
globus gram protocol
11.3

Generated by Doxygen 1.7.5

Mon May 14 2012 11:33:35

Contents

1 Globus GRAM Protocol 1

2 GRAM Protocol Definition 2

3 Module Index 8

3.1 Modules . 8

4 Module Documentation 8

4.1 Functions . 9

4.2 GRAM Signals . 10

4.2.1 Detailed Description . 10

4.2.2 Enumeration Type Documentation . 10

4.3 GRAM Job States . 11

4.3.1 Detailed Description . 11

4.3.2 Enumeration Type Documentation . 11

4.4 GRAM Error codes . 12

4.4.1 Detailed Description . 12

4.4.2 Enumeration Type Documentation . 12

4.5 Error Messages . 13

4.5.1 Detailed Description . 13

4.5.2 Function Documentation . 13

4.6 Message Framing . 15

4.6.1 Detailed Description . 15

4.6.2 Function Documentation . 15

4.7 Message I/O . 17

4.7.1 Detailed Description . 17

4.7.2 Typedef Documentation . 17

4.7.3 Function Documentation . 18

4.8 Message Packing . 26

4.8.1 Function Documentation . 26

4.9 Message Unpacking . 33

4.9.1 Function Documentation . 33

1 Globus GRAM Protocol

The Globus GRAM Protocol Library implements the GRAM protocol. It is used by the GRAM Client and GRAM
Job Manager. It provides the constants used by in the sending and receiving of GRAM messages. It also provides
functions to encode GRAM requests and replies, and to send and receive the GRAM queries.

• GRAM Protocol Functions (p. 9)

• Job States (p. 11)

• Signals (p. 10)

• GRAM Errors (p. 12)

• GRAM Protocol Message Format (p. 2)

2 GRAM Protocol Definition

The GRAM Protocol is used to handle communication between the Gatekeeper, Job Manager, and GRAM Clients.

The protocol is based on a subset of the HTTP/1.1 protocol, with a small set of message types and responses sent
as the body of the HTTP requests and responses. This document describes GRAM Protocol version 2.

Framing

GRAM messages are framed in HTTP/1.1 messages. However, only a small subset of the HTTP specification is
used or understood by the GRAM system. All GRAM requests are HTTP POST messages. Only the following
HTTP headers are understood:

• Host

• Content-Type (set to "application/x-globus-gram" in all cases)

• Content-Length

• Connection (set to "close" in all HTTP responses)

Only the following status codes are supported in response’s HTTP Status-Lines:

• 200 OK

• 403 Forbidden

• 404 Not Found

• 500 Internal Server Error

• 400 Bad Request

Message Format

All messages use the carriage return (ASCII value 13) followed by line feed (ASCII value 10) sequence to delimit
lines. In all cases, a blank line separates the HTTP header from the message body. All application/x-globus-
gram message bodies consist of attribute names followed by a colon, a space, and then the value of the attribute.
When the value may contain a newline or double-quote character, a special escaping rule is used to encapsulate
the complete string. This encapsulation consists of surrounding the string with double-quotes, and escaping all
double-quote and backslash characters within the string with a backslash. All other characters are sent without
modification. For example, the string

rsl: &(executable = "/bin/echo")
(arguments = "hello")

becomes

rsl: "&(executable = \"bin/echo\")
(arguments = \"hello\")"

This is the only form of quoting which application/x-globus-gram messages support. Use of % HEX HEX escapes
(such as seen in URL encodings) is not meaningful for this protocol.

Message Types

Ping Request

A ping request is used to verify that the gatekeeper is configured properly to handle a named service. The ping
request consists of the following:

POST ping/ job-manager-name HTTP/1.1
Host: host-name
Content-Type: application/x-globus-gram
Content-Length: message-size

protocol-version: version

The values of the message-specific strings are

job-manager-name The name of the service to have the gatekeeper check. The service name corresponds to
one of the gatekeeper’s configured grid-services, and is usually of the form "jobmanager-scheduler-
type".

host-name The name of the host on which the gatekeeper is running. This exists only for compatibility with the
HTTP/1.1 protocol.

message-size The length of the content of the message, not including the HTTP/1.1 header.

version The version of the GRAM protocol which is being used. For the protocol defined in this document, the
value must be the string "2".

Job Request

A job request is used to scheduler a job remotely using GRAM. The ping request consists of the HTTP framing
described above with the request-URI consisting of job-manager-name, where job-manager name is the name of
the service to use to schedule the job. The format of a job request message consists of the following:

POST job-manager-name[@ user-name] HTTP/1.1
Host: host-name
Content-Type: application/x-globus-gram
Content-Length: message-size

protocol-version: version
job-state-mask: mask
callback-url: callback-contact
rsl: rsl-description

The values of the emphasized text items are as below:

job-manager-name The name of the service to submit the job request to. The service name corresponds to
one of the gatekeeper’s configured grid-services, and is usually of the form "jobmanager-scheduler-
type".

user-name Starting with GT4.0, a client may request that a certain account by used by the gatekeeper to start
the job manager. This is done optionally by appending the @ symbol and the local user name that the job
should be run as to the job-manager-name. If the @ and username are not present, then the first grid map
entry will be used. If the client credential is not authorized in the grid map to use the specified account, an
authorization error will occur in the gatekeeper.

host-name The name of the host on which the gatekeeper is running. This exists only for compatibility with the
HTTP/1.1 protocol.

message-size The length of the content of the message, not including the HTTP/1.1 header.

version The version of the GRAM protocol which is being used. For the protocol defined in this document, the
value must be the string "2".

mask An integer representation of the job state mask. This value is obtained from a bitwise-OR of the job state
values which the client wishes to receive job status callbacks about. These meanings of the various job state
values are defined in the GRAM Protocol API documentation (p. 11).

callback-contact A https URL which defines a GRAM protocol listener which will receive job state updates. The
from a bitwise-OR of the job state values which the client wishes to receive job status callbacks about. The
job status update messages are defined below (p. 6).

rsl-description A quoted string containing the RSL description of the job request.

Status Request

A status request is used by a GRAM client to get the current job state of a running job. This type of message can
only be sent to a job manager’s job-contact (as returned in the reply to a job request message). The format of a job
request message consists of the following:

POST job-contact HTTP/1.1
Host: host-name
Content-Type: application/x-globus-gram
Content-Length: message-size

protocol-version: version
"status"

The values of the emphasized text items are as below:

job-contact The job contact string returned in a response to a job request message, or determined by querying
the MDS system.

host-name The name of the host on which the job manager is running. This exists only for compatibility with the
HTTP/1.1 protocol.

message-size The length of the content of the message, not including the HTTP/1.1 header.

version The version of the GRAM protocol which is being used. For the protocol defined in this document, the
value must be the string "2".

Callback Register Request

A callback register request is used by a GRAM client to register a new callback contact to receive GRAM job state
updates. This type of message can only be sent to a job manager’s job-contact (as returned in the reply to a job
request message). The format of a job request message consists of the following:

POST job-contact HTTP/1.1
Host: host-name
Content-Type: application/x-globus-gram
Content-Length: message-size

protocol-version: version
"register mask callback-contact"

The values of the emphasized text items are as below:

job-contact The job contact string returned in a response to a job request message, or determined by querying
the MDS system.

host-name The name of the host on which the job manager is running. This exists only for compatibility with the
HTTP/1.1 protocol.

message-size The length of the content of the message, not including the HTTP/1.1 header.

version The version of the GRAM protocol which is being used. For the protocol defined in this document, the
value must be the string "2".

mask An integer representation of the job state mask. This value is obtained from a bitwise-OR of the job state
values which the client wishes to receive job status callbacks about. These meanings of the various job state
values are defined in the GRAM Protocol API documentation (p. 11).

callback-contact A https URL which defines a GRAM protocol listener which will receive job state updates. The
from a bitwise-OR of the job state values which the client wishes to receive job status callbacks about. The
job status update messages are defined below (p. 6).

Callback Unregister Request

A callback unregister request is used by a GRAM client to request that the job manager no longer send job state
updates to the specified callback contact. This type of message can only be sent to a job manager’s job-contact
(as returned in the reply to a job request message). The format of a job request message consists of the following:

POST job-contact HTTP/1.1
Host: host-name
Content-Type: application/x-globus-gram
Content-Length: message-size

protocol-version: version
"unregister callback-contact"

The values of the emphasized text items are as below:

job-contact The job contact string returned in a response to a job request message, or determined by querying
the MDS system.

host-name The name of the host on which the job manager is running. This exists only for compatibility with the
HTTP/1.1 protocol.

message-size The length of the content of the message, not including the HTTP/1.1 header.

version The version of the GRAM protocol which is being used. For the protocol defined in this document, the
value must be the string "2".

callback-contact A https URL which defines a GRAM protocol listener which should no longer receive job state
updates. The from a bitwise-OR of the job state values which the client wishes to receive job status callbacks
about. The job status update messages are defined below (p. 6).

