
The report “Non-commutative polynomial computations”, by Arjeh M. Cohen (with sup-

port of Dié Gijsbers, Jan Willem Knopper, and Chris Krook) can be downloaded from
http://mathdox.org/products/gbnp/gbnp.pdf.

The report “Dimensionality of quotient algebras”, by Chris Krook can be downloaded from
http://mathdox.org/products/gbnp/dqa.pdf.

The report “GBNP and vector enumeration”, by Jan Willem Knopper can be downloaded from
http://mathdox.org/products/gbnp/knopper.pdf.

 http://mathdox.org/products/gbnp/gbnp.pdf
 http://mathdox.org/products/gbnp/gbnp.pdf
 http://mathdox.org/products/gbnp/dqa.pdf
 http://mathdox.org/products/gbnp/dqa.pdf
 http://mathdox.org/products/gbnp/knopper.pdf
 http://mathdox.org/products/gbnp/knopper.pdf

Chapter 2

Description

2.1 Non-commutative Polynomials (NPs)

The main datatype of the GBNP package is a list of non-commutative polynomials (NPs). The data
type for a non-commutative polynomial, referred to as its NP format, is a list of two lists:

• The first list is a list m of monomials.

• The second list is a list c of coefficients of these monomials.

The two lists have the same length. The polynomial represented by the ordered pair [m,c] is ∑i cimi.
A monomial is a list of positive integers. They are interpreted as the indices of the variables. So,

if k = [1,2,3,2,1] and the variables are x,y,z (in this order), then k represents the monomial xyzyx.
By the way, the name of the variables has no meaning. There are various ways to print these but the
default is a,b,c,. . . (see below).

The zero polynomial is represented by [[],[]]. The polynomial 1 is represented by [[[]],[1]].
The algorithms work for the algebra F⟨⟨x1,x2, . . . ,xt⟩⟩ of non-commutative polynomials in t vari-

ables over the field F. Accordingly, the list c should contain elements of F. It is not always easy to
recover F from the list c. The GAP functions One and Zero can be of some help.

In order to facilitate viewing the polynomials, we provide the function PrintNP (3.2.1). For
instance

PrintNP([[[1,2],[2,1]],[3,-1]]);

yields

3ab - ba

Indeed, we have the names: a, b, c, . . . for x1, x2, x3, . . ., except that everything beyond l (the 12-th
letter) is called x. This can be easily changed by calling the function GBNP.ConfigPrint, which can
be found in Section 3.2.

The function PrintNPList (3.2.3) is available for printing a list of NPs (=non-commutative poly-
nomials).

In order to facilitate testing whether two data structures represent the same NP, we use the con-
vention that polynomials are “clean”. This means that they look as if they are output of the function
CleanNP (3.3.7). In other words:

7

GBNP 8

• each monomial occurs at most once in the list of monomials,

• no monomials occur whose coefficients are zero,

• the monomials are ordered (total degree first, then lexicographically) from big to small.

An advantage of the ordering is that the leading monomial of an NP p is just p[1][1] and that its
leading coefficient is p[2][1]. Users who want to work with other orderings can use the functions
defined in the NMO extension [Con10] to GBNP.

2.2 Non-commutative Polynomials for Modules (NPMs)

In Section 2.1 the NP format for elements of a free algebra A of non-commutative polynomials in a
fixed number of variables is described. This format can be adjusted slightly to allow the use of a free
right module An of finite rank n over A. The internal format of an element of the module is similar
to that of a non-commutative polynomial. The only change is that each monomial will start with a
negative number. The absolute value of this number is the index of the standard basis vector of the
free module.

For example in the free F⟨⟨x1,x2, . . . ,xt⟩⟩-module of rank 3, the expression [[[-1]],[1]]
represents [1,0,0] and [[[-1,1,2],[-1,2,1],[-3,2,2,2]],[6,-7,9]] represents [6x1x2 −
7x2x1,0,9x3

2]. The zero vector is the represented in the same way as its NP format counterpart in
2.1 and the only one without a negative entry: [[],[]]. We refer to this format as the NPM format.

Elements of modules are printed as vectors. See Section 3.9 on how to use modules. Examples
A.19, A.21, and A.20 are also recommended.

2.3 Core functions

The core function is SGrobner (3.4.2) (which is short for Strong Gröbner, as we use the Strong Normal
Form, discussed in Section StrongNormalFormNPM (3.9.5), most of the time). It takes a list of NPs in
a free algebra A and prepares two lists for treatment in a loop:

• First the list itself, called G. Before entering the loop, G is cleaned, ordered, and its elements
are made monic, that is, multiplied by a scalar so that the leading coefficient becomes one. The
ordering is done by comparison of leading monomials. The ordering on leading monomials is
length lexicographic. For other orderings, the functions of the NMO extension can be used; see
[Con10].

• Second the list of all normal forms with respect to G of S-polynomials of elements of G. This
list is called D. For a Gröbner basis, the S-polynomials of polynomials in D (possibly with an
element of G) need to be computed. If D is empty then G is a Gröbner basis.

Then, the function calls the routine GBNP.SGrobnerLoop on the arguments G, D which are changed in
an attempt to modify G while still preserving the following two properties.

1. G generates the same two-sided ideal I in A as before.

2. D contains all normal forms with respect to G of S-polynomials of elements from G that need to
reduce to zero for the basis to be a Gröbner basis.

GBNP 9

The importance of this feature is that, in case of huge computations, the user may store G and D
at almost any time and resume the computation by reloading G and D and calling the loop function
GBNP.SGrobnerLoop whenever convenient. The only technical detail to handle is that the last element
of the list G should be copied into the D list. The loop itself performs a step towards making G more
like a Gröbner basis of I. As in the commutative case, the progress can be indicated by use of an
ordering on the set of leading monomials of the elements of G.

In contrast to the commutative case, however, this ordering is not well founded, and there is no a
priori guarantee that the loop will be exited after a finite number of iterations. The loop ends when the
list D is empty, in which case the work is essentially done: after some internal cleaning and a bit of
further rewriting, the computation is over.

There is also a Grobner (3.4.1) function. It uses (at some places) the Normal Form instead of the
Strong Normal Form algorithm. In most of our applications, this usually led to slower performance,
so we are not very keen to use it.

In many of our own applications, the full polynomial ring modulo the two-sided ideal I generated
by G is a finite-dimensional quotient algebra. In such cases, one would like to know the dimension
(whence the function DimQA (3.5.2), QA for Quotient Algebra), find a basis (whence the function
BaseQA (3.5.1)), or just the monomials up to a certain degree that are not divisible by a leading term of
G (whence the function GBNP.NondivMons). Actually by use of MulQA (3.5.5), you can even multiply
elements of the quotient algebra. In case it is unknown whether the quotient algebra is finite or infinite,
one can use the functions FinCheckQA (3.6.2) and DetermineGrowthQA (3.6.1). When the quotient
algebra is infinite dimensional you may want to determine its partial Hilbert Series. This can be done
with the function HilbertSeriesQA (3.6.3).

2.4 About the implementation

Rather than storing all obstructions, the Gröbner basis algorithm computes the (Strong) Normal Form
of obstructions from G and puts them into D whenever nonzero. At the beginning of the loop, we take
the first element of the D list and prepare it for addition to G. We are then concerned with two goals:

1. to restore the invariant properties,

2. to clean up G (that is, reduce it to a more succinct, shorter set).

This is mainly done by means of additional S-polynomial and Normal Form computations.
As for data management, we have chosen to work with lists in situ, that is, not to copy the

list but rather perform all operations on one and the same list. To this end we use operations like
RemoveElmList and Add, see Reference: Add. The idea here is to economize on space for large
computations. We do not use in situ operations everywhere, but have concentrated on the potentially
biggest lists: G and D.

For checking whether a monomial can be reduced, an internal tree structure is used.

2.5 Tracing variant

When computing with small examples, it may be handy to provide the elements of the Gröbner basis
with a way of expressing them as elements in I, that is, as combinations of elements of the input. This
can be done, not only for elements of G, but for any element, by the functions in the file trace.g.
This file calls the file nparith.g for arithmetic keeping track of the expressions of polynomials as

GBNP 10

combinations of elements from the original basis. With respect to a given input basis B, a polynomial
p in the traced version is a record, called the traced polynomial, with two fields. One field, denoted
p.pol, is the usual polynomial in NP format. The other, denoted p.trace, is a list of elements indexed
by B. Each element of p.trace is a list whose elements are four-tuples [ml,i,mr,c] where ml and
mr are monomials, i is an index of an element of B and c is a scalar. The interpretation of this data
structure is that p.pol can be written as the sum over all four-tuples [ml,i,mr,c] of c∗ml ∗Bi ∗mr.
Functions for printing these expressions in a human understandable way are described in Section 3.7.

2.6 Truncation variant

For computations with large and/or infinite examples, it may be convenient to truncate everything
above a certain degree. In fact, we encountered various examples where the polynomials are
(weighted) homogeneous and then it makes perfect sense to truncate the polynomials, that is, to dis-
regard everything above a certain degree. For then the Grobner basis, if it exists, will be also be
homogeneous and the part consisting of all of its polynomials of degree less than a given degree d is
equal to the Grobner basis of the join of the original list of polynomials with all monomials of degree
d + 1. Here an NP polynomial in n variables is called homogeneous of degree d with respect to v, a
vector with non-negative integers of length n, if, for each of its monomials [t1, ..., tk], the sum over all
vti is equal to d. The most classical choice for v is the all-one vector in which case one often speaks
of homogeneous without mentioning the all-one vector. If two polynomials are homogeneous with
respect to v, then so are their S-polynomials. If K is a list of homogeneous polynomials with respect
to v, then the normal form with respect to K of any homogeneous polynomial of degree d with respect
to v is again homogeneous of degree d with respect to v. In particular, the Gröbner basis of a list of
polynomials that are homogeneous with respect to v, consists of homogeneous polynomials, and those
input polynomials contributing to polynomials in the Gröbner basis of degree at most d have degree at
most d themselves. These facts enable the computation of the truncated Gröbner basis. The functions
of this variant can be found in Section 3.8.

2.7 Module variant

Suppose we are given a finite set G of polynomials in a free non-commutative algebra A generated by,
say t indeterminates, and a positive integer s. Denote by I the two-sided ideal of A generated by G. We
can work with the free right A/I module (A/I)s. See Section 2.2 on how to represent vectors of (A/I)s

by elements of the free module As. Given a subset W of As, whose elements are called prefix relations,
let W ′ be the submodule generated by the image of W in (A/I)s. The function SGrobnerModule
(3.9.1) is meant to determine the quotient module (A/I)s/W ′. If the algorithm terminates, it delivers
a Gröbner basis for I as well as a suitable set of generators for W ′, with Gröbner like properties.
This implies that StrongNormalFormNPM (3.9.5), a strong normal form computation, can be used to
find the canonical representative in As of an element in (A/I)s/W ′. Theoretic details can be found in
[Coh07]. If (A/I)s/W ′ is a finite-dimensional vector space over the coefficient field of A, then a basis
can be found by use of BaseQM (3.9.2) and its dimension can be computed by use of DimQM (3.9.3).

GBNP 11

2.8 Gröbner basis records

The function SGrobnerModule (3.9.1) calculates a Gröbner basis consisting of some two-sided rela-
tions in the algebra and some prefix or module relations in the vector space. These are returned in
a record GBR. The two-sided relations can be found under the name GBR.ts and the prefix relations
under the name GBR.p. Some other information is stored in this record as well.

The prefix conditions are in NPM format (see 2.2) and the two-sided relations are in NP format.

2.9 Quotient algebras

Once a Gröbner basis of a list G of polynomials in NP format, defining elements of a free algebra A,
is computed, the quotient algebra QA of A by the two-sided ideal generated by G (or, which amounts
to the same, the Gröbner basis) can be analyzed. A number of functions are available to determine
whether QA is finite dimensional or not.

Elements of QA are represented by elements of A. Two elements are equal if and only if their
strong normal forms coincide; see StrongNormalFormNP (3.5.6). The multiplication is take care of
by MulQA (3.5.5), which is little more than the strong normal form of the product of two polynomials
in NP format representing elements of QA.

If QA is finite dimensional, a basis of it over the field can be found by BaseQA (3.5.1). The
size of the base, in other words, the dimension of QA, can be computed with DimQA (3.5.2). Right
multiplication by an element of QA is a linear transformation. The matrix of this linear transformation
with respect to the base, in case the element belongs to the base, can be computed by MatrixQA (3.5.3)
or, for all basis elements, MatricesQA (3.5.4).

A list of leading terms of the Gröbner basis G can be constructed with LMonsNP (3.3.10). The
dimension of QA only depends on this list and is computationally easier to work with than G. Most
functions designed to analyze dimensionality work with a monomial ideal generated by a strong Gröb-
ner basis, which in this case means that no element divides any other element.

The function FinCheckQA (3.6.2) determines whether QA is finite or infinite dimensional. More
generally, the growth of QA can be determined by means of the function DetermineGrowthQA (3.6.1),
which either returns the information that QA is finite dimensional, or that QA has polynomial growth,
in which case it gives bounds for the degree of polynomial growth, or that QA has exponential growth.
Finally, with the function HilbertSeriesQA (3.6.3) one can compute coefficients of the Hilbert series.

The purpose of the functions FinCheckQA (3.6.2) and DetermineGrowthQA (3.6.1) are closely re-
lated. The former is faster, while the latter provides more information, as illustrated from the following
table.

FinCheckQA DetermineGrowthQA
finite true 0
polynomial growth false d or [d1,d2]
exponential growth false "exponential growth"

Table: dimensionality functions; d stands for degree, [d1,d2] for an interval containing the degree

The function DetermineGrowthQA (3.6.1) may find the exact degree of polynomial growth (if at
hand). If this is the case, that degree is returned. It may also happen that only an interval [d1,d2] is
returned in which the dimension lies. To force an exact answer, its third argument should be true.

With the function PreprocessAnalysisQA (3.6.4), the computations done by these 3 functions
can be sped up. Note however that by applying preprocessing of the data, the set of monomials in

GBNP 12

the ideal basis is changed and corresponds no longer to the same quotient algebra (but to a quotient
algebra with the same growth).

Chapter 3

Functions

3.1 Converting polynomials into different formats

3.1.1 GP2NP

▷ GP2NP(gp) (function)

Returns: If gp is an element of a free algebra, then the polynomial in NP format (see Section
2.1) corresponding to gp ; if gp is an element of a free module, then the vector in NPM format (see
Section 2.2) corresponding to gp .

This function will convert an element of a free algebra to a polynomial in NP format and an
element of a free right module to a vector in NPM format.

Example: Let A be the free associative algebra with one over the rationals on the generators a and
b. Let e be the one of the algebra.

gap> A:=FreeAssociativeAlgebraWithOne(Rationals,"a","b");;
gap> a:=A.a;;
gap> b:=A.b;;
gap> e:=One(A);;
gap> z:=Zero(A);;

Now let gp be the polynomial ba−ab− e.

gap> gp:=b*a-a*b-e;
(-1)*<identity ...>+(-1)*a*b+(1)*b*a

The polynomial in NP format, corresponding to gp can now be obtained with GP2NP:

gap> GP2NP(gp);
[[[2, 1], [1, 2], []], [1, -1, -1]]

Let D be the free associative algebra over A of rank 2.

gap> D := A^2;;

Take the following list R of two elements of D.

gap> R := [[b-e, z], [e+a*(e+a+b), -e-a*(e+a+b)]];;

13

GBNP 14

Convert the list R to a list of vectors in NPM format.

gap> List(R,GP2NP);
[[[[-1, 2], [-1]], [1, -1]],

[[[-1, 1, 2], [-1, 1, 1], [-2, 1, 2], [-2, 1, 1], [-1, 1],
[-2, 1], [-1], [-2]], [1, 1, -1, -1, 1, -1, 1, -1]]]

3.1.2 GP2NPList

▷ GP2NPList(Lgp) (function)

Returns: The list of polynomials in NP or NPM format corresponding to elements of a free
algebra or module occurring in the list Lgp .

This function has the same effect as List(Lgp,GBNP).
Example: Let A be the free associative algebra with one over the rationals on the generators a and

b. Let e be the one of the algebra.

gap> A:=FreeAssociativeAlgebraWithOne(Rationals,"a","b");;
gap> a:=A.a;;
gap> b:=A.b;;
gap> e:=One(A);;

Let Lgp be the list of polynomials [a2 − e,b2 − e,ba−ab− e].

gap> Lgp:=[a^2-e,b^2-e,b*a-a*b-e];
[(-1)*<identity ...>+(1)*a^2, (-1)*<identity ...>+(1)*b^2,

(-1)*<identity ...>+(-1)*a*b+(1)*b*a]

The polynomial in NP format corresponding to gp can be obtained with GP2NP:

gap> GP2NPList(Lgp);
[[[[1, 1], []], [1, -1]], [[[2, 2], []], [1, -1]],

[[[2, 1], [1, 2], []], [1, -1, -1]]]

The same result is obtained by a simple application of the standard List function in GAP:

gap> List(Lgp,GP2NP) = GP2NPList(Lgp);
true

3.1.3 NP2GP

▷ NP2GP(np, A) (function)

Returns: The GAP format of the polynomial np in NP format.
This function will convert a polynomial in NP format to a GAP polynomial in the free associative

algebra A and a vector in NPM format to a GAP vector in the free module A . In case of the NP format,
the number of variables should not exceed the rank of the free algebra A . In case of the NPM format,
the absolute of the negative numbers should not exceed the rank of the free module A .

Example: Let A be the free associative algebra with one over the rationals on the generators a and
b.

GBNP 15

gap> A:=FreeAssociativeAlgebraWithOne(GF(3),"a","b");;

Let np be a polynomial in NP format.

gap> np:=[[[2, 1], [1, 2], []], [Z(3)^0, Z(3), Z(3)]];;

The polynomial can be converted to the corresponding element of A with NP2GP:

gap> NP2GP(np,A);
(Z(3)^0)*b*a+(Z(3))*a*b+(Z(3))*<identity ...>

Note that some information of the coefficient field of a polynomial np in NP format can be obtained
from the second list of np.

gap> One(np[2][1]);
Z(3)^0

Now let M be the module A^2 and let npm be a polynomial over that module in NPM form.

gap> M:=A^2;;
gap> npm:=[[[-1, 1], [-2, 2]], [Z(3)^0, Z(3)^0]];;

The element of M corresponding to npm is

gap> NP2GP(npm,M);
[(Z(3)^0)*a, (Z(3)^0)*b]

If M is a module of dimension 2 over A and Lnp a list of polynomials in NPM format, then the polyno-
mials can be converted to the corresponding polynomials of M as follows:

gap> M:=A^2;;
gap> Lnp:=[[[[-2, 1, 1], [-2, 1]], [1, -1]],
> [[[-1, 2, 2], [-2, 1]], [1, -1]*Z(3)^0]];;
gap> List(Lnp, m -> NP2GP(m,M));
[[<zero> of ..., (Z(3))*a+(Z(3)^0)*a^2], [(Z(3)^0)*b^2, (Z(3))*a]]

3.1.4 NP2GPList

▷ NP2GPList(Lnp, A) (function)

Returns: The list of polynomials corresponding to Lnp in GAP format.
This function will convert the list Lnp of polynomials in NP format to a list of GAP polynomials

in the free associative algebra A .
Example: Let A be the free associative algebra with one over the rationals on the generators a and

b.

gap> A:=FreeAssociativeAlgebraWithOne(Rationals,"a","b");;

Let Lnp be a list of polynomials in NP format. Then Lnp can be converted to a list of polynomials of
A with NP2GPList:

GBNP 16

gap> Lnp:=[[[[1, 1, 1], [1]], [1, -1]],
> [[[2, 2], []], [1, -1]]];;
gap> NP2GPList(Lnp,A);
[(1)*a^3+(-1)*a, (1)*b^2+(-1)*<identity ...>]

It has the same effect as the function List applied as follows.

gap> List(Lnp, p -> NP2GP(p,A));
[(1)*a^3+(-1)*a, (1)*b^2+(-1)*<identity ...>]

Now let M be a module of dimension 2 over A and Lnp a list of vectors in NPM format. Then polyno-
mials Lnp can be converted to the corresponding vectors of M with NP2GPList:

gap> M:=A^2;;
gap> Lnp:=[[[[-2, 1, 1], [-2, 1]], [1, -1]],
> [[[-1, 1], [-2]], [1, -1]]];;
gap> NP2GPList(Lnp,M);
[[<zero> of ..., (-1)*a+(1)*a^2], [(1)*a, (-1)*<identity ...>]]

The same result can be obtained by application of the standard List function:

gap> List(Lnp, m -> NP2GP(m,M)) = NP2GPList(Lnp,M) ;
true

3.2 Printing polynomials in NP format

3.2.1 PrintNP

▷ PrintNP(np) (function)

This function prints a polynomial np in NP format, using the letters a, b, c, . . . for x1, x2, x3, . . .,
except that everything beyond l (the 12-th letter) is printed as x.

This function prints a polynomial np in NP format as configured by the function
GBNP.ConfigPrint (3.2.2).

Example: Consider the following polynomial in NP format.

gap> p := [[[1,1,2],[1,2,2],[]],[1,-2,3]];;

It can be printed in the guise of a polynomial in a and b by the function PrintNP:

gap> PrintNP(p);
a^2b - 2ab^2 + 3

GBNP 17

3.2.2 GBNP.ConfigPrint

▷ GBNP.ConfigPrint(arg) (function)

By default the generators of the algebra are printed as a, ..., l and everything after the twelfth gen-
erator as x. By calling ConfigPrint it is possible to alter this printing convention. The argument(s)
will be an algebra or arguments used for naming algebras in GAP upon creation. More specifically,
we have the following choices.

no arguments
When the function is invoked without arguments the printing is reset to the default (see above).

algebra
When the function is invoked with an algebra as argument, generators will be printed as they
would be in the algebra.

algebra,integer
When the function is invoked with an algebra and an integer n as arguments, generators will be
printed as they would be in the algebra and seperated over the n dimensions.

leftmodule
When the function is invoked with an leftmodule An of an associative algebra as argument,
generators will be printed as they would be in the algebra, seperated over the n dimensions.

string
When the function is invoked with a string as its argument, it is assumed that there is only 1
generator and that this should be named as indicated by the string.

integer
When the function is invoked with an integer as its argument, the n -th generator will be printed
as x.<n>.

integer, string
When the function is invoked with a non-negative integer and a string as its arguments, genera-
tors will be printed as <s>.<n>, where <s> is the string given as argument and <n> the number
of the generator. There is no checking whether the number given as argument is really the di-
mension. So it is possible that higher numbers return in the output. This way of input is useful
however, because it is a distinction from the one-dimensional case and compatible with the way
a free algebra is created.

string, string, ..., string
When the function is invoked with a sequence of strings, then generators will be printed with
the corresponding string or x if the sequence is not long enough.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;

They can be printed by the function PrintNP.

GBNP 18

gap> PrintNP(p1);
a^2b - 1

gap> PrintNP(p2);
ab^2 - 1

We can let the variables be printed as x and y instead of a and b by means of GBNP.ConfigPrint.

gap> GBNP.ConfigPrint("x","y");
gap> PrintNP(p1);
x^2y - 1

gap> PrintNP(p2);
xy^2 - 1

We can also let the variables be printed as x.1 and x.2 instead of a and b by means of
GBNP.ConfigPrint.

gap> GBNP.ConfigPrint(2,"x");
gap> PrintNP(p1);
x.1^2x.2 - 1

gap> PrintNP(p2);
x.1x.2^2 - 1

We can even assign strings to the variables to be printed like alice and bob instead of a and b by
means of GBNP.ConfigPrint.

gap> GBNP.ConfigPrint("alice","bob");
gap> PrintNP(p1);
alice^2bob - 1

gap> PrintNP(p2);
alicebob^2 - 1

Alternatively, we can introduce the free algebra A with two generators, and print the polynomials as
members of A :

gap> A:=FreeAssociativeAlgebraWithOne(Rationals,"a","b");;
gap> GBNP.ConfigPrint(A);
gap> PrintNP(p1);
a^2b - 1

gap> PrintNP(p2);
ab^2 - 1

3.2.3 PrintNPList

▷ PrintNPList(Lnp) (function)

This function prints a list Lnp of polynomials in NP format, using the function PrintNP.
Example: We put two polynomials in NP format into the list Lnp.

GBNP 19

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;
gap> Lnp := [p1,p2];;

We can print the list with PrintNPList.

gap> PrintNPList(Lnp);
a^2b - 1
ab^2 - 1

Alternatively, using the function GBNP.ConfigPrint (3.2.2), we can introduce the free algebra A with
two generators, and print the polynomials of the list as members of A :

gap> A:=FreeAssociativeAlgebraWithOne(Rationals,"a","b");;
gap> GBNP.ConfigPrint(A);
gap> PrintNPList(Lnp);
a^2b - 1
ab^2 - 1

3.3 Calculating with polynomials in NP format

3.3.1 NumAlgGensNP

▷ NumAlgGensNP(np) (function)

Returns: The minimum number t so that np belongs to the free algebra on t generators.
When called with an NP polynomial np , this function returns the minimum number of generators

needed for the corresponding algebra to contain the np . If np is a polynomial without generators, that
is, equivalent to 0 or 1, then 0 is returned.

Example: Consider the following polynomial in NP format.

gap> np := [[[2,2,2,1,1,1],[4],[3,2,3]],[1,-3,2]];;
gap> PrintNP(np);
b^3a^3 - 3d + 2cbc

gap> NumAlgGensNP(np);
4

3.3.2 NumAlgGensNPList

▷ NumAlgGensNPList(Lnp) (function)

Returns: The minimum number t so that each polynomial in Lnp belongs to the free algebra on
t generators.

When called with a list of NP polynomials Lnp , this function returns the minimum number of
generators needed for the corresponding algebra to contain the NP polynomials in Lnp . If Lnp only
contains polynomials without generators, that is equivalent to 0 and 1, then 0 is returned.

Example: Consider the following two polynomials in NP format.

GBNP 20

gap> p1 := [[[1,1,2,3,1],[2],[1]],[1,-2,1]];;
gap> p2 := [[[2,2,1,4,3],[]],[1,-1]];;
gap> PrintNPList([p1,p2]);
a^2bca - 2b + a
b^2adc - 1

gap> NumAlgGensNPList([p1,p2]);
4

3.3.3 NumModGensNP

▷ NumModGensNP(npm) (function)

Returns: The minimum number mt so that npm belongs to the free module on mt generators.
When called with a polynomial npm in NPM format, this function returns the minimum number of

module generators needed for the corresponding algebra to contain npm . If npm is an NP polynomial
that does not contain module generators, then 0 is returned.

Example: Consider the following polynomial in NPM format.

gap> np := [[[-1,1,2,3,1],[-2],[-1]],[1,-2,1]];;
gap> PrintNP(np);
[abca + 1 , - 2]
gap> NumModGensNP(np);
2

3.3.4 NumModGensNPList

▷ NumModGensNPList(Lnpm) (function)

Returns: The minimum number mt so that each member of npm belongs to the free module on
mt generators.

When called with a list of polynomials Lnpm in NPM format, this function returns the minimum
number of module generators needed to contain the polynomials in Lnpm . If there are only polynomi-
als in Lnpm in NP format, then 0 is returned.

