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I. Introduction

A. Overview

ARPREC is a software package for performing arbitrary precision 



arithmetic. It consists of a 
revision and extension of Bailey's earlier MPFUN package, enhanced 
with special IEEE 
numerical techniques.  Features include:

1. Written in C++ for broad portability and fast execution.

2. Includes C++ and Fortran 90/95 interfaces based on custom datatypes    
and 
operator/function overloading, which permit the library to be used 
with only minor 
modifications for many conventional C++ and Fortran-90 programs.

3. Includes all of the usual arithmetic operations, as well as many 
transcendental functions, 
including cos, sin, tan, arccos, arcsin, arctan, exp, log, log10, erf, 
gamma and bessel functions.

4. Supports three arbitrary precision datatypes: mp_real, mp_int and 
mp_complex. 

5. Supports many mixed-mode operations between arbitrary precision 
variables or 
constants and conventional variables or constants.

6. Includes special library routines, incorporating advanced 
algorithms for extra-high 
precision (above 1000 digits) computation.

7. Includes a number of sample application programs, including 
programs for quadrature 
(numerical definite integrals), PLSQ (integer relation finding) and 
polynomial root finding.

8. Includes the "Experimental Mathematician's Toolkit".  This is a
   self-contained interactive program that performs many operations
   typical of modern experimental mathematics, including
   arithmetic expressions, common transcendental functions,
   infinite series evaluation, definite integrals, polynomial roots,
   user-defined functions, all evaluated to a user-defined level of
   numeric precision, up to 1000 decimal digits.

An overview of C++ and Fortran usage is given below.  A detailed
description of the algorithms used is available in the doc 
subdirectory (see doc/arprec.ps).

B. Directory Structure

There are eight directories and several files in the top level 
directory,



which are described below:

config    This directory contains auxiliary files used by the 
configure script.
doc       This directory contains a paper describing the 
algorithms.
fortran   This directory contains Fortran-90 module files.
include   This directory contains the header files for C++ 
codes.
src       This contains the source code of the ARPREC library. 
          This source code does not include inline functions,
            which are found in the header files in the include/
            directory.
          The archive library file is placed in this directory 
when
            the make operation is performed.
tests     This directory contains test programs to sanity check 
the
            the compiled library (through "make check").  It also 
include
            a number of sample C++ programs, including high 
precision 
            quadrature and PSLQ (integer relation detection).
toolkit   This directory contains the Fortran-90 code for the 
Toolkit.
            A C++ version of the Toolkit is under development.

II. C++ usage 

Please note that all commands refer to a Unix-type environment such as 
Mac OSX or Ubuntu 
Linux using the bash shell. 

A. Building

To install the ARPREC system, the g++ and, if Fortran is to be used, 
an appropriate 
Fortran compiler must be installed.  See INSTALL for instructions for 
your particular system.

To build the library, first run the included configure script by 
typing 

       ./configure

This script automatically generates makefiles for building the library 
and selects compilers 
and necessary flags and libraries to include. If the user wishes to 
specify compilers or flags 



they may use the following options. 

       CXX       C++ compiler to use
       CXXFLAGS  C++ compiler flags to use
       CC        C compiler to use (for C demo program)
       CFLAGS    C compiler flags to use (for C demo program)
       FC        Fortran 90 compiler
       FCFLAGS   Fortran 90 compiler flags to use
       FCLIBS    Fortran 90 libraries needed to link with C++ 
code.

For example, if one is using GNU compilers, configure with:

       ./configure CXX=g++ FC=gfortran

The Fortran and C++ compilers must produce compatible binaries. On 
some systems 
additional flags must be included to ensure that portions of the
library are not built with 32 and 64 bit object files. For example, on
64-Bit Mac OSX 10.6 (Snow Leopard), OSX 10.7 (Lion) and OSX 10.8 
(Mountain
Lion), the correct configure line using the gfortran compiler is:  

        ./configure CXX=g++ FC=gfortran FCFLAGS=-m64

To build the library, simply type 

       make 

and the automatically generated makefiles will build the library
including archive files.  