Job Cancel Request

A job cancel request is used by a GRAM client to request that the job manager terminate a job. This type of
message can only be sent to a job manager’s job-contact (as returned in the reply to a job request message). The
format of a job request message consists of the following:

POST job-contact HTTP/1.1
Host: host-name
Content-Type: application/x-globus-gram
Content-Length: message-size

protocol-version: version
"cancel"

The values of the emphasized text items are as below:

job-contact The job contact string returned in a response to a job request message, or determined by querying
the MDS system.

host-name The name of the host on which the job manager is running. This exists only for compatibility with the
HTTP/1.1 protocol.

message-size The length of the content of the message, not including the HTTP/1.1 header.

version The version of the GRAM protocol which is being used. For the protocol defined in this document, the
value must be the string "2".

Job Signal Request

A job signal request is used by a GRAM client to request that the job manager process a signal for a job. The ar-
guments to the various signals are discussed in the globus_gram_protocol_job_signal_t (p. 10) documentation.

POST job-contact HTTP/1.1
Host: host-name
Content-Type: application/x-globus-gram
Content-Length: message-size

protocol-version: version
"signal"

The values of the emphasized text items are as below:

job-contact The job contact string returned in a response to a job request message, or determined by querying
the MDS system.

host-name The name of the host on which the job manager is running. This exists only for compatibility with the
HTTP/1.1 protocol.

message-size The length of the content of the message, not including the HTTP/1.1 header.

version The version of the GRAM protocol which is being used. For the protocol defined in this document, the
value must be the string "2".

signal A quoted string containing the signal number and it’s parameters.

Job State Updates

A job status update message is sent by the job manager to all registered callback contacts when the job’s status
changes. The format of the job status update messages is as follows:

POST callback-contact HTTP/1.1
Host: host-name
Content-Type: application/x-globus-gram
Content-Length: message-size

protocol-version: version
job-manager-url: job-contact
status: status-code
failure-code: failure-code

The values of the emphasized text items are as below:

callback-contact The callback contact string registered with the job manager either by being passed as the
callback-contact in a job request message or in a callback register message.

host-name The host part of the callback-contact URL. This exists only for compatibility with the HTTP/1.1 proto-
col.

message-size The length of the content of the message, not including the HTTP/1.1 header.

version The version of the GRAM protocol which is being used. For the protocol defined in this document, the
value must be the string "2".

job-contact The job contact of the job which has changed states.

Proxy Delegation

A proxy delegation message is sent by the client to the job manager to initiate a delegation handshake to generate
a new proxy credential for the job manager. This credential is used by the job manager or the job when making
further secured connections. The format of the delegation message is as follows:

POST callback-contact HTTP/1.1
Host: host-name
Content-Type: application/x-globus-gram
Content-Length: message-size

protocol-version: version
"renew"

If a successful (200) reply is sent in response to this message, then the client will procede with a GSI delegation
handshake. The tokens in this handshake will be framed with a 4 byte big-endian token length header. The framed
tokens will then be wrapped using the GLOBUS_IO_SECURE_CHANNEL_MODE_SSL_WRAP wrapping mode.
The job manager will frame response tokens in the same manner. After the job manager receives its final delegation
token, it will respond with another response message that indicates whether the delegation was processed or not.
This response message is a standard GRAM response message.

Note on Security Attributes

The following security attributes are needed to communicate with the Gatekeeper:

• Authentication must be done using GSSAPI mutual authentication

• Messages must be wrapped with support for the delegation message. When using Globus I/O, this is ac-
complished by using the the GLOBUS_IO_SECURE_CHANNEL_MODE_GSI_WRAP wrapping mode.

Changes

2004-08-11 Added information about gridmap choosing

3 Module Index

3.1 Modules

Here is a list of all modules:

Functions 9

Error Messages 13

Message Framing 15

Message I/O 17

Message Packing 26

Message Unpacking 33

GRAM Signals 10

GRAM Job States 11

GRAM Error codes 12

4 Module Documentation

4.1 Functions

Collaboration diagram for Functions:

Error Messages

Message Framing

Message Packing

Message Unpacking

Message I/O

Functions

Modules

• Error Messages
• Message Framing
• Message I/O
• Message Packing
• Message Unpacking

4.2 GRAM Signals

Enumerations

• enum globus_gram_protocol_job_signal_t { GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_CANCEL
= 1, GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_SUSPEND = 2, GLOBUS_GRAM_PROTOCOL_J-
OB_SIGNAL_RESUME = 3, GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_PRIORITY = 4, GLOBUS-
_GRAM_PROTOCOL_JOB_SIGNAL_COMMIT_REQUEST = 5, GLOBUS_GRAM_PROTOCOL_JOB_S-
IGNAL_COMMIT_EXTEND = 6, GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_STDIO_UPDATE = 7,
GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_STDIO_SIZE = 8, GLOBUS_GRAM_PROTOCOL_JOB_-
SIGNAL_STOP_MANAGER = 9, GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_COMMIT_END = 10 }

4.2.1 Detailed Description

4.2.2 Enumeration Type Documentation

4.2.2.1 enum globus_gram_protocol_job_signal_t

GRAM Signals.

Enumerator:

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_CANCEL Cancel a job.

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_SUSPEND Suspend a job.

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_RESUME Resume a previously suspended job.

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_PRIORITY Change the priority of a job.

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_COMMIT_REQUEST Signal the job manager to commence
with a job submission if the job request was accompanied by the (two_state=yes) RSL attribute.

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_COMMIT_EXTEND Signal the job manager to wait an addi-
tional number of seconds (specified by an integer value string as the signal’s argument) before timing out
a two-phase job commit.

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_STDIO_UPDATE Signal the job manager to change the way
it is currently handling standard output and/or standard error. The argument for this signal is an RSL
containing new stdout , stderr , stdout_position, stderr_position, or remote_io_url relations.

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_STDIO_SIZE Signal the job manager to verify that streamed
I/O has been completely received. The argument to this signal contains the number of bytes of stdout
and stderr received, separated by a space. The reply to this signal will be a SUCCESS message if these
matched the amount sent by the job manager. Otherwise, an error reply indicating GLOBUS_GRAM_PR-
OTOCOL_ERROR_STDIO_SIZE is returned. If standard output and standard error are merged, only one
number should be sent as an argument to this signal. An argument of -1 for either stream size indicates
that the client is not interested in the size of that stream.

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_STOP_MANAGER Signal the job manager to stop manag-
ing the current job and terminate. The job continues to run as normal. The job manager will send a state
change callback with the job status being FAILED and the error GLOBUS_GRAM_PROTOCOL_ERRO-
R_JM_STOPPED.

GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_COMMIT_END Signal the job manager to clean up after the
completion of the job if the job RSL contained the (two-phase = yes) relation.

4.3 GRAM Job States

Enumerations

• enum globus_gram_protocol_job_state_t { GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING =
1, GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE = 2, GLOBUS_GRAM_PROTOCOL_JOB_ST-
ATE_FAILED = 4, GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE = 8, GLOBUS_GRAM_PROTO-
COL_JOB_STATE_SUSPENDED = 16, GLOBUS_GRAM_PROTOCOL_JOB_STATE_UNSUBMITTED =
32, GLOBUS_GRAM_PROTOCOL_JOB_STATE_STAGE_IN = 64, GLOBUS_GRAM_PROTOCOL_JO-
B_STATE_STAGE_OUT = 128, GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL = 0xFFFFF }

4.3.1 Detailed Description

The globus_gram_protocol_job_state_t contains information about the current state of the job as known by the job
manager. Job state changes are sent by the Job Manager to all registered clients. A client may ask for information
from the job manager via the status request.

4.3.2 Enumeration Type Documentation

4.3.2.1 enum globus_gram_protocol_job_state_t

GRAM Job States.

Enumerator:

GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING The job is waiting for resources to become avail-
able to run.

GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE The job has received resources and the application
is executing.

GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED The job terminated before completion because an
error, user-triggered cancel, or system-triggered cancel.

GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE The job completed successfully.

GLOBUS_GRAM_PROTOCOL_JOB_STATE_SUSPENDED The job has been suspended. Resources
which were allocated for this job may have been released due to some scheduler-specific reason.

GLOBUS_GRAM_PROTOCOL_JOB_STATE_UNSUBMITTED The job has not been submitted to the
scheduler yet, pending the reception of the GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_COMMIT_R-
EQUEST signal from a client.

GLOBUS_GRAM_PROTOCOL_JOB_STATE_STAGE_IN The job manager is staging in files to run the job.

GLOBUS_GRAM_PROTOCOL_JOB_STATE_STAGE_OUT The job manager is staging out files generated
by the job.

GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL A mask of all job states.

4.4 GRAM Error codes

Enumerations

• enum globus_gram_protocol_error_t

4.4.1 Detailed Description

4.4.2 Enumeration Type Documentation

4.4.2.1 enum globus_gram_protocol_error_t

GRAM Error codes.