Example: Consider the following two polynomials in NPM format.

gap> v1 := [[[-1,1,2,3,1],[-2],[-1]],[1,-2,1]];;
gap> v2 := [[[-2,2,1,4,3],[-3]],[1,-1]];;
gap> PrintNPList([v1,v2]);
[abca + 1 , - 2]
[0, badc , - 1]
gap> NumModGensNPList([v1,v2]);
3

3.3.5 AddNP

▷ AddNP(u, v, c, d) (function)

Returns: c∗u+d∗v
Computes c∗u+d∗v where u and v are polynomials in NP format and c and d are scalars.
Example: Consider the following two polynomials in NP format.

GBNP 21

gap> p1 := [[[1,1,2],[]],[1,-3]];;
gap> p2 := [[[1,2,2],[]],[1,-4]];;

The second can be subtracted from the first by the function AddNP.

gap> PrintNP(AddNP(p1,p2,1,-1));
- ab^2 + a^2b + 1

3.3.6 BimulNP

▷ BimulNP(ga, np, dr) (function)

Returns: the polynomial ga∗np∗dr in NP format
When called with a polynomial np and two monomials ga , dr , the function will return ga∗np∗dr .

Recall from Section 2.1 that monomials are represented as lists.
Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-3]];;
gap> p2 := [[[1,2,2],[]],[1,-4]];;

Multiplying p1 from the right by b and multiplying p2 from the left by a is possible with the function
BimulNP:

gap> PrintNP(BimulNP([],p1,[2]));
a^2b^2 - 3b

gap> PrintNP(BimulNP([1],p2,[]));
a^2b^2 - 4a

3.3.7 CleanNP

▷ CleanNP(u) (function)

Returns: The cleaned up version of u
Given a polynomial in NP format, this function collects terms with same monomial, removes

trivial monomials, and orders the monomials, with biggest one first.
Example: Consider the following polynomial in NP format.

gap> p := [[[1,1,2],[],[1,1,2],[]],[1,-3,-2,3]];;
gap> PrintNP(p);
a^2b - 3 - 2a^2b + 3

The monomials [1,1,2] and [] occur twice each. For many functions this representation of a poly-
nomial in NP format is not allowed. It needs to be cleaned, as by CleanNP:

gap> PrintNP(CleanNP(p));
- a^2b

In order to define a polynomial over GF(2), the coefficients need to be defined over this field. Such
a list of coefficients can be obtained in GAP from a list of integers by multiplying with the identity
element of the field. The resulting polynomial need not be clean, and so should be made clean again
with CleanNP.

GBNP 22

gap> p := [[[1,1,2],[]],One(GF(2))*[1,-2]];;
gap> CleanNP(p);
[[[1, 1, 2]], [Z(2)^0]]

3.3.8 GtNP

▷ GtNP(u, v) (function)

Returns: true if u > v and false if u ≤ v
Greater than function for monomials u and v represented as in Section 2.1. It tests whether u>v .

The ordering is done by degree and then lexicographically.
Example: Consider the following two monomials.

gap> u := [1,1,2];
[1, 1, 2]
gap> v := [2,2,1];
[2, 2, 1]

We test whether u is greater than v.

gap> GtNP(u,v);
false

3.3.9 LtNP

▷ LtNP(u, v) (function)

Returns: true if u < v and false if u ≥ v
Less than function for NP monomials, tests whether u<v . The ordering is done by degree and

then lexicographically.
Example: Consider the following two monomials.

gap> u := [1,1,2];
[1, 1, 2]
gap> v := [2,2,1];
[2, 2, 1]

We test whether u is less than v.

gap> LtNP(u,v);
true

3.3.10 LMonsNP

▷ LMonsNP(Lnp) (function)

Returns: A list of leading monomials
This function returns the leading monomials of a list Lnp of polynomials in NP format. The

polynomials of Lnp are required to be clean; see Section 3.3.7.
Example: We put two polynomials in NP format into the list Lnp.

GBNP 23

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;
gap> Lnp := [p1,p2];;

The list of leading monomials is computed by LMonsNP:

gap> LMonsNP(Lnp);
[[1, 1, 2], [1, 2, 2]]

For a nicer printing, the monomials can be converted into polynomials in NP format, and then submit-
ted to PrintNPList:

gap> PrintNPList(List(LMonsNP(Lnp), q -> [[q],[1]]));
a^2b
ab^2

3.3.11 MkMonicNP

▷ MkMonicNP(np) (function)

Returns: np made monic
This function returns the scalar multiple of a polynomial np in NP format that is monic, i.e., has

leading coefficient equal to 1.
Example: Consider the following polynomial in NP format.

gap> p := [[[1,1,2],[]],[2,-1]];;
gap> PrintNP(p);
2a^2b - 1

The coefficient of the leading term is 2. The function MkMonicNP finds this coefficient and divides all
terms by it:

gap> PrintNP(MkMonicNP(p));
a^2b - 1/2

3.3.12 MulNP

▷ MulNP(np1, np2) (function)

Returns: np1∗np2
When invoked with two polynomials np1 and np2 in NP format, this function will return the

product np1∗np2 .
Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;

The function MulNP multiplies the two polynomials.

GBNP 24

gap> PrintNP(MulNP(p1,p2));
a^2bab^2 - ab^2 - a^2b + 1

The fact that this multiplication is not commutative is illustrated by the following comparison, using
MulNP twice and AddNP once.

gap> PrintNP(AddNP(MulNP(p1,p2),MulNP(p2,p1),1,-1));
- ab^2a^2b + a^2bab^2

3.4 Gröbner functions, standard variant

3.4.1 Grobner

▷ Grobner(Lnp[, D][, max]) (function)

Returns: If the algorithm terminates, a Gröbner Basis or a record if max is specified (see descrip-
tion).

For a list Lnp of polynomials in NP format this function will use Buchberger’s algorithm with
normal form to find a Gröbner Basis (if possible, the general problem is unsolvable).

When called with the optional argument max , which should be a positive integer, the calcula-
tion will be interrupted if it has not ended after max iterations. The return value will be a record
containing lists G and todo of polynomials in NP format, a boolean completed, and an integer
iterations. Here G and todo form a Gröbner pair (see [Coh07]). The number of performed it-
erations will be placed in iterations. If the algorithm has terminated, then todo will be the empty
list and completed will be equal to true. If the algorithm has not terminated, then todo will be a
non-empty list of polynomials in NP format and completed will be false.

By use of the optional argument D , it is possible to resume a previously interrupted calculation.
Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;
gap> PrintNPList([p1,p2]);
a^2b - 1
ab^2 - 1

Their Gröbner basis can be computed by the function Grobner.

gap> G := Grobner([p1,p2]);;
gap> PrintNPList(G);
b - a
a^3 - 1

One iteration of the Gröbner computations is invoked by use of the parameter max:

gap> R := Grobner([p1,p2],1);;
gap> PrintNPList(R.G);
b - a

gap> PrintNPList(R.todo);
a^3 - 1

GBNP 25

gap> R.iterations;
1
gap> R.completed;
false

The above list R.todo can be used to resume the computation of the Gröbner basis computation with
the Gröbner pair R.G, R.todo:

gap> PrintNPList(Grobner(R.G,R.todo));
b - a
a^3 - 1

In order to perform the Gröbner basis computation with polynomials in a free algebra over the field
GF(2), the coefficients of the polynomials need to be defined over that field.

gap> PrintNPList(Grobner([[p1[1],One(GF(2))*p1[2]],[p2[1],One(GF(2))*p1[2]]]));
b + a
a^3 + Z(2)^0

3.4.2 SGrobner

▷ SGrobner(Lnp[, todo][, max]) (function)

Returns: If the algorithm terminates, a Gröbner Basis or a record if max is specified (see descrip-
tion).

For a list Lnp of polynomials in NP format this function will use Buchberger’s algorithm with
strong normal form (see [Coh07]) to find a Gröbner Basis (if possible, the general problem is unsolv-
able).

When called with the optional argument max , which should be a positive integer, the calcula-
tion will be interrupted if it has not ended after max iterations. The return value will be a record
containing lists G and todo of polynomials in NP format, a boolean completed, and an integer
iterations. Here G and todo form a Gröbner pair (see [Coh07]). The number of performed it-
erations will be placed in iterations. If the algorithm has terminated, then todo will be the empty
list and completed will be equal to true. If the algorithm has not terminated, then todo will be a
non-empty list of polynomials in NP format and completed will be false.

By use of the optional argument D , it is possible to resume a previously interrupted calculation.
Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;
gap> PrintNPList([p1,p2]);
a^2b - 1
ab^2 - 1

Their Gröbner basis can be computed by the function Grobner.

gap> G := SGrobner([p1,p2]);;
gap> PrintNPList(G);
b - a
a^3 - 1

GBNP 26

One iteration of the Gröbner computations is invoked by use of the parameter max:

gap> R := SGrobner([p1,p2],1);;
gap> PrintNPList(R.G);
b - a

gap> PrintNPList(R.todo);
a^3 - 1

gap> R.iterations;
1
gap> R.completed;
false

The above list R.todo can be used to resume the computation of the Gröbner basis computation with
the Gröbner pair R.G, R.todo:

gap> PrintNPList(SGrobner(R.G,R.todo));
b - a
a^3 - 1

3.4.3 IsGrobnerBasis

▷ IsGrobnerBasis(G) (function)

Returns: true if G is a Gröbner basis and false otherwise
When invoked with a list G of polynomials in NP format (see Section 2.1), this function will check

whether the list is a Gröbner basis. The check is based on Theorem 1.4 from [Coh07].
Polynomials representing zero are allowed in G .
Example: Consider the following list of two polynomials in NP format.

gap> Lnp := [[[[1,1,2],[]],[1,-1]], [[[1,2,2],[]],[1,-1]]];;
gap> PrintNPList(Lnp);
a^2b - 1
ab^2 - 1

The function IsGrobner checks whether the list is a Gröbner basis.

gap> IsGrobnerBasis(Lnp);
false

So the answer should be true for the result of a Gröbner computation:

gap> IsGrobnerBasis(Grobner(Lnp));
true

3.4.4 IsStrongGrobnerBasis

▷ IsStrongGrobnerBasis(G) (function)

Returns: true if G is a strong Gröbner basis and false otherwise
When invoked with a list G of polynomials in NP format (see Section 2.1), this function will check

whether the polynomials in this list form a strong Gröbner basis (see [Coh07]).
Polynomials representing zero are allowed in G .
Example: Consider the following list of two polynomials in NP format.

GBNP 27

gap> Lnp := [[[[1,1,2],[]],[1,-1]], [[[1,2,2],[]],[1,-1]]];;
gap> PrintNPList(Lnp);
a^2b - 1
ab^2 - 1

The function IsStrongGrobner checks whether the list is a strong Gröbner basis.

gap> IsStrongGrobnerBasis(Lnp);
false

But the answer should be true for the result of a strong Gröbner computation:

gap> IsStrongGrobnerBasis(SGrobner(Lnp));
true

A Gröbner basis that is not a strong Gröbner basis:

gap> B := SGrobner(Lnp);;
gap> Add(B,AddNP(Lnp[1],B[1],1,-1));;
gap> PrintNPList(B);
b - a
a^3 - 1
a^2b - b + a - 1

gap> IsGrobnerBasis(B);
true
gap> IsStrongGrobnerBasis(B);
false

3.4.5 IsGrobnerPair

▷ IsGrobnerPair(G, D) (function)

Returns: A boolean, which has the value true if the input forms a Gröbner pair
When called with two lists of polynomials in NP format, this function returns true if they form

a Gröbner pair. Testing whether D is a basic set for G might involve computing the Gröbner basis.
Instead of this only some simple computations are done to see if it can easily be proven that D is a
basic set for G . If this cannot be proven easily, then false is returned, even though G,D might still be
a Gröbner pair.

Example: Consider the following four polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;
gap> q1 := [[[2],[1]],[1,-1]];;
gap> q2 := [[[1,1,1],[]],[1,-1]];;

The function IsGrobnerPair is used to check whether some combinations of these polynomials in
two lists provide Gröbner pairs.

GBNP 28

gap> IsGrobnerPair([p1,p2,q1],[q2]);
true
gap> IsGrobnerPair([q1,q2],[p1,p2]);
false

The function IsGrobnerPair applied with an empty list as second argument is a check whether the
first argument is a Gröbner basis.

gap> IsGrobnerPair([p1,p2],[]) = IsGrobnerBasis([p1,p2]);
true

3.4.6 MakeGrobnerPair

▷ MakeGrobnerPair(G, D) (function)

Returns: A record containing a new Grobner pair
When called with as arguments a pair G,D, this function cleans G and D and adds some obstruc-

tions to D till it is easily provable that D is a basic set for G (see [Coh07]). The result is a record
containing the fields G and todo representing the Gröbner pair.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;

The function MakeGrobnerPair turns the list with these two polynomials into a Gröbner pair, once
the empty list is added as a second argument. The result is a record whose fields G and todo

gap> GP := MakeGrobnerPair([p1,p2],[]);;
gap> PrintNPList(GP.G);
a^2b - 1
ab^2 - 1

gap> PrintNPList(GP.todo);
b - a

These fields are ready for use in Grobner

gap> GB := Grobner(GP.G,GP.todo);;
gap> PrintNPList(GB);
b - a
a^3 - 1

3.5 Finite-dimensional quotient algebras

3.5.1 BaseQA

▷ BaseQA(G, t, maxno) (function)

Returns: A list of terms forming a basis of the quotient algebra of the (non-commutative) poly-
nomial algebra in t variables by the 2-sided ideal generated by G

GBNP 29

When called with a Gröbner basis G , the number t of generators of the algebra, and a maximum
number of terms to be found maxno , BaseQA will return a (partial) base of the quotient algebra. If
this function is invoked with maxno equal to 0, then a full basis will be given. If the dimension of
this quotient algebra is infinite and maxno is set to 0, then the algorithm behind this function will not
terminate.

Example: Consider the following Gröbner basis.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;
gap> G := Grobner([p1,p2]);;
gap> PrintNPList(G);
b - a
a^3 - 1

The function BaseQA computes a basis for the quotient algebra of the free algebra over the rationals
with generators a and b by the two-sided ideal generated by G.

gap> PrintNPList(G);
b - a
a^3 - 1

gap> BaseQA(G,2,0);
[[[[]], [1]], [[[1]], [1]], [[[1, 1]], [1]]]
gap> PrintNPList(BaseQA(G,2,0));
1
a
a^2

It is necessary for a correct result that the first argument be a Gröbner basis, as will be clear from the
following invocation of BaseQA.

gap> PrintNPList(BaseQA([p1,p2],2,10));
1
a
b
a^2
ab
ba
b^2
a^3
aba
ba^2
bab
b^2a
b^3

3.5.2 DimQA

▷ DimQA(G, t) (function)

Returns: The dimension of the quotient algebra

GBNP 30

When called with a Gröbner basis G and a number of variables t , the function DimQA will return the
dimension of the quotient algebra of the free algebra generated by t variables by the ideal generated
by G if it is finite. It will not terminate if the dimension is infinite.

If t=0, the function will compute the minimal value of t such that the polynomials in G belong to
the free algebra on t generators.

To check whether the dimension of the quotient algebra is finite and to determine the type of
growth if it is infinite, see also the functions FinCheckQA (3.6.2) and DetermineGrowthQA (3.6.1) in
Section 3.6.

Example: Consider the following Gröbner basis.

gap> p1 := [[[1,1,2],[]],[1,-2]];;
gap> p2 := [[[1,2,2],[]],[1,-2]];;
gap> G := Grobner([p1,p2]);;
gap> PrintNPList(G);
b - a
a^3 - 2

The function DimQA computes the dimension of the quotient algebra of the free algebra over the ratio-
nals with generators a and b by the two-sided ideal generated by G.

gap> DimQA(G,2);
3

3.5.3 MatrixQA

▷ MatrixQA(i, B, GB) (function)

Returns: The matrix representation for the i -th generator of the algebra for right multiplication
in the quotient algebra

Given a basis B of the quotient algebra, a Gröbner basis (record) GB , and a natural number i , this
function creates a matrix representation for the i -th generator of the algebra for right multiplication.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,2,1],[]],[1,-1]];;

The matrix of right multiplication by the first indeterminate a on the quotient algebra with respect
to the ideal generated by p1 and p2 is obtained by applying MatrixQA to the Gröbner basis of these
generators and a basis of the quotient algebra as found in BaseQA (3.5.1):

gap> GB := Grobner([p1,p2]);;
gap> B := BaseQA(GB,2,0);;
gap> PrintNPList(B);
1
a
b
a^2
ab
a^3
a^2b

GBNP 31

a^4
gap> Display(MatrixQA(1, B,GB));
[[0, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0]]

The function is also applicable to Gröbner basis records for modules. Consider the following two
vectors.

gap> v1 := [[[-1,1,2],[-1]],[1,-1]];;
gap> v2 := [[[-2,2,2],[-2]],[1,-2]];;

The Gröbner basis record for this data is found by SGrobnerModule (3.9.1) and a quotient module
basis by BaseQM (3.9.2):

gap> GBR := SGrobnerModule([v1,v2],[p1,p2]);;
gap> B := BaseQM(GBR,2,2,0);;

The matrix of right multiplication by a, the first generator of the free algebra, is

gap> Display(MatrixQA(1,B,GBR));
[[0, 1],

[1, 0]]

3.5.4 MatricesQA

▷ MatricesQA(t, B, GB) (function)

Returns: The matrix representation for the t generators of the algebra for right multiplication in
the quotient algebra

Given a basis B of the quotient algebra, a Gröbner basis (record) GB , and a natural number t , this
function creates a list of t matrices representing the linear transformations of the generators of the
algebra by right multiplication on the quotient algebra.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,2,1],[]],[1,-1]];;

The function MatricesQA gives the list of matrices found by MatrixQA (3.5.3) when the first argument
takes the integer values between 1 and the number of all algebra generators.

gap> GB := Grobner([p1,p2]);;
gap> B := BaseQA(GB,2,0);;
gap> mats := MatricesQA(2,B,GB);;
gap> for mat in mats do Display(mat); Print("\n"); od;
[[0, 1, 0, 0, 0, 0, 0, 0],

GBNP 32

[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0]]

[[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0]]

The result is also obtainable by use of the List function:

gap> MatricesQA(2,B,GB) = List([1,2], q -> MatrixQA(q,B,GB));
true

3.5.5 MulQA

▷ MulQA(p1, p2, G) (function)

Returns: The strong normal form of the product p1∗p2 with respect to G
When called with two polynomials in NP form, p1 and p2 , and a Gröbner basis G , this function

will return the product in the quotient algebra.
Example: Consider the following Gröbner basis.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;
gap> G := Grobner([p1,p2]);;
gap> PrintNPList(G);
b - a
a^3 - 1

Print the product in the quotient algebra of the polynomials a−2 and b−3 by use of MulQA:

gap> s1 := [[[1],[]],[1,-2]];;
gap> s2 := [[[2],[]],[1,-3]];;
gap> PrintNP(MulQA(s1,s2,G));
a^2 - 5a + 6

The result should be equal to the strong normal form of the product of a−2 and b−3 with respect to
G:

gap> MulQA(s1,s2,G) = StrongNormalFormNP(MulNP(s1,s2),G);
true

GBNP 33

3.5.6 StrongNormalFormNP

▷ StrongNormalFormNP(f, G) (function)

Returns: The strong normal form of a polynomial with respect to G
When invoked with a polynomial in NP format (see Section 2.1) and a finite set G of polynomials

in NP format, this function will return a strong normal form (that is, a polynomial that is equal to f
modulo G , every monomial of which is a multiple of no leading monomial of an element of G).

Note that the StrongNormalForm with respect to a Gröbner basis is uniquely determined, but that
for an arbitrary input G the result may depend on the order in which the individual reduction steps are
implemented.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;

The strong normal form of the polynomial

gap> p := [[[1,1,1,2],[2,1],[]],[1,-1,3]];;

with respect to the list [p1,p2] is computed by use of the function StrongNormalFormNP:

gap> PrintNP(StrongNormalFormNP(p,[p1,p2]));
- ba + a + 3

3.6 Finiteness and Hilbert series

3.6.1 DetermineGrowthQA

▷ DetermineGrowthQA(Lm, t, exact) (function)

Returns: If the quotient algebra is finite dimensional, then the integer 0 is returned. If the growth
is polynomial and the algorithm found a precise degree d of the growth polynomial, then d is returned.
If the growth is polynomial and no precise answer is found, an interval [d1,d2] is returned in which
the dimension lies. If the growth is exponential, the string "exponential growth" is returned.

Given leading monomials Lm of some Gröbner basis (these can be obtained with the function
LMonsNP (3.3.10)), the number t of generators of a free algebra, say A, in which the monomials lie,
and a boolean exact , this function checks whether the quotient algebra of A by the ideal generated
by Lm is finite dimensional. In doing so it constructs a graph of normal words which helps with the
computations. It also checks for exponential or polynomial growth in the infinite case.

If the precise degree is needed in the polynomial case, the argument exact should be set to true.
The function DetermineGrowthQA allows preprocessing, which may speed up the computations.

This can be done with the function PreprocessAnalysisQA (3.6.4).
Example: For the list of monomials consisting of a single variable in a free algebra gener-

ated by two variables the growth is clearly polynomial of degree 1. This is verified by invoking
DetermineGrowthQA with arguments [[1]] (the list of the single monomial consisting of the first
variable), the number of generators of the free algebra to which the monomials belong (which is 2
here), and the boolean true indicating that we wish a precise degree in case of polynomial growth.

GBNP 34

gap> DetermineGrowthQA([[1]],2,true);
1

Here is an example of polynomial growth of degree 2:

gap> L := [[1,2,1],[2,2,1]];
[[1, 2, 1], [2, 2, 1]]
gap> DetermineGrowthQA(L,2,true);
2

In order to show how to apply the function to arbitrary polynomials, consider the following two poly-
nomials in NP format.

gap> F := GF(256);
GF(2^8)
gap> z := GeneratorsOfField(F)[1];
Z(2^8)
gap> p1 := [[[1,1,1,2],[]],[z,1]];;
gap> p2 := [[[2,2,2,1],[]],[1,z]];;

The polynomials p1 and p2 have coefficients in the field F of order 256. In order to study the growth
of the quotient algebra we first compute the list of leading monomials of the Gröbner basis elements
and next apply DetermineGrowthQA.

gap> GB := Grobner([p1,p2]);;
gap> L := LMonsNP(GB);;
gap> for lm in L do PrintNP([[lm], [1]]); od;
a^3b
b^2
ba
a^5

gap> DetermineGrowthQA(L,2,true);
0

3.6.2 FinCheckQA

▷ FinCheckQA(Lm, t) (function)

Returns: true, if the quotient algebra is finite dimensional and false otherwise
Given a list Lm of leading monomials such that none of these divides another, and the number t

of generators of a free algebra in which they are embedded, this function checks whether the quotient
algebra of the free algebra by the ideal generated by Lm is finite dimensional.

When given a Gröbner basis G, the dimension of the quotient algebra of the free algebra by the
ideal generated by G coincides with the the dimension of the quotient algebra of the free algebra by
the ideal generated by the leading terms of elements of G. These can be obtained from G with the
function LMonsNP (3.3.10).

The function FinCheckQA allows for preprocessing with the function PreprocessAnalysisQA
(3.6.4). This may speed up the computation.

Example: Consider the following list L of two monomials.

GBNP 35

gap> L := [[1,2,1],[2,2,1]];;

Finiteness of the dimension of the quotient algebra of the free algebra by the ideal generated by these
two monomials can be decided by means of FinCheckQA. Its arguments are L and the number of
generators of the free algebra in which the monomials reside.

gap> FinCheckQA(L,2);
false

This example turns out to be infinite dimensional. Here is a finite-dimensional example.

gap> FinCheckQA([[1],[2,2]],2);
true

3.6.3 HilbertSeriesQA

▷ HilbertSeriesQA(Lm, t, d) (function)

Returns: A list of coefficients of the Hilbert series up to degree d
Given a set of monomials Lm , none of which divides another, and the number n of generators of

the free algebra in which they occur, this function computes the Hilbert series up to a given degree d .
Internally, it builds (part of) the graph of standard words. This function will remove zeroes from

the end of the list of coefficients.
Example: Consider the following list L of two monomials.

gap> L := [[1,2,1],[2,2,1]];;

Finiteness of the dimension of the quotient algebra of the free algebra by the ideal generated by these
two monomials can be decided by means of FinCheckQA. Its arguments are L and the number of
generators of the free algebra in which the monomials reside.

gap> HilbertSeriesQA(L,2,10);
[1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

This indicates that the growth may be polynomial. DetermineGrowthQA (3.6.1) can be used to check
this.

3.6.4 PreprocessAnalysisQA

▷ PreprocessAnalysisQA(Lm, t, iterations) (function)

Returns: The left-reduced list of ‘obstructions’, obtained by applying left-reduction recursively
This preprocessing of the list Lm of monomials can be applied to the set of leading terms of a

Gröbner basis before calling the functions FinCheckQA (3.6.2) or DetermineGrowthQA (3.6.1), in
order to speed up calculations using these functions. As the name suggests, t should be the size
of the alphabet. The parameter iterations gives the maximum number of recursion steps in the
preprocessing (0 means no restriction). For more information about this function see [Kro03].

Example: Consider the following two polynomials in NP format of which a Gröbner basis is
computed.

GBNP 36

F := GF(256);
z := GeneratorsOfField(F)[1];
gap> p1 := [[[1,1,1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,2,1,1,1],[]],[1,-1]];;
gap> GB := Grobner([p1,p2]);;
gap> PrintNPList(GB);
a^4b - 1
ba - ab
b^2 - a
a^5 - b

Application of PreprocessAnalysisQA is carried out on the leading terms of GB, with 2, 4, 8, recur-
sions, respectively.

gap> L := LMonsNP(GB);
[[1, 1, 1, 1, 2], [2, 1], [2, 2], [1, 1, 1, 1, 1]]
gap> L1 := PreprocessAnalysisQA(L,2,2);
[[1, 1, 1], [2, 1], [1, 1, 2], [2, 2]]
gap> L2 := PreprocessAnalysisQA(L1,2,4);
[[1], [2]]

3.7 Functions of the trace variant

3.7.1 EvalTrace

▷ EvalTrace(p, Lnp) (function)

Returns: The trace evaluated to a polynomial in NP format.
For a traced polynomial p and a list Lnp of polynomials in NP format, this program evaluates

the trace by substituting the polynomials of Lnp back in the expression p.trace and computing the
resulting polynomial. The result should have the same value as p.pol.

Example: First we compute the traced Gröbner basis of the list of the following two polynomials
in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,1],[]],[1,-1]];;
gap> Lnp := [p1,p2];;
gap> GBT := SGrobnerTrace(Lnp);;

In order to check that the polynomials in GBT belong to the ideal generated by p1 and p2, we evaluate
the trace. For each traced polynomial p in GBT, the polynomial p.pol is equated to the evaluated
expression p.trace, in which each occurrence of G(i) is replaced by Lnp[i] by use of EvalTrace.

gap> ForAll(GBT,q -> EvalTrace(q,Lnp) = q.pol);
true

3.7.2 PrintTraceList

▷ PrintTraceList(G) (function)

GBNP 37

When invoked with a list G of traced polynomials, this function prints the traces of that list.
Example: First we compute the traced Gröbner basis of the list of two polynomials in NP format

and next we print it by use of PrintTraceList.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,1],[]],[1,-1]];;
gap> GBT := SGrobnerTrace([p1,p2]);;
gap> PrintTraceList(GBT);
aG(1) - bG(1) - G(1)ba^2b + a^2G(2)ab

G(1)ba^2 + bG(1)ba + G(2) - a^2G(2)a - ba^2G(2)

3.7.3 PrintTracePol

▷ PrintTracePol(p) (function)

This function prints the trace of an NP polynomial p .
Example: First we compute the traced Gröbner basis of the list of two polynomials in NP format.