To allow for easy linking to the library, the user may also wish to
install the archive files to a standard place. To do this type:

       make install

This will also build the library if it has not already been
built.  Many systems, including Mac and Ubuntu Linux systems, require
administrator privileges to install the library at such  
standard places. On such systems, one may type: 

       sudo make install 

instead if one has sufficient access. 

The directory "tests" contains programs for high precision quadrature
and integer-relation detection. To build such programs, type:

make demo



in the  "tests" directory. 

B. Linking 

The simplest way to link to the library is to install it to a standard 
place as described above, 
and use the Ðl option. For example

       g++ compileExample.cpp -o compileExample -l arprec

One can also use this method to build with make. A file called 
ÒcompileExample.cppÓ and the 
associated makefile ÒmakeCompileExampleÓ illustrate the process. 

A third alternative is to use a link script. If one types "make quads" 
in the test directory, the 
output produced gives guidance as to how to build the files. By 
following the structure of 
the compiling commands one may copy the appropriate portions, perhaps 
replacing the 
filename with an argument that the user can include at link time. An 
example of such a 
script, which also links to included quadrature routines, is as 
follows:

g++ -DHAVE_CONFIG_H   -I.. -I../include -I../include   -O2 -Wall -MT 
$1.o -MD -MP -MF 
.deps/$1.Tpo -c -o $1.o $1.cpp

mv -f .deps/$1.Tpo .deps/$1.Po

g++  -O2 -Wall   -o $1 $1.o util.o arprec-integrate.o quad-erf.o quad-
gs.o quad-ts.o 
../src/libarprec.a

To use it, make the link script executable and type:

./link.scr compileExample

Note that the file extension is not included because the script 
handles all extensions, 
expecting the source file to have the extension Ô.cppÕ . 

C. Programming techniques

As much as possible, operator overloading is included to make basic 
programming as much 
like using standard typed floating-point arithmetic. Changing many 
codes should be as 



simple as changing type statements and a few other lines. 

i. Constructors

To create mp_real variables calculated to the proper precision, one 
must use care to use the 
included constructors properly. Many computations in which variables 
are not explicitly 
typed to multiple-precision may be evaluated with double-precision 
arithmetic. The user 
must take care to ensure that this does not cause errors. In 
particular, an expression such as 
1.0/3.0 will be evaluated to double precision before assignment or 
further arithmetic. Upon 
assignment to a multi-precision variable, the value will be zero 
padded. This problem is 
serious and potentially difficult to debug. To avoid this, use the 
included constructors to 
force arithmetic to be performed in the full precision requested. For 
example: 

       mp_real x = mp_real("1.0") / 3.0 ;

or 

mp_real x = mp_real("1.0") ; 
x /= 3.0 ;

or 

mp_real x  = Ò1.0Ó  ; 
x /= 3.0 ; 

ii. Included functions and Constants

Supported functions include assignment operators, comparisons, 
arithmetic and 
assignment operators, and increments for integer types. Standard C 
math functions such as 
exponentiation, trigonometric, logarithmic and exponential functions 
are included. 
Additional functions for gamma, erf, rounding, etc. are also 
implemented. As in assignment 
statements, one must be careful with implied typing of constants when 
using these 
functions. Many codes need particular conversion for the power 
function, which is 
frequently used with constants that must be explicitly typed for 
multi-precision codes. 



Constants included, which are global and calculated to full precision 
upon the call of 
mp_init, with type signatures, are:

static mp_real _pi;
static mp_real _log2;
static mp_real _log10;
static mp_real _eps;

where Ò_epsÓ is the accuracy of the current state as initialized by 
the user. 

ii. Conversion of types 

Static casts may be used to convert constants between types. One may 
also use constructors 
to return temporary multi-precision types within expressions, but 
should be careful, as this 
will waste memory if done repeatedly. For example: 

mp_real y ; 
       y = gamma( mp_real(4.0) / 3.0 ) ;

CÐstyle casts may be used, but are not recommended.  Dynamic and 
reinterpret casts are 
not supported and should be considered unreliable. Casting between 
multi-precision and 
standard precision types can be dangerous, and care must be taken to 
ensure that programs 
are working properly and accuracy has not degraded by a misplaced 
type-conversion. 