4.5 Error Messages

Collaboration diagram for Error Messages:

Error MessagesFunctions

Functions

• const char ∗ globus_gram_protocol_error_string (int error_code)
• void globus_gram_protocol_error_7_hack_replace_message (const char ∗message)
• void globus_gram_protocol_error_10_hack_replace_message (const char ∗message)

4.5.1 Detailed Description

Functions in this section handle converting GRAM error codes to strings which can help the user diagnose GRAM
problems.

4.5.2 Function Documentation

4.5.2.1 const char∗ globus gram protocol error string (int error code)

Get a description of a a GRAM error code.

The globus_gram_protocol_error_string() (p. 13) function takes a GRAM error code value and returns the asso-
ciated error code string for the message. The string is statically allocated by the GRAM Protocol library and should
not be modified or freed by the caller. The string is intended to complete a sentence of the form "[operation] failed
because ..."

Parameters
error_code The error code to translate into a string.

Returns

The globus_gram_protocol_error_string() (p. 13) function returns a static string containing an explanation
of the error.

4.5.2.2 void globus gram protocol error 7 hack replace message (const char ∗ message)

Replace the error message associated with error 7 with a custom message.

The globus_gram_protocol_error_7_hack_replace_message() (p. 13) function creates a custom version of the
error message for the error GLOBUS_GRAM_PROTOCOL_ERROR_AUTHORIZATION. The string pointed to by
the message parameter is copied to thread-local storage, and subsequent calls to globus_gram_protocol_error-
_string() (p. 13) with this error number will return this copy of the string. Each time globus_gram_protocol_error-
_7_hack_replace_message() (p. 13) is called for a particular thread, the previous message is freed.

The purpose of this function is to allow more meaningful error messages to be generated when authentication
failures occur. In particular, the specific GSSAPI error reason can be used in place of a generic authorization
failure message.

Parameters
message The new message to be associated with the GLOBUS_GRAM_PROTOCOL_ERROR_AUT-

HORIZATION error code.

Note

Since Globus 5.0.0, this function uses thread-specific storage, so that the value returned by globus_gram_-
protocol_error_string() (p. 13) for GLOBUS_GRAM_PROTOCOL_ERROR_AUTHORIZATION is that for the
last authorization error where globus_gram_protocol_error_7_hack_replace_message() (p. 13) was called
from this thread.

4.5.2.3 void globus gram protocol error 10 hack replace message (const char ∗ message)

Replace the error message associated with error 10 with a custom message.

The globus_gram_protocol_error_10_hack_replace_message() (p. 14) function creates a custom version of the
error message for the error GLOBUS_GRAM_PROTOCOL_ERROR_PROTOCOL_FAILED. The string pointed to
by the message parameter is copied to thread-local storage, and subsequent calls to globus_gram_protocol_-
error_string() (p. 13) with this error number will return this copy of the string. Each time globus_gram_protocol-
_error_10_hack_replace_message() (p. 14) is called for a particular thread, the previous message is freed.

The purpose of this function is to allow more meaningful error messages to be generated when protocol errors
occur. In particular, the specific XIO error reason can be used in place of a generic protocol failure message.

Parameters
message The new message to be associated with the GLOBUS_GRAM_PROTOCOL_ERROR_PRO-

TOCOL_FAILED error code.

Note

Since Globus 5.0.0, this function uses thread-specific storage, so that the value returned by globus_gram_-
protocol_error_string() (p. 13) for GLOBUS_GRAM_PROTOCOL_ERROR_PROTOCOL_FAILED is that for
the last authorization error where globus_gram_protocol_error_10_hack_replace_message() (p. 14) was
called from this thread.

4.6 Message Framing

Collaboration diagram for Message Framing:

Message FramingFunctions

Functions

• int globus_gram_protocol_frame_request (const char ∗url, const globus_byte_t ∗msg, globus_size_t ms-
gsize, globus_byte_t ∗∗framedmsg, globus_size_t ∗framedsize)

• int globus_gram_protocol_frame_reply (int code, const globus_byte_t ∗msg, globus_size_t msgsize,
globus_byte_t ∗∗framedmsg, globus_size_t ∗framedsize)

4.6.1 Detailed Description

The functions in this section frame a GRAM request, query, or reply message with HTTP headers compatible with
the GRAM2 protocol parsers in GT2 GT3, and GT4. These functions should be used when an application wants to
control the way that the GRAM Protocol messages are sent, while still using the standard message formatting and
framing routines. An alternative set of functions in the Message I/O (p. 17) section of the manual combine message
framing with callback-driven I/O.

4.6.2 Function Documentation

4.6.2.1 int globus gram protocol frame request (const char ∗ url, const globus byte t ∗ msg, globus size t msgsize,
globus byte t ∗∗ framedmsg, globus size t ∗ framedsize)

Create a HTTP-framed copy of a GRAM request.

The globus_gram_protocol_frame_request() (p. 15) function adds HTTP 1.1 framing around the input message.
The framed message includes HTTP headers relating the the destination URL and the length of the message
content. The framed message is returned by modifying framedmsg to point to a newly allocated string. The integer
pointed to by the framedsize parameter is set to the length of this message.

Parameters
url The URL of the GRAM resource to contact. This is parsed and used to generate the HTTP

POST operation destination and the Host HTTP header.
msg A string containing the message content to be framed.

msgsize The length of the string pointed to by msg
framedmsg An output parameter which will be set to a copy of the msg string with an HTTP frame around

it.
framedsize An output parameter which will be set to the length of the framed message.

Returns

Upon success, globus_gram_protocol_frame_request() (p. 15) will return GLOBUS_SUCCESS and the
framedmsg and framedsize parameters will be modified to point to the new framed message string and its
length respectively. When this occurs, the caller is responsible for freeing the string pointed to by framedmsg.
If an error occurs, its value will returned and the framedmsg and framedsize parameters will be uninitialized.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_J-

OB_CONTACT

Invalid job contact

4.6.2.2 int globus gram protocol frame reply (int code, const globus byte t ∗ msg, globus size t msgsize, globus byte t ∗∗
framedmsg, globus size t ∗ framedsize)

Create a HTTP-framed copy of a GRAM reply.

The globus_gram_protocol_frame_reply() (p. 16) function adds HTTP 1.1 framing around the input message. -
The framed message includes HTTP headers relating the the status of the operation being replied to and the length
of the message content. The framed message is returned by modifying framedmsg to point to a newly allocated
string. The integer pointed to by the framedsize parameter is set to the length of this message.

Parameters
code The HTTP response code to send along with this reply.
msg A string containing the reply message content to be framed.

msgsize The length of the string pointed to by msg.
framedmsg An output parameter which will be set to a copy of the msg string with an HTTP reply frame

around it.
framedsize An output parameter which will be set to the length of the framed reply string pointed to by

framedmsg.

Returns

Upon success, globus_gram_protocol_frame_reply() (p. 16) will return GLOBUS_SUCCESS and the
framedmsg and framedsize parameters will be modified to point to the new framed message string and its
length respectively. When this occurs, the caller is responsible for freeing the string pointed to by framedmsg.
If an error occurs, its value will returned and the framedmsg and framedsize parameters will be uninitialized.

Return values
GLOBUS_SUCCESS Success

4.7 Message I/O

Collaboration diagram for Message I/O:

Message I/OFunctions

Typedefs

• typedef unsigned long globus_gram_protocol_handle_t
• typedef struct globus_gram_protocol_hash_entry_s globus_gram_protocol_extension_t

Functions

• int globus_gram_protocol_setup_attr (globus_io_attr_t ∗attr)
• globus_bool_t globus_gram_protocol_authorize_self (gss_ctx_id_t context)
• int globus_gram_protocol_allow_attach (char ∗∗url, globus_gram_protocol_callback_t callback, void
∗callback_arg)

• int globus_gram_protocol_callback_disallow (char ∗url)
• int globus_gram_protocol_post (const char ∗url, globus_gram_protocol_handle_t ∗handle, globus_io-

_attr_t ∗attr, globus_byte_t ∗message, globus_size_t message_size, globus_gram_protocol_callback_t call-
back, void ∗callback_arg)

• int globus_gram_protocol_post_delegation (const char ∗url, globus_gram_protocol_handle_t ∗handle,
globus_io_attr_t ∗attr, globus_byte_t ∗message, globus_size_t message_size, gss_cred_id_t cred_handle,
gss_OID_set restriction_oids, gss_buffer_set_t restriction_buffers, OM_uint32 req_flags, OM_uint32 time_-
req, globus_gram_protocol_callback_t callback, void ∗callback_arg)

• int globus_gram_protocol_reply (globus_gram_protocol_handle_t handle, int code, globus_byte_t
∗message, globus_size_t message_size)

• int globus_gram_protocol_accept_delegation (globus_gram_protocol_handle_t handle, gss_OID_set
restriction_oids, gss_buffer_set_t restriction_buffers, OM_uint32 req_flags, OM_uint32 time_req, globus_-
gram_protocol_delegation_callback_t callback, void ∗arg)

• int globus_gram_protocol_get_sec_context (globus_gram_protocol_handle_t handle, gss_ctx_id_t
∗context)

4.7.1 Detailed Description

The functions in this section are related to sending and receiving GRAM protocol messages.