Next we print the trace polynomial of the members of the list by use of PrintTracePol.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,1],[]],[1,-1]];;
gap> GBT := SGrobnerTrace([p1,p2]);;
gap> for np in GBT do PrintTracePol(np); Print("\n"); od;
aG(1) - bG(1) - G(1)ba^2b + a^2G(2)ab

G(1)ba^2 + bG(1)ba + G(2) - a^2G(2)a - ba^2G(2)

3.7.4 PrintNPListTrace

▷ PrintNPListTrace(G) (function)

When invoked with a set of traced non-commutative polynomials G , this function prints the list of
the traced polynomials, without the trace.

Example: First we compute the traced Gröbner basis of the list of two polynomials in NP format.
Next we print the polynomials found by use of PrintNPListTrace.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,1],[]],[1,-1]];;
gap> GBT := SGrobnerTrace([p1,p2]);;
gap> PrintNPListTrace(GBT);
b - a
a^3 - 1

3.7.5 SGrobnerTrace

▷ SGrobnerTrace(Lnp) (function)

Returns: Gröbner Basis, traceable

GBNP 38

For a list of noncommutative polynomials Lnp this function will use Buchberger’s algorithm with
strong normal form to find a Gröbner Basis G (if possible; the general problem is unsolvable).

The results will be traceable. Functions that can print the Gröbner basis are PrintTraceList
(3.7.2) (with the trace) and PrintNPListTrace (3.7.4) (without the trace).

Example: For the list of the following two polynomials in NP format, a traced Gröbner basis is
computed.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,1],[]],[1,-1]];;
gap> GBT := SGrobnerTrace([p1,p2]);
[rec(pol := [[[2], [1]], [1, -1]],

trace := [[[], 1, [2, 1, 1, 2], -1], [[2], 1, [], -1],
[[1], 1, [], 1], [[1, 1], 2, [1, 2], 1]]),

rec(pol := [[[1, 1, 1], []], [1, -1]],
trace := [[[2], 1, [2, 1], 1], [[], 1, [2, 1, 1], 1],

[[], 2, [], 1], [[2, 1, 1], 2, [], -1],
[[1, 1], 2, [1], -1]])]

3.7.6 StrongNormalFormTraceDiff

▷ StrongNormalFormTraceDiff(np, GBT) (function)

Returns: The traced polynomial for the difference of f with the strong normal form of np with
respect to GBT

When invoked with a polynomial np in NP format as its first argument, and a traced Gröbner basis
GBT as generated by SGrobnerTrace (3.7.5), this function returns the difference of np with the strong
normal form of np with respect to GBT . This difference d is returned as a traced polynomial. The trace
information d.trace gives an expression of d.pol as a combination of polynomials from the list of
polynomials to which the trace parts of GBT are referring. Typically, this is the set of relations used as
input to the computation of GBT .

Note that the difference of the polynomials np and d.pol is the same as the StrongNormalForm
of np .

Example: First we compute the traced Gröbner basis of the list of the following two polynomials
in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,1],[]],[1,-1]];;
gap> GBT := SGrobnerTrace([p1,p2]);;

Of the polynomial a6 we compute its difference with the normal form. The result is printed by used
of PrintNP (3.2.1) and PrintTraceList (3.7.2).

gap> f := [[[1,1,1,1,1,1]],[1]];;
gap> sf := StrongNormalFormTraceDiff(f,GBT);;
gap> PrintNP(sf.pol);
a^6 - 1

gap> PrintTraceList([sf]);
G(1)ba^2 + bG(1)ba + G(1)ba^5 + bG(1)ba^4 + G(2) + G(2)a^3 - a^2G(

2)a - ba^2G(2) - a^2G(2)a^4 - ba^2G(2)a^3

GBNP 39

3.8 Functions of the truncated variant

3.8.1 Examples

More about these functions can be found in A.4

3.8.2 SGrobnerTrunc

▷ SGrobnerTrunc(Lnp, deg, wtv) (function)

Returns: A list of homogeneous NP polynomials if the first argument of the input is a list of
homogeneous NP polynomials, and the boolean false otherwise.

This functions should be invoked with a list Lnp of polynomials in NP format, a natural number
deg , and a weight vector wtv of length the number of generators of the free algebra A containing the
elements of Lnp , and with positive integers for entries. If the polynomials of Lnp are homogeneous
with respect to wtv , the function will return a Gröbner basis of Lnp truncated above deg . If the list of
polynomials Lnp is not homogeneous with respect to wtv , it returns false. The homogeneity check
can be carried out by CheckHomogeneousNPs (3.8.3).

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,2,2,1],[2,1,1,2]],[1,-1]];;
gap> p2 := [[[2,2,2],[1,1]],[1,-1]];;
gap> PrintNPList([p1,p2]);
ab^2a - ba^2b
b^3 - a^2

These are homogeneous with respect to weights [3,2]. The degrees are 10 and 6, respectively. The
Gröbner basis truncated above degree 12 of the list [p1,p2] is computed and subsequently printed as
follows.

gap> PrintNPList(SGrobnerTrunc([p1,p2],12,[3,2]));
ba^2 - a^2b
b^3 - a^2
ab^2a - a^2b^2

3.8.3 CheckHomogeneousNPs

▷ CheckHomogeneousNPs(Lnp, wtv) (function)

Returns: A list of weighted degrees of the polynomials if these are homogeneous with respect to
wtv , and false otherwise.

When invoked with a list of NP polynomials Lnp and a weight vector wtv (whose entries should
be positive integers), this function returns the list of weighted degrees of the polynomials in Lnp
if these are all homogeneous and nonzero, and false otherwise. Here, a polynomial is (weighted)
homogeneous with respect to a weight vector w if there is constant d such that, for each monomial
[t1, ..., tr] of the polynomial the sum of all w[ti] for i in [1..r] is equal to d. The natural number d is then
called the weighted degree of the polynomial.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,2,2,1],[2,1,1,2]],[1,-1]];;
gap> p2 := [[[2,2,2],[1,1]],[1,-1]];;

GBNP 40

gap> PrintNPList([p1,p2]);
ab^2a - ba^2b
b^3 - a^2

These are homogeneous with respect to weights [3,2]. The degrees are 10 and 6, respectively. This is
checked as follows.

gap> CheckHomogeneousNPs([p1,p2],[3,2]);
[10, 6]

3.8.4 BaseQATrunc

▷ BaseQATrunc(Lnp, deg, wtv) (function)

Returns: A list of monomials if the first argument of the input is a list of homogeneous NP
polynomials or false.

When invoked with a list of polynomials Lnp , a natural number deg , and a weight vector wtv
of length the number of variables and with positive integers for entries, such that the polynomials of
Lnp are homogeneous with respect to wtv , it returns a list whose i-th entry is a basis of monomials of
the homogeneous part of degree i−1 the quotient algebra of the free noncommutative algebra by the
weighted homogeneous ideal generated by Lnp truncated above deg . If the list of polynomials Lnp is
not homogeneous, it returns false.

Example: Consider the truncated Gröbner basis of the following two polynomials in NP format.

gap> p1 := [[[1,2,2,1],[2,1,1,2]],[1,-1]];;
gap> p2 := [[[2,2,2],[1,1]],[1,-1]];;
gap> wtv := [3,2];;
gap> GB := SGrobnerTrunc([p1,p2],12,wtv);;
gap> GBNP.ConfigPrint("a","b");
gap> PrintNPList(GB);
ba^2 - a^2b
b^3 - a^2
ab^2a - a^2b^2

A basis of standard monomials is found and printed as follows.

gap> BT := BaseQATrunc(GB,12,wtv);;
gap> for degpart in BT do
> for mon in degpart do PrintNP([[mon],[1]]); od;
> od;
1
b
a
b^2
ba
ab
a^2
b^3
b^2a
bab
ab^2

GBNP 41

aba
a^2b
b^4
a^3
b^3a
b^2ab
bab^2
ab^3
baba
abab
a^2b^2
b^5
a^2ba
b^4a
a^3b
b^3ab
b^2ab^2
bab^3
ab^4
a^4
b^2aba
ab^3a
babab
abab^2
a^2b^3
b^6

3.8.5 DimsQATrunc

▷ DimsQATrunc(Lnp, deg, wtv) (function)

Returns: A list of monomials if the first argument of the input is a list of homogeneous NP
polynomials or false.

When invoked with a list of polynomials Lnp , a natural number deg , and a weight vector wtv
of length the number of variables and with positive integers for entries, such that the polynomials of
Lnp are homogeneous with respect to wtv , it returns a list of dimensions of the homogeneous parts
of the quotient algebra of the free noncommutative algebra by the ideal generated by Lnp truncated
above deg . The i-th entry of the list gives the dimension of the homogeneous part of degree i−1 of
the quotient algebra. If the list of polynomials Lnp is not homogeneous, it returns false.

Example: Consider the truncated Gröbner basis of the following two polynomials in NP format.

gap> p1 := [[[1,2,2,1],[2,1,1,2]],[1,-1]];;
gap> p2 := [[[2,2,2],[1,1]],[1,-1]];;
gap> wtv := [3,2];;
gap> GB := SGrobnerTrunc([p1,p2],12,wtv);;

Information on the dimensions of the homogeneous parts of the quotient algebra is found as follows,

gap> DimsQATrunc(GB,12,wtv);
[1, 0, 1, 1, 1, 2, 2, 3, 3, 5, 4, 7, 7]

GBNP 42

3.8.6 FreqsQATrunc

▷ FreqsQATrunc(Lnp, deg, wtv) (function)

Returns: A list of multiplicities of frequencies of monomials if the first argument of the input is
a list of homogeneous polynomials in NP format, and false otherwise.

The frequency of a monomial is the list of numbers of occurrences of a variable in the monomial
for each variable; the multiplicity of a frequency is the number of monomials in the standard basis for
a quotient algebra with this frequency. When invoked with a list Lnp of polynomials in NP format
representing a (truncated) Gröbner basis, a natural number deg , and a weight vector wtv of length
the number of variables and with positive integers for entries, such that the polynomials of Lnp are
homogeneous with respect to wtv , it returns a list of frequencies occurring with their multiplicities
for the quotient algebra of the free noncommutative algebra by the ideal generated by Lnp truncated
above deg . The i-th entry of the list gives the frequencies of the weight (i− 1) basis monomials of
the quotient algebra. If the list of polynomials Lnp is not homogeneous with respect to wtv , it returns
false.

Example: Consider the truncated Gröbner basis of the following two polynomials in NP format.

gap> p1 := [[[1,2,2,1],[2,1,1,2]],[1,-1]];;
gap> p2 := [[[2,2,2],[1,1]],[1,-1]];;
gap> wtv := [3,2];;
gap> GB := SGrobnerTrunc([p1,p2],12,wtv);;
gap> PrintNPList(GB);
ba^2 - a^2b
b^3 - a^2
ab^2a - a^2b^2

The multiplicities of the frequencies of of monomials in a standard basis of the quotient algebra with
respect to the ideal generated by GB is found as follows, for weights up to and including 8.

gap> F := FreqsQATrunc(GB,8,wtv);
[[[[], 1]], [[[0, 1], 1]], [[[1, 0], 1]],

[[[0, 2], 1]], [[[1, 1], 2]],
[[[2, 0], 1], [[0, 3], 1]], [[[1, 2], 3]],
[[[2, 1], 2], [[0, 4], 1]]]

The interpretation of this data is given by the following lines of code.

gap> for f in F do
> if f[1][1] <> [] then
> Print("At level ", wtv * (f[1][1]), " the multiplicities are\n");
> for x in f do
> Print(" for ",x[1],": ",x[2],"\n");
> od;
> else
> Print("At level ", 0 , " the multiplicity of [] is ",f[1][2],"\n");
> fi;
> Print("\n");
> od;
At level 0 the multiplicity of [] is 1

At level 2 the multiplicities are

GBNP 43

for [0, 1]: 1

At level 3 the multiplicities are
for [1, 0]: 1

At level 4 the multiplicities are
for [0, 2]: 1

At level 5 the multiplicities are
for [1, 1]: 2

At level 6 the multiplicities are
for [2, 0]: 1
for [0, 3]: 1

At level 7 the multiplicities are
for [1, 2]: 3

At level 8 the multiplicities are
for [2, 1]: 2
for [0, 4]: 1

3.9 Functions of the module variant

3.9.1 SGrobnerModule

▷ SGrobnerModule(Lnpm, Lnp) (function)

Returns: A record GBR containing a Gröbner basis (if found...the general problem is unsolvable)
for modules; GBR.p will contain the prefix rules and GBR.ts will contain the two-sided rules, and
GBR.pg will be the smallest rank of the free module to which all prefix relations belong

For a list Lnpm of vectors in NPM format (see Section 2.1), and a list Lnp of polynomials in NP
format, this function will use Buchberger’s algorithm with strong normal form applied to the union
of Lnpm , Lnp , the set of polynomials x ∗ e− x and x ∗m[i] for x a standard indeterminate, a module
generator m[j] or the dummy indeterminate e, and the set of all e∗x−x for x a standard indeterminate,
to find a Gröbner Basis record GBR (if possible; the general problem is unsolvable). This record will
have a Gröbner Basis GBR.ts for the two-sided ideal generated by Lnp and an intersection with the
module GBR.p representing the module relations needed to find representative vectors in the module
uniquely by means of a strong normal form computation modding out GBR.p and, for the scalars,
GBR.ts.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-2]];;
gap> p2 := [[[1,2,2],[]],[1,-3]];;

Consider also the following two vectors in NPM format.

gap> v1 := [[[-1,1,2],[-1]],[1,-1]];;
gap> v2 := [[[-2,2,2],[-2]],[1,-2]];;

GBNP 44

The Gröbner basis record for this data is found by SGrobnerModule:

gap> GBR := SGrobnerModule([v1,v2],[p1,p2]);;

The record GBR has two fields, p for prefix relations (vectors in the module) and ts for two-sided
relations (polynomials in the algebra):

gap> PrintNPList(GBR.p);
[0, 1]
[1 , 0]
gap> PrintNPList(GBR.ts);
b - 3/2a
a^3 - 4/3

3.9.2 BaseQM

▷ BaseQM(GBR, t, mt, maxno) (function)

Returns: A basis of the module obtained from the free module of rank mt over the free algebra
on t generators by factoring out the submodule generated by the elements of GBR

When called with a Gröbner basis record GBR (see Section 2.8), the number of variables t , the
number of module generators mt , and a maximum number of terms to be found, maxno , the function
BaseQM will return a (partial) base of the quotient module of Amt over the free algebra on A on t gen-
erators by the right sub A-module generated by the elements of GBR . Note that the record GBR consists
of two fields: the list GBR.p of vectors in NPM format representing elements of the free module Amt ,
and the list GBR.ts of polynomials in NP format representing elements of A. The submodule gener-
ated by GBR is considered to be the right submodule of Amt generated by GBR.p and all elements of
the form v ·np with np in the two-sided ideal of A generated by GBR.ts and v in Amt . If this function
is invoked with maxno equal to 0, then a full basis will be given.

If t= 0, then t will be set to the minimal value such that all polynomials of GBR.ts and all
polynomials occurring in GBR.p have at most t variables.

If mt= 0, then mt will be set to the minimal value such that all vectors of GBR.p belong to Amt .
If the module is cyclic (that is, has a single generator), it is possible to use the Gröbner basis of the

ideal in the algebra instead of the Gröbner basis record. This can be done by entering 0 for the number
mt of module generators.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,2,1],[]],[1,-1]];;

Consider also the following two vectors in NPM format.

gap> v1 := [[[-1,1,2],[-1]],[1,-1]];;
gap> v2 := [[[-2,2,2],[-2]],[1,-2]];;

The Gröbner basis record for this data is found by SGrobnerModule (3.9.1):

gap> GBR := SGrobnerModule([v1,v2],[p1,p2]);;
gap> PrintNPList(GBR.ts);
ba - ab

GBNP 45

b^2 - a^2
a^3b - 1
a^5 - b

gap> PrintNPList(GBR.p);
[0, 1]
[b - a , 0]
[a^2 - 1 , 0]
[ab - 1 , 0]

The function BaseQM computes a basis.

gap> B := BaseQM(GBR,2,2,0);;
gap> PrintNPList(B);
[1 , 0]
[a , 0]

The function BaseQM with arguments so as to let the number of dimensions of the module and the
number of variables be chosen minimal.

gap> B := BaseQM(GBR,0,0,0);;
gap> PrintNPList(B);
[1 , 0]
[a , 0]

The function BaseQM can also be used to ompute the first three elements of a basis.

gap> B := BaseQM(GBR,2,2,3);;
gap> PrintNPList(B);
[1 , 0]
[a , 0]

3.9.3 DimQM

▷ DimQM(GBR, t, mt) (function)

Returns: The dimension of the quotient module
When called with a Gröbner basis record GBR (see Section 2.8), a number of variables t at least

equal to the number of generators involved in the polynomials of GBR.p and GBR.ts , and a number of
generators mt of a free module containing the prefix relations in GBR.p , the function DimQM will return
the dimension over the coefficient field of the quotient module of the free right module Amt of rank mt
over the free algebra A on t generators by the right sub A-module generated by the elements of GBR ,
if this dimension is finite. Otherwise, the computation invoked by the function will not terminate.

If t= 0, then t will be set to the minimal value such that all polynomials of GBR.ts and all
polynomials occurring in GBR.p belong to Amt .

If mt= 0, then mt will be set to the minimal value such that all vectors of GBR.p belong to Amt .
Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,1,2],[]],[1,-1]];;
gap> p2 := [[[2,2,2,1],[]],[1,-1]];;

Consider also the following two vectors in NPM format.

GBNP 46

gap> v1 := [[[-1,1,2],[-2]],[1,-1]];;
gap> v2 := [[[-2,2,2],[-1]],[1,-2]];;

The Gröbner basis record for this data is found by SGrobnerModule (3.9.1):

gap> GBR := SGrobnerModule([v1,v2],[p1,p2]);;

The function DimQM computes the dimension over the rationals of the quotient of the free module over
the free algebra on two generators by the submodule generated by the vectors v1, v2, [p,q], where p
and q run over all elements of the two-sided ideal in the free algebra generated by p1 and p2.

gap> SetInfoLevel(InfoGBNP,2);
gap> DimQM(GBR,2,2);
0

The answer should be equal to the size of BaseQM(GBR,t,mt,0).

gap> DimQM(GBR,2,2) = Length(BaseQM(GBR,2,2,0));
true
gap> SetInfoLevel(InfoGBNP,0);

3.9.4 MulQM

▷ MulQM(p1, p2, GBR) (function)

Returns: The strong normal form of the product p1∗p2 with respect to GBR
When called with three arguments, the first of which, p1 , is a module element in NPM format, the

second of which, p2 , is a polynomial in NP format representing an element of the quotient algebra,
and the third of which is a Gröbner basis record GBR , this function will return the product p1*p2 in
the module.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;
gap> PrintNPList([p1,p2]);
a^2b - 1
ab^2 - 1

Consider also the following two vectors in NPM format.

gap> v1 := [[[-1,1,2],[-1]],[1,-1]];;
gap> v2 := [[[-2,2,2],[-2]],[1,-2]];;
gap> PrintNPList([v1,v2]);
[ab - 1 , 0]
[0, b^2 - 2]

The Gröbner basis record for this data is found by SGrobnerModule (3.9.1):

GBNP 47

gap> GBR := SGrobnerModule([v1,v2],[p1,p2]);;
gap> PrintNPList(GBR.ts);
b - a
a^3 - 1

gap> PrintNPList(GBR.p);
[0, 1]
[a - 1 , 0]

The function MulQM computes the product of the vector w with the polynomial q.

gap> w := [[[-1,2],[-2,1]],[1,-4]];;
gap> PrintNP(w);
[b , - 4a]
gap> q := [[[2,2,1],[1]],[2,3]];;
gap> PrintNP(q);
2b^2a + 3a

gap> wq := MulQM(w,q,GBR);;
gap> PrintNP(wq);
[5 , 0]

3.9.5 StrongNormalFormNPM

▷ StrongNormalFormNPM(f, GBR) (function)

Returns: The strong normal form of a polynomial in NP format with respect to GBR
When invoked with a polynomial in NP format (see Section 2.1) and a Gröbner basis record GBR

(see Section 2.8), this function will return the strong normal form (the polynomial reduced by the
prefix and two-sided relations of the Gröbner basis combination).

This function assumes that GBR.p and GBR.ts are ordered (with the ordering LtNP (3.3.9)), that
the polynomials in GBR.ts are monic and clean (see MkMonicNP (3.3.11) and CleanNP (3.3.7)), and
that the polynomial f is clean. Note that a Gröbner basis record as returned by a function like
SGrobnerModule (3.9.1) is in the required form.

Example: Consider the following two polynomials in NP format.

gap> p1 := [[[1,1,2],[]],[1,-1]];;
gap> p2 := [[[1,2,2],[]],[1,-1]];;
gap> PrintNPList([p1,p2]);
a^2b - 1
ab^2 - 1

Consider also the following two vectors in NPM format.

gap> v1 := [[[-1,1,2],[-1]],[1,-1]];;
gap> v2 := [[[-2,2,2],[-2]],[1,-2]];;
gap> PrintNPList([v1,v2]);
[ab - 1 , 0]
[0, b^2 - 2]

The Gröbner basis record for this data is found by SGrobnerModule (3.9.1):

GBNP 48

gap> GBR := SGrobnerModule([v1,v2],[p1,p2]);;
gap> PrintNPList(GBR.ts);
b - a
a^3 - 1

gap> PrintNPList(GBR.p);
[0, 1]
[a - 1 , 0]

The vector w is brought into strong normal form with respect to GBR:

gap> w := [[[-1,2],[-2,1]],[1,-4]];;
gap> PrintNP(w);
[b , - 4a]
gap> v := StrongNormalFormNPM(w,GBR);;
gap> PrintNP(v);
[1 , 0]

Chapter 4

Info Level

4.1 Introduction

Many functions of the GBNP package can produce additional output. Such output might be useful
for long calculations, to see where the calculation is or to gain more information about the calculation
itself.

GAP provides the tools to be able to tune the output of the functions. All of the functions of this
package use the InfoClass InfoGBNP (4.2.1) and some use the InfoClass InfoGBNPTime (4.3.1).
As usual with GAP when this is left at 0, the functions will hardly print additional information. It can
be set to 1 or 2 with SetInfoLevel (more about this function can be found at Reference: InfoLevel).
A brief explanation about each infolevel will be given in the next sections.

4.2 InfoGBNP

4.2.1 InfoGBNP

▷ InfoGBNP (info class)

The InfoClass for this package is used in almost all functions. To change this level to 1
(some information) or 2 (more information, also information from calculation loops) use the func-
tion SetInfoLevel.

4.2.2 What will be printed at level 0

At level 0 no information is printed beyond what functions themselves command to be printed.
These include functions like PrintNP (3.2.1), PrintNPList (3.2.3), PrintTraceList (3.7.2) and
PrintNPListTrace (3.7.4), but it also includes the function DetermineGrowthQA (3.6.1), which
only prints one or two lines and DimsQATrunc (3.8.5) which produces information about a truncated
Gröbner basis.

4.2.3 What will be printed at level 1

The infolevel can be set to 1 with the following command:

SetInfoLevel(InfoGBNP,1);

49

GBNP 50

At level 1 a large set of functions will produce a bit of output. Most of this information reports on the
phase of the algorithm the calculations are in or some simple statistics about the input or output.

4.2.4 What will be printed at level 2

The infolevel can be set to 2 with the following command.

SetInfoLevel(InfoGBNP,2);

At level 2 a large set of functions will produce a lot of output. This mostly concerns information on
loops in the calculations. Timing information will be printed as well.

4.3 InfoGBNPTime

4.3.1 InfoGBNPTime

▷ InfoGBNPTime (info class)

The InfoClass for timing is used in producing information about the runtime of the algorithm in
certain possibly lengthy calculations.

To change this level to 1 (Gröbner functions give information) or 2 (more information, also infor-
mation from other functions, which might not always take a long time and from inside loops) use the
function SetInfoLevel.

4.3.2 What will be printed at level 0

No timing information will be printed at level 0. This can be desirable for small examples or when
producing test output, for use with Test.

4.3.3 What will be printed at level 1

The infolevel can be set to 1 with the following command:

SetInfoLevel(InfoGBNPTime,1);

At level one there will be time information printed by the functions from different variants of
the Gröbner basis algorithm: Grobner (3.4.1), SGrobner (3.4.2), SGrobnerTrace (3.7.5), and
SGrobnerTrunc (3.8.2).

4.3.4 What will be printed at level 2

The infolevel can be set to 2 with the following command:

SetInfoLevel(InfoGBNPTime,2);

At level two there will also be some information printed from a loop from within SGrobnerTrunc
(3.8.2).

Appendix A

Examples

A.1 Introduction

In this chapter all available commented examples can be found. Those without comments are in the
directory gbnp/examples. Timing results are obtained on an Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz processor running Linux (6.6.9-100.fc38.x86_64 #1 SMP PREEMPT_DYNAMIC Mon Jan
1 20:31:07 UTC 2024) and using GAP 4.12.2.

• A.2 ‘A simple commutative Gröbner basis computation’

• A.3 ‘A truncated Gröbner basis for Leonard pairs’

• A.4 ‘The truncated variant on two weighted homogeneous polynomials’

• A.5 ‘The order of the Weyl group of type E6’

• A.6 ‘The gcd of some univariate polynomials’

• A.7 ‘From the Tapas book’

• A.8 ‘The Birman-Murakami-Wenzl algebra of type A3’

• A.9 ‘The Birman-Murakami-Wenzl algebra of type A2’

• A.10 ‘A commutative example by Mora’

• A.11 ‘Tracing an example by Mora’

• A.12 ‘Finiteness of the Weyl group of type E6’

This extends Example A.5.

• A.13 ‘Preprocessing for Weyl group computations’

This extends two earlier examples A.5 and A.12.

• A.14 ‘A quotient algebra with exponential growth’

• A.15 ‘A commutative quotient algebra of polynomial growth’

This extends Example A.7.

51

GBNP 52

• A.16 ‘An algebra over a finite field’

• A.17 ‘The dihedral group of order 8’

• A.18 ‘The dihedral group of order 8 on another module’

This extends Example A.17.

• A.19 ‘The dihedral group on a non-cyclic module’

This example also extends Example A.17.