D. Control and Modification of Precision Levels

There are a number of functions for controlling precision levels.  One 
must call mp_init 
before performing any multi-precision computations or initializing any 
constants. The 
relevant functions are described in more detail in the table in the 
corresponding README.pdf

E. I/O 

The standard I/O stream routines have been overloaded to be fully 
compatible with all 
included data types. One may need to manually reset the precision of 
the stream to obtain 
full output. For example, if 500 digits are desired, type



cout.precision(500) ; 

When reading values using cin, each input numerical value must start 
on a separate
line, and end with a comma.  Three formats are acceptable:

1. Write the full constant 
2. 10 ^ exponent x mantissa
3. mansissa e exponent

Here are four valid examples:

1.1,
3.14159 26535 89793,
10^3 x 3.14159 26535 89793 23846 

     26433 83279 50288,
123.123123e5000

When read using cin, these constants will be converted using full 
multi-precision accuracy.

III. Fortran-90 Usage

A. Fortran-C++ interoperability

The configure script attempts to guess what flags and libraries to
use, but it is not perfect on all platforms.  There are differing
conventions among computer vendors as to how to handle a C function
called from a Fortran program.  For example, Sun's f90 compiler
attaches an underscore to all function names, while Cray's cf90
compiler makes the name all uppercase.  IBM's compiler leaves these
names alone.  The configure script should detect the correct
convention in most cases.  If it doesn't, the appropriate
transformation can be defined in the config.h file.  If you encounter
difficulties, please notify us so that the configure script can handle
the situation more gracefully.

To link a Fortran-90 program with the C++ arprec library, you must
link with the C++ compiler used to generate the library, as this will
insure that data in the C++ library routines will be properly
instantiated.  The Fortran 90 interface is found in arprecmod library.
The C++ main entry is found in arprec_f_main library.  The
arprec-config script installed during "make install" can be used to
determine which flags to pass to compile and link your programs:

  arprec-config --fcflags
      displays compiler flags needed to compile your Fortran files.
  arprec-config --fclibs



      displays linker flags needed by the C++ linker to link in all 
the
      necessary libraries.
  arprec-config --fmainlib
      display linker flags needed if your main program is written
      in Fortran.  You must rename your main Fortran program as
      "subroutine f_main".

A sample Makefile that can be used as a template for compiling Fortran
programs using ARPREC library is found in fortran/Makefile.sample.

An alternate way of handling all of these flags is simply to type, for
instance, "make quadts".  This compiles the Fortran program tquadts.f,
links with all necessary library files, and produces the executable
"quadts".  As this is being done, all flags and linked libraries are
displayed.  For instance, on many Mac systems, presuming g++-4.0 was
defined for C++ and gfortran for F90, the following is output:

  gfortran  -O2 -ffree-form -c -o tquadts.o tquadts.f
  g++-4.0  -O2 -Wall   -o quadts tquadts.o second.o libarprec_f_main.a
  libarprecmod.a ../src/libarprec.a
  -L/usr/local/lib/gcc/i386-apple-darwin9.0.0/4.3.0
  -L/usr/local/lib/gcc/i386-apple-darwin9.0.0/4.3.0/../../.. -
lgfortranbegin
  -lgfortran

Thus a general compile-link script (which could be saved in an
executable file named "complink.scr") is the following:

  gfortran  -O2 -ffree-form -c -o $1.o $1.f
  g++-4.0  -O2 -Wall   -o $1 $1.o second.o libarprec_f_main.a \
  libarprecmod.a ../src/libarprec.a \
  -L/usr/local/lib/gcc/i386-apple-darwin9.0.0/4.3.0 \
  -L/usr/local/lib/gcc/i386-apple-darwin9.0.0/4.3.0/../../.. -
lgfortranbegin \
  -lgfortran

Note that if the .f90 suffix is used for Fortran-90 source files, the
-ffree-form flag can be omitted, and the first line above ends with
"$1.f90".  Remember to type "chmod +x complink.scr".  Then, for
instance, a program named "prog.f90" could be compiled and linked by
merely typing "./complink.scr prog".