4.7.2 Typedef Documentation

4.7.2.1 globus_gram_protocol_handle_t

Unique GRAM protocol identifier.

The globus_gram_protocol_handle_t (p. 17) data type is used by functions in the GRAM protocol API as a unique
discriminant between instances of a callback invocation.

There are no public functions that operate on these handles. They are used as identifiers for callback functions.

4.7.2.2 globus_gram_protocol_extension_t

GRAM protocol extension attribute-value pair.

The globus_gram_protocol_extension_t data type contains an attribute value pair that represents an extension to
the GRAM2 protocol.

4.7.3 Function Documentation

4.7.3.1 int globus gram protocol setup attr (globus io attr t ∗ attr)

Create default I/O attribute for GRAM.

The globus_gram_protocol_setup_attr() (p. 18) function creates a new globus_io attribute containing the default
set of values needed for communication between a GRAM client and a job manager. These attributes include:

• SO_KEEPALIVE

• GSSAPI Mutual Authentication

• GSSAPI Self Authorization

• SSL-compatible message wrapping

Parameters
attr A pointer to a globus_io_attr_t structure which will be initialized by this function.

Returns

Upon success, globus_gram_protocol_setup_attr() (p. 18) modifies the attr parameter to point to a new
attribute and returns the value GLOBUS_SUCCESS. When this occurs, the caller must destroy the attribute
when no longer needed by calling globus_io_tcpattr_destroy(). If an error occurs, its value will be returned and
the attribute pointed to by the attr parameter will be set to an uninitialized state.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_CONNECTI-

ON_FAILED

Error initializing attribute

4.7.3.2 globus bool t globus gram protocol authorize self (gss ctx id t context)

Determine if a GSSAPI context has the same source and target identities.

The globus_gram_protocol_authorize_self() (p. 18) function implements a predicate which returns true if the
source and destination identities used to establish the GSSAPI security context are the same.

Parameters
context A GSSAPI security context which has been previously established. The source and target

names of this context will be inspected by this function.

Returns

If the source and target identiies are the same, then globus_gram_protocol_authorize_self() (p. 18) returns
GLOBUS_TRUE , otherwise, this function returns GLOBUS_FALSE .

Return values
GLOBUS_TRUE The source and target identities are the same.

GLOBUS_FALSE The source and target identities are not the same or this function is unabled to inspect
the security context.

4.7.3.3 int globus gram protocol allow attach (char ∗∗ url, globus gram protocol callback t callback, void ∗ callback arg)

Create a GRAM protocol service listener.

The globus_gram_protocol_allow_attach() (p. 19) function creates a GRAM protocol listener to which other pro-
cesses can send GRAM protocol messages. The listener will automatically accept new connections on it’s TCP/IP
port and parse GRAM requests. The requests will be passed to the function pointed to by the callback parameter
for the application to unpack, handle, and send a reply by calling globus_gram_protocol_reply() (p. 23).

Parameters
url An output parameter that will be initialized to point to a string that will hold the URL of the

new listener. This URL may be published or otherwise passed to applications which need to
contact this GRAM protocol server. The URL will be of the form https://host:port/.

callback A pointer to a function to be called when a new request has been received by this listener.
This function will be passed the request, which may be unpacked using one of the functions
described in the message packing (p. 26) section of the documentation.

callback_arg A pointer to arbitrary user data which will be passed to the callback function as its first param-
eter.

Returns

Upon success, globus_gram_protocol_allow_attach() (p. 19) returns GLOBUS_SUCCESS and modifies the
url parameter to point to a newly allocated string. The caller is then responsible for freeing this string. If an
error occurs, an integer error code will be returned and the url parameter value will be uninitialized.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_R-

EQUEST

Invalid request

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

GLOBUS_GRAM_PROTO-
COL_ERROR_NO_RESO-

URCES

No resources

See also

globus_gram_protocol_callback_disallow() (p. 20)

4.7.3.4 int globus gram protocol callback disallow (char ∗ url)

Stop a GASS protocol listener from handling new requests.

The globus_gram_protocol_callback_disallow() (p. 20) function stops the listener named by the value of the url
parameter from receiving any new requests. It also frees memory used internally by the GRAM protocol implemen-
tation to handle requests for this listener.

The globus_gram_protocol_callback_disallow() (p. 20) function will wait until all requests being processed by
this listener have completed processing. Once globus_gram_protocol_callback_disallow() (p. 20) returns, no
further request callbacks will occur for the listener.

Parameters
url A pointer to the URL string which names the listener to disable.

Returns

Upon success, the globus_gram_protocol_callback_disallow() (p. 20) function returns GLOBUS_SUCCE-
SS and frees internal state associated with the listener named by the url parameter. If an error occurs, its
integer error code value will be returned and no listener will be affected.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_J-

OB_CONTACT

Invalid job contact

GLOBUS_GRAM_PROTO-
COL_ERROR_CALLBACK-

_NOT_FOUND

Callback not found

See also

globus_gram_protocol_allow_attach() (p. 19)

4.7.3.5 int globus gram protocol post (const char ∗ url, globus_gram_protocol_handle_t ∗ handle, globus io attr t
∗ attr, globus byte t ∗ message, globus size t message size, globus gram protocol callback t callback, void ∗
callback arg)

Post a GRAM protocol request to a GRAM server.

The globus_gram_protocol_post() (p. 20) function initiates a GRAM protocol message exchange with a GRAM
protocol listener. It returns after framing the message and initiating the connection. When the message exchange is
complete, the function pointed to by callback is invoked either in another thread or when a non-threaded application
calls the globus_poll() or globus_cond_wait() functions.

Parameters
url A pointer to a string containing the URL of the server to post the request to. This URL must

be an HTTPS URL naming a GRAM service resource.
handle A pointer to a globus_gram_protocol_handle_t which will be initialized with a unique handle

identifier. This identifier will be passed to the callback function to allow the caller to differentiate
replies to multiple GRAM Protocol requests. This pointer may be NULL if the caller will not
have multiple simultaneous requests.

attr A pointer to a Globus I/O attribute set, which will be used as parameters when connecting to
the GRAM server. The value of attr may be NULL, in which case, the default GRAM Protocol
attributes will be used (authentication to self, SSL-compatible transport, with message in-
tegrity).

message A pointer to a message string to be sent to the GRAM server. This is normally created by
calling one of the GRAM Protocol pack (p. 26) functions. This message need not be NULL
terminated as the length is passed in the message_size parameter.

message_size The length of the message string. Typically generated as one of the output parameters to one
of the GRAM Protocol pack (p. 26) functions.

callback A pointer to a function to call when the response to this message is received or the message
exchange fails. This may be NULL, in which case no callback will be received, and the caller
will be unable to verify whether the message was successfully received.

callback_arg A pointer to application-specific data which will be passed to the function pointed to by callback
as its first parameter. This may be NULL if the application has a NULL callback or does not
require the pointer to establish its context in the callback.

Returns

Upon success, globus_gram_protocol_post() (p. 20) returns GLOBUS_SUCCESS, initiates the message
exchange, registers the function pointed to by callback to be called when the exchange completes or fails, and
modifies the handle parameter if it is non-NULL. If an error occurs, its error code will be returned, the handle
parameter will be uninitialized and the function pointed to be callback will not be called.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_J-

OB_CONTACT

Invalid job contact

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_R-

EQUEST

Invalid request

GLOBUS_GRAM_PROTO-
COL_ERROR_NO_RESO-

URCES

No resources

Note

There is no way to time out or cancel a service request that is begun with globus_gram_protocol_post()
(p. 20).

See also

globus_gram_protocol_reply() (p. 23)

4.7.3.6 int globus gram protocol post delegation (const char ∗ url, globus_gram_protocol_handle_t ∗ handle,
globus io attr t ∗ attr, globus byte t ∗ message, globus size t message size, gss cred id t cred handle,
gss OID set restriction oids, gss buffer set t restriction buffers, OM uint32 req flags, OM uint32 time req,
globus gram protocol callback t callback, void ∗ callback arg)

Post a GRAM protocol delegation request to a GRAM server.

The globus_gram_protocol_post_delegation() (p. 21) function initiates a GRAM protocol delegation exchange
with a GRAM protocol listener. The delegation protocol is a custom mix of HTTP and SSL records.

The globus_gram_protocol_post_delegation() (p. 21) function returns after framing the message and initiating
the connection to be used for delegation. When the message exchange is complete, the function pointed to by
callback is invoked either in another thread or when a non-threaded application calls the globus_poll() or globus-
_cond_wait() functions.