• A.20 ‘The icosahedral group’

• A.21 ‘The symmetric inverse monoid for a set of size four’

• A.22 ‘A module of the Hecke algebra of type A3 over GF(3)’

• A.23 ‘Generalized Temperley-Lieb algebras’

• A.24 ‘The universal enveloping algebra of a Lie algebra’

• A.25 ‘Serre’s exercise’

• A.26 ‘Baur and Draisma’s transformations’

• A.27 ‘The cola gene puzzle’

A.2 A simple commutative Gröbner basis computation

In this commutative example the relations are x2y− 1 and xy2 − 1; we add xy− yx to enforce that x
and y commute. The answer should be {x3−1,x−y,xy−yx}, as the reduction ordering is total degree
first and then lexicographic with x smaller than y.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 2 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,2);
gap> SetInfoLevel(InfoGBNPTime,1);

Then input the relations in NP format (see Section 2.1). They will be put in the list Lnp.

gap> Lnp := [[[[1,2],[2,1]],[1,-1]]];
[[[[1, 2], [2, 1]], [1, -1]]]
gap> x2y := [[[1,1,2],[]],[1,-1]];
[[[1, 1, 2], []], [1, -1]]
gap> AddSet(Lnp,x2y);
gap> xy2 := [[[1,2,2],[]],[1,-1]];
[[[1, 2, 2], []], [1, -1]]
gap> AddSet(Lnp,xy2);

The relations can be exhibited with PrintNPList (3.2.3):

GBNP 53

gap> PrintNPList(Lnp);
a^2b - 1
ab - ba
ab^2 - 1

Let the variables be printed as x and y instead of a and b by means of GBNP.ConfigPrint (3.2.2)

gap> GBNP.ConfigPrint("x","y");

The Gröbner basis can now be calculated with SGrobner (3.4.2):

gap> GB := SGrobner(Lnp);
#I number of entered polynomials is 3
#I number of polynomials after reduction is 3
#I End of phase I
#I End of phase II
#I length of G =1
#I length of todo is 1
#I length of G =2
#I length of todo is 0
#I List of todo lengths is [1, 1, 0]
#I End of phase III
#I G: Cleaning finished, 0 polynomials reduced
#I End of phase IV
#I The computation took 4 msecs.
[[[[2], [1]], [1, -1]], [[[1, 1, 1], []], [1, -1]]]

When printed, it looks like:

gap> PrintNPList(GB);
y - x
x^3 - 1

The dimension of the quotient algebra can be calculated with DimQA (3.5.2). The arguments are the
Gröbner basis GB and the number of variables is 2:

gap> DimQA(GB,2);
3

A basis of this quotient algebra can be calculated with BaseQA (3.5.1). The arguments are a Gröbner
basis GB, the number of variables t (= 2) and a variable maxno for returning partial quotient algebras
(0 means full basis). The calculated basis will be printed as well.

gap> B:=BaseQA(GB,2,0);;
gap> PrintNPList(B);
1
x
x^2

GBNP 54

The strong normal form of the element xyxyxyx can be found by use of StrongNormalFormNP (3.5.6).
The arguments are this element and the Gröbner basis GB.

gap> f:=[[[1,2,1,2,1,2,1]],[1]];;
gap> PrintNP(f);
xyxyxyx

gap> p:=StrongNormalFormNP(f,GB);;
gap> PrintNP(p);
x

A.3 A truncated Gröbner basis for Leonard pairs

To provide Terwilliger with experimental dimension information in low degrees for his theory of
Leonard pairs a truncated Gröbner basis computation was carried out as follows.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 2 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,2);

We truncate the example by putting all monomials of degree n in the ideal by means of the function
MkTrLst to be introduced below; a better way to compute the result is by means of the truncated GB
algorithms (See A.24).

We want to truncate at degree 7 so we have fixed n = 8.

gap> n := 8;;

Now enter the relations in NP form (see 2.1). The function MkTrLst will be introduced, which will
return all monomials of degree n. The list of ideal generators of interest is called I.

gap> sqbr := function(n,q) ; return (q^3-q^-3)/(q-q^(-1)); end;;

gap> c := sqbr(3,5);
651/25

gap> s1 :=[[[1,1,1,2],[1,1,2,1],[1,2,1,1],[2,1,1,1]],[1,-c,c,-1]];;
gap> s2 :=[[[2,2,2,1],[2,2,1,2],[2,1,2,2],[1,2,2,2]],[1,-c,c,-1]];;

gap> MkTrLst := function(l) local ans, h1, h2, a, i;
> ans := [[1],[2]];
> for i in [2..l] do
> h1 := [];
> h2 := [];
> for a in ans do
> Add(h1,Concatenation([1],a));
> Add(h2,Concatenation([2],a));
> od;
> ans := Concatenation(h1,h2);

GBNP 55

> od;
> return List(ans, a -> [[a],[1]]);
> end;;

gap> I := Concatenation([s1,s2],MkTrLst(n));;

To give an impression, we print the first 20 entries of this list:

gap> PrintNPList(I{[1..20]});
a^3b - 651/25a^2ba + 651/25aba^2 - ba^3
b^3a - 651/25b^2ab + 651/25bab^2 - ab^3
a^8
a^7b
a^6ba
a^6b^2
a^5ba^2
a^5bab
a^5b^2a
a^5b^3
a^4ba^3
a^4ba^2b
a^4baba
a^4bab^2
a^4b^2a^2
a^4b^2ab
a^4b^3a
a^4b^4
a^3ba^4
a^3ba^3b

We calculate the Gröbner basis with SGrobner (3.4.2):

gap> GB := SGrobner(I);;
#I number of entered polynomials is 258
#I number of polynomials after reduction is 114
#I End of phase I
#I End of phase II
#I End of phase III
#I Time needed to clean G :0
#I End of phase IV
#I The computation took 176 msecs.

Now print the first part of the Gröbner basis with PrintNPList (3.2.3) (only the first 20 polynomials
are printed here, the full Gröbner basis can be printed with PrintNPList(GB)):

gap> PrintNPList(GB{[1..20]});
ba^3 - 651/25aba^2 + 651/25a^2ba - a^3b
b^3a - 651/25b^2ab + 651/25bab^2 - ab^3
b^2a^2ba - bab^2a^2 - baba^2b + ba^2bab + ab^2aba - abab^2a - aba^2b^2 + a^2b\

^2ab
b^2ab^2a^2 - 651/25b^2ababa + b^2aba^2b + 626/25bab^2aba - bab^2a^2b + babab^\

2a - ba^2b^2ab + ba^2bab^2 - 651/25ab^2ab^2a + ab^2abab + 423176/625abab^2ab -\

GBNP 56

423801/625ababab^2 + 626/25aba^2b^3 - 406901/625a^2b^2ab^2 + 423176/625a^2bab\
^3 - 651/25a^3b^4
a^8
a^7b
a^6ba
a^6b^2
a^5ba^2
a^5bab
a^5b^2a
a^5b^3
a^4ba^2b
a^4baba
a^4bab^2
a^4b^2a^2
a^4b^2ab
a^4b^4
a^3ba^2ba
a^3ba^2b^2

The truncated quotient algebra is obtained by factoring out the ideal generated by the Gröbner basis
GB and so its dimension can be calculated with DimQA (3.5.2):

gap> DimQA(GB,2);
#I The computation took 0 msecs.
157

Here is what Paul Terwilliger wrote in reaction to the computation carried out by this example:
I just wanted to thank you again for the dimension data that you gave me after the Durham meeting.

It ended up having a large impact. See the attached paper; joint with Tatsuro Ito.
I spent several weeks in Japan this past January, working with Tatsuro and trying to find a good

basis for the algebra on two symbols subject to the q-Serre relations. After much frustration, we
thought of feeding your data into Sloane’s online handbook of integer sequences. We did it out of
curiosity more than anything; we did not expect the handbook data to be particularly useful. But it
was.

The handbook told us that the graded dimension generating function, using your data for the
coefficients, matched the q-series for the inverse of the Jacobi theta function ϑ4; armed with this
overwhelming hint we were able to prove that the graded dimension generating function was indeed
given by the inverse of ϑ4. With that info we were able to get a nice result about td pairs.

Paul

A.4 The truncated variant on two weighted homogeneous polynomials

Here we exhibit a truncated non-commutative homogeneous weighted Gröbner basis computation.
This example uses the functions from Section 3.8, the truncation variants (see also Section 2.6).

The input is a set of polynomials in x and y, which are homogeneous when the weight of x is 2 and
of y is 3. The input is {x3y2 − x6 + y4,y2x3 + xyxyx+ x2yxy}. We truncate the computation at degree
16. The truncated Gröbner basis is {y2x3 + xyxyx+ x2yxy,x6 − x3y2 − y4,x3y2x− x4y2 − xy4} and the
dimension of the quotient algebra is 134.

GBNP 57

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

The variables will be printed as x and y.

gap> GBNP.ConfigPrint("x","y");

The level to truncate at is assigned to n.

gap> n := 16;;

Now enter the relations in NP form (see Section 2.1) and the weights.

gap> s1 :=[[[1,1,1,2,2],[1,1,1,1,1,1],[2,2,2,2]],[1,-1,1]];;
gap> s2 :=[[[2,2,1,1,1],[1,2,1,2,1],[1,1,2,1,2]],[1,1,1]];;
gap> K := [s1,s2];;
gap> weights:=[2,3];;

The input can be printed with PrintNPList (3.2.3)

gap> PrintNPList(K);
x^3y^2 - x^6 + y^4
y^2x^3 + xyxyx + x^2yxy

Verify whether the list K consists only of polynomials that are homogeneous with respect to weights
by means of CheckHomogeneousNPs (3.8.3).

gap> CheckHomogeneousNPs(K,weights);
#I Input is homogeneous
[12, 12]

Now calculate the truncated Gröbner basis with SGrobnerTrunc (3.8.2). The output will only contain
homogeneous polynomials of degree at most n.

gap> G := SGrobnerTrunc(K,n,weights);;
#I number of entered polynomials is 2
#I number of polynomials after reduction is 2
#I End of phase I
#I Input is homogeneous
#I Reached level 16
#I end of the algorithm
#I The computation took 4 msecs.

The Gröbner basis of the truncated quotient algebra can be printed with PrintNPList (3.2.3):

GBNP 58

gap> PrintNPList(G);
y^2x^3 + xyxyx + x^2yxy
x^6 - x^3y^2 - y^4
x^3y^2x - x^4y^2 + y^4x - xy^4

The standard basis of the quotient of the free noncommutative algebra on n variables, where n is the
length of the vector weights, by the homogeneous ideal generated by K up to degree n is obtained by
means of the function BaseQATrunc (3.8.4) applied to K, n, and weights.

gap> B := BaseQATrunc(K,n,weights);;
#I number of entered polynomials is 2
#I number of polynomials after reduction is 2
#I End of phase I
#I Input is homogeneous
#I Reached level 16
#I end of the algorithm
#I The computation took 0 msecs.
gap> i := Length(B);
17
gap> Print("at level ",i-1," the standard monomials are:\n");
at level 16 the standard monomials are:
gap> PrintNPList(List(B[i], qq -> [[qq],[1]]));
yxyx^4
yx^2yx^3
xyxyx^3
yx^3yx^2
xyx^2yx^2
x^2yxyx^2
y^4x^2
yx^4yx
xyx^3yx
x^2yx^2yx
x^3yxyx
y^3xyx
y^2xy^2x
yxy^3x
xy^4x
yx^5y
xyx^4y
x^2yx^3y
x^3yx^2y
y^3x^2y
x^4yxy
y^2xyxy
yxy^2xy
xy^3xy
x^5y^2
y^2x^2y^2
yxyxy^2
xy^2xy^2
yx^2y^3

GBNP 59

xyxy^3
x^2y^4

The same result can be obtained by using the truncated Gröbner basis found for G instead of K.

gap> B2 := BaseQATrunc(G,n,weights);;
#I number of entered polynomials is 3
#I number of polynomials after reduction is 3
#I End of phase I
#I Input is homogeneous
#I Reached level 16
#I end of the algorithm
#I The computation took 0 msecs.
gap> B = B2;
true

Also, the same result can be obtained by using the leading terms of the truncated Gröbner basis found
for G instead of K.

gap> B3 := BaseQATrunc(List(LMonsNP(G), qq -> [[qq],[1]]),n,weights);;
#I number of entered polynomials is 3
#I number of polynomials after reduction is 3
#I End of phase I
#I Input is homogeneous
#I Reached level 16
#I end of the algorithm
#I The computation took 0 msecs.
gap> B = B3;
true

A list of dimensions of the homogeneous parts of the quotient algebra up to degree n is obtained by
means of DimsQATrunc (3.8.5) with arguments G, n, and weights.

gap> DimsQATrunc(G,n,weights);
#I number of entered polynomials is 3
#I number of polynomials after reduction is 3
#I End of phase I
#I Input is homogeneous
#I Reached level 16
#I end of the algorithm
#I The computation took 4 msecs.
[1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 17, 24, 31]

Even more detailed information is given by the list of frequences up to degree n. This is obtained by
means of FreqsQATrunc (3.8.6) with arguments G, n, and weights.

gap> FreqsQATrunc(G,n,weights);
#I number of entered polynomials is 3
#I number of polynomials after reduction is 3
#I End of phase I
#I Input is homogeneous

GBNP 60

#I Reached level 16
#I end of the algorithm
#I The computation took 0 msecs.
[[[[], 1]], [[[1, 0], 1]], [[[0, 1], 1]],

[[[2, 0], 1]], [[[1, 1], 2]],
[[[3, 0], 1], [[0, 2], 1]], [[[2, 1], 3]],
[[[4, 0], 1], [[1, 2], 3]], [[[3, 1], 4], [[0, 3], 1]],
[[[5, 0], 1], [[2, 2], 6]], [[[4, 1], 5], [[1, 3], 4]],
[[[3, 2], 9], [[0, 4], 1]], [[[5, 1], 6], [[2, 3], 10]],
[[[4, 2], 12], [[1, 4], 5]],
[[[6, 1], 5], [[3, 3], 18], [[0, 5], 1]],
[[[5, 2], 16], [[2, 4], 15]]]

A.5 The order of the Weyl group of type E6

In order to show how the order of a finite group of manageable size with a manageable presentation
can be computed, we determine the order of the Weyl group of type E6. This number is well known
to be 51840.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 2 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,2);

Then input the relations in NP format (see 2.1). They come from the presentation of the Weyl group
as a Coxeter group. This means that there are six variables, one for each generator. We let the
corresponding variables be printed as r1, ..., r6 by means of GBNP.ConfigPrint (3.2.2)

gap> GBNP.ConfigPrint(6,"r");

The relations are binomial and represent the group relations, which express that the generators are
involutions (that is, have order 2) and that the orders of the products of any two generators is specified
by the Coxeter diagram (see any book on Coxeter groups for details). The relations will be assigned
to KI.

gap> k1 := [[[1,3,1],[3,1,3]],[1,-1]];;
gap> k2 := [[[4,3,4],[3,4,3]],[1,-1]];;
gap> k3 := [[[4,2,4],[2,4,2]],[1,-1]];;
gap> k4 := [[[4,5,4],[5,4,5]],[1,-1]];;
gap> k5 := [[[6,5,6],[5,6,5]],[1,-1]];;
gap> k6 := [[[1,2],[2,1]],[1,-1]];;
gap> k7 := [[[1,4],[4,1]],[1,-1]];;
gap> k8 := [[[1,5],[5,1]],[1,-1]];;
gap> k9 := [[[1,6],[6,1]],[1,-1]];;
gap> k10 := [[[2,3],[3,2]],[1,-1]];;
gap> k11 := [[[2,5],[5,2]],[1,-1]];;
gap> k12 := [[[2,6],[6,2]],[1,-1]];;
gap> k13 := [[[3,5],[5,3]],[1,-1]];;

GBNP 61

gap> k14 := [[[3,6],[6,3]],[1,-1]];;
gap> k15 := [[[4,6],[6,4]],[1,-1]];;
gap> k16 := [[[1,1],[]],[1,-1]];;
gap> k17 := [[[2,2],[]],[1,-1]];;
gap> k18 := [[[3,3],[]],[1,-1]];;
gap> k19 := [[[4,4],[]],[1,-1]];;
gap> k20 := [[[5,5],[]],[1,-1]];;
gap> k21 := [[[6,6],[]],[1,-1]];;
gap> KI := [k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,
> k11,k12,k13,k14,k15,k16,k17,k18,k19,k20,k21
>];;

The relations can be shown with PrintNPList (3.2.3):

gap> PrintNPList(KI);
r.1r.3r.1 - r.3r.1r.3
r.4r.3r.4 - r.3r.4r.3
r.4r.2r.4 - r.2r.4r.2
r.4r.5r.4 - r.5r.4r.5
r.6r.5r.6 - r.5r.6r.5
r.1r.2 - r.2r.1
r.1r.4 - r.4r.1
r.1r.5 - r.5r.1
r.1r.6 - r.6r.1
r.2r.3 - r.3r.2
r.2r.5 - r.5r.2
r.2r.6 - r.6r.2
r.3r.5 - r.5r.3
r.3r.6 - r.6r.3
r.4r.6 - r.6r.4
r.1^2 - 1
r.2^2 - 1
r.3^2 - 1
r.4^2 - 1
r.5^2 - 1
r.6^2 - 1

The Gröbner basis can now be calculated with SGrobner (3.4.2):

gap> GB := SGrobner(KI);;
#I number of entered polynomials is 21
#I number of polynomials after reduction is 21
#I End of phase I
#I End of phase II
#I End of phase III
#I Time needed to clean G :0
#I End of phase IV
#I The computation took 132 msecs.
gap> PrintNPList(GB);
r.1^2 - 1
r.2r.1 - r.1r.2
r.2^2 - 1

GBNP 62

r.3r.2 - r.2r.3
r.3^2 - 1
r.4r.1 - r.1r.4
r.4^2 - 1
r.5r.1 - r.1r.5
r.5r.2 - r.2r.5
r.5r.3 - r.3r.5
r.5^2 - 1
r.6r.1 - r.1r.6
r.6r.2 - r.2r.6
r.6r.3 - r.3r.6
r.6r.4 - r.4r.6
r.6^2 - 1
r.3r.1r.2 - r.2r.3r.1
r.3r.1r.3 - r.1r.3r.1
r.4r.2r.4 - r.2r.4r.2
r.4r.3r.4 - r.3r.4r.3
r.5r.4r.5 - r.4r.5r.4
r.6r.5r.6 - r.5r.6r.5
r.4r.3r.1r.4 - r.3r.4r.3r.1
r.5r.4r.2r.5 - r.4r.5r.4r.2
r.5r.4r.3r.5 - r.4r.5r.4r.3
r.6r.5r.4r.6 - r.5r.6r.5r.4
r.4r.2r.3r.4r.2 - r.3r.4r.2r.3r.4
r.4r.2r.3r.4r.3 - r.2r.4r.2r.3r.4
r.5r.4r.2r.3r.5 - r.4r.5r.4r.2r.3
r.5r.4r.3r.1r.5 - r.4r.5r.4r.3r.1
r.6r.5r.4r.2r.6 - r.5r.6r.5r.4r.2
r.6r.5r.4r.3r.6 - r.5r.6r.5r.4r.3
r.4r.2r.3r.1r.4r.2 - r.3r.4r.2r.3r.1r.4
r.5r.4r.2r.3r.1r.5 - r.4r.5r.4r.2r.3r.1
r.6r.5r.4r.2r.3r.6 - r.5r.6r.5r.4r.2r.3
r.6r.5r.4r.3r.1r.6 - r.5r.6r.5r.4r.3r.1
r.4r.2r.3r.1r.4r.3r.1 - r.2r.4r.2r.3r.1r.4r.3
r.5r.4r.2r.3r.4r.5r.4 - r.4r.5r.4r.2r.3r.4r.5
r.6r.5r.4r.2r.3r.1r.6 - r.5r.6r.5r.4r.2r.3r.1
r.6r.5r.4r.2r.3r.4r.6 - r.5r.6r.5r.4r.2r.3r.4
r.5r.4r.2r.3r.1r.4r.5r.4 - r.4r.5r.4r.2r.3r.1r.4r.5
r.6r.5r.4r.2r.3r.1r.4r.6 - r.5r.6r.5r.4r.2r.3r.1r.4
r.6r.5r.4r.2r.3r.1r.4r.3r.6 - r.5r.6r.5r.4r.2r.3r.1r.4r.3
r.6r.5r.4r.2r.3r.4r.5r.6r.5 - r.5r.6r.5r.4r.2r.3r.4r.5r.6
r.5r.4r.2r.3r.1r.4r.3r.5r.4r.3 - r.4r.5r.4r.2r.3r.1r.4r.3r.5r.4
r.6r.5r.4r.2r.3r.1r.4r.5r.6r.5 - r.5r.6r.5r.4r.2r.3r.1r.4r.5r.6
r.5r.4r.2r.3r.1r.4r.3r.5r.4r.2r.3 - r.4r.5r.4r.2r.3r.1r.4r.3r.5r.4r.2
r.6r.5r.4r.2r.3r.1r.4r.3r.5r.6r.5 - r.5r.6r.5r.4r.2r.3r.1r.4r.3r.5r.6
r.6r.5r.4r.2r.3r.1r.4r.3r.5r.4r.6r.5r.4 - r.5r.6r.5r.4r.2r.3r.1r.4r.3r.5r.4r.\

6r.5
r.6r.5r.4r.2r.3r.1r.4r.3r.5r.4r.2r.6r.5r.4r.2 - r.5r.6r.5r.4r.2r.3r.1r.4r.3r.\

5r.4r.2r.6r.5r.4

The base of the quotient algebra can be calculated with BaseQA (3.5.1), which has as arguments a
Gröbner basis GB, a number of symbols 6 and a maximum terms to be found (here 0 is entered, for a

GBNP 63

full base) . Since it is very long we will not print it here.

gap> B:=BaseQA(GB,6,0);;

The dimension of the quotient algebra can be calculated with DimQA (3.5.2), the arguments are the
Gröbner basis GB and the number of symbols 6. Since InfoGBNPTime (4.3.1) is set to 2, we get timing
information from DimQA (3.5.2):

gap> DimQA(GB,6);
#I The computation took 172 msecs.
51840

Note that the calculation of the dimension takes almost as long as calculating the base. Since we have
already calculated a base B it is much more efficient to calculate the dimension with Length:

gap> Length(B);
51840

A.6 The gcd of some univariate polynomials

A list of univariate polynomials is generated. The result of the Gröbner basis computation on this list
should be a single monic polynomial, their gcd.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 2 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,2);
gap> SetInfoLevel(InfoGBNPTime,1);

Let the single variable be printed as x by means of GBNP.ConfigPrint (3.2.2)

gap> GBNP.ConfigPrint("x");

Now input the relations in NP format (see 2.1). They will be assigned to KI.

gap> p0 := [[[1,1,1],[1,1],[1],[]],[1,2,2,1]];;
gap> p1 := [[[1,1,1,1],[1,1],[]],[1,1,1]];;
gap> KI := [p0,p1];;

gap> for i in [2..12] do
> h := AddNP(AddNP(KI[i],KI[i-1],1,3),
> AddNP(BimulNP([1],KI[i],[]),KI[i-1],2,1),3,-5);
> Add(KI,h);
> od;

The relations can be shown with PrintNPList (3.2.3):

GBNP 64

gap> PrintNPList(KI);
x^3 + 2x^2 + 2x + 1
x^4 + x^2 + 1
- 10x^5 + 3x^4 - 6x^3 + 11x^2 - 2x + 7
100x^6 - 60x^5 + 73x^4 - 128x^3 + 57x^2 - 76x + 25
- 1000x^7 + 900x^6 - 950x^5 + 1511x^4 - 978x^3 + 975x^2 - 486x + 103
10000x^8 - 12000x^7 + 12600x^6 - 18200x^5 + 14605x^4 - 13196x^3 + 8013x^2 - 2\

792x + 409
- 100000x^9 + 150000x^8 - 166000x^7 + 223400x^6 - 204450x^5 + 181819x^4 - 123\

630x^3 + 55859x^2 - 14410x + 1639
1000000x^10 - 1800000x^9 + 2150000x^8 - 2780000x^7 + 2765100x^6 - 2504340x^5 \

+ 1840177x^4 - 982264x^3 + 343729x^2 - 70788x + 6553
- 10000000x^11 + 21000000x^10 - 27300000x^9 + 34850000x^8 - 36655000x^7 + 342\

32300x^6 - 26732590x^5 + 16070447x^4 - 6878602x^3 + 1962503x^2 - 335534x + 262\
15
100000000x^12 - 240000000x^11 + 340000000x^10 - 437600000x^9 + 479700000x^8 -\
463408000x^7 + 381083200x^6 - 250919600x^5 + 124358069x^4 - 44189892x^3 + 106\

17765x^2 - 1551904x + 104857
- 1000000000x^13 + 2700000000x^12 - 4160000000x^11 + 5480000000x^10 - 6219000\

000x^9 + 6212580000x^8 - 5347676000x^7 + 3789374800x^6 - 2103269850x^5 + 87925\
4915x^4 - 266261734x^3 + 55222347x^2 - 7046418x + 419431
10000000000x^14 - 30000000000x^13 + 50100000000x^12 - 68240000000x^11 + 79990\

000000x^10 - 82533200000x^9 + 74033300000x^8 - 55790408000x^7 + 33925155700x^6\
- 16106037100x^5 + 5797814361x^4 - 1527768240x^3 + 278602281x^2 - 31541180x +\
1677721
- 100000000000x^15 + 330000000000x^14 - 595000000000x^13 + 843500000000x^12 -\
1021260000000x^11 + 1087222000000x^10 - 1012808600000x^9 + 804854300000x^8 - \

528013485000x^7 + 277993337300x^6 - 114709334310x^5 + 36188145143x^4 - 8434374\
466x^3 + 1372108031x^2 - 139586422x + 6710887
gap> Length(KI);
13

The Gröbner basis can now be calculated with SGrobner (3.4.2):

gap> GB := SGrobner(KI);;
#I number of entered polynomials is 13
#I number of polynomials after reduction is 1
#I End of phase I
#I End of phase II
#I List of todo lengths is [0]
#I End of phase III
#I G: Cleaning finished, 0 polynomials reduced
#I End of phase IV
#I The computation took 0 msecs.

Printed it looks like:

gap> PrintNPList(GB);
x^2 + x + 1

GBNP 65

A.7 From the Tapas book

This example is a standard commutative Gröbner basis computation from the book Some Tapas of
Computer Algebra [CCS99], page 339. There are six variables, named a, ... , f by default. We work
over the rationals and study the ideal generated by the twelve polynomials occurring on the middle
of page 339 of the Tapas book in a project by De Boer and Pellikaan on the ternary cyclic code of
length 11. Below these are named p1, ..., p12. The result should be the union of {a,b} and the set
of 6 homogeneous binomials (that is, polynomials with two terms) of degree 2 forcing commuting
between c, d, e, and f .