B. Fortran programming techniques

The basic concept of the ARPREC F90 package is to extend the
Fortran-90 language, by means of completely standard Fortran-90
features (operator overloading and custom datatypes), to perform



computations with an arbitrarily high level of numeric precision
(hundreds or thousands of digits).  In most cases, only minor
modifications need to be made to an existing Fortran program -- e.g.,
change the type statements of variables that you wish to be treated as
multiprecision variables, plus a few other minor details.  Three
multiprecision datatypes are supported: mp_real, mp_int and
mp_complex.  The ARPREC F90 package is based on the earlier MPFUN90
package, which is available in the same online directory as ARPREC.
Recently the MPFUN90 package was revamped to be completely compatible,
at the Fortran-90 user level, with the ARPREC F90 package.

Several example application programs using the F90 arprec software can
be found in the fortran and the toolkit directory.

To use the package, first set the global variable mpipl, which is the
maximum precision level in digits, in the file mp_mod.f.  As
delivered, mpipl is set to 2000 digits, which means that the package
can handle user programs specifying up to 2000 digit accuracy.  If
mpipl is changed, mp_mod.f must be recompiled.  With mpipl set to 2000
digits, programs can define a working precision level to up and
including 2000 digits.

Modifying an existing Fortran-90 program to use the ARPEC library is
generally quite easy, because of the translation facilities in
mp_mod.f.  A sample user program is:

  subroutine f_main
    use mpmodule
    implicit none
    type (mp_real) a, b

    call mpinit (500)
    a = 1.d0
    b = cos(a)**2 + sin(a)**2 - 1.d0
    call mpwrite(6, b)
    stop
  end program

This verifies that cos^2(1) + sin^2(1) = 1 to 500 digit accuracy.  The
user's main program must be a subroutine named "f_main".  This is
required so that certain C++ initialization is performed.  The line
"use mpmodule", as shown above, must be included at the beginning of
each subroutine or function subprogram that uses multiprecision
datatypes.  Multiprecision variables are declared using a Fortran-90
defined type statement such as the following.

   type (mp_real) a, b, c(10)
   type (mp_integer) k1, k2, k3
   type (mp_complex) z1, z2(5,5), z3



Most operators and generic function references, including many
mixed-mode type combinations, have been overloaded (extended) to work
with multiprecision data.  It is important, however, that users keep
in mind the fact that expressions are evaluated strictly according to
conventional Fortran operator precedence rules.  Thus some
subexpressions may be evaluated only to real*4 or real*8 accuracy.
For example, with the code

   real*8 d1
   type (mp_real) t1, t2
   ...
   t1 = cos (t2) + d1/3.d0

the expression d1/3.d0 is computed to real*8 accuracy only (about 15
digits), since both d1 and 3.d0 have type real*8.  This result is then
converted to mp_real by zero extension before being added to cos(t2).
So, for example, if d1 held the value 1.d0, then the quotient d1/3.d0
would only be accurate to 15 digits.  If a fullly accurate
multiprecision quotient is required, this should be written:

  real*8 d1
  type (mp_real) t1, t2
   ...
  t1 = cos (t2) + mpreal (d1) / 3.d0

which forces all operations to be performed with multiprecision
arithmetic.

Along this line, a constant such as 1.1 appearing in an expression is
evaluated only to real*4 accuracy, and a constant such as 1.1d0 is
evaluated only to real*8 accuracy (this is according to standard
Fortran conventions).  If full multiprecision accuracy is required,
one should write

   type (mp_real) t1
   ...
   t1 = '1.1'

The quotes enclosing 1.1 specify to the compiler that the constant is
to be converted to binary using multiprecision arithmetic, before
assignment to t1.  Quoted constants may only appear in assignment
statements such as this.

The ARPREC F90 package does NOT support mixed-mode operations between
"real" (single precision real, ie real*4) data and multiprecision
data, nor between "complex" (single precision real, ie complex*8) data
and multiprecision data.  If your programs have such datatypes,
convert these to real*8 and complex*16, respectively, before
attempting to change the program to use ARPREC.