Parameters
url A pointer to a string containing the URL of the server to post the request to. This URL must

be an HTTPS URL naming a GRAM service resource.
handle A pointer to a globus_gram_protocol_handle_t which will be initialized with a unique handle

identifier. This identifier will be passed to the callback function to allow the caller to differentiate
replies to multiple GRAM Protocol requests. This pointer may be NULL if the caller will not
have multiple simultaneous requests.

attr A pointer to a Globus I/O attribute set, which will be used as parameters when connecting to
the GRAM server. The value of attr may be NULL, in which case, the default GRAM Protocol
attributes will be used (authentication to self, SSL-compatible transport, with message in-
tegrity).

message A pointer to a message string to be sent to the GRAM server. This is normally created by
calling one of the GRAM Protocol pack (p. 26) functions. This message need not be NULL
terminated as the length is passed in the message_size parameter.

message_size The length of the message string. Typically generated as one of the output parameters to one
of the GRAM Protocol pack (p. 26) functions.

cred_handle Handle to an existing GSSAPI security credential. If this parameter is set to GSS_C_NO_-
CREDENTIAL, then the current account’s default credential will be used. A proxy credential
sharing the identity of this credential will be delegated to the GRAM protocol server.

restriction_oids A set of OID values indicating the data in the restriction_buffers parameter. This parameter
may have the value GSS_C_NO_OID_SET if there are no restriction buffers.

restriction_-
buffers

A set of binary data buffers which will be included in the delegated credential. The type of
data in these buffers is determined by the OID values in restriction_oids. This parameter may
have the value GSS_C_EMPTY_BUFFER_SET if there are no extra restrictions to be added
to the credential.

req_flags A bitwise-or of GSSAPI flag values to use when delegating the credential using gss_init_-
delegation().

time_req An integer value indicating the length of time (in seconds) that the delegated credential should
be valid for. This is an advisory parameter: no error will be returned if a credential with the
requested lifetime can not be created.

callback A pointer to a function to call when the response to this message is received or the message
exchange fails. This may be NULL, in which case no callback will be received, and the caller
will be unable to verify whether the message was successfully received.

callback_arg A pointer to application-specific data which will be passed to the function pointed to by callback
as its first parameter. This may be NULL if the application has a NULL callback or does not
require the pointer to establish its context in the callback.

Returns

Upon success, globus_gram_protocol_post_delegation() (p. 21) returns GLOBUS_SUCCESS, initiates the
message exchange, registers the function pointed to by callback to be called when the exchange completes
or fails, and modifies the handle parameter if it is non-NULL. If an error occurs, its error code will be returned,
the handle parameter will be uninitialized and the function pointed to be callback will not be called. In the case
of a protocol or delegation failure, the callback function will be called with the errorcode parameter set to the
error.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_J-

OB_CONTACT

Invalid job contact

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_R-

EQUEST

Invalid request

GLOBUS_GRAM_PROTO-
COL_ERROR_NO_RESO-

URCES

No resources

Note

There is no way to time out or cancel a service request that is begun with globus_gram_protocol_post_-
delegation() (p. 21).

See also

globus_gram_protocol_reply() (p. 23)

4.7.3.7 int globus gram protocol reply (globus_gram_protocol_handle_t handle, int code, globus byte t ∗ message,
globus size t message size)

Reply to a GRAM protocol message.

The globus_gram_protocol_reply() (p. 23) function sends a response message to a client which initiated a G-
RAM message exchange. The globus_gram_protocol_reply() (p. 23) function composes the message with an
HTTP message frame and then sends it to the client which initiated the exchange.

Parameters
handle A GRAM protocol handle which is used by this function to determine the network connection to

use for this reply. This must be the same value as was passed as a parameter to the callback
function registered with the globus_gram_protocol_allow_attach() (p. 19) function.

code The HTTP response code. The code should be one from the set described in RFC 2616.
message A pointer to a message string to be sent to the GRAM client. This is normally created by

calling one of the GRAM Protocol pack (p. 26) functions. This message need not be NULL
terminated as the length is passed in the message_size parameter.

message_size The length of the message string. Typically generated as one of the output parameters to one
of the GRAM Protocol pack (p. 26) functions.

Returns

Upon success, globus_gram_protocol_reply() (p. 23) returns GLOBUS_SUCCESS, frames the message
with an HTTP header and initiates sending the message to the client. The caller must not try to use the value
of the handle parameter after this function returns. If an error occurs, its integer error code will be returned.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_R-

EQUEST

Invalid request

GLOBUS_GRAM_PROTO-
COL_ERROR_NO_RESO-

URCES

No Resources

See also

globus_gram_protocol_allow_attach() (p. 19)

4.7.3.8 int globus gram protocol accept delegation (globus_gram_protocol_handle_t handle, gss OID set
restriction oids, gss buffer set t restriction buffers, OM uint32 req flags, OM uint32 time req,
globus gram protocol delegation callback t callback, void ∗ arg)

Perform the server-side of the GSSAPI delegation handshake to receive a new delegated credential.

The globus_gram_protocol_accept_delegation() (p. 24) function performs the service side accepting of a GRAM
protocol delegation exchange with a GRAM protocol client. This is performed after the delegation HTTP message
has been unpacked by the application.

The globus_gram_protocol_accept_delegation() (p. 24) function returns after processing the GSSAPI hand-
shake, passing the delegated credential or error information to the function pointed to by the callback parameter.

Parameters
handle A GRAM protocol handle on which the server received a protocol refresh message.

restriction_oids A set of OID values indicating the data in the restriction_buffers parameter. This parameter
may have the value GSS_C_NO_OID_SET if there are no restriction buffers.

restriction_-
buffers

A set of binary data buffers which will be included in the delegated credential. The type of
data in these buffers is determined by the OID values in restriction_oids. This parameter may
have the value GSS_C_EMPTY_BUFFER_SET if there are no extra restrictions to be added
to the credential.

req_flags A bitwise-or of GSSAPI flag values to use when delegating the credential using gss_init_-
delegation().

time_req An integer value indicating the length of time (in seconds) that the delegated credential should
be valid for. This is an advisory parameter: no error will be returned if a credential with the
requested lifetime can not be created.

callback A pointer to a function to call when the delegation handshake has completed or failed. This
function will be passed the value of arg as well as the handle and delegated credential or erorr
that occurred processing the delegation messages.

arg A pointer to application-specific data which will be passed to the function pointed to by callback
as its first parameter. This may be NULL if the application has a NULL callback or does not
require the pointer to establish its context in the callback.

Returns

Upon success, globus_gram_protocol_accept_delegation() (p. 24) returns GLOBUS_SUCCESS and regis-
ters the function pointed to by callback to be called after the delegation completes or fails. If an error occurs,
globus_gram_protocol_accept_delegation() (p. 24) returns an integer error code and the callback function
is not registered.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_MALLOC_FAILED

Malloc failed

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_R-

EQUEST

Invalid request

GLOBUS_GRAM_PROTO-
COL_ERROR_NO_RESO-

URCES

No resources

4.7.3.9 int globus gram protocol get sec context (globus_gram_protocol_handle_t handle, gss ctx id t ∗ context)

Get a reference to the GSSAPI security context associated with a GRAM protocol handle.

The globus_gram_protocol_get_sec_context() (p. 25) function retrieves a reference to the GSSAPI security
context associated with a particular GRAM protocol handle. This context may be inspected by the caller but must
not be destroyed by the caller. The globus_gram_protocol_get_sec_context() (p. 25) function must only be
called after the GRAM protocol library has called the callback function associated with a GRAM protocol message
exchange.

Parameters
handle The GRAM protocol handle associated with a GRAM protocol message exchange.
context The GSSAPI security context associated with the protocol handle.

Returns

Upon success, globus_gram_protocol_get_sec_context() (p. 25) returns GLOBUS_SUCCESS and modi-
fies the context parameter to point to the security context associated with the handle parameter. If an error
occurs, an interger error code is returned and the value of the context parameter is undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_INVALID_R-

EQUEST

Invalid request

4.8 Message Packing

Collaboration diagram for Message Packing:

Message PackingFunctions

Functions

• int globus_gram_protocol_pack_job_request (int job_state_mask, const char ∗callback_url, const char
∗rsl, globus_byte_t ∗∗query, globus_size_t ∗querysize)

• int globus_gram_protocol_pack_job_request_reply (int status, const char ∗job_contact, globus_byte_t
∗∗reply, globus_size_t ∗replysize)

• int globus_gram_protocol_pack_job_request_reply_with_extensions (int status, const char ∗job_-
contact, globus_hashtable_t ∗extensions, globus_byte_t ∗∗reply, globus_size_t ∗replysize)

• int globus_gram_protocol_pack_status_request (const char ∗status_request, globus_byte_t ∗∗query,
globus_size_t ∗querysize)

• int globus_gram_protocol_pack_status_reply (int job_status, int failure_code, int job_failure_code,
globus_byte_t ∗∗reply, globus_size_t ∗replysize)

• int globus_gram_protocol_pack_status_reply_with_extensions (int job_status, int failure_code, int job_-
failure_code, globus_hashtable_t ∗extensions, globus_byte_t ∗∗reply, globus_size_t ∗replysize)

• int globus_gram_protocol_pack_status_update_message (char ∗job_contact, int status, int failure_code,
globus_byte_t ∗∗reply, globus_size_t ∗replysize)

• int globus_gram_protocol_pack_status_update_message_with_extensions (char ∗job_contact, int sta-
tus, int failure_code, globus_hashtable_t ∗extensions, globus_byte_t ∗∗reply, globus_size_t ∗replysize)

• int globus_gram_protocol_pack_version_request (char ∗∗request, size_t ∗requestsize)

4.8.1 Function Documentation

4.8.1.1 int globus gram protocol pack job request (int job state mask, const char ∗ callback url, const char ∗ rsl,
globus byte t ∗∗ query, globus size t ∗ querysize)

Pack a GRAM Job Request.