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 2 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,2);
gap> SetInfoLevel(InfoGBNPTime,1);

Now define some functions which will help in the construction of relations. The function
powermon(g, exp) will return the monomial gexp. The function comm(a, b) will return a relation
forcing commutativity between its two arguments a and b.

gap> powermon := function(base, exp)
> local ans,i;
> ans := [];
> for i in [1..exp] do ans := Concatenation(ans,[base]); od;
> return ans;
> end;;

gap> comm := function(a,b)
> return [[[a,b],[b,a]],[1,-1]];
> end;;

Now the relations are entered.

gap> p1 := [[[5,1]],[1]];;
gap> p2 := [[powermon(1,3),[6,1]],[1,1]];;
gap> p3 := [[powermon(1,9),Concatenation([3],powermon(1,3))],[1,1]];;
gap> p4 := [[powermon(1,81),Concatenation([3],powermon(1,9)),
> Concatenation([4],powermon(1,3))],[1,1,1]];;
gap> p5 := [[Concatenation([3],powermon(1,81)),Concatenation([4],powermon(1,9)),
> Concatenation([5],powermon(1,3))],[1,1,1]];;
gap> p6 := [[powermon(1,27),Concatenation([4],powermon(1,81)),Concatenation([5],
> powermon(1,9)),Concatenation([6],powermon(1,3))],[1,1,1,1]];;
gap> p7 := [[powermon(2,1),Concatenation([3],powermon(1,27)),Concatenation([5],
> powermon(1,81)),Concatenation([6],powermon(1,9))],[1,1,1,1]];;
gap> p8 := [[Concatenation([3],powermon(2,1)),Concatenation([4],powermon(1,27)),
> Concatenation([6],powermon(1,81))],[1,1,1]];;
gap> p9 := [[Concatenation([],powermon(1,1)),Concatenation([4],powermon(2,1)),
> Concatenation([5],powermon(1,27))],[1,1,1]];;
gap> p10 := [[Concatenation([3],powermon(1,1)),Concatenation([5],powermon(2,1)),
> Concatenation([6],powermon(1,27))],[1,1,1]];;

GBNP 66

gap> p11 := [[Concatenation([4],powermon(1,1)),Concatenation([6],powermon(2,1))],
> [1,1]];;
gap> p12 := [[Concatenation([],powermon(2,3)),Concatenation([],powermon(2,1))],
> [1,-1]];;
gap> KI := [p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12];;
gap> for i in [1..5] do
> for j in [i+1..6] do
> Add(KI,comm(i,j));
> od;
> od;

The relations can be shown with PrintNPList (3.2.3):

gap> PrintNPList(KI);
ea
a^3 + fa
a^9 + ca^3
a^81 + ca^9 + da^3
ca^81 + da^9 + ea^3
a^27 + da^81 + ea^9 + fa^3
b + ca^27 + ea^81 + fa^9
cb + da^27 + fa^81
a + db + ea^27
ca + eb + fa^27
da + fb
b^3 - b
ab - ba
ac - ca
ad - da
ae - ea
af - fa
bc - cb
bd - db
be - eb
bf - fb
cd - dc
ce - ec
cf - fc
de - ed
df - fd
ef - fe

gap> Length(KI);
27

It is sometimes easier to enter the relations as elements of a free algebra and then use the function
GP2NP (3.1.1) or the function GP2NPList (3.1.2) to convert them. This will be demonstrated below.
More about converting can be read in Section 3.1.

gap> F:=Rationals;;
gap> A:=FreeAssociativeAlgebraWithOne(F,"a","b","c","d","e","f");;
gap> a:=A.a;; b:=A.b;; c:=A.c;; d:=A.d;; e:=A.e;; f:=A.f;;
gap> KI_gp:=[e*a, #p1

GBNP 67

> a^3 + f*a, #p2
> a^9 + c*a^3, #p3
> a^81 + c*a^9 + d*a^3, #p4
> c*a^81 + d*a^9 + e*a^3, #p5
> a^27 + d*a^81 + e*a^9 + f*a^3, #p6
> b + c*a^27 + e*a^81 + f*a^9, #p7
> c*b + d*a^27 + f*a^81, #p8
> a + d*b + e*a^27, #p9
> c*a + e*b + f*a^27, #p10
> d*a + f*b, #p11
> b^3 - b];; #p12

These relations can be converted to NP form (see 2.1) with GP2NPList (3.1.2). For use in a Gröbner
basis computation we have to order the NP polynomials in KI. This can be done with CleanNP (3.3.7).

gap> KI_np:=GP2NPList(KI_gp);;
gap> Apply(KI,x->CleanNP(x));;
gap> KI_np=KI{[1..12]};
true

The Gröbner basis can now be calculated with SGrobner (3.4.2) and printed with PrintNPList
(3.2.3).

gap> GB := SGrobner(KI);;
#I number of entered polynomials is 27
#I number of polynomials after reduction is 8
#I End of phase I
#I End of phase II
#I List of todo lengths is [0]
#I End of phase III
#I G: Cleaning finished, 0 polynomials reduced
#I End of phase IV
#I The computation took 748 msecs.
gap> PrintNPList(GB);
a
b
dc - cd
ec - ce
ed - de
fc - cf
fd - df
fe - ef

A.8 The Birman-Murakami-Wenzl algebra of type A3

We study the Birman-Murakami-Wenzl algebra of type A3 as an algebra given by generators and
relations. A reference for the relations used is [CGW05].

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

GBNP 68

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

The variables are g1, g2, g3, e1, e2, e3, in this order. In order to have the results printed out with these
symbols, we invoke GBNP.ConfigPrint (3.2.2)

gap> GBNP.ConfigPrint("g1","g2","g3","e1","e2","e3");

Now enter the relations. This will be done in NP form (see 2.1). The inderminates m and l in the
coefficient ring of the Birman-Murakami-Wenzl algebra are specialized to 7 and 11 in order to make
the computations more efficient.

gap> m:= 7;;
gap> l:= 11;;

gap> #relations Theorem 1.1
gap> k1 := [[[4],[1,1],[1],[]],[1,-l/m,-l,l/m]];;
gap> k2 := [[[5],[2,2],[2],[]],[1,-l/m,-l,l/m]];;
gap> k3 := [[[6],[3,3],[3],[]],[1,-l/m,-l,l/m]];;

gap> #relations B1
gap> #empty set here

gap> #relations B2:
gap> k4 := [[[1,2,1],[2,1,2]],[1,-1]];;
gap> k5 := [[[2,3,2],[3,2,3]],[1,-1]];;
gap> k6 := [[[1,3],[3,1]],[1,-1]];;

gap> #relations R1
gap> kr1 := [[[1,4],[4]],[1,-1/l]];;
gap> kr2 := [[[2,5],[5]],[1,-1/l]];;
gap> kr3 := [[[3,6],[6]],[1,-1/l]];;

gap> #relations R2:
gap> kr4 := [[[4,2,4],[4]],[1,-l]];;
gap> kr5 := [[[5,1,5],[5]],[1,-l]];;
gap> kr6 := [[[5,3,5],[5]],[1,-l]];;
gap> kr7 := [[[6,2,6],[6]],[1,-l]];;

gap> #relations R2’
gap> km1 := [[[4,5,4],[4]],[1,-1]];;
gap> km2 := [[[5,4,5],[5]],[1,-1]];;
gap> km3 := [[[5,6,5],[5]],[1,-1]];;
gap> km4 := [[[6,5,6],[6]],[1,-1]];;

gap> KI := [k1,k2,k3,k4,k5,k6,kr1,kr2,kr3,kr4,kr5,kr6,kr7,km1,km2,km3,km4];;

Now print the relations with PrintNPList (3.2.3):

GBNP 69

gap> PrintNPList(KI);
e1 - 11/7g1^2 - 11g1 + 11/7
e2 - 11/7g2^2 - 11g2 + 11/7
e3 - 11/7g3^2 - 11g3 + 11/7
g1g2g1 - g2g1g2
g2g3g2 - g3g2g3
g1g3 - g3g1
g1e1 - 1/11e1
g2e2 - 1/11e2
g3e3 - 1/11e3
e1g2e1 - 11e1
e2g1e2 - 11e2
e2g3e2 - 11e2
e3g2e3 - 11e3
e1e2e1 - e1
e2e1e2 - e2
e2e3e2 - e2
e3e2e3 - e3

gap> Length(KI);
17

Now calculate the Gröbner basis with SGrobner (3.4.2):

gap> GB := SGrobner(KI);;
#I number of entered polynomials is 17
#I number of polynomials after reduction is 17
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 76 msecs.
gap> PrintNPList(GB);
g1^2 - 7/11e1 + 7g1 - 1
g1e1 - 1/11e1
g2^2 - 7/11e2 + 7g2 - 1
g2e2 - 1/11e2
g3g1 - g1g3
g3^2 - 7/11e3 + 7g3 - 1
g3e3 - 1/11e3
e1g1 - 1/11e1
e1g3 - g3e1
e1^2 + 43/77e1
e2g2 - 1/11e2
e2^2 + 43/77e2
e3g1 - g1e3
e3g3 - 1/11e3
e3e1 - e1e3
e3^2 + 43/77e3
g1g2e1 - e2e1
g1g3e1 - 1/11g3e1
g1e2e1 + 7e2e1 - g2e1 - 7e1
g2g1g2 - g1g2g1

GBNP 70

g2g1e2 - e1e2
g2g3e2 - e3e2
g2e1g2 - g1e2g1 - 7e2g1 + 7e1g2 + 7g2e1 - 7g1e2 - 49e2 + 49e1
g2e1e2 + 7e1e2 - g1e2 - 7e2
g2e3e2 + 7e3e2 - g3e2 - 7e2
g3g2g3 - g2g3g2
g3g2e3 - e2e3
g3e1e3 - 1/11e1e3
g3e2g3 - g2e3g2 - 7e3g2 + 7e2g3 + 7g3e2 - 7g2e3 - 49e3 + 49e2
g3e2e3 + 7e2e3 - g2e3 - 7e3
e1g2g1 - e1e2
e1g2e1 - 11e1
e1e2g1 + 7e1e2 - e1g2 - 7e1
e1e2e1 - e1
e2g1g2 - e2e1
e2g1e2 - 11e2
e2g3g2 - e2e3
e2g3e2 - 11e2
e2e1g2 + 7e2e1 - e2g1 - 7e2
e2e1e2 - e2
e2e3g2 + 7e2e3 - e2g3 - 7e2
e2e3e2 - e2
e3g2g3 - e3e2
e3g2e3 - 11e3
e3e2g3 + 7e3e2 - e3g2 - 7e3
e3e2e3 - e3
g1g2g3e1 - e2g3e1
g1g3g2e1 - g3e2e1
g1g3e2e1 + 7g3e2e1 - g3g2e1 - 7g3e1
g1e2g3e1 + 7e2g3e1 - g2g3e1 - 7g3e1
g1e3g2e1 - e3e2e1
g1e3e2e1 + 7e3e2e1 - e3g2e1 - 7e1e3
g3g2g1g3 - g2g3g2g1
g3g2g1e3 - e2g1e3
g3g2e1e3 - e2e1e3
g3e1g2e3 - e1e2e3
g3e1e2e3 + 7e1e2e3 - e1g2e3 - 7e1e3
g3e2g1g3 - g2e3g2g1 - 7e3g2g1 + 7e2g1g3 + 7g3e2g1 - 7g2g1e3 + 49e2g1 - 49g1e3\

g3e2g1e3 + 7e2g1e3 - g2g1e3 - 7g1e3
g3e2e1e3 + 7e2e1e3 - g2e1e3 - 7e1e3
e1g2g3g2 - g3e1g2g3
e1g2g3e1 - 11g3e1
e1g2e3g2 - g3e1e2g3 + 7e1e3g2 - 7e1e2g3 + 7e1g2e3 - 7g3e1e2 + 49e1e3 - 49e1e2\

e1e2g3e1 - g3e1
e1e3g2g1 - e1e3e2
e1e3g2e1 - 11e1e3
e1e3e2g1 + 7e1e3e2 - e1e3g2 - 7e1e3
e1e3e2e1 - e1e3
e2g3e1e2 - e2g1e3e2
e2e1e3e2 + 7e2g1e3e2 - e2g1g3e2 - 77e2

GBNP 71

e3g2g1g3 - e3e2g1
e3g2g1e3 - 11g1e3
e3g2e1e3 - 11e1e3
e3e2g1g3 + 7e3e2g1 - e3g2g1 - 7g1e3
e3e2g1e3 - g1e3
e3e2e1e3 - e1e3
g1g2g1g3e2 - g2g1e3e2
g1g2g1e3e2 + 7g2g1e3e2 - g2g1g3e2 - 7e1e2
g1g2g3g2e1 - g2e3g2e1 - 7e3g2e1 + 7e2g3e1 + 7g3e2e1 - 7g2e1e3 + 49e2e1 - 49e1\

e3
g1g2e3g2e1 + 7g2e3g2e1 - g2g3g2e1 + 7e3e2e1 + 49e3g2e1 + 7e2e1e3 - 7g3g2e1 + \

49g2e1e3 - 7g2g3e1 + 343e1e3 - 49g3e1 - 49g2e1 - 350e1
g1e2g1g3e2 + 7e2g1g3e2 - g2e1e3e2 - 7g2g3e1e2 - 7e1e3e2 - 49g3e1e2 + 77g1e2 +\
539e2
g1e2g1e3e2 + 7e2g1e3e2 - g2g3e1e2 - 7g3e1e2
g2g3e1g2g3 - g1e2g1g3g2 - 7e2g1g3g2 + 7g3e1g2g3 + 7g2g3e1g2 + 49g3e1g2 - 7g1e\

2e3 - 49e2e3
g2g3e1e2g3 - g1e2g1e3g2 - 7e2g1e3g2 + 7g3e1e2g3 + 7g2g3e1e2 - 7g1e2g1e3 - 49e\

2g1e3 + 49g3e1e2
e2g1g3g2g1 - e2g1e3g2
e2g1g3e2g1 - e2e1e3g2 - 7e2g3e1g2 + 7e2g1g3e2 - 7e2e1e3 - 49e2g3e1 + 77e2g1 +\
539e2
e2g1e3g2g1 + 7e2g1e3g2 - e2g1g3g2 - 7e2e1
e2g1e3e2g1 - e2g3e1g2 + 7e2g1e3e2 - 7e2g3e1
e2g3e1g2g3 + 7e2g3e1g2 - e2g1g3g2 - 7e2e3

Now calculate the dimension of the quotient algebra with DimQA (3.5.2) (the second argument is the
number of symbols):

gap> DimQA(GB,6);
105

The conclusion is that the BMW algebra of type A3 has dimension 105.

A.9 The Birman-Murakami-Wenzl algebra of type A2

The trace variant (see sections 2.5 and 3.7) will be used for a presentation of the Birman-Murakami-
Wenzl algebra of type A2 by generators and relations in order to find a proof that the algebra has
dimension 15.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

The variables are g1, g2, e1, e2, in this order. In order to have the results printed out with these symbols,
we invoke GBNP.ConfigPrint (3.2.2)

GBNP 72

gap> GBNP.ConfigPrint("g1","g2","e1","e2");

Unlike Example A.8, we work with a field of rational functions.

gap> ll := Indeterminate(Rationals,"l");
l
gap> mm := Indeterminate(Rationals,"m");
m
gap> F := Field(ll,mm);;
gap> gens := GeneratorsOfField(F);
[l, m]
gap> l := gens[1];;
gap> m := gens[2];
m
gap> F1 := One(F);;
gap> Print("identity element of F: ",F1,"\n");
identity element of F: 1

Now enter the relations. This will be done in NP form.

gap> #relations Theorem 1.1
gap> k1 := [[[3],[1,1],[1],[]],[F1,-l/m,-l,l/m]];;
gap> k2 := [[[4],[2,2],[2],[]],[F1,-l/m,-l,l/m]];;

gap> #relations B1
gap> #empty set here

gap> #relations B2:
gap> k3 := [[[1,2,1],[2,1,2]],[F1,-F1]];;

gap> #relations R1
gap> k4 := [[[1,3],[3]],[F1,-1/l]];;
gap> k5 := [[[2,4],[4]],[F1,-1/l]];;

gap> #relations R2:
gap> k6 := [[[3,2,3],[3]],[F1,-l]];;
gap> k7 := [[[4,1,4],[4]],[F1,-l]];;
gap> k8 := [[[3,4,3],[3]],[F1,-F1]];;
gap> k9 := [[[4,3,4],[4]],[F1,-F1]];;

gap> KI := [k1,k2,k3,k4,k5,k6,k7,k8,k9];;

The input can be displayed with PrintNPList (3.2.3):

gap> PrintNPList(KI);
e1 + -l/mg1^2 + -lg1 + l/m
e2 + -l/mg2^2 + -lg2 + l/m
g1g2g1 + -1g2g1g2
g1e1 + -l^-1e1
g2e2 + -l^-1e2
e1g2e1 + -le1

GBNP 73

e2g1e2 + -le2
e1e2e1 + -1e1
e2e1e2 + -1e2

Now calculate the Gröbner basis with trace information, using the function SGrobnerTrace (3.7.5):

gap> GB := SGrobnerTrace(KI);;
#I number of entered polynomials is 9
#I number of polynomials after reduction is 9
#I End of phase I
#I End of phase II
#I List of todo lengths is [8, 7, 6, 5, 4, 6, 4, 4, 4, 3, 3, 2, 1, 0]
#I End of phase III
#I End of phase IV
#I The computation took 484 msecs.

The full trace can be printed with PrintTraceList (3.7.2), while printing only the relations (and no
trace) can be invoked by PrintNPListTrace (3.7.4). Since the total trace is very long we do not call
PrintTraceList(GB) here but only show two polynomial expressions from the Gröbner basis with
PrintTracePol (3.7.3):

gap> PrintNPListTrace(GB);
g1^2 + m/-le1 + mg1 + -1
g1e1 + -l^-1e1
g2^2 + m/-le2 + mg2 + -1
g2e2 + -l^-1e2
e1g1 + 1/-le1
e1^2 + (l^2-l*m-1)/(l*m)e1
e2g2 + 1/-le2
e2^2 + (l^2-l*m-1)/(l*m)e2
g1g2e1 + -1e2e1
g1e2e1 + me2e1 + -1g2e1 + -me1
g2g1g2 + 1/-1g1g2g1
g2g1e2 + -1e1e2
g2e1g2 + -1g1e2g1 + -me2g1 + me1g2 + mg2e1 + -mg1e2 + -m^2e2 + m^2e1
g2e1e2 + me1e2 + -1g1e2 + -me2
e1g2g1 + -1e1e2
e1g2e1 + -le1
e1e2g1 + me1e2 + -1e1g2 + -me1
e1e2e1 + -1e1
e2g1g2 + -1e2e1
e2g1e2 + -le2
e2e1g2 + me2e1 + -1e2g1 + -me2
e2e1e2 + -1e2

gap> PrintTracePol(GB[1]);
m/-lG(1)

gap> PrintTracePol(GB[10]);
-l*m/(-l*m-1)G(1)g1e2e1 + -l*m/(l*m+1)g1G(1)e2e1 + l^2*m/(-l*m-1)G(

1)g2g1e1 + l*m^2/(-l*m-1)G(1)g2g1e2e1 + -l/(-l*m-1)g2G(
1)g1e2e1 + -l/(l*m+1)g2g1G(1)e2e1 + l^2/(-l*m-1)g2G(
1)g2g1e1 + l*m/(-l*m-1)g2G(1)g2g1e2e1 + -l*m/(-l*m-1)e1g2G(
1)g2g1e1 + -l/(-l*m-1)g2e1g2G(1)g2g1e1 + -m/-lG(

GBNP 74

2)g1e2e1 + -l^2*m/(-l*m-1)g2g1G(2)e1 + -l^2/(-l*m-1)g2^2g1G(
2)e1 + m^2/(-l*m-1)e1G(2)g1e2e1 + m/(-l*m-1)g2e1G(
2)g1e2e1 + -l*m/(l*m+1)e1g2^2g1G(2)e1 + -l/(l*m+1)g2e1g2^2g1G(
2)e1 + l^3*m/(-l*m-1)G(3)e1 + l^3/(-l*m-1)g1G(3)e1 + l^3/(-l*m-1)G(
3)g2e1 + l^3/(-l*m-1)g2G(3)e1 + l^2*m^2/(-l*m-1)G(3)e2e1 + l^2*m/(-l*m-1)g1G(
3)e2e1 + l^3/(-l*m^2-m)g2g1G(3)e1 + l^3/(-l*m^2-m)g2G(
3)g2e1 + l^2*m/(-l*m-1)G(3)g2e2e1 + l^2*m/(-l*m-1)g2G(
3)e2e1 + -l^2*m/(-l*m-1)e1g2G(3)e1 + l^2/(-l*m-1)g2g1G(
3)e2e1 + l^2/(-l*m-1)g2G(3)g2e2e1 + -l^2/(-l*m-1)g2e1g2G(
3)e1 + -l^2/(-l*m-1)e1g2g1G(3)e1 + -l^2/(-l*m-1)e1g2G(
3)g2e1 + -l^2/(-l*m^2-m)g2e1g2g1G(3)e1 + -l^2/(-l*m^2-m)g2e1g2G(
3)g2e1 + -l*m/(-l*m-1)G(4)e2e1 + -l/(-l*m-1)g2G(4)e2e1 + -l*mg2g1G(
5)e1 + l^2*m/(-l*m-1)g2g1g2G(5)e1 + -lg2^2g1G(5)e1 + l^2/(-l*m-1)g2^2g1g2G(
5)e1 + l*m/(-l*m-1)G(6)g2g1e1 + l/(-l*m-1)g2G(6)g2g1e1 + m/-lG(
7)e1 + -m^2/(-l*m-1)e1G(7)e1 + -m/(-l*m-1)g2e1G(7)e1 + mG(8) + g2G(8)

In order to test whether the expression for GB[10] is as claimed we use EvalTrace (3.7.1), For each
traced polynomial x in GB, we equate the evaluated expression x.trace, in which each occurrence of
G(i) is replaced by KI[i] by use of EvalTrace (3.7.1), with x.pol.

gap> ForAll(GB,x->EvalTrace(x,KI)=x.pol);
false

As a result the dimension of the quotient algebra can be calculated with DimQA (3.5.2) and the quotient
algebra itself with BaseQA (3.5.1).

gap> GB_pols:=List(GB,x->x.pol);;
gap> PrintNPList(GB_pols);
g1^2 + m/-le1 + mg1 + -1
g1e1 + -l^-1e1
g2^2 + m/-le2 + mg2 + -1
g2e2 + -l^-1e2
e1g1 + 1/-le1
e1^2 + (l^2-l*m-1)/(l*m)e1
e2g2 + 1/-le2
e2^2 + (l^2-l*m-1)/(l*m)e2
g1g2e1 + -1e2e1
g1e2e1 + me2e1 + -1g2e1 + -me1
g2g1g2 + 1/-1g1g2g1
g2g1e2 + -1e1e2
g2e1g2 + -1g1e2g1 + -me2g1 + me1g2 + mg2e1 + -mg1e2 + -m^2e2 + m^2e1
g2e1e2 + me1e2 + -1g1e2 + -me2
e1g2g1 + -1e1e2
e1g2e1 + -le1
e1e2g1 + me1e2 + -1e1g2 + -me1
e1e2e1 + -1e1
e2g1g2 + -1e2e1
e2g1e2 + -le2
e2e1g2 + me2e1 + -1e2g1 + -me2
e2e1e2 + -1e2

gap> DimQA(GB_pols,2);
6

GBNP 75

gap> B:=BaseQA(GB_pols,2,0);;
gap> PrintNPList(B);
1
g1
g2
g1g2
g2g1
g1g2g1

A.10 A commutative example by Mora

Here we present a commutative example from page 339 of “An introduction to commutative and non-
commutative Gröbner Bases”, by Teo Mora [Mor94]. It involves the seven variables a,b,c,d,e, f ,g. In
order to force commuting between each pair from {a,b,c,d,e, f ,g}, we let part of the input equations
be the homogeneous binomials of the form xy− yx. GBNP is built for non-commutative polynomial
arithmetic, and should handle the commutative case by means of this forced commutation. But it
should not be considered as a serious alternative to the well-known Gröbner bases packages when it
comes to efficiency.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

The relations will be entered as GAP polynomials and converted to NP form (see 2.1) with GP2NPList
(3.1.2).

gap> F:=GF(7);; ef:=One(F);;
gap> A:=FreeAssociativeAlgebraWithOne(F, "a", "b", "c", "d", "e", "f", "g");
<algebra-with-one over GF(7), with 7 generators>
gap> gens:=GeneratorsOfAlgebra(A);
[(Z(7)^0)*<identity ...>, (Z(7)^0)*a, (Z(7)^0)*b, (Z(7)^0)*c, (Z(7)^0)*d,

(Z(7)^0)*e, (Z(7)^0)*f, (Z(7)^0)*g]
gap> a:=gens[2];; b:=gens[3];; c:=gens[4];; d:=gens[5];; e:=gens[6];; f:=gens[7];;
gap> g:=gens[8];; ea:=gens[1];;

gap> rels := [a^3 + f*a,
> a^9 + c*a^3 + g*a,
> a^81 + c*a^9 + d*a^3,
> c*a^81 + d*a^9 + e*a^3,
> a^27 + d*a^81 + e*a^9 + f*a^3,
> b + c*a^27 + e*a^81 + f*a^9 + g*a^3,
> c*b + d*a^27 + f*a^81 + g*a^9,
> a + d*b + e*a^27 + g*a^81,
> c*a + e*b + f*a^27,
> d*a + f*b + g*a^27,
> e*a + g*b,
> b^3 - b];;

GBNP 76

Some relations added to enforce commutativity.

gap> for i in [1..6] do
> for j in [i+1..7] do
> Add(rels,gens[i+1]*gens[j+1]-gens[j+1]*gens[i+1]);
> od;
> od;

Now the relations are converted to NP form (see 2.1) with the function GP2NPList (3.1.2).

gap> KI:=GP2NPList(rels);;

The Gröbner basis can be calculated with SGrobner (3.4.2) and printed with PrintNPList (3.2.3).

gap> GB := SGrobner(KI);;
#I number of entered polynomials is 33
#I number of polynomials after reduction is 33
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 24820 msecs.
gap> PrintNPList(GB);
a
b
dc + Z(7)^3cd
ec + Z(7)^3ce
ed + Z(7)^3de
fc + Z(7)^3cf
fd + Z(7)^3df
fe + Z(7)^3ef
gc + Z(7)^3cg
gd + Z(7)^3dg
ge + Z(7)^3eg
gf + Z(7)^3fg

To determine whether the quotient algebra is finite dimensional we invoke FinCheckQA (3.6.2), using
as arguments the leading monomials of GB and 7, the number of variables involved. The leading
monomials of GB are obtained by LMonsNP (3.3.10).

gap> F := LMonsNP(GB);;
gap> FinCheckQA(F,7);
false

Thus, the quotient algebra turns out to be infinite dimensional. This is no surprise as the Gröbner
basis shows it is actually the free commutative algebra generated by c,d,e, f ,g. In particular, it has
polynomial growth of degree 5. This is confirmed by application of DetermineGrowthQA (3.6.1),
with the first two arguments as for FinCheckQA above and third argument false, indicating that an
interval for the degree of the polynomial degree will suffice.

gap> DetermineGrowthQA(F,7,false);
5

GBNP 77

It turns out that this quick version already gives an exact answer. More time consuming would be the
algorithm run with third argument equal to true.

gap> DetermineGrowthQA(F,7,true);
5

A.11 Tracing an example by Mora

This example of a non-commutative Gröbner basis computation is from page 18 of “An introduction to
commutative and non-commutative Gröbner Bases”, by Teo Mora [Mor94]. The traced version of the
algorithm will be used. The input is {xyx−y,yxy−y}. The answer should be {yy−xy,yx−xy,xxy−y}.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 2 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,2);
gap> SetInfoLevel(InfoGBNPTime,1);

Let the variables be printed as x and y instead of a and b by means of GBNP.ConfigPrint (3.2.2)

gap> GBNP.ConfigPrint("x","y");

Next we input the relations in NP format (see Section 2.1). They will be assigned to KI.

gap> xyx := [[[1,2,1],[2]],[1,-1]];;
gap> yxy := [[[2,1,2],[2]],[1,-1]];;
gap> KI:=[xyx,yxy];;

The relations can be shown with PrintNPList (3.2.3):

gap> PrintNPList(KI);
xyx - y
yxy - y

The Gröbner basis with trace can now be calculated with SGrobnerTrace (3.7.5):

gap> GB := SGrobnerTrace(KI);
#I number of entered polynomials is 2
#I number of polynomials after reduction is 2
#I End of phase I
#I End of phase II
#I j =2
#I Current number of elements in todo is 1
#I j =3
#I Current number of elements in todo is 0
#I List of todo lengths is [2, 1, 0]
#I End of phase III
#I End of phase IV
#I The computation took 4 msecs.