C. Functions defined with multiprecision arguments

F90 functions defined with mp_int arguments:
  Arithmetic:  + - * / **
  Comparison tests:  == < > <= >= /=
  Others: abs, max, min

F90 functions defined with mp_real arguments:
  Arithmetic:  + - * / **
  Comparison tests:  == < > <= >= /=
  Others: abs, acos, aint, anint, asin, atan, atan2, cos, dble, erf,
  erfc, exp, int, log, log10, max, min, mod, mpcsshr (cosh and sinh),
  mpcssnf (cos and sin), mpranf (random number generator in (0,1)), 
  mpnrtf (n-th root), sign, sin, sqr, sqrt, tan

D.  Input/output of multiprecision data

Input and output of multiprecision data is performed using the special
subroutines mpread and mpwrite.  The first argument of these
subroutines is the Fortran I/O unit number, while additional arguments
(up to 9 arguments) are scalar variables or array elements of the
appropriate type.  Example:

   type (mp_real) a, b, c(n)
   ...
   call mpread (6, a, b)
   do j = 1, n
     call mpwrite (6, c(j))
   enddo

When using mpread, each input numerical value must start on a separate
line, and end with a comma.  Here are three valid examples:

   1.1,
   3.14159 26535 89793,
   10^3 x 3.14159 26535 89793 23846 
     26433 83279 50288,

When read using mpread, these constants will be converted using full
multiprecision accuracy.

One can also read and write multiprecision variables and arrays using
Fortran unformatted (binary) I/O, as in

   type (mp_real) t1, a(30)
   write (11, t1)
   write (12, a)

Data written to a file in this fashion can be read with a similar
unformatted read statement, but only on the same system that it was



written on.  Unformatted files written by MPFUN90 programs are not
compatible with unformatted files written by ARPREC.

E. Handling precision level

The initial working precision, and the maximum for this run, is set by

   call mpinit (idig)

where idig is the desired precision in digits.  The current working 
precision, in digits (idig) and words (iwds), can be obtained by

   call mpgetprec (idig)     [or]
   call mpgetprecwords (iwds)

(one word contains 48 bits, or about 14.44 digits).  The working
precision level may be changed by calling

   call mpsetprec (idig)     [or]
   call mpsetprecwords (iwds)

The output precision, which by default is limited to 56 digits no
matter what the working precision level, is given in the global
variable mpoud, and may be changed or fetched simply by writing

   mpoud = idig     [or]
   idig = mpoud

This may optionally be done by using subroutine calls:

   call mpsetoutputprec (idig)    [or]
   call mpgetoutputprec (idig)

F. Multiprecision system variables

A number of global variables are defined in the Fortran-90 wrapper,
which may be accessed and in some cases changed by the user.  Here is
a listing and brief description of these variables:

Integer parameters [cannot be changed by the user during execution]:

mpipl      Max prec level, digits              User sets in mp_mod.f
mpldb      Logical unit for some output (=6)   Set in mp_mod.f
mpnbt      Bits per word (= 48)                Set in mp_mod.f
mpwds      Max prec level in words             Set in mp_mod.f, from 
mpipl

Integer variables [may be changed by user during exeuction]:

mpoud      Number of digits output with mpwrite; default = 56



Integer variables [accessed via mpgetpar/mpsetpar (see note below)]:

mpidb      Debug level for arprec routines; default = 0
mpier      Error flag and error number; default = 0
mpird      Rounding mode (0, 1 or 2); default = 1
mpmcr      Threshold for advanced routines; default = 7
mpndb      Number of debug words output; default = 22
mpker      Array of 72 error handling flags; default each entry = 2

Multiprecision real parameters [calculated during initialization]:

mpl02      Log(2)
mpl10      Log(10)
mppic      Pi
mplrg      Very large mp_real value = 2^(48*2^27)
mpsml      Very small mp_real value = 2^(-48*2^27)

Multiprecision real variables [may be changed by user during 
exeuction]:

mpeps      Epsilon for user program; default = 10^(-prec)

The system parameters mpidb, mpier, mpird, mpmcr, mpndb and mpker can
be stored or fetched as follows:

   integer mpidb
   ...
   call mpsetpar ('mpndb', 10)         [or]
   call mpgetpar ('mpidb', mpidbx)

IV. The Experimental Mathematician's Toolkit

A. Installation instructions:

1. Download and install the ARPREC library (see instructions in README
of the main arprec directory).  Then type "make toolkit" and enter the
toolkit directory.