The globus_gram_protocol_pack_job_request() (p. 26) function combines its parameters into a GRAM job re-
quest message body. The caller may frame and send the resulting message by calling globus_gram_protocol-
_post() (p. 20) or just frame it by calling globus_gram_protocol_frame_request() (p. 15) and send it by some
other mechanism. The globus_gram_protocol_pack_job_request() (p. 26) function returns the packed message
by modifying the query parameter to point to a new string containing the message. The caller is responsible for
freeing that string.

Parameters
job_state_mask The bitwise-or of the GRAM job states which the client would like to register for job state

change callbacks.

callback_url A callback contact string which will be contacted when a job state change which matches the
job_state_mask occurs. This may be NULL, if the client does not wish to register a callback
contact with this job request. Typically, this value is returned in the url parameter to globus_-
gram_protocol_allow_attach() (p. 19).

rsl An RSL string which contains the job request. This will be processed on the server side.
query An output parameter which will be set to a new string containing the packed job request

message. The caller must free this memory by calling free()
querysize An output parameter which will be populated with the length of the job request message

returned in query .

Returns

Upon success, globus_gram_protocol_pack_job_request() (p. 26) returns GLOBUS_SUCCESS and modi-
fies the query and querysize parameters to point to the values described above.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_NULL_PAR-

AMETER

Null parameter

4.8.1.2 int globus gram protocol pack job request reply (int status, const char ∗ job contact, globus byte t ∗∗ reply,
globus size t ∗ replysize)

Pack a GRAM reply message.

The globus_gram_protocol_pack_job_request_reply() (p. 27) function combines its parameters into a GRAM
reply message body. The caller may frame and send the resulting message by calling globus_gram_protocol_-
reply() (p. 23) or just frame it by calling globus_gram_protocol_frame_reply() (p. 16) and send it by some other
mechanism. The globus_gram_protocol_pack_job_request_reply() (p. 27) function returns the packed mes-
sage by modifying the reply parameter to point to a new string containing the message. The caller is responsible
for freeing that string.

Parameters
status The job’s failure code if the job failed, or 0, if the job request was processed successfully.

job_contact A string containing the job contact string. This may be NULL, if the job request was not
successful.

reply A pointer which will be set to the packed reply string The caller must free this string by calling
free().

replysize A pointer which will be set to the length of the reply string.

Returns

Upon success, globus_gram_protocol_pack_job_request_reply() (p. 27) returns GLOBUS_SUCCESS and
modifies the reply and replysize parameters to point to the values described above. If an error occurs, an
integer error code is returned and the values pointed to by reply and replysize are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_MALLOC_FAILED

Out of memory

4.8.1.3 int globus gram protocol pack job request reply with extensions (int status, const char ∗ job contact,
globus hashtable t ∗ extensions, globus byte t ∗∗ reply, globus size t ∗ replysize)

Pack a GRAM reply message with extension attributes.

The globus_gram_protocol_pack_job_request_reply_with_extensions() (p. 28) function combines its parame-
ters into a GRAM reply message body. The caller may frame and send the resulting message by calling globus_-
gram_protocol_reply() (p. 23) or just frame it by calling globus_gram_protocol_frame_reply() (p. 16) and send
it by some other mechanism. The globus_gram_protocol_pack_job_request_reply_with_extensions() (p. 28)
function returns the packed message by modifying the reply parameter to point to a new string containing the
message. The caller is responsible for freeing that string.

Parameters
status The job’s failure code if the job failed, or 0, if the job request was processed successfully.

job_contact A string containing the job contact string. This may be NULL, if the job request was not
successful.

extensions A pointer to a hash table keyed on a string attribute name with the hash values being pointers
to globus_gram_protocol_extension_t structures. These will be encoded in the reply message
after the standard attributes.

reply A pointer which will be set to the packed reply string The caller must free this string by calling
free().

replysize A pointer which will be set to the length of the reply string.

Returns

Upon success, globus_gram_protocol_pack_job_request_reply_with_extensions() (p. 28) returns GLOB-
US_SUCCESS and modifies the reply and replysize parameters to point to the values described above. If an
error occurs, an integer error code is returned and the values pointed to by reply and replysize are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_MALLOC_FAILED

Out of memory

4.8.1.4 int globus gram protocol pack status request (const char ∗ status request, globus byte t ∗∗ query, globus size t ∗
querysize)

Pack a GRAM query message.

The globus_gram_protocol_pack_status_request() (p. 28) function combines its parameters into a GRAM status
query message body. The caller may frame and send the resulting message by calling globus_gram_protocol_-
post() (p. 20) or just frame it by calling globus_gram_protocol_frame_request() (p. 15) and send it by some other
mechanism. The globus_gram_protocol_pack_status_request() (p. 28) function returns the packed message
by modifying the query parameter to point to a new string containing the message. The caller is responsible for
freeing that string.

Parameters
status_request A string containing the type of query message to send, including any query parameters. The

valid strings supported by GRAM in GT5 are:

• status

• register

• unregister

• signal

• renew

• cancel

query An output parameter which will be set to a new string containing the packed job query mes-
sage.

querysize An output parameter which will be set to the length of the job query message returned in
query .

Returns

Upon success, globus_gram_protocol_pack_status_request() (p. 28) returns GLOBUS_SUCCESS and
modifies the query and querysize parameters to point to the values described above. If an error occurs,
an integer error code is returned and the values pointed to by query and querysize are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_MALLOC_FAILED

Out of memory

4.8.1.5 int globus gram protocol pack status reply (int job status, int failure code, int job failure code, globus byte t ∗∗
reply, globus size t ∗ replysize)

Pack a GRAM query reply message.

The globus_gram_protocol_pack_status_reply() (p. 29) function combines its parameters into a GRAM status
reply message body. The caller may frame and send the resulting message by calling globus_gram_protocol_-
reply() (p. 23) or just frame it by calling globus_gram_protocol_frame_reply() (p. 16) and send it by some other
mechanism. The globus_gram_protocol_pack_status_reply() (p. 29) function returns the packed message by
modifying the reply parameter to point to a new string containing the message. The caller is responsible for freeing
that string.

Parameters
job_status The job’s current job state (p. 11).

failure_code The error code generated by the query. This may be GLOBUS_SUCCESS if the query suc-
ceeded.

job_failure_code The error code associated with the job if it has failed. This may be GLOBUS_SUCCESS if the
job has not failed.

reply An output parameter which will be set to a new string containing the packed reply message.
replysize An output parameter which will be set to the length of the reply message returned in reply .

Returns

Upon success, globus_gram_protocol_pack_status_reply() (p. 29) returns GLOBUS_SUCCESS and mod-
ifies the reply and replysize parameters to point to the values described above. If an error occurs, an integer
error code is returned and the values pointed to by reply and replysize are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_MALLOC_FAILED

Out of memory

4.8.1.6 int globus gram protocol pack status reply with extensions (int job status, int failure code, int job failure code,
globus hashtable t ∗ extensions, globus byte t ∗∗ reply, globus size t ∗ replysize)

Pack a GRAM query reply message with extensions.

The globus_gram_protocol_pack_status_reply_with_extensions() (p. 30) function combines its parameters
into a GRAM status reply message body. The caller may frame and send the resulting message by calling globus_-
gram_protocol_reply() (p. 23) or just frame it by calling globus_gram_protocol_frame_reply() (p. 16) and send it
by some other mechanism. The globus_gram_protocol_pack_status_reply_with_extensions() (p. 30) function
returns the packed message by modifying the reply parameter to point to a new string containing the message.
The caller is responsible for freeing that string.

Parameters
job_status The job’s current job state (p. 11).

failure_code The error code generated by the query. This may be GLOBUS_SUCCESS if the query suc-
ceeded.

job_failure_code The error code associated with the job if it has failed. This may be GLOBUS_SUCCESS if the
job has not failed.

extensions A pointer to a hash table containing the names and values of the protocol extensions to add
to this message.

reply An output parameter which will be set to a new string containing the packed reply message.
replysize An output parameter which will be set to the length of the reply message returned in reply .