GBNP 78

[rec(pol := [[[2, 1], [1, 2]], [1, -1]],
trace := [[[], 1, [2], -1], [[2], 1, [], 1],

[[1], 2, [], 1], [[], 2, [1], -1]]),
rec(pol := [[[2, 2], [1, 2]], [1, -1]],

trace := [[[2], 1, [], -1], [[], 1, [2], -1],
[[2], 1, [], 1], [[], 2, [1], 1], [[1], 2, [], 1],
[[], 2, [1], -1]]),

rec(pol := [[[1, 1, 2], [2]], [1, -1]],
trace := [[[], 1, [], 1], [[1], 1, [2], 1],

[[1, 2], 1, [], -1], [[1, 1], 2, [], -1],
[[1], 2, [1], 1]])]

The Gröbner basis can be printed with PrintNPListTrace (3.7.4):

gap> PrintNPListTrace(GB);
yx - xy
y^2 - xy
x^2y - y

The trace of the Gröbner basis can be printed with PrintTraceList (3.7.2):

gap> PrintTraceList(GB);
- G(1)y + yG(1) - G(2)x + xG(2)

- G(1)y + xG(2)

G(1) + xG(1)y - xyG(1) + xG(2)x - x^2G(2)

A.12 Finiteness of the Weyl group of type E6

This example extends A.5, which computes the order of the Weyl group of type E6.
Here, before the dimension is calculated, it is checked whether the quotient algebra is finite di-

mensional or infinite dimensional. The function FinCheckQA (3.6.2) is used for this computation. For
the use of PreprocessAnalysisQA (3.6.4) to speed up the check, see Example A.13.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 2 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,2);

Then input the relations in NP format (see Section 2.1). They will be assigned to KI. These relations
are the same as those in Example 3.

gap> k1 := [[[1,3,1],[3,1,3]],[1,-1]];;
gap> k2 := [[[4,3,4],[3,4,3]],[1,-1]];;
gap> k3 := [[[4,2,4],[2,4,2]],[1,-1]];;
gap> k4 := [[[4,5,4],[5,4,5]],[1,-1]];;

GBNP 79

gap> k5 := [[[6,5,6],[5,6,5]],[1,-1]];;
gap> k6 := [[[1,2],[2,1]],[1,-1]];;
gap> k7 := [[[1,4],[4,1]],[1,-1]];;
gap> k8 := [[[1,5],[5,1]],[1,-1]];;
gap> k9 := [[[1,6],[6,1]],[1,-1]];;
gap> k10 := [[[2,3],[3,2]],[1,-1]];;
gap> k11 := [[[2,5],[5,2]],[1,-1]];;
gap> k12 := [[[2,6],[6,2]],[1,-1]];;
gap> k13 := [[[3,5],[5,3]],[1,-1]];;
gap> k14 := [[[3,6],[6,3]],[1,-1]];;
gap> k15 := [[[4,6],[6,4]],[1,-1]];;
gap> k16 := [[[1,1],[]],[1,-1]];;
gap> k17 := [[[2,2],[]],[1,-1]];;
gap> k18 := [[[3,3],[]],[1,-1]];;
gap> k19 := [[[4,4],[]],[1,-1]];;
gap> k20 := [[[5,5],[]],[1,-1]];;
gap> k21 := [[[6,6],[]],[1,-1]];;
gap> KI := [k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,
> k11,k12,k13,k14,k15,k16,k17,k18,k19,k20,k21
>];;

The Gröbner basis can now be calculated with SGrobner (3.4.2):

gap> GB := SGrobner(KI);;
#I number of entered polynomials is 21
#I number of polynomials after reduction is 21
#I End of phase I
#I End of phase II
#I End of phase III
#I Time needed to clean G :0
#I End of phase IV
#I The computation took 96 msecs.

We will check whether the quotient algebra is finite dimensional or infinite dimensional. The function
FinCheckQA (3.6.2) exists for this purpose. Its first argument is the list of leading monomials of
a Gröbner basis and its second argument the number of symbols. The leading monomials can be
calculated with LMonsNP (3.3.10).

gap> L:=LMonsNP(GB);;
gap> FinCheckQA(L,6);
true
gap> time;
60

If a quotient algebra is finite dimensional, the dimension can be calculated with DimQA (3.5.2), the
arguments are the Gröbner basis GB and the number of symbols 6. Since InfoGBNPTime (4.3.1) is set
to 2, we get timing information from DimQA (3.5.2):

gap> dim := DimQA(GB,6);
#I The computation took 144 msecs.
51840

GBNP 80

A.13 Preprocessing for Weyl group computations

This example extends Example A.5 with the following action: after the Gröbner basis computation,
we first check if the quotient algebra is finite dimensional or infinite dimensional before we possibly
try to compute that dimension. Preprocessing of the set of leading terms of the Gröbner basis is used
to speed up the check. The functions PreprocessAnalysisQA (3.6.4) and FinCheckQA (3.6.2) are
used for the computations. Even without preprocessing this already goes fast. Still, preprocessing can
speed up more involved cases. For instance, after adapting this example to run for E7, we found that
preprocessing speeds up the computation from 400 secs to about 40 secs. (Be aware that Gröbner
basis computation will take a while for E7.)

More information about the preprocessing can be found in the preprint “The dimensionality of
quotient algebras” [Kro03] which is part of the documentation.

Note: there is no information on the amount of preprocessing which is optimal, but in general for
big examples, even full preprocessing is better than using no preprocessing at all.

Note: Example A.12 also determines if the quotient algebra appearing here is finite or infinite
dimensional but does not use preprocessing.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 0 and the time infolevel
InfoGBNPTime (4.3.1) to 2 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,0);
gap> SetInfoLevel(InfoGBNPTime,2);

Then input the relations in NP format (see Section 2.1). They will be assigned to KI.

gap> k1 := [[[1,3,1],[3,1,3]],[1,-1]];;
gap> k2 := [[[4,3,4],[3,4,3]],[1,-1]];;
gap> k3 := [[[4,2,4],[2,4,2]],[1,-1]];;
gap> k4 := [[[4,5,4],[5,4,5]],[1,-1]];;
gap> k5 := [[[6,5,6],[5,6,5]],[1,-1]];;
gap> k6 := [[[1,2],[2,1]],[1,-1]];;
gap> k7 := [[[1,4],[4,1]],[1,-1]];;
gap> k8 := [[[1,5],[5,1]],[1,-1]];;
gap> k9 := [[[1,6],[6,1]],[1,-1]];;
gap> k10 := [[[2,3],[3,2]],[1,-1]];;
gap> k11 := [[[2,5],[5,2]],[1,-1]];;
gap> k12 := [[[2,6],[6,2]],[1,-1]];;
gap> k13 := [[[3,5],[5,3]],[1,-1]];;
gap> k14 := [[[3,6],[6,3]],[1,-1]];;
gap> k15 := [[[4,6],[6,4]],[1,-1]];;
gap> k16 := [[[1,1],[]],[1,-1]];;
gap> k17 := [[[2,2],[]],[1,-1]];;
gap> k18 := [[[3,3],[]],[1,-1]];;
gap> k19 := [[[4,4],[]],[1,-1]];;
gap> k20 := [[[5,5],[]],[1,-1]];;
gap> k21 := [[[6,6],[]],[1,-1]];;
gap> KI := [k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,
> k11,k12,k13,k14,k15,k16,k17,k18,k19,k20,k21
>];;

GBNP 81

The Gröbner basis can now be calculated with SGrobner (3.4.2):

gap> GB := SGrobner(KI);;
#I Time needed to clean G :0
#I The computation took 104 msecs.

Check the dimensionality of the quotient algebra. We will check whether it is finite dimensional or
infinite dimensional. In case of finite dimensionality we can compute this dimension.

The function FinCheckQA (3.6.2), which is used to check finite dimensionality has as first argu-
ment the list of leading monomials of a Gröbner basis and as second argument the number of symbols.
The monomials can be calculated with LMonsNP (3.3.10). They then will be preprocessed using 4
recursions. If you want full preprocessing, use 0 instead of 4 as a parameter for the number of recur-
sions.

gap> L:=LMonsNP(GB);;
gap> L:=PreprocessAnalysisQA(L,6,4);;
gap> time;
4
gap> fd:=FinCheckQA(L,6);
true
gap> time;
4

If a quotient algebra is finite dimensional, the dimension can be calculated with DimQA (3.5.2), the
arguments are the Gröbner basis GB and the number of symbols 6. Since InfoGBNPTime (4.3.1) is set
to 2, we get timing information from DimQA (3.5.2):

gap> dim := DimQA(GB,6);
#I The computation took 176 msecs.
51840

A.14 A quotient algebra with exponential growth

This example demonstrates an instance in which the quotient algebra is infinite dimensional and has
exponential growth. We start out with KI:= [y4−y2,x2y−xy] and obtain a Gröbner basis with leading
terms [xxy,yyy]. The quotient algebra will thus have exponential growth since the cycles (xyyx)n and
(xy)m intersect in the common subwords xy (and in yx). This is explained in [Kro03]. The function
DetermineGrowthQA (3.6.1) is used for the computation.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 2 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,2);
gap> SetInfoLevel(InfoGBNPTime,1);

Let the variables be printed as x and y instead of a and b by means of GBNP.ConfigPrint (3.2.2)

gap> GBNP.ConfigPrint("x","y");

GBNP 82

Then input the relations in NP format (see Section 2.1). They will be assigned to KI.

gap> k1 := [[[2,2,2,2],[2,2]],[1,-1]];;
gap> k2 := [[[1,1,2],[1,2]],[1,-1]];;
gap> KI := [k1,k2];;
gap> PrintNPList(KI);
y^4 - y^2
x^2y - xy

We calculate the Gröbner basis with the function SGrobner (3.4.2) and print it with PrintNPList
(3.2.3).

gap> GB := SGrobner(KI);;
#I number of entered polynomials is 2
#I number of polynomials after reduction is 2
#I End of phase I
#I End of phase II
#I List of todo lengths is [0]
#I End of phase III
#I G: Cleaning finished, 0 polynomials reduced
#I End of phase IV
#I The computation took 0 msecs.
gap> PrintNPList(GB);
x^2y - xy
y^4 - y^2

Next we check the dimensionality of the quotient algebra with the function FinCheckQA (3.6.2) or
the function DetermineGrowthQA (3.6.1). These functions expect as first argument a list F of leading
terms of a Gröbner basis, which can be calculated with the function LMonsNP (3.3.10) and as second
argument the number of symbols (here equal to 2). The function DetermineGrowthQA (3.6.1) will
not only report whether a Gröbner basis is finite, but will also provide information about its growth.

gap> L:=LMonsNP(GB);
[[1, 1, 2], [2, 2, 2, 2]]
gap> fd:=FinCheckQA(L,2);
false
gap> fd:=DetermineGrowthQA(L,2,false);
"exponential growth"

Although the quotient algebra is infinite dimensional, multiplication of two elements can be carried
out by MulQA (3.5.5). We print three positive powers of x+ y.

gap> w := [[[1],[2]],[1,1]];;
gap> hlp := [[[]],[1]];;
gap> for i in [3..5] do
> hlp := MulQA(hlp, w, GB);
> Print("\n (x+y)^",i," = \n");
> PrintNP(hlp);
> od;

(x+y)^3 =

GBNP 83

y + x

(x+y)^4 =
y^2 + yx + xy + x^2

(x+y)^5 =
y^3 + y^2x + yxy + yx^2 + xy^2 + xyx + x^3 + xy

A.15 A commutative quotient algebra of polynomial growth

This example extends A.7, a commutative example from Some Tapas of Computer Algebra [CCS99],
page 339.

The result of the Gröbner basis computation should be the union of {a,b} and the set of 6 homo-
geneous binomials (that is, polynomials with two terms) of degree 2 forcing commuting between c, d,
e, and f , as before. After computation of the Gröbner basis, the quotient algebra is studied and found
to be infinite dimensional of polynomial growth of degree 4. The function DetermineGrowthQA
(3.6.1) is used for this computation. Then part of its Hilbert series is computed. The function
HilbertSeriesQA (3.6.3) is used for the computations.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 2 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,2);
gap> SetInfoLevel(InfoGBNPTime,1);

Now define some functions which will help in the construction of relations. The function
powermon(i, exp) will return the monomial iexp. The function comm(aa, bb) will return a relation
forcing commutativity between its two arguments aa and bb.

gap> powermon := function(base, exp)
> local ans,i;
> ans := [];
> for i in [1..exp] do ans := Concatenation(ans,[base]); od;
> return ans;
> end;;

gap> comm := function(aa,bb)
> return [[[aa,bb],[bb,aa]],[1,-1]];
> end;;

Now the relations are entered:

gap> p1 := [[[5,1]],[1]];;
gap> p2 := [[powermon(1,3),[6,1]],[1,1]];;
gap> p3 := [[powermon(1,9),Concatenation([3],powermon(1,3))],[1,1]];;
gap> p4 := [[powermon(1,81),Concatenation([3],powermon(1,9)),Concatenation([4],
> powermon(1,3))],[1,1,1]];;
gap> p5 := [[Concatenation([3],powermon(1,81)),Concatenation([4],powermon(1,9)),

GBNP 84

> Concatenation([5],powermon(1,3))],[1,1,1]];;
gap> p6 := [[powermon(1,27),Concatenation([4],powermon(1,81)),Concatenation([5],
> powermon(1,9)),Concatenation([6],powermon(1,3))],[1,1,1,1]];;
gap> p7 := [[powermon(2,1),Concatenation([3],powermon(1,27)),Concatenation([5],
> powermon(1,81)),Concatenation([6],powermon(1,9))],[1,1,1,1]];;
gap> p8 := [[Concatenation([3],powermon(2,1)),Concatenation([4],powermon(1,27)),
> Concatenation([6],powermon(1,81))],[1,1,1]];;
gap> p9 := [[Concatenation([],powermon(1,1)),Concatenation([4],powermon(2,1)),
> Concatenation([5],powermon(1,27))],[1,1,1]];;
gap> p10 := [[Concatenation([3],powermon(1,1)),Concatenation([5],powermon(2,1)),
> Concatenation([6],powermon(1,27))],[1,1,1]];;
gap> p11 := [[Concatenation([4],powermon(1,1)),Concatenation([6],powermon(2,1))],
> [1,1]];;
gap> p12 := [[Concatenation([],powermon(2,3)),Concatenation([],powermon(2,1))],
> [1,-1]];;
gap> KI := [p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12];;
gap> for i in [1..5] do
> for j in [i+1..6] do
> Add(KI,comm(i,j));
> od;
> od;

The relations can be shown with PrintNPList (3.2.3):

gap> PrintNPList(KI);
ea
a^3 + fa
a^9 + ca^3
a^81 + ca^9 + da^3
ca^81 + da^9 + ea^3
a^27 + da^81 + ea^9 + fa^3
b + ca^27 + ea^81 + fa^9
cb + da^27 + fa^81
a + db + ea^27
ca + eb + fa^27
da + fb
b^3 - b
ab - ba
ac - ca
ad - da
ae - ea
af - fa
bc - cb
bd - db
be - eb
bf - fb
cd - dc
ce - ec
cf - fc
de - ed
df - fd
ef - fe

GBNP 85

It is usually easier to use the function GP2NP (3.1.1) or the function GP2NPList (3.1.2) to enter rela-
tions. Entering the first twelve relations and then converting them with GP2NPList (3.1.2) is demon-
strated in example 6 (A.7). More about converting can be read in Section 3.1.

The Gröbner basis can now be calculated with SGrobner (3.4.2) and printed with PrintNPList
(3.2.3).

gap> GB := SGrobner(KI);
#I number of entered polynomials is 27
#I number of polynomials after reduction is 8
#I End of phase I
#I End of phase II
#I List of todo lengths is [0]
#I End of phase III
#I G: Cleaning finished, 0 polynomials reduced
#I End of phase IV
#I The computation took 728 msecs.
[[[[1]], [1]], [[[2]], [1]],

[[[4, 3], [3, 4]], [1, -1]], [[[5, 3], [3, 5]], [1, -1]]
, [[[5, 4], [4, 5]], [1, -1]],

[[[6, 3], [3, 6]], [1, -1]], [[[6, 4], [4, 6]], [1, -1]]
, [[[6, 5], [5, 6]], [1, -1]]]

gap> PrintNPList(GB);
a
b
dc - cd
ec - ce
ed - de
fc - cf
fd - df
fe - ef

The growth of the quotient algebra can be studied with DetermineGrowthQA (3.6.1). The first argu-
ment is the list of leading monomials, which can be calculated with LMonsNP (3.3.10). The second
argument is the size of the alphabet.

gap> L:=LMonsNP(GB);;
gap> DetermineGrowthQA(L,6,false);
4
gap> time;
0

Now compute the first 10 terms of the Hilbert Series with HilbertSeriesQA (3.6.3) (note that trailing
zeroes are removed):

gap> HilbertSeriesQA(L,6,10);
[1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286]

A.16 An algebra over a finite field

A small example over a field other than the rationals, using the conversion functions from 3.1. The
input relations define the symmetric group of degree 3, denoted S3.

GBNP 86

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 2 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,2);
gap> SetInfoLevel(InfoGBNPTime,1);

Let F be the field GF(2). The relations can be entered as elements of a free associative algebra with
one A (see Reference: FreeAssociativeAlgebraWithOne for ring, rank (and name)).

gap> F:=GF(2);;
gap> A:=FreeAssociativeAlgebraWithOne(F,"a","b");
<algebra-with-one over GF(2), with 2 generators>
gap> g:=GeneratorsOfAlgebraWithOne(A);
[(Z(2)^0)*a, (Z(2)^0)*b]

Enter the relations {a2 − 1,b2 − 1,(ab)3 − 1}, convert them to NP-form, see Section 2.1, with
GP2NPList (3.1.2) and print them with PrintNPList (3.2.3):

gap> KI_GP := [g[1]^2-g[1]^0, g[2]^2-g[1]^0, (g[1]*g[2])^3-g[1]^0];
[(Z(2)^0)*<identity ...>+(Z(2)^0)*a^2, (Z(2)^0)*<identity ...>+(Z(2)^0)*b^2,

(Z(2)^0)*<identity ...>+(Z(2)^0)*(a*b)^3]
gap> KI:=GP2NPList(KI_GP);;
gap> PrintNPList(KI);
a^2 + Z(2)^0
b^2 + Z(2)^0
ababab + Z(2)^0

Now calculate the Gröbner basis with SGrobner (3.4.2) and print it with PrintNPList (3.2.3):

gap> GB:=SGrobner(KI);;
#I number of entered polynomials is 3
#I number of polynomials after reduction is 3
#I End of phase I
#I End of phase II
#I length of G =3
#I length of todo is 2
#I length of G =3
#I length of todo is 1
#I length of G =3
#I length of todo is 0
#I List of todo lengths is [2, 2, 1, 0]
#I End of phase III
#I G: Cleaning finished, 0 polynomials reduced
#I End of phase IV
#I The computation took 0 msecs.
gap> PrintNPList(GB);
a^2 + Z(2)^0
b^2 + Z(2)^0
bab + aba

GBNP 87

Now calculate the dimension of the quotient algebra with DimQA (3.5.2) (2 symbols) and a base with
BaseQA (3.5.1) (2 symbols, 0 for whole base) and print the base. This will give a list of elements of
the group.

gap> DimQA(GB,2);
6
gap> B:=BaseQA(GB,2,0);;
gap> PrintNPList(B);
Z(2)^0
a
b
ab
ba
aba

We can print the Gröbner basis and the basis of the quotient algebra, converted back to GAP polyno-
mials with NP2GPList (3.1.4). The functions used to convert the polynomials also require the algebra
as an argument. The result is useful for further computations in A.

gap> NP2GPList(GB,A);
[(Z(2)^0)*a^2+(Z(2)^0)*<identity ...>, (Z(2)^0)*b^2+(Z(2)^0)*<identity ...>,

(Z(2)^0)*b*a*b+(Z(2)^0)*a*b*a]
gap> NP2GPList(B,A);
[(Z(2)^0)*<identity ...>, (Z(2)^0)*a, (Z(2)^0)*b, (Z(2)^0)*a*b,

(Z(2)^0)*b*a, (Z(2)^0)*a*b*a]

The matrix of right multiplication with the image of the first variable can be computed by MatrixQA
(3.5.3).

gap> Display(MatrixQA(1,B,GB));
. 1
1
. . . . 1 .
. 1
. . 1 . . .
. . . 1 . .

A.17 The dihedral group of order 8

In this example (Example 1 from Linton [Lin93]) the two-sided relations give the group algebra of
the group with presentation ⟨a,b | a4 = b2 = (ab)2 = 1⟩, the dihedral group of order 8. It is possible
to construct a permutation module of degree 4, over a field k. In this example k will be the field of
rational numbers.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

GBNP 88

Now enter the relations as GAP polynomials. It is possible to enter them with and without module
generators. First it is shown how to enter the relations without using a module. It is possible to enter
them with a free associative algebra with one over the field (the rational numbers) (see also Reference:
FreeAssociativeAlgebraWithOne for ring, rank (and name)). For convenience we use the variables
a and b for the generators of the algebra and e for the one of the algebra.

gap> A:=FreeAssociativeAlgebraWithOne(Rationals, "a", "b");
<algebra-with-one over Rationals, with 2 generators>
gap> a:=A.a;;b:=A.b;;e:=One(A);;

Now the relations are entered:

gap> twosidrels:=[a^4-e,b^2-e,(a*b)^2-e];;
gap> prefixrels:=[b-e];;

First the relations are converted into NP format, see Section 2.1, after which the function
SGrobnerModule (3.9.1) is called to calculate a Gröbner basis record.

gap> GBR:=SGrobnerModule(GP2NPList(prefixrels),GP2NPList(twosidrels));;
#I number of entered polynomials is 3
#I number of polynomials after reduction is 3
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 0 msecs.
#I number of entered polynomials is 7
#I number of polynomials after reduction is 7
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 4 msecs.

The record GBR has two members: the two-sided relations GBR.ts and the prefix relations GBR.p. It
is possible to print these using the function PrintNPList (3.2.3):

gap> PrintNPList(GBR.ts);
b^2 - 1
aba - b
ba^2 - a^2b
bab - a^3
a^4 - 1
a^3b - ba

gap> PrintNPList(GBR.p);
[b - 1]
[a^3 - ab]
[a^2b - a^2]

It is now possible to calculate the standard basis of the quotient module with the function BaseQM
(3.9.2). This function has as arguments the Gröbner basis record GBR, the number of generators of
the algebra (2), the number of generators of the module (1), and a variable maxno for returning partial
bases (0 means full basis).

GBNP 89

gap> B:=BaseQM(GBR,2,1,0);;
gap> PrintNPList(B);
[1]
[a]
[a^2]
[ab]

It is also possible to use a module with one generator to enter these relations:

gap> D:=A^1;;
gap> gd:=GeneratorsOfLeftModule(D);;
gap> prefixrelsdom:=[gd[1]*(b-e)];;

It is possible to use the two-sided Gröbner basis which was already calculated.

gap> GBR:=SGrobnerModule(GP2NPList(prefixrelsdom),GBR.ts);;
#I number of entered polynomials is 6
#I number of polynomials after reduction is 6
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 4 msecs.
#I number of entered polynomials is 7
#I number of polynomials after reduction is 7
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 0 msecs.
gap> PrintNPList(GBR.p);;
[b - 1]
[a^3 - ab]
[a^2b - a^2]
gap> B:=BaseQM(GBR,2,1,0);;
gap> PrintNPList(B);
[1]
[a]
[a^2]
[ab]

To compute the image of right multiplication of the basis element B[Length(B)] of the module with
the quotient algebra element corresponding to ab we use the function MulQM (3.9.4) with arguments
B[Length(B)], GB2NP(a*b), and GBR We subsequently use PrintNP (3.2.1) to display the result as
a 1-dimensional vector with an entry from A.

gap> v := MulQM(B[Length(B)],GP2NP(a*b),GBR);
[[[-1]], [1]]
gap> PrintNP(v);
[1]

GBNP 90

A.18 The dihedral group of order 8 on another module

In this example (Example 2 from Linton [Lin93]) the two-sided relations give the group algebra of
the group with presentation ⟨a,b | a4 = b2 = (ab)2 = 1⟩, the dihedral group of order 8. This module
relation fixes the all-one vector of Example A.17: 1+a(1+a+b).

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 0 and the time infolevel
InfoGBNPTime (4.3.1) to 0 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,0);
gap> SetInfoLevel(InfoGBNPTime,0);

We will enter the relations as GAP polynomials. It is possible to enter these with and without a module.
How to do this is shown in A.17. The relations here are entered without a module, since the module
is only one-dimensional. It is possible to enter them using a free associative algebra with one over the
field (the rational numbers) (see also Reference: FreeAssociativeAlgebraWithOne for ring, rank
(and name)). For convenience we use the variables a and b for the generators of the algebra and e for
the one of the algebra.

gap> A:=FreeAssociativeAlgebraWithOne(Rationals, "a", "b");
<algebra-with-one over Rationals, with 2 generators>
gap> g:=GeneratorsOfAlgebra(A);;
gap> a:=g[2];;b:=g[3];;e:=g[1];;

Now the relations are entered:

gap> twosidrels:=[a^4-e,b^2-e,(a*b)^2-e];;
gap> prefrels:=[b-e, e + a * (e + a + b)];;

First the relations are converted into NP format (see 2.1) after which the function SGrobnerModule
(3.9.1) is called to calculate a Gröbner basis record.

gap> GBR:=SGrobnerModule(GP2NPList(prefrels),GP2NPList(twosidrels));;

The record GBR has two members: the two-sided relations GBR.ts and the prefix relations GBR.p. It
is possible to print these using the function PrintNPList (3.2.3):

gap> PrintNPList(GBR.ts);
b^2 - 1
aba - b
ba^2 - a^2b
bab - a^3
a^4 - 1
a^3b - ba

gap> PrintNPList(GBR.p);
[b - 1]
[ab + a^2 + a + 1]
[a^3 + a^2 + a + 1]
[a^2b - a^2]

GBNP 91

It is now possible to calculate the standard basis of the quotient module with the function BaseQM
(3.9.2). This function has as arguments the Gröbner basis record GBR, the number of generators of the
algebra (here it is 2), the number of generators of the mdoule (here it is 1), and a variable maxno for
returning partial bases (0 means full basis).

gap> B:=BaseQM(GBR,2,1,0);;
gap> PrintNPList(B);
[1]
[a]
[a^2]

A.19 The dihedral group on a non-cyclic module

In this example (Example 3 from Linton [Lin93]), the two-sided relations give the group algebra of the
group with presentation ⟨a,b | a4 = b2 = (ab)2 = 1⟩, the dihedral group of order 8. The module under
construction is a non-cyclic module, obtained by taking two copies of the representation of Example
A.17 and fusing their one-dimensional submodules.