2. Run the mathinit program by typing ./mathinit.  This computes a few
constants and then generates quadrature data for tanh-sinh
quadrature. This takes about 2 minutes to run, depending on the
system, and generates two files, one about 19 Mbyte long.  By default,
only data for the tanh-sinh quadrature scheme is currently computed.
To compute data for all three quadrature schemes, see the comments at 
the
start of mathinit.f, or below in Section C, Item 13.

3. The mathtool program may now be invoked by typing ./mathtool.



B. Usage instructions:

Here are some examples, as shown in the prompt of the mathtool 
program: 

e + pi + log2 + log10 + catalan  Adds these pre-defined constants.
result[1] + result[2]            Adds result #1 to result #2.
alpha = arctan[3] - 3*log[2]     Defines or sets user variable alpha.
fun1[x,y] = 2*sqrt[x]*erf[y]     Defines user function fun1.
clear[nam1]                      Clears definition of variable or 
function.
integrate[1/(1+x^2), {x, 0, 1}]  Integrates 1/(1+x^2) from x=0 to 1.
sum[1/2^k, {k, 0, infinity}]     Sums 1/2^k from k=0 to infinity.
binomial[20,10]*factorial[10]    Evaluates binomial coeff and 
factorial.
zeta[3] + zetaz[1,1,2]           Evaluates zeta and multi-zeta 
functions.
table[x^k, {k, 1, 4}]            Forms the list [x^1, x^2, x^3, x^4].
pslq[table[x^k, {k, 0, n}]]      Finds coeffs of degree-n poly for x.
polyroot[1,-1,-1,{0.618}]        Finds real root of 1-x-x^2=0 near 
0.618.
polyroot[1,2,3,{-0.33, 0.47}]    Complex root of 1+2x+3x^2 near 
-0.33+0.47i.
digits = 200                     Sets working precision to 200 digits.
epsilon = -190                   Sets epsilon level to 10^(-190).
eformat[190,180]                 Display using E format with 180 
digits.
fformat[60,50]                   Display using F format with 50 
digits.
input file.dat                   Inputs commands from file file.dat.
output file.dat                  Outputs user vars and funs to 
file.dat.
help polyroot                    Displays a brief explanation of 
polyroot.
functions                        Displays a list of all defined 
functions.
variables                        Displays a list of all defined 
variables.
prompt                           Displays this message.
exit                             Exits this program.

Expressions are case insensitive and may be continued on next line by
typing \ at end of line.

C. Additional Comments

1. By default, the initial working precision when mathtool is invoked
is 100 decimal digits.  This can be increased to as high as 1000
digits by using the "digits" command as shown above.  If even higher



precision is needed, see the instructions at the start of the
globdata.f file.  Changing the value of digits does not change the
number of digits displayed in interactive output -- by default only
the first 68 digits are displayed.  To display more (or fewer), see
item 7 below.  By default, epsilon is set to -digits, meaning a
tolerance of 10^epsilon, but it can be adjusted as shown above.

2. User-defined variable and function names are limited to 16
characters (alphabetic, digits, underscore), case insensitive.

3. All constants and variables are stored as high-precision numerical
values, not in a symbolic form as with programs such as Maple or
Mathematica.  Thus if you increase the value of digits (the working
precision), you must recalculate all variables that you have defined,
unless they were originally calculated to at least the specified
precision.

4. The following mathematical constants are pre-defined: e, log2,
log10, pi, catalan (Catalan's constant), eulergamma (Euler's constant)
and infinity.

5. The following mathematical functions are pre-defined: abs, arccos,
arcsin, arctan, arctan2, bessel, besselexp, binomial, cos, erf, erfc,
exp, factorial, gamma, integrate, log, max, min, polyroot, pslq, sin,
sqrt, sum, table, tan, zeta, zetap, zetaz.  Arctan2 is a two-argument
form of arctan, similar to atan2 in Fortran; bessel[t] is the same as
BesselI[0,t] in Mathematica; besselexp[t] = bessel[t]/exp[t]; gamma is
the gamma function; zetap and zetaz are multi-zeta functions -- see
http://www.cecm.sfu.ca/projects/ezface/definition.html.

6. If you mistype a function definition, you cannot simply retype it
(a syntax error will result). First remove the function name using the
"clear" command as shown above.  The function definition for an
existing function can be displayed by simply typing the function name.