Returns

Upon success, globus_gram_protocol_pack_status_reply_with_extensions() (p. 30) returns GLOBUS_S-
UCCESS and modifies the reply and replysize parameters to point to the values described above. If an error
occurs, an integer error code is returned and the values pointed to by reply and replysize are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_MALLOC_FAILED

Out of memory

4.8.1.7 int globus gram protocol pack status update message (char ∗ job contact, int status, int failure code, globus byte t
∗∗ reply, globus size t ∗ replysize)

Pack a GRAM status update message.

The globus_gram_protocol_pack_status_update_message() (p. 30) function combines its parameters into a G-
RAM status update message body. The caller may frame and send the resulting message by calling globus_gram-
_protocol_post() (p. 20) or just frame it by calling globus_gram_protocol_frame_request() (p. 15) and send it by

some other mechanism. The globus_gram_protocol_pack_status_update_message() (p. 30) function returns
the packed message by modifying the reply parameter to point to a new string containing the message. The caller
is responsible for freeing that string.

Parameters
job_contact The job contact string associated with the job.

status The job’s current job state (p. 11).
failure_code The error associated with this job request if the status value is GLOBUS_GRAM_PROTOC-

OL_JOB_STATE_FAILED.
reply An output parameter which will be set to a new string containing the packed status message.

The caller must free this memory by calling free()
replysize An output parameter which will be set to the length of the status message returned in reply .

Returns

Upon success, globus_gram_protocol_pack_status_update_message() (p. 30) returns GLOBUS_SUCCE-
SS and modifies the reply and replysize parameters as described above. If an error occurs, an integer error
code is returned and the values pointed to by reply and replysize are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

4.8.1.8 int globus gram protocol pack status update message with extensions (char ∗ job contact, int status, int
failure code, globus hashtable t ∗ extensions, globus byte t ∗∗ reply, globus size t ∗ replysize)

Pack a GRAM status update message with extensions.

The globus_gram_protocol_pack_status_update_message_with_extensions() (p. 31) function combines its
parameters into a GRAM status update message body. The caller may frame and send the resulting message by
calling globus_gram_protocol_post() (p. 20) or just frame it by calling globus_gram_protocol_frame_request()
(p. 15) and send it by some other mechanism. The globus_gram_protocol_pack_status_update_message_-
with_extensions() (p. 31) function returns the packed message by modifying the reply parameter to point to a new
string containing the message. The caller is responsible for freeing that string.

Parameters
job_contact The job contact string associated with the job.

status The job’s current job state (p. 11).
failure_code The error associated with this job request if the status value is GLOBUS_GRAM_PROTOC-

OL_JOB_STATE_FAILED.
extensions A pointer to a hash table keyed by extension attribute names with the values being pointers to

globus_gram_protocol_extension_t structures.
reply An output parameter which will be set to a new string containing the packed status message.

The caller must free this memory by calling free()
replysize An output parameter which will be set to the length of the status message returned in reply .

Returns

Upon success, globus_gram_protocol_pack_status_update_message_with_extensions() (p. 31) returns
GLOBUS_SUCCESS and modifies the reply and replysize parameters as described above. If an error occurs,
an integer error code is returned and the values pointed to by reply and replysize are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

4.8.1.9 int globus gram protocol pack version request (char ∗∗ request, size t ∗ requestsize)

Pack a GRAM version request message.

The globus_gram_protocol_pack_job_request() (p. 26) function creates a copy of the GRAM version request.
The caller may frame and send the resulting message by calling globus_gram_protocol_post() (p. 20) or just
frame it by calling globus_gram_protocol_frame_request() (p. 15) and send it by some other mechanism. The
globus_gram_protocol_pack_version_request() (p. 32) function returns the packed message by modifying the
request parameter to point to a new string containing the message. The caller is responsible for freeing that string.

Parameters
request An output parameter which will be set to a new string containing the packed version request

message. The caller must free this memory by calling free().
requestsize An output parameter which will be populated with the length of the version request message

returned in query .

Returns

Upon success, globus_gram_protocol_pack_job_request() (p. 26) returns GLOBUS_SUCCESS and modi-
fies the request and requestsize parameters to point to the values described above. If an error occurs, globus-
_gram_protocol_pack_version_request() (p. 32) returns an integer error code and the values pointed to by
request and requestsize are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_NULL_PAR-

AMETER

Null parameter

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

4.9 Message Unpacking

Collaboration diagram for Message Unpacking:

Message UnpackingFunctions

Functions

• int globus_gram_protocol_unpack_job_request (const globus_byte_t ∗query, globus_size_t querysize, int
∗job_state_mask, char ∗∗callback_url, char ∗∗description)

• int globus_gram_protocol_unpack_job_request_reply (const globus_byte_t ∗reply, globus_size_t reply-
size, int ∗status, char ∗∗job_contact)

• int globus_gram_protocol_unpack_job_request_reply_with_extensions (const globus_byte_t ∗reply,
globus_size_t replysize, int ∗status, char ∗∗job_contact, globus_hashtable_t ∗extensions)

• int globus_gram_protocol_unpack_status_request (const globus_byte_t ∗query, globus_size_t query-
size, char ∗∗status_request)

• int globus_gram_protocol_unpack_status_reply (const globus_byte_t ∗reply, globus_size_t replysize, int
∗job_status, int ∗failure_code, int ∗job_failure_code)

• int globus_gram_protocol_unpack_status_reply_with_extensions (const globus_byte_t ∗reply, globus_-
size_t replysize, globus_hashtable_t ∗extensions)

• int globus_gram_protocol_unpack_status_update_message (const globus_byte_t ∗reply, globus_size_t
replysize, char ∗∗job_contact, int ∗status, int ∗failure_code)

• int globus_gram_protocol_unpack_status_update_message_with_extensions (const globus_byte_t
∗reply, globus_size_t replysize, globus_hashtable_t ∗extensions)

• void globus_gram_protocol_hash_destroy (globus_hashtable_t ∗message_hash)

4.9.1 Function Documentation

4.9.1.1 int globus gram protocol unpack job request (const globus byte t ∗ query, globus size t querysize, int ∗
job state mask, char ∗∗ callback url, char ∗∗ description)

Unpack a GRAM Job Request.

The globus_gram_protocol_unpack_job_request() (p. 33) function parses the job request message packed in
the query message and returns copies of the standard message attributes in the job_state_mask , callback_url ,
and description parameters.

Parameters
query The unframed job request message to parse.

querysize The length of the job request message string.
job_state_mask A pointer to an integer to be set to the job state mask from the job request.

callback_url A pointer to be set with a copy of the URL of the callback contact to be registered for this job
request. The caller must free this memory by calling free().

description A pointer to be set to a copy of the job description RSL string for this job request. The caller
must free this memory by calling free().

Returns

Upon success, globus_gram_protocol_unpack_job_request() (p. 33) will return GLOBUS_SUCCESS and
modify the job_state_mask , callback_url , and description parameters to values extracted from the message in
query . If an error occurs, an integer error code will be returned and the values of job_state_mask , callback_url ,
and description will be undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_NULL_PAR-

AMETER

Null parameter

GLOBUS_GRAM_PROTO-
COL_ERROR_HTTP_UNP-

ACK_FAILED

Unpack failed

GLOBUS_GRAM_PROTO-
COL_ERROR_VERSION_-

MISMATCH

Version mismatch

4.9.1.2 int globus gram protocol unpack job request reply (const globus byte t ∗ reply, globus size t replysize, int ∗ status,
char ∗∗ job contact)

Unpack a GRAM reply message.

The globus_gram_protocol_unpack_job_request_reply() (p. 34) function parses the reply message packed in
the reply message and returns copies of the standard message attributes in the status and job_contact parameters.

Parameters
reply The unframed job reply message to parse.

replysize The length of the reply string.
status A pointer to an integer to be set to the failure code associated with the job request. This may

be GLOBUS_SUCCESS, if the job request was successful.
job_contact A pointer to a string to be set to the job contact string. This may set to NULL if the job request

failed. If globus_gram_protocol_unpack_job_request_reply() (p. 34) returns GLOBUS_S-
UCCESS, then the caller must free this string using free().

Returns

Upon success, globus_gram_protocol_unpack_job_request_reply() (p. 34) returns GLOBUS_SUCCESS
and modifies the status and job_contact parameters to point to the values described above. If an error occurs,
an integer error code is returned and the values pointed to by status and job_contact are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAN_PROTO-
COL_ERROR_NULL_PAR-

AMETER

Null parameter

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

GLOBUS_GRAM_PROTO-
COL_ERROR_HTTP_UNP-

ACK_FAILED

Unpack failed

GLOBUS_GRAM_PROTO-
COL_ERROR_VERSION_-

MISMATCH

Version mismatch

4.9.1.3 int globus gram protocol unpack job request reply with extensions (const globus byte t ∗ reply, globus size t
replysize, int ∗ status, char ∗∗ job contact, globus hashtable t ∗ extensions)

Unpack a GRAM reply message, parsing all extensions.