Load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

Create the free associative algebra to enter the relations in:

gap> A:=FreeAssociativeAlgebraWithOne(Rationals, "a", "b");
<algebra-with-one over Rationals, with 2 generators>
gap> g:=GeneratorsOfAlgebra(A);;
gap> a:=g[2];;b:=g[3];;e:=g[1];;

Now the relations are entered:

gap> twosidrels:=[a^4-e,b^2-e,(a*b)^2-e];;
gap> D:=A^2;;
gap> y:=GeneratorsOfLeftModule(D);;
gap> modrels:=[y[1]*b-y[1], y[2]*b-y[2], y[1]+y[1]*a*(e+a+b) -y[2]-y[2]*a*(e+a+b)];;

First the relations are converted into NP format (see 2.1) with the function GP2NPList (3.1.2). They
are printed in raw form and subsequently in a more legible format.

gap> modrelsNP:=GP2NPList(modrels);
[[[[-1, 2], [-1]], [1, -1]], [[[-2, 2], [-2]], [1, -1]],

[[[-1, 1, 2], [-1, 1, 1], [-2, 1, 2], [-2, 1, 1], [-1, 1],
[-2, 1], [-1], [-2]], [1, 1, -1, -1, 1, -1, 1, -1]]]

gap> PrintNPList(modrelsNP);
[b - 1 , 0]
[0, b - 1]
[ab + a^2 + a + 1 , - ab - a^2 - a - 1]

GBNP 92

Next the function SGrobnerModule (3.9.1) is called to calculate a Gröbner basis record (see 2.8).

gap> GBR:=SGrobnerModule(modrelsNP,GP2NPList(twosidrels));;
#I number of entered polynomials is 3
#I number of polynomials after reduction is 3
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 0 msecs.
#I number of entered polynomials is 9
#I number of polynomials after reduction is 9
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 0 msecs.

The record GBR has two members: the two-sided relations GBR.ts and the prefix relations GBR.p. It
is possible to print these using the function PrintNPList (3.2.3):

gap> PrintNPList(GBR.ts);
b^2 - 1
aba - b
ba^2 - a^2b
bab - a^3
a^4 - 1
a^3b - ba

gap> PrintNPList(GBR.p);
[0, b - 1]
[b - 1 , 0]
[ab + a^2 + a + 1 , - ab - a^2 - a - 1]
[0, a^3 - ab]
[0, a^2b - a^2]
[a^3 + a^2 + a + 1 , - ab - a^2 - a - 1]
[a^2b - a^2 , 0]

It is now possible to calculate the standard basis of the quotient module with the function BaseQM
(3.9.2). This function has as arguments the Gröbner basis record GBR, the number of generators of the
algebra (in this case 2), the number of generators of the module (in this case 2), and a variable maxno
for returning partial bases (0 means full basis).

gap> B:=BaseQM(GBR,2,2,0);;
gap> PrintNPList(B);
[0, 1]
[1 , 0]
[0, a]
[a , 0]
[0, a^2]
[0, ab]
[a^2 , 0]

GBNP 93

It is also possible to convert each member of the list B of polynomials in NP form to GAP polynomials
to do further calculations within the algebra or module. This can be done with the function NP2GPList
(3.1.4).

gap> NP2GPList(B,D);
[[<zero> of ..., (1)*<identity ...>], [(1)*<identity ...>, <zero> of ...]

, [<zero> of ..., (1)*a], [(1)*a, <zero> of ...],
[<zero> of ..., (1)*a^2], [<zero> of ..., (1)*a*b],
[(1)*a^2, <zero> of ...]]

Individual GAP polynomials can be obtained from polynomials in NP form with the function NP2GP
(3.1.3). This also holds for elements of the free module D in NP form.

gap> Display(NP2GP(B[Length(B)],D));
[(1)*a^2, <zero> of ...]

Next we write down the matrices for the right action of the generators on the module by means of
MatrixQA (3.5.3).

gap> Display(MatrixQA(1,B,GBR));
[[0, 0, 1, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0],
[1, -1, 1, -1, 1, 1, -1]]

gap> Display(MatrixQA(2,B,GBR));
[[1, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[1, -1, 1, -1, 1, 1, -1],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1]]

In order to compute the image of the vector 2y[1]+3y[2] of the two standard generators of the module
under the action of the element aab, we use StrongNormalFormNPM (3.9.5). Its first argument will be
the vector and its second the Gröbner basis. The transformation GP2NP (3.1.1) to the NP format needs
to be applied to the vector before it can be used as an argument.

gap> v:=StrongNormalFormNPM(GP2NP((y[1]*2+y[2]*3)*a*a*b), GBR);;
gap> PrintNP(v);
[2a^2 , 3a^2]

A.20 The icosahedral group

In this example the two-sided relations give the group algebra of the group with presentation ⟨a,b,c |
a2 = b2 = c2 = (ab)3 = (bc)5 = (ac)2 = 1⟩, the icosahedral group of order 120. This is the Coxeter
group of type H3. The module under construction is a 3-dimensional reflection representation,

GBNP 94

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

Create the field containing the golden ratio tau.

gap> x := Indeterminate(Rationals,"x");
x
gap> p := x^2+ x-1;
x^2+x-1
gap> K := AlgebraicExtension(Rationals,p);
<algebraic extension over the Rationals of degree 2>
gap> tau:=RootOfDefiningPolynomial(K);
a

Create the free algebra with three generators over this field:

gap> A:=FreeAssociativeAlgebraWithOne(K, "a", "b", "c");
<algebra-with-one over <algebraic extension over the Rationals of degree
2>, with 3 generators>
gap> e:=One(A);; a:=A.a;; b:=A.b;; c:=A.c;;

The ideal for a quotient of the icosahedral group algebra over this field, in which b∗c has a quadratic
minimal polynomial involving tau:

gap> #(b*c)^2-tau*b*c+e
gap> Irels:=[a^2-e,b^2-e,c^2-e,a*b*a-b*a*b,((b*c)^2-tau*b*c+e)*(b*c-e),a*c-c*a];
[(!-1)*<identity ...>+(!1)*a^2, (!-1)*<identity ...>+(!1)*b^2,

(!-1)*<identity ...>+(!1)*c^2, (!1)*a*b*a+(!-1)*b*a*b,
(!-1)*<identity ...>+(a+1)*b*c+(-a-1)*(b*c)^2+(!1)*(b*c)^3,
(!1)*a*c+(!-1)*c*a]

We now give module relations. The first two describe group elements of a vector stabilizer, the third
forces the central element (abc)5 to be nontrivial.

gap> Mrels:=[b*c-e,b-e,(a*b*c)^5+e];;

First the relations are converted into NP format (see 2.1) with the function GP2NPList (3.1.2). Next
the function SGrobnerModule (3.9.1) is called to calculate a Gröbner basis record (see 2.8).

gap> GBR:=SGrobnerModule(GP2NPList(Mrels),GP2NPList(Irels));;
#I number of entered polynomials is 6
#I number of polynomials after reduction is 6
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV

GBNP 95

#I The computation took 16 msecs.
#I number of entered polynomials is 12
#I number of polynomials after reduction is 12
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 36 msecs.
gap> PrintNPList(GBR.ts);;
a^2 + !-1
b^2 + !-1
ca + !-1ac
c^2 + !-1
bab + !-1aba
cbc + !-1bcb + -a-1c + a+1b
bcba + !-1acba + !-1abcb + abac + cb + !-1bc + -a-2ba + a+2ab
cbac + !-1acba + !-1abcb + abac + cb + !-1bc + !-1ba + -a-1ac + a+2ab
bacba + abacb + !-1cba + !-1bcb + !-1abc + -a-2aba + c + a+2a

gap> PrintNPList(GBR.p);;
[b + !-1]
[c + !-1]
[ac + !-1a]
[aba + !-1ab]
[abc + ab + -aa + -a]

It is now possible to calculate the basis of the quotient algebra with the function BaseQM (3.9.2). This
function has as arguments the Gröbner basis record GBR, the number of generators of the algebra (in
this case 3), the number of generators of the free module in which the vectors are chosen (in this case
1), and a variable maxno for returning partial quotient algebras (0 means full basis).

gap> B:=BaseQM(GBR,3,1,0);;
gap> PrintNPList(B);
[!1]
[a]
[ab]

Calculate the dimension of the quotient algebra with the function DimQM (3.9.3). This function has as
arguments the Gröbner basis record GBR, the number of generators of the algebra (in this case 3) and
the number of generators of the module (in this case 1).

gap> DimQM(GBR,3,1);
3

Next we write down the matrices for the right action of the generators on the module by means of
MatrixQA (3.5.3).

gap> aa := MatrixQA(1,B,GBR);;
gap> Display(aa);
[[!0, !1, !0],

[!1, !0, !0],
[!0, !0, !1]]

GBNP 96

gap> bb := MatrixQA(2,B,GBR);;
gap> Display(bb);
[[!1, !0, !0],

[!0, !0, !1],
[!0, !1, !0]]

gap> cc := MatrixQA(3,B,GBR);;
gap> Display(cc);
[[!1, !0, !0],

[!0, !1, !0],
[a, a, !-1]]

Finally we check the defining relations for the icosahedral group on the three new matrix generators.
This can be done by verifying if the result is equal to the identity matrix or with the function IsOne
(Reference: IsOne).

gap> ee := IdentityMat(3,K);;
gap> Display(ee);
[[!1, !0, !0],

[!0, !1, !0],
[!0, !0, !1]]

gap> aa^2 = ee;
true
gap> IsOne(aa^2);
true
gap> IsOne(bb^2);
true
gap> IsOne(cc^2);
true
gap> IsOne((aa*bb)^3);
true
gap> IsOne((aa*cc)^2);
true
gap> IsOne((bb*cc)^5);
true

A.21 The symmetric inverse monoid for a set of size four

The algebra we will consider is from Example 4 from Linton [Lin93]. Its monomials form the sym-
metric inverse monoid, that is, the monoid of all partial bijections on a given set, for a set of size
four. The presentation is ⟨s1,s2,s3,e | s2

i = (s1s2)
3 = (s2s3)

3 = (s1s3)
2 = 1,e2 = e,s1e = es1,s2e =

es2,es3e = (es3)
2 = (s3e)2⟩. The dimension of the monoid algebra is 209. The monoid has a natural

representation of degree 4 by means of partial permutation matrices, which can be obtained by taking
prefix relations {e,s1 −1,s2 −1,s3e− s3}.

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

GBNP 97

Now enter the relations as GAP polynomials. The module is one dimensional so it is possible to
enter it with and without a module. In Example 18 (A.17) both ways are shown. Here the relations
will be entered without a module, with a free associative algebra with one over the field (the rational
numbers) (see also Reference: FreeAssociativeAlgebraWithOne for ring, rank (and name)). For
convenience we use the variables s1, s2, s3, and e for the generators of the algebra, and o for the
identity element of the algebra.

gap> A:=FreeAssociativeAlgebraWithOne(Rationals, "s1", "s2", "s3", "e");
<algebra-with-one over Rationals, with 4 generators>
gap> g:=GeneratorsOfAlgebra(A);;
gap> s1:=g[2];;s2:=g[3];;s3:=g[4];;e:=g[5];;o:=g[1];;

It is possible to print symbols like they are printed in the algebra A with the function
GBNP.ConfigPrint (3.2.2):

gap> GBNP.ConfigPrint(A);

Now the relations are entered:

gap> twosidrels:=[s1^2-o,s2^2-o,s3^2-o,(s1*s2)^3-o,(s2*s3)^3-o,(s1*s3)^2-o,
> e^2-e,s1*e-e*s1,s2*e-e*s2,e*s3*e-(e*s3)^2,e*s3*e-(s3*e)^2];
[(-1)*<identity ...>+(1)*s1^2, (-1)*<identity ...>+(1)*s2^2,

(-1)*<identity ...>+(1)*s3^2, (-1)*<identity ...>+(1)*(s1*s2)^3,
(-1)*<identity ...>+(1)*(s2*s3)^3, (-1)*<identity ...>+(1)*(s1*s3)^2,
(-1)*e+(1)*e^2, (1)*s1*e+(-1)*e*s1, (1)*s2*e+(-1)*e*s2,
(1)*e*s3*e+(-1)*(e*s3)^2, (1)*e*s3*e+(-1)*(s3*e)^2]

gap> prefixrels:=[e,s1-o,s2-o,s3*e-s3];
[(1)*e, (-1)*<identity ...>+(1)*s1, (-1)*<identity ...>+(1)*s2,

(-1)*s3+(1)*s3*e]

First the relations are converted into NP format (see 2.1) and next the function SGrobnerModule
(3.9.1) is called to calculate a Gröbner basis record.

gap> GBR:=SGrobnerModule(GP2NPList(prefixrels),GP2NPList(twosidrels));;
#I number of entered polynomials is 11
#I number of polynomials after reduction is 11
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 24 msecs.
#I number of entered polynomials is 42
#I number of polynomials after reduction is 42
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 20 msecs.

The record GBR has two members: the two-sided relations GBR.ts and the prefix relations GBR.p.
We print these using the function PrintNPList (3.2.3):

GBNP 98

gap> PrintNPList(GBR.ts);
s1^2 - 1
s2^2 - 1
s3s1 - s1s3
s3^2 - 1
es1 - s1e
es2 - s2e
e^2 - e
s2s1s2 - s1s2s1
s3s2s3 - s2s3s2
s3s2s1s3 - s2s3s2s1
s3es3e - es3e
es3es3 - es3e
s3es3s2e - es3s2e
s2s3s2es3e - s3s2es3e
s3es3s2s1e - es3s2s1e
es3s2es3s2 - es3s2es3
s2s3s2s1es3e - s3s2s1es3e
s2s3s2es3s2e - s3s2es3s2e
s2es3s2es3e - es3s2es3e
s1s2s1s3s2es3e - s2s1s3s2es3e
s2s3s2s1es3s2e - s3s2s1es3s2e
s2s3s2es3s2s1e - s3s2es3s2s1e
s2es3s2s1es3e - es3s2s1es3e
es3s2s1es3s2s1 - es3s2s1es3s2
s1s2s1s3s2s1es3e - s2s1s3s2s1es3e
s1s2s1s3s2es3s2e - s2s1s3s2es3s2e
s1s2s1es3s2es3e - s2s1es3s2es3e
s2s3s2s1es3s2s1e - s3s2s1es3s2s1e
s2es3s2s1es3s2e - es3s2s1es3s2e
s1s2s1s3s2s1es3s2e - s2s1s3s2s1es3s2e
s1s2s1s3s2es3s2s1e - s2s1s3s2es3s2s1e
s1s2s1es3s2s1es3e - s2s1es3s2s1es3e
s1s3s2s1es3s2es3e - s3s2s1es3s2es3e
s1s2s1s3s2s1es3s2s1e - s2s1s3s2s1es3s2s1e
s1s2s1es3s2s1es3s2e - s2s1es3s2s1es3s2e
s1s3s2s1es3s2s1es3e - s3s2s1es3s2s1es3e
s1es3s2s1es3s2es3e - es3s2s1es3s2es3e
s1s3s2s1es3s2s1es3s2e - s3s2s1es3s2s1es3s2e

gap> PrintNPList(GBR.p);
[s1 - 1]
[s2 - 1]
[e]
[s3e - s3]
[s3s2e - s3s2]
[s3s2s1e - s3s2s1]

It is now possible to calculate the standard basis of the quotient module with the function BaseQM
(3.9.2). This function has as arguments the Gröbner basis record GBR, the number of generators of the
algebra (here this is 4), the number of generators of the module (here this is 1), and a variable maxno
for returning partial bases (0 means full basis).

GBNP 99

gap> B:=BaseQM(GBR,4,1,0);;
gap> PrintNPList(B);
[1]
[s3]
[s3s2]
[s3s2s1]

Next we write down the matrices for the right action of the generators on the module. First by means
of the list command MatricesQA (3.5.4), next one by one by means of MatrixQA (3.5.3) within a
loop.

gap> MatricesQA(4,B,GBR);
[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]],

[[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]],
[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]

gap> for i in [1..4] do
> Display(MatrixQA(i,B,GBR)); Print("\n");
> od;
[[1, 0, 0, 0],

[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]]

[[1, 0, 0, 0],
[0, 0, 1, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]]

[[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]

[[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]

A.22 A module of the Hecke algebra of type A3 over GF(3)

This example is an extension of Example 5 from Linton, [Lin93]. It concerns the Hecke Algebra of
type A3. By reducing mod 3 but without evaluating at q = 1 it is possible to obtain the following
representation of the Hecke algebra of type A3 over GF(3): ⟨x,y,z | x2 +(1−q)∗ x−q,y2 +(1−q)∗
y−q,z2+(1−q)∗z−q,y∗x∗y−x∗y∗x,z∗y∗z−y∗z∗y,z∗x−x∗z⟩. It has a natural representation
of the same dimension as the Lie algebra of type A3, namely 4. This representation can be obtained
with the module relations {x+1,y+1}.

GBNP 100

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 1 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

Now enter the relations as GAP polynomials. The module is one dimensional so it is possible to enter
it with and without a module. Both are used in Example A.17. Here the relations will be entered
without using a module. First a free associative algebra with one is created over the field (GF(3)) (see
also Reference: FreeAssociativeAlgebraWithOne for ring, rank (and name)). For convenience
we use the variables a and b for the generators of the algebra and e for the one of the algebra.

gap> q:=Indeterminate(GF(3),"q");
q
gap> A:=FreeAssociativeAlgebraWithOne(Field(q), "x", "y", "z");;
gap> g:=GeneratorsOfAlgebra(A);;
gap> x:=g[2];;y:=g[3];;z:=g[4];;e:=g[1];;q:=q*e;;

In order to print the variables like they are printed in the algebra A with the function
GBNP.ConfigPrint (3.2.2):

gap> GBNP.ConfigPrint(A);

Now the relations are entered:

gap> twosidrels:=[x^2+(e-q)*x-q,y^2+(e-q)*y-q,z^2+(e-q)*z-q,
> y*x*y-x*y*x,z*y*z-y*z*y,z*x-x*z];
[(-q)*<identity ...>+(-q+Z(3)^0)*x+(Z(3)^0)*x^2,

(-q)*<identity ...>+(-q+Z(3)^0)*y+(Z(3)^0)*y^2,
(-q)*<identity ...>+(-q+Z(3)^0)*z+(Z(3)^0)*z^2,
(-Z(3)^0)*x*y*x+(Z(3)^0)*y*x*y, (-Z(3)^0)*y*z*y+(Z(3)^0)*z*y*z,
(-Z(3)^0)*x*z+(Z(3)^0)*z*x]

gap> prefixrels:=[x+e,y+e];
[(Z(3)^0)*<identity ...>+(Z(3)^0)*x, (Z(3)^0)*<identity ...>+(Z(3)^0)*y]

First the relations are converted into NP format (see 2.1) after which the function SGrobnerModule
(3.9.1) is called to calculate a Gröbner basis record.

gap> GBR:=SGrobnerModule(GP2NPList(prefixrels),GP2NPList(twosidrels));;
#I number of entered polynomials is 6
#I number of polynomials after reduction is 6
#I End of phase I
#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 4 msecs.
#I number of entered polynomials is 9
#I number of polynomials after reduction is 9
#I End of phase I

GBNP 101

#I End of phase II
#I End of phase III
#I End of phase IV
#I The computation took 8 msecs.

The record GBR has three members: the two-sided relations GBR.ts, the prefix relations GBR.p, and
the number GBR.pg of generators of the free module. It is possible to print the first two using the
function PrintNPList (3.2.3):

gap> PrintNPList(GBR.ts);
x^2 + -q+Z(3)^0x + -q
y^2 + -q+Z(3)^0y + -q
zx + -Z(3)^0xz
z^2 + -q+Z(3)^0z + -q
yxy + -Z(3)^0xyx
zyz + -Z(3)^0yzy
zyxz + -Z(3)^0yzyx

gap> PrintNPList(GBR.p);
[x + Z(3)^0]
[y + Z(3)^0]

It is now possible to calculate the standard basis of the quotient module with the function BaseQM
(3.9.2). This function has as arguments the Gröbner basis record GBR, the number of generators of the
algebra (here this is 3), the number of generators of the module (here this is 1), and a variable maxno
for returning partial bases (0 means full basis).

gap> B:=BaseQM(GBR,3,1,0);;
gap> PrintNPList(B);
[Z(3)^0]
[z]
[zy]
[zyx]

Next we write down the matrices for the right action of the generators on the module, by means of the
command MatricesQA (3.5.4).

gap> MM := MatricesQA(3,B,GBR);;
gap> for i in [1..Length(MM)] do
> Display(MM[i]); Print("\n");
> od;
[[-Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3)],

[0*Z(3), -Z(3)^0, 0*Z(3), 0*Z(3)],
[0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0],
[0*Z(3), 0*Z(3), q, q-Z(3)^0]]

[[-Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3)],
[0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3)],
[0*Z(3), q, q-Z(3)^0, 0*Z(3)],
[0*Z(3), 0*Z(3), 0*Z(3), -Z(3)^0]]

[[0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3)],

GBNP 102

[q, q-Z(3)^0, 0*Z(3), 0*Z(3)],
[0*Z(3), 0*Z(3), -Z(3)^0, 0*Z(3)],
[0*Z(3), 0*Z(3), 0*Z(3), -Z(3)^0]]

A.23 Generalized Temperley-Lieb algebras

This example shows how the dimension of a Generalized Temperley-Lieb Algebra of type A, D, or
E can be calculated. For An−1 this is the usual Temperley-Lieb Algebra on n strands with dimension
dim TL(An−1) =

(2n
n

)
/(n+1). For more information see [Gra95].

First load the package and set the standard infolevel InfoGBNP (4.2.1) to 0 and the time infolevel
InfoGBNPTime (4.3.1) to 1 (for more information about timing; see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,0);
gap> SetInfoLevel(InfoGBNPTime,1);

The relations are generated automatically from the Coxeter diagram. This example can be easily
adapted by specifying the number of points and the set of edges describing another Coxeter diagram.
First enter the number of points, numpoints.

gap> numpoints:=8;
8

Now define some edges describing the diagrams of En, (these can be easily extended). In this example
the dimension of the Generalized Temperley-Lieb algebra of type E8 will be calculated. For A1...10 the
command

edges:=[[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10]];
can be used. For D1...10 the command
edges:=[[1,3],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10]]; can
be used.

gap> edges:=[[1,3],[2,4],[3,4],[4,5],[5,6],[6,7],[7,8]]; # for E6..8
[[1, 3], [2, 4], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8]]

Now enter the relations as GAP polynomials. First a free associative algebra with identity element
is created over the Rationals (see also Reference: FreeAssociativeAlgebraWithOne for ring, rank
(and name)). For convenience the generators are stored in gens.

gap> A:=FreeAssociativeAlgebraWithOne(Rationals,numpoints,"e");;
gap> e := GeneratorsOfAlgebraWithOne(A);
[(1)*e.1, (1)*e.2, (1)*e.3, (1)*e.4, (1)*e.5, (1)*e.6, (1)*e.7, (1)*e.8]

It is possible to print symbols like they are printed in the algebra A with the function
GBNP.ConfigPrint (3.2.2):

gap> GBNP.ConfigPrint(A);

GBNP 103

Now the relations are generated automatically. For this we need to make sure the edges are sorted and
converted to a set.

gap> edges:=Set(edges, x->SortedList(x));
[[1, 3], [2, 4], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8]]

Now the relations can be generated. The relations are ei ∗ ei = ei, for all i and ei ∗ e j ∗ ei = ei for all i, j
that are connected in the Coxeter diagram and ei ∗ e j = e j ∗ ei for all i, j that are not connected in the
Coxeter diagram.

gap> rels:=[];;
gap> for i in [1..numpoints] do
> for j in [1..numpoints] do
> if (i=j) then
> # if i=j then add e.i*e.i=e.i
> Add(rels, e[i]*e[i]-e[i]);
> elif ([i,j] in edges) or ([j,i] in edges) then
> # if {i,j} is an edge then add e.i*e.j*e.i=e.i
> Add(rels, e[i]*e[j]*e[i]- e[i]);
> else
> # if {i,j} is not an edge then add e.i*e.j=e.j*e.i
> # (note: this causes double rules, but that’s ok)
> Add(rels, e[i]*e[j]- e[j]*e[i]);
> fi;
> od;
> od;

Then the relations are converted into NP format (see 2.1) after which the function SGrobner (3.4.2)
is called to calculate a Gröbner basis.

gap> relsNP:=GP2NPList(rels);;
gap> GB:=SGrobner(relsNP);;
#I The computation took 184 msecs.

It is now possible to calculate the dimension of the quotient algebra with the function DimQA (3.5.2).
This function has as arguments the Gröbner basis GB and the number of generators of the algebra (here
this is numpoints). To get the full basis the function BaseQA (3.5.1) can be used.

gap> DimQA(GB,numpoints);
10846

A.24 The universal enveloping algebra of a Lie algebra

Consider the Lie algebra with generators e, f and h, and relations [e, f] = h, [e,h] =−2e, [f ,h] = 2 f .
This is the well-known Lie algebra of type A1. We construct the corresponding universal enveloping
algebra of this Lie algebra and show how one can prove that f 2 belongs to the ideal generated by e2

in that associative algebra. The example is from Knopper’s report [Kno04].
First load the package and set the standard infolevel InfoGBNP (4.2.1) to 0 and the time infolevel

InfoGBNPTime (4.3.1) to 0 (for more information about the info level, see Chapter 4).

GBNP 104

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,0);
gap> SetInfoLevel(InfoGBNPTime,0);

Then define the algebra and enter the relations as polynomials in GAP.

gap> A:=FreeAssociativeAlgebraWithOne(Rationals, "e", "f", "h");
<algebra-with-one over Rationals, with 3 generators>
gap> e:=A.e;; f:=A.f;; h:=A.h;; o:=One(A);;
gap> uerels:=[f*e-e*f+h,h*e-e*h-2*e,h*f-f*h+2*f];
[(1)*h+(-1)*e*f+(1)*f*e, (-2)*e+(-1)*e*h+(1)*h*e, (2)*f+(-1)*f*h+(1)*h*f]

The relations can be converted to NP format (see 2.1) with the function GP2NPList (3.1.2) and can be
subsequently displayed with PrintNPList (3.2.3).

gap> uerelsNP:=GP2NPList(uerels);;
gap> PrintNPList(uerelsNP);
ba - ab + c
ca - ac - 2a
cb - bc + 2b

Now configure printing in such a way that this algebra is used with the function GBNP.ConfigPrint
(3.2.2).

gap> GBNP.ConfigPrint(A);

The set is actually a Gröbner basis, as can be verified by calculating the Gröbner basis with SGrobner
(3.4.2).

gap> GB:=SGrobner(uerelsNP);;
gap> PrintNPList(GB);
fe - ef + h
he - eh - 2e
hf - fh + 2f

Determine whether the quotient algebra is finite dimensional by means of FinCheckQA (3.6.2), with
arguments the leading monomials of GB and 3, the number of variables involved. The leading mono-
mials of GB are found by invoking LMonsNP (3.3.10).

gap> F:=LMonsNP(GB);
[[2, 1], [3, 1], [3, 2]]
gap> FinCheckQA(F,3);
false

Adding the relation e2 = 0 results in a finite quotient algebra.

gap> extendedrels:=[f*e-e*f+h,h*e-e*h-2*e,h*f-f*h+2*f,e^2];
[(1)*h+(-1)*e*f+(1)*f*e, (-2)*e+(-1)*e*h+(1)*h*e, (2)*f+(-1)*f*h+(1)*h*f,

(1)*e^2]
gap> extendedrelsNP:=GP2NPList(extendedrels);;

GBNP 105

With the function SGrobnerTrace (3.7.5) it is possible to calculate a Gröbner basis with trace infor-
mation.

gap> GB:=SGrobnerTrace(extendedrelsNP);;

The Gröbner basis can now be displayed with PrintNPListTrace (3.7.4).

gap> PrintNPListTrace(GB);
e^2
eh + e
fe - ef + h
f^2
fh - f
he - e
hf + f
h^2 - 2ef + h

Note the fourth relation: f 2 = 0. To view a trace one can use the function PrintTracePol (3.7.3).

gap> PrintTracePol(GB[4]);
- 1/12G(1)f^2 + 1/12f^2G(1) + 1/12f^2G(1)h - 1/6fG(1)hf + 1/12G(1)hf^2 + 1/
24G(1)ef^3 + 1/24eG(1)f^3 - 1/8fG(1)ef^2 - 1/8feG(1)f^2 + 1/8f^2G(1)ef + 1/
8f^2eG(1)f - 1/24f^3G(1)e - 1/24f^3eG(1) - 1/24G(2)f^3 + 1/8fG(2)f^2 - 1/
8f^2G(2)f + 1/24f^3G(2) + 1/4G(3)f + 1/4fG(3) + 1/12fG(3)h + 1/12fhG(3) - 1/
12G(3)hf - 1/12hG(3)f - 1/12eG(3)f^2 + 1/6feG(3)f - 1/12f^2eG(3) + 1/24G(
4)f^4 - 1/6fG(4)f^3 + 1/4f^2G(4)f^2 - 1/6f^3G(4)f + 1/24f^4G(4)

This proves that f 2 = 0 is a consequence of e2 = 0 in the universal enveloping algebra of the simple
Lie algebra of type A1.

The function StrongNormalFormTraceDiff (3.7.6) can be used to trace the difference between
an element and its strong normal form in the terms of extendedrels. Apparently, in the first example
the strong normal form of r is r - s.pol=0.

gap> r := [[[2,2,2,2,1,1,1,1]],[1]];;
gap> s := StrongNormalFormTraceDiff(r, GB);;

gap> PrintNP(s.pol);
f^4e^4

gap> PrintTracePol(s);
f^4G(4)e^2

gap> PrintNP(AddNP(r,s.pol,1,-1));
0

One more example where the strong normal form is not zero.

gap> r := [[[3,3,3]],[1]];;
gap> s := StrongNormalFormTraceDiff(r, GB);;

gap> PrintNP(s.pol);
h^3 - h

gap> PrintTracePol(s);

GBNP 106

- G(1) - 1/2G(1)ef - 1/6eG(1)f + 1/3efG(1) + 1/2fG(1)e + 1/2feG(1) + G(
1)h^2 + 1/2G(1)efh + 1/2eG(1)fh + 1/3efG(1)h - 1/3eG(1)hf - 1/2fG(1)eh - 1/
2feG(1)h - 1/6eG(1)ef^2 - 1/6e^2G(1)f^2 + 1/3efG(1)ef + 1/3efeG(1)f - 1/
6ef^2G(1)e - 1/6ef^2eG(1) + 1/2G(2)f - 1/2fG(2) - 1/2G(2)fh + 1/2fG(2)h + 1/
6eG(2)f^2 - 1/3efG(2)f + 1/6ef^2G(2) - 2/3eG(3)h + 1/3ehG(3) + 1/3e^2G(3)f -
1/3efeG(3) - 1/2G(4)f^2 + fG(4)f - 1/2f^2G(4) + 1/2G(4)f^2h - fG(4)fh + 1/
2f^2G(4)h - 1/6eG(4)f^3 + 1/2efG(4)f^2 - 1/2ef^2G(4)f + 1/6ef^3G(4)
gap> PrintNP(AddNP(r,s.pol,1,-1));
h

A.25 Serre’s exercise
gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,1);
gap> SetInfoLevel(InfoGBNPTime,1);

In Serre’s book [Ser03] the following exercise can be found: Prove that the group〈
{a,b,c} | {bab−1a−2,cbc−1b−2,aca−1c−2}

〉
is the trivial group. Here we solve the exercise by run-

ning the trace variant of the Gröbner basis function with input the set of equations ba− a2b,cb−
b2c,ac− c2a together with relations forcing that a,b,c are invertible with inverse A,B,C.

gap> KI := [[[[2,1],[1,1,2]],[1,-1]],
> [[[3,2],[2,2,3]],[1,-1]],
> [[[1,3],[3,3,1]],[1,-1]],
> [[[1,4], []],[1,-1]],
> [[[4,1], []],[1,-1]],
> [[[2,5], []],[1,-1]],
> [[[5,2], []],[1,-1]],
> [[[3,6], []],[1,-1]],
> [[[6,3], []],[1,-1]],
>];;
gap> PrintNPList(KI);
ba - a^2b
cb - b^2c
ac - c^2a
ad - 1
da - 1
be - 1
eb - 1
cf - 1
fc - 1

We use SGrobnerTrace (3.7.5), the trace variant of the Gröbner basis computation,

gap> GB := SGrobnerTrace(KI);;
#I number of entered polynomials is 9
#I number of polynomials after reduction is 9
#I End of phase I
#I End of phase II

GBNP 107

#I List of todo lengths is [9, 10, 11, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 31, 34, 33, 35, 37, 40,
43, 46, 49, 52, 56, 59, 62, 61, 60, 64, 64, 65, 65, 68, 71, 76, 76, 80, 88,
93, 94, 99, 110, 115, 117, 131, 139, 146, 150, 158, 171, 186, 198, 206,
220, 229, 246, 260, 263, 102, 40, 19, 9, 3, 0]

#I End of phase III
#I End of phase IV
#I The computation took 19308 msecs.

The dimension of the quotient algebra is 1, showing that the group algebra is 1-dimensional. This
implies that the group with the above presentation is trivial.

gap> GBpols := List([1..Length(GB)], x -> GB[x].pol);;
gap> PrintNPList(GBpols);
a - 1
b - 1
c - 1
d - 1
e - 1
f - 1

gap> DimQA(GBpols,6);
1

Since the output is large and might spoil the exercise, we confine ourselves to the printing first poly-
nomial GB[1] and the length of its trace. As the trace polynomial expresses GB[1], which is equal
to a− 1, as a combination of the binomials in KI, it gives a proof that a can be rewritten within the
group to the trivial element. It is easy to derive from this that b and c are also trivial in the group. This
justifies the restriction to GB[1].

gap> PrintNP(GB[1].pol);
a - 1

gap> Length(GB[1].trace);
1119

A.26 Baur and Draisma’s transformations
gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,0);
gap> SetInfoLevel(InfoGBNPTime,0);

The paper [BD04] by Baur and Draisma uses the computation of a quotient algebra of dimension 37,
which we repeat here. The set of equations, after specialisation of the scalars to 1, is as follows.

gap> KI := [[[[2,2]],[1]],
> [[[1,1]],[1]],
> [[[3,3]],[1]],
> [[[1,2,1],[1]],[1,-1]],
> [[[2,1,2],[2]],[1,-1]],
> [[[3,2,3],[3]],[1,-1]],

GBNP 108

> [[[2,3,2],[2]],[1,-1]],
> [[[1,3,1],[1]],[1,-1]],
> [[[3,1,3],[3]],[1,-1]],
> [[[1,2,3,1,2,3,1],[1,3,2,1,3,2,1],[1]],[1,1,-1]],
> [[[3,1,2,3,1,2,3],[3,2,1,3,2,1,3],[3]],[1,1,-1]],
> [[[2,3,1,2,3,1,2],[2,1,3,2,1,3,2],[2]],[1,1,-1]],
>];;
gap> PrintNPList(KI);
b^2
a^2
c^2
aba - a
bab - b
cbc - c
bcb - b
aca - a
cac - c
abcabca + acbacba - a
cabcabc + cbacbac - c
bcabcab + bacbacb - b

We carry out a traced Gröbner basis computation by use of SGrobnerTrace (3.7.5), and form the usual
Gröbner basis by extracting the polynomials from the traced polynomials using the field indicator
.pol.

gap> GBT := SGrobnerTrace(KI);;
gap> GB := List([1..Length(GBT)], i -> GBT[i].pol);;

The dimension of the quotient algebra is computable with DimQA (3.5.2).

gap> DimQA(GB,3);
37

In order to express the last GB element, viz.

gap> PrintNP(GB[Length(GB)]);
cabcabca + cbacba - ca

as a combination of elements of KI, we use PrintTracePol (3.7.3):

gap> PrintTracePol(GBT[Length(GBT)]);
- G(9)bacba + cG(10)

We compute matrices for left multiplication by generators using MatricesQA (3.5.4) and determine
the minimal polynomial of the sum of the three matrices.

gap> B := BaseQA(GB,3,0);;
gap> M := MatricesQA(3,B,GB);;
gap> f := MinimalPolynomial(Rationals,M[1]+M[2]+M[3]);
x_1^7-6*x_1^5+9*x_1^3-3*x_1
gap> Factors(f);
[x_1, x_1^6-6*x_1^4+9*x_1^2-3]

GBNP 109

It turns out that there are three non-zero numbers u,v,w such that the eigenvalues of the sum are
0,u,v,w,−u,−v,−w. This is the information used in [BD04].

A.27 The cola gene puzzle

A prize question appearing in the January 2005 issue of the Dutch journal "Natuur en Techniek"
asked for a DNA change of cows so that they could produce Cola instead of milk. A team of genetic
manipulators has tools to perform the following five DNA string operations. (Here the strings before
and after the equality sign can be interchanged at will.)

operation 1: TCAT = T;
operation 2: GAG = AG;
operation 3: CTC = TC;
operation 4: AGTA = A;
operation 5: TAT = CT.
The first question is to show how they can transform the milk gene TAGCTAGCTAGCT to the

cola gene CTGACTGACT.
A second question is to show that mad cow disease related retro virus CTGCTACTGACT can be

avoided at all times. Can this be guaranteed?
We answer these questions using the trace functions of the Gröbner basis package GBNP in Sec-

tion 3.7.
First load the package and set the standard infolevel InfoGBNP (4.2.1) to 0 and the time infolevel

InfoGBNPTime (4.3.1) to 0 to minimize the printing of data regarding the computation (for more
information about the info level, see Chapter 4).

gap> LoadPackage("gbnp", false);
true
gap> SetInfoLevel(InfoGBNP,0);
gap> SetInfoLevel(InfoGBNPTime,0);

We introduce the free algebra ALG on the generators corresponding to the four letters in the DNA code
and express the milk gene and cola gene as monomials in this algebra.

gap> ALG:=FreeAssociativeAlgebraWithOne(Rationals, "A", "C", "G", "T");;
gap> g:=GeneratorsOfAlgebra(ALG);;
gap> A:=g[2];;
gap> C:=g[3];;
gap> G:=g[4];;
gap> T:=g[5];;

gap> milk := T*A*G*C*T*A*G*C*T*A*G*C*T;;
gap> cola := C*T*G*A*C*T*G*A*C*T;;

We next enter the set K of binomials x−y corresponding to the five operations x = y listed above. We
enter the binomials as members of ALG and let KNP be the corresponding set of NP polynomials.

gap> rule1 := T*C*A*T - T;;
gap> rule2 := G*A*G - A*G;;
gap> rule3 := C*T*C - T*C;;
gap> rule4 := A*G*T*A - A;;

GBNP 110

gap> rule5 := T*A*T - C*T;;
gap> K := [rule1,rule2,rule3,rule4,rule5];;
gap> KNP := List(K,x-> GP2NP(x));;

We stipulate how the variables will be printed and print KNP. See PrintNPList (3.2.3).

gap> GBNP.ConfigPrint("A","C","G","T");
gap> PrintNPList(KNP);
TCAT - T
GAG - AG
CTC - TC
AGTA - A
TAT - CT

Now calculate the usual Gröbner basis with SGrobner (3.4.2).

gap> GB := SGrobner(KNP);;

Compare milk and cola after taking their strong normal forms with respect to GB using
StrongNormalFormNP (3.5.6). We oberve that they have the same normal form and so there is a
way to transform the milk gene into the cola gene.

gap> milkNP := GP2NP(milk);;
gap> colaNP := GP2NP(cola);;
gap> milkRed := NP2GP(StrongNormalFormNP(milkNP,GB),ALG);
(1)*T
gap> colaRed := NP2GP(StrongNormalFormNP(colaNP,GB),ALG);
(1)*T

But this information does not yet show us how to perform the transformation. To this end we calculate
the Gröbner basis with trace information, using the function SGrobnerTrace (3.7.5).

gap> GTrace := SGrobnerTrace(KNP);;

The full trace can be printed with PrintTraceList (3.7.2), but we only print the relations (and no
trace) by invoking PrintNPListTrace (3.7.4).

gap> PrintNPListTrace(GTrace);
CT - T
GA - A
AGT - AT
ATA - A
TAT - T
TCA - TA

In order to display a proof that milk−cola belongs to the ideal we use StrongNormalFormTraceDiff
(3.7.6), The result is a record, p say, containing milk-cola in the field p.pol (the normal form will
be subtracted from the argument milk-cola to obtain p.pol, but the normal form is zero because the
argument belongs to the ideal generated by K). The other field of the record p is p.trace, the traced
polynomial, which is best displayed by use of PrintTracePol (3.7.3).

GBNP 111

gap> p := StrongNormalFormTraceDiff(CleanNP(GP2NP(milk-cola)),GTrace);;
gap> NP2GP(p.pol,ALG);
(1)*(T*A*G*C)^3*T+(-1)*(C*T*G*A)^2*C*T
gap> PrintTracePol(p);
- TGATGAG(1) + TAGG(1)ATAT - TATATAGG(1) - TGAG(1)GACT + TGATGACG(1) - G(
1)GACTGACT - TAGCG(1)ATAT - TATAGG(1)AGT + TATATAGCG(1) + TGACG(1)GACT + CG(
1)GACTGACT - TAGG(1)AGTAGT + TAGTAGTAGG(1) + TATAGCG(1)AGT + TAGCG(
1)AGTAGT + TAGTAGG(1)AGCT - TAGTAGTAGCG(1) + TAGG(1)AGCTAGCT - TAGTAGCG(
1)AGCT - TAGCG(1)AGCTAGCT - TATG(2)TAT - TG(2)TATGAT - TGATGAG(3)AT + TAGG(
3)ATATAT - TATATAGG(3)AT - TGAG(3)ATGACT - G(3)ATGACTGACT - TATAGG(
3)ATAGT - TAGG(3)ATAGTAGT + TAGTAGTAGG(3)AT + TAGTAGG(3)ATAGCT + TAGG(
3)ATAGCTAGCT - TATG(4)T + TG(4)TAT + TATGG(4)T - TG(4)TGAT + TATATG(4)T + TGG(
4)TGAT - TG(4)TATAT + TATG(4)TAGT + TG(4)TAGTAGT + TAGG(5)ATAT - TATATAGG(
5) - TATAGG(5)AGT - TAGG(5)AGTAGT

In order to give a precise answer to the first question we need to work a little on p.trace. To do so,
we introduce the following function, which creates the NP polynomial corresponding to the i-th term
in the expression p.trace of p.pol as a linear combination of members of KNP. It is used to obtain
the list EvalList of polynomials for all i.

gap> EvalTracePol := function(i,p,KNP)
> local x,pi;
> pi := p.trace[i];
> x := BimulNP(pi[1],KNP[pi[2]],pi[3]);
> return [x[1],pi[4]*x[2]];
> end;;

gap> lev := Length(p.trace);;
gap> EvalList := List([1..lev], y -> CleanNP(EvalTracePol(y,p,KNP)));;

In order to find the rewrite from the milk gene to the cola gene as required for an answer to the first
question, we match leading terms recursively.

gap> UnusedIndices := Set([1..lev]);;
gap> RunningTerm := milkNP[1][1];;
gap> stepno := 0;;
gap> NP2GP(milkNP,ALG);
(1)*(T*A*G*C)^3*T
gap> while Length(UnusedIndices) > 0 do
> i := 0;
> notfnd := true;
> while i < lev and notfnd do
> i := i+1;
> if EvalList[i][1][1] = RunningTerm and i in UnusedIndices then
> notfnd := false;
> RemoveSet(UnusedIndices, i);
> RunningTerm := EvalList[i][1][2];
> stepno := stepno+1;
> elif EvalList[i][1][2] = RunningTerm and i in UnusedIndices then
> notfnd := false;
> RemoveSet(UnusedIndices, i);

GBNP 112

> RunningTerm := EvalList[i][1][1];
> stepno := stepno+1;
> fi;
> od;
> if i = lev and notfnd = true then Print("error not fnd in"); fi;
> Print(" -(",stepno,")- ");
> PrintNP([[p.trace[i][1]],[1]]);
> Print(" K[",p.trace[i][2],"]\n ");
> PrintNP([[p.trace[i][3]],[1]]);
> Print(" --> ");
> PrintNP([[EvalList[i][1][2]],[1]]);
> od;;
-(1)- TAGC

K[1]
AGCTAGCT

--> TAGCTAGCTAGCT
-(2)- TAG

K[3]
ATAGCTAGCT

--> TAGTCATAGCTAGCT
-(3)- TAG

K[1]
AGCTAGCT

--> TAGTAGCTAGCT
-(4)- TAGTAGC

K[1]
AGCT

--> TAGTAGCTAGCT
-(5)- TAGTAG

K[3]
ATAGCT

--> TAGTAGTCATAGCT
-(6)- TAGTAG

K[1]
AGCT

--> TAGTAGTAGCT
-(7)- TAGTAGTAGC

K[1]
1

--> TAGTAGTAGCT
-(8)- TAGTAGTAG

K[3]
AT

--> TAGTAGTAGTCAT
-(9)- TAGTAGTAG

K[1]
1

--> TAGTAGTAGT
-(10)- TAG

K[1]
AGTAGT

--> TAGTAGTAGT

GBNP 113

-(11)- TAG
K[3]
ATAGTAGT

--> TAGTCATAGTAGT
-(12)- TAGC

K[1]
AGTAGT

--> TAGCTAGTAGT
-(13)- TAG

K[5]
AGTAGT

--> TAGCTAGTAGT
-(14)- T

K[4]
TAGTAGT

--> TATAGTAGT
-(15)- TATAG

K[1]
AGT

--> TATAGTAGT
-(16)- TATAG

K[3]
ATAGT

--> TATAGTCATAGT
-(17)- TATAGC

K[1]
AGT

--> TATAGCTAGT
-(18)- TATAG

K[5]
AGT

--> TATAGCTAGT
-(19)- TAT

K[4]
TAGT

--> TATATAGT
-(20)- TATATAG

K[1]
1

--> TATATAGT
-(21)- TATATAG

K[3]
AT

--> TATATAGTCAT
-(22)- TATATAGC

K[1]
1

--> TATATAGCT
-(23)- TATATAG

K[5]
1

--> TATATAGCT

GBNP 114

-(24)- TATAT
K[4]
T

--> TATATAT
-(25)- T

K[4]
TATAT

--> TATATAT
-(26)- TAG

K[5]
ATAT

--> TAGCTATAT
-(27)- TAGC

K[1]
ATAT

--> TAGCTATAT
-(28)- TAG

K[3]
ATATAT

--> TAGTCATATAT
-(29)- TAG

K[1]
ATAT

--> TAGTATAT
-(30)- T

K[4]
TAT

--> TATAT
-(31)- TAT

K[4]
T

--> TATAT
-(32)- TAT

K[2]
TAT

--> TATAGTAT
-(33)- TATG

K[4]
T

--> TATGAT
-(34)- T

K[4]
TGAT

--> TATGAT
-(35)- T

K[2]
TATGAT

--> TAGTATGAT
-(36)- TG

K[4]
TGAT

--> TGATGAT

GBNP 115

-(37)- TGATGA
K[1]
1

--> TGATGAT
-(38)- TGATGA

K[3]
AT

--> TGATGATCAT
-(39)- TGATGAC

K[1]
1

--> TGATGACT
-(40)- TGA

K[1]
GACT

--> TGATGACT
-(41)- TGA

K[3]
ATGACT

--> TGATCATGACT
-(42)- TGAC

K[1]
GACT

--> TGACTGACT
-(43)- 1

K[1]
GACTGACT

--> TGACTGACT
-(44)- 1

K[3]
ATGACTGACT

--> TCATGACTGACT
-(45)- C

K[1]
GACTGACT

--> CTGACTGACT
gap> NP2GP(colaNP,ALG);
(1)*(C*T*G*A)^2*C*T

And now the second question regarding the retro virus.

gap> retro := C*T*G*C*T*A*C*T*G*A*C*T;;

We compute the Strong Normal Form StrongNormalFormNP (3.5.6) of retro with respect to GB. As
it is TGT, distinct to T, the strong normal form of milk, there is no transformation from milk to retro.

gap> NP2GP(StrongNormalFormNP(CleanNP(GP2NP(retro)),GB), ALG);
(1)*T*G*T

Of course, here too we can verify the reduction, by computing StrongNormalFormTraceDiff (3.7.6)
with input the NP polynomial corresponding to retro and with respect to K; it is called retroTrace.

GBNP 116

The symbol G in expression like G(2) are not to be confused with the single symbols G representing
the DNA element.

gap> retroTrace := StrongNormalFormTraceDiff(CleanNP(GP2NP(retro)),GTrace);;
gap> PrintTracePol(retroTrace);
TGG(1) - TGC^2G(1) - TGTAG(1) + TGTACG(1) + TGTAGG(1)AT + TGTATGAG(

1) + TGTAG(1)GACT - TGTAGCG(1)AT - TGTATGACG(1) + TGG(1)ACTGACT - TGTACG(
1)GACT + G(1)GCTACTGACT - TGCG(1)ACTGACT - CG(1)GCTACTGACT + TGTATG(
2)TAT + TGG(3)AT + TGCG(3)AT - TGTAG(3)AT + TGTAGG(3)ATAT + TGTATGAG(
3)AT + TGTAG(3)ATGACT + TGG(3)ATACTGACT + G(3)ATGCTACTGACT + TGTG(
4)T + TGTATG(4)T - TGTG(4)TAT - TGTATGG(4)T + TGCG(5) + TGG(5)AT - TGTAG(
5) + TGTAGG(5)AT

References

[BD04] Karin Baur and Jan Draisma. Higher secant varieties of the minimal adjoint orbit. J.
Algebra, 280(2):743–761, 2004. 107, 109

[CCS99] Arjeh M. Cohen, Hans Cuypers, and Hans Sterk. Some Tapas of Computer Algebra, vol-
ume 4 of Algorithms and Computation in Mathematics. Springer-Verlag, Heidelberg, 1999.
65, 83

[CGW05] Arjeh M. Cohen, Dié A. H. Gijsbers, and David B. Wales. BMW algebras of simply laced
type. J. Algebra, 286(1):107–153, 2005. 67

[Coh07] Arjeh M. Cohen. Non-commutative polynomial computations. Report, 2007. Eindhoven.
6, 10, 24, 25, 26, 28

[Con10] Randall Cone. NMODoc - documentation on the nmo package, version 1.0. Report (the
package is provided with GBNP from Version 1.0 on), Jan 2010. 2, 8

[Gra95] John J. Graham. Modular representations of Hecke algebras and related algebras. PhD
thesis, The University of Sydney, Sep 1995. 102

[Gre99] Edward L. Green. Noncommutative Gröbner bases and projective resolutions. In Compu-
tational Methods for Representations of Groups and Algebras, pages 29–60. Birkhäuser,
1999. (Essen 1997). 2

[Kno04] Jan Willem Knopper. GBNP and vector enumeration. Report, 2004. Eindhoven. 6, 103

[Kro03] Chris Krook. Dimensionality of quotient algebras. Report, 2003. Eindhoven. 2, 6, 35, 80,
81

[Lin93] Steve A. Linton. On vector enumeration. Linear Algebra Appl., 192:235–248, 1993. Com-
putational linear algebra in algebraic and related problems (Essen, 1992). 87, 90, 91, 96,
99

[LN06] Frank Lübeck and Max Neunhöffer. GAPDoc - a GAP package, version 0.99999, Jan
2006. 2

[Mor94] Teo Mora. An introduction to commutative and noncommutative Gröbner bases. Theoret-
ical Computer Science, 134(1):131–173, Nov 1994. 2, 75, 77

[Ser03] Jean-Pierre Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin,
2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the
1980 English translation. 106

117

GBNP 118

[Ufn89] V. A. Ufnarovskiı̆. On the use of graphs for calculating the basis, growth and Hilbert series
of associative algebras. Mat. Sb., 180(11):1548–1560, 1584, 1989. 2

Index

AddNP, 20

BaseQA, 28
BaseQATrunc, 40
BaseQM, 44
BimulNP, 21

CheckHomogeneousNPs, 39
CleanNP, 21

DetermineGrowthQA, 33
DimQA, 29
DimQM, 45
DimsQATrunc, 41

EvalTrace, 36

FinCheckQA, 34
FreqsQATrunc, 42

GBNP.ConfigPrint, 17
GP2NP, 13
GP2NPList, 14
Grobner, 24
GtNP, 22

HilbertSeriesQA, 35

InfoGBNP, 49
InfoGBNPTime, 50
IsGrobnerBasis, 26
IsGrobnerPair, 27
IsStrongGrobnerBasis, 26

LMonsNP, 22
LtNP, 22

MakeGrobnerPair, 28
MatricesQA, 31
MatrixQA, 30
MkMonicNP, 23

MulNP, 23
MulQA, 32
MulQM, 46

NP2GP, 14
NP2GPList, 15
NumAlgGensNP, 19
NumAlgGensNPList, 19
NumModGensNP, 20
NumModGensNPList, 20

PreprocessAnalysisQA, 35
PrintNP, 16
PrintNPList, 18
PrintNPListTrace, 37
PrintTraceList, 36
PrintTracePol, 37

SGrobner, 25
SGrobnerModule, 43
SGrobnerTrace, 37
SGrobnerTrunc, 39
StrongNormalFormNP, 33
StrongNormalFormNPM, 47
StrongNormalFormTraceDiff, 38

119

	Introduction
	Installation
	Using the package
	Further documentation

	Description
	Non-commutative Polynomials (NPs)
	Non-commutative Polynomials for Modules (NPMs)
	Core functions
	About the implementation
	Tracing variant
	Truncation variant
	Module variant
	Gröbner basis records
	Quotient algebras

	Functions
	Converting polynomials into different formats
	Printing polynomials in NP format
	Calculating with polynomials in NP format
	Gröbner functions, standard variant
	Finite-dimensional quotient algebras
	Finiteness and Hilbert series
	Functions of the trace variant
	Functions of the truncated variant
	Functions of the module variant

	Info Level
	Introduction
	InfoGBNP
	InfoGBNPTime

	Examples
	Introduction
	A simple commutative Gröbner basis computation
	A truncated Gröbner basis for Leonard pairs
	The truncated variant on two weighted homogeneous polynomials
	The order of the Weyl group of type E6
	The gcd of some univariate polynomials
	From the Tapas book
	The Birman-Murakami-Wenzl algebra of type A3
	The Birman-Murakami-Wenzl algebra of type A2
	A commutative example by Mora
	Tracing an example by Mora
	 Finiteness of the Weyl group of type E6
	Preprocessing for Weyl group computations
	A quotient algebra with exponential growth
	A commutative quotient algebra of polynomial growth
	An algebra over a finite field
	The dihedral group of order 8
	The dihedral group of order 8 on another module
	The dihedral group on a non-cyclic module
	The icosahedral group
	The symmetric inverse monoid for a set of size four
	A module of the Hecke algebra of type A3 over GF(3)
	Generalized Temperley-Lieb algebras
	The universal enveloping algebra of a Lie algebra
	Serre's exercise
	Baur and Draisma's transformations
	The cola gene puzzle

	References
	Index