The globus_gram_protocol_unpack_job_request_reply_with_extensions() (p. 35) function parses the reply
message packed in the reply message parameter and returns copies of the standard message attributes in the
status and job_contact parameters, and all other extension attributes in the hashtable pointed to by extensions.
Each entry in the hashtable will be keyed by the attribute name and the value will be a pointer to a globus_gram_-
protocol_extension_t structure.

Parameters
status A pointer to an integer to be set to the failure code associated with the job request. This may

be GLOBUS_SUCCESS, if the job request was successful.
job_contact A pointer to a string to be set to the job contact string. This may set to NULL if the job

request failed. If globus_gram_protocol_unpack_job_request_reply_with_extensions()
(p. 35) returns GLOBUS_SUCCESS, then the caller must free this string using free().

extensions A pointer to be set to a hash table containing the names and values of all protocol extensions
present in the response message. If globus_gram_protocol_unpack_job_request_reply-
_with_extensions() (p. 35) returns GLOBUS_SUCCESS, the caller must free this hash table
and its values by calling globus_gram_protocol_hash_destroy() (p. 39).

reply The unframed job reply message to parse.
replysize The length of the reply string.

Returns

Upon success, globus_gram_protocol_unpack_job_request_reply_with_extensions() (p. 35) returns G-
LOBUS_SUCCESS and modifies the status, job_contact , and extensions to point to the values described
above. If an error occurs, an integer error code is returned and the values pointed to by status, job_contact ,
and extensions are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAN_PROTO-
COL_ERROR_NULL_PAR-

AMETER

Null parameter

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

GLOBUS_GRAM_PROTO-
COL_ERROR_HTTP_UNP-

ACK_FAILED

Unpack failed

GLOBUS_GRAM_PROTO-
COL_ERROR_VERSION_-

MISMATCH

Version mismatch

4.9.1.4 int globus gram protocol unpack status request (const globus byte t ∗ query, globus size t querysize, char ∗∗
status request)

Unpack a GRAM query message.

The globus_gram_protocol_unpack_status_request() (p. 36) function parses the message packed in the query
parameter and returns a copy of the message in the status_request parameter.

Parameters
query The unframed query message to parse.

querysize The length of the query string.
status_request A pointer to a string to be set to the query value. The caller must free this string using free().

Returns

Upon success, globus_gram_protocol_unpack_status_request() (p. 36) returns GLOBUS_SUCCESS and
modifies the status_request parameter to point to the value described above. If an error occurs, an integer
error code is returned and the value pointed to by status_request is undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_NULL_PAR-

AMETER

Null parameter

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

GLOBUS_GRAM_PROTO-
COL_ERROR_HTTP_UNP-

ACK_FAILED

Unpack failed

GLOBUS_GRAM_PROTO-
COL_ERROR_VERSION_-

MISMATCH

Version mismatch

4.9.1.5 int globus gram protocol unpack status reply (const globus byte t ∗ reply, globus size t replysize, int ∗ job status,
int ∗ failure code, int ∗ job failure code)

Unpack a GRAM query reply.

The globus_gram_protocol_unpack_status_reply() (p. 36) function parses the message packed in the reply pa-
rameter and sets the current job state, protocol failure code, and job failure code values in its output parameters.

Parameters
reply The unframed reply message to parse.

replysize The length of the reply message.
job_status A pointer to an integer to be set to the job’s current job state (p. 11).

failure_code A pointer to an integer to be set to the failure code associated with the query request. This
may be GLOBUS_SUCCESS, if the request was successful.

job_failure_code A pointer to an integer to be set to the failure code for the job, if the job_status is GLOBUS_-
GRAM_PROTOCOL_JOB_STATE_FAILED.

Returns

Upon success, globus_gram_protocol_unpack_status_reply() (p. 36) returns GLOBUS_SUCCESS and
modifies the job_status, failure_code, and job_failure_code parameters to point to the value described above.
If an error occurs, an integer error code is returned and the values pointed to by job_status, failure_code, and
job_failure_code are undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_HTTP_UNP-

ACK_FAILED

Unpack failed

GLOBUS_GRAM_PROTO-
COL_ERROR_VERSION_-

MISMATCH

Version mismatch

GLOBUS_GRAM_PROTO-
COL_ERROR_NULL_PAR-

AMETER

Null parameter

4.9.1.6 int globus gram protocol unpack status reply with extensions (const globus byte t ∗ reply, globus size t replysize,
globus hashtable t ∗ extensions)

Unpack a GRAM query reply with extensions.

The globus_gram_protocol_unpack_status_reply_with_extensions() (p. 37) function parses the message
packed in the reply parameter, storing all attributes and values in a hash table. The extensions parameter is modi-
fied to point to that hash table. The caller of globus_gram_protocol_unpack_status_reply_with_extensions()
(p. 37) must free that hash table by calling globus_gram_protocol_hash_destroy() (p. 39).

Parameters
reply The unframed reply message to parse.

replysize The length of the reply message.
extensions A pointer to be set to a hash table containing the names and values of all protocol at-

tributes present in the reply message. If globus_gram_protocol_unpack_status_reply_-
with_extensions() (p. 37) returns GLOBUS_SUCCESS, the caller must free this hash table
and its values by calling globus_gram_protocol_hash_destroy() (p. 39).

Returns

Upon success, globus_gram_protocol_unpack_status_reply_with_extensions() (p. 37) returns GLOBUS-
_SUCCESS and modifies the extensions parameter to point to the value described above. If an error occurs,
an integer error code is returned and the value pointed to by extensions is undefined.

Return values
GLOBUS_SUCCESS Success

GLOBUS_GRAM_PROTO-
COL_ERROR_HTTP_UNP-

ACK_FAILED

Unpack failed

GLOBUS_GRAM_PROTO-
COL_ERROR_VERSION_-

MISMATCH

Version mismatch

4.9.1.7 int globus gram protocol unpack status update message (const globus byte t ∗ reply, globus size t replysize, char
∗∗ job contact, int ∗ status, int ∗ failure code)

Unpack a GRAM status update message.

The globus_gram_protocol_unpack_status_update_message() (p. 38) function parses the message packed in
the reply parameter, storing the standard message attribute values in its return parameters job_contact , status,
and failure_code. The caller is responsible for freeing the job_contact value.

Parameters
reply The unframed reply message to parse.

replysize The length of the reply message.
job_contact An output parameter to be set to the job contact string. If globus_gram_protocol_unpack-

_status_update_message() (p. 38) returns GLOBUS_SUCCESS, then the caller must free
this string using free().

status An output parameter to be set to the integer value of the job’s current job state (p. 11).
failure_code An output parameter to be set to the integer failure code for the job if the job_status is GLOB-

US_GRAM_PROTOCOL_JOB_STATE_FAILED.

Returns

Upon success, globus_gram_protocol_unpack_status_update_message() (p. 38) returns GLOBUS_SUC-
CESS and modifies the job_contact , status, and failure_code parameters as described above. If an error
occurs, an integer error code is returned and the values pointed to by the job_contact , status, and failure_code
parameters are undefined.

Return values
GLOBUS_SUCCESS Sucess

GLOBUS_GRAM_PROTO-
COL_ERROR_NULL_PAR-

AMETER

Null parameter

GLOBUS_GRAM_PROTO-
COL_ERROR_HTTP_UNP-

ACK_FAILED

Unpack failed

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Out of memory

GLOBUS_GRAM_PROTO-
COL_ERROR_VERSION_-

MISMATCH

Version mismatch

4.9.1.8 int globus gram protocol unpack status update message with extensions (const globus byte t ∗ reply, globus size t
replysize, globus hashtable t ∗ extensions)

Unpack a GRAM status update message with extensions.

The globus_gram_protocol_unpack_status_update_message_with_extensions() (p. 38) function parses the
message packed in the reply parameter, storing the message attribute values in its return parameter extensions.
The caller is responsible for freeing the extensions hash table by calling globus_gram_protocol_hash_destroy()
(p. 39).

Parameters
reply The unframed reply message to parse.

replysize The length of the reply message.

extensions An output parameter which will be initialized to a hashtable containing the message at-
tributes. The caller must destroy this hashtable calling globus_gram_protocol_hash_-
destroy() (p. 39).

Returns

Upon success, globus_gram_protocol_unpack_status_update_message_with_extensions() (p. 38) re-
turns GLOBUS_SUCCESS and modifies the extensions parameter as described above. If an error occurs,
an integer error code is returned and the value pointed to by the extensions parameters is undefined.

Return values
GLOBUS_SUCCESS Sucess

GLOBUS_GRAM_PROTO-
COL_ERROR_HTTP_UNP-

ACK_FAILED

Unpack failed

GLOBUS_GRAM_PROTO-
COL_ERROR_MALLOC_F-

AILED

Malloc failed

GLOBUS_GRAM_PROTO-
COL_ERROR_VERSION_-

MISMATCH

Version mismatch

4.9.1.9 void globus gram protocol hash destroy (globus hashtable t ∗ message hash)

Destroy message attribute hash.

Parameters
message_hash Hashtable of globus_gram_protocol_extension_t ∗ values to destroy