7. For faster execution when computing integrals or sums, pre-define
any constant expressions that appear in a function definition.  For
example, rather than defining f[x] = sqrt[2] * exp[x], first define
sqrt2 = sqrt[2], then define f[x] = sqrt2 * exp[x].

8. The format for displaying subsequent interactive results can be
changed by using the "eformat" and "fformat" commands, as shown above.
These are similar to the Fortran E format and F format, respectively:
the first argument is the total length, and the second argument is the
number of siginificant digits.  The default format is eformat[78,68].
When the first argument exceeds 80, output values are continued on
additional lines as needed.  The second argument may not exceed the
value of digits (the current working precision).  For example, if one
types "eformat[15,10]", then "pi", the result is ' 3.1415926535e0'.  
If



one types "fformat[15,10]", then "pi", the result is '   
3.1415926535'.

9. Several of the facilities within the mathtool program, notably the
quadrature and PSLQ facilities, produce some debug output as their
calculations proceed.  This output can be controlled by setting debug,
which by default is set to 2.  All such output (including for instance
the CPU time used in each command) can be canceled by typing "debug =
0".

10. The "output" command can be used to save variable and function
definitions, as shown above.  Variables are saved to an accuracy of
the current working precision, as specified by using the "digits"
command.  The "efformat" and "fformat" commands do not affect the
format or accuracy of data written to a file by the "output" command.

11. A facility is available for summing infinite series (or finite
sums, for that matter), as shown above.  Be advised, however, that the
summand function is evaluated directly as shown when computing such
sums.  This is not a problem for summand functions such as
"(n+3)/16^n", which converge rapidly to zero, but summand functions
such as "1/(3*n+2)^2" do not converge to zero rapidly enough for the
infinite series to be evaluated to high accuracy in reasonable time.
In many cases, such sums can be evaluated Maple or Mathematica, which
employ advanced transformations.

12. A facility is available for finding roots of polynomials, either
real roots or complex roots -- see examples above.  The starting value
should be reasonably close to the desired root if possible.  If you do
not have any idea where the root(s) may be, try "random" starting
values. Note especially that for finding a complex root, do NOT
specify zero as the imaginary part of the starting value, since the
resulting Newton iterations will then be restricted to the real line,
and the root will not be found.

13. A powerful integration (numerical quadrature) facility is
available in the mathtool program.  The integrand function may have a
blow-up singularity at either or both endpoints of the interval, and
either or both of the endpoints may be "infinity" or "-infinity".
However, the function should not have a singularity within the
interval -- if it does, split the integral into two integrals.  Three
quadrature schemes are available, namely tanh-sinh, error function and
Gaussian quadrature, although by default only the data for tanh-sinh
is pre-computed by the mathinit program.  To enable all three schemes,
change the parameter "nquadopt" in mathinit.f to 3, then recompile
mathinit (by typing "make") and re-run.  This requires about 2 hours
run time on a 2004-era system.  Gaussian quadrature is the fastest of
the three schemes for continuous, well-behaved integrand functions,
but does poorly for integrands with singularities.  Error function
(erf) quadrature works well even if the function has a blow-up



singularity at one or both of the endpoints of the interval.
Tanh-sinh is even faster for many functions.  To switch between these
schemes, type "quadtype = 1" for Gaussian, "quadtype = 2" for erf, and
"quadtype = 3" for tanh-sinh.  Each of these schemes performs
calculations with multiple "levels" (sets) of abscissas and weights.
Each additional level provides additional accuracy, but also
approximately doubles the run time.  The highest level to be used is
controlled by the quadlevel command.  By default, 10 levels of
abscissas and weights are pre-calculated by the mathinit program, so
quadlevel can be set as high as 10.  The quadrature routines attempt
to find a value accurate to within a tolerance of 10^epsilon.  Epsilon
can be adjusted as shown above.  The quadrature routines, particularly
the erf and tanh-sinh schemes, work best when a function with a
blow-up singularity at one endpoint is transformed, via a linear
transformation, to one where the singularity is at zero.  Example:
the function f[t] = t/sqrt[1-t^2] has a singularity at 1.  So the
integral of f[t] from 0 to 1 is better changed to the integral of g[u]
from 0 to 1, where g[u] = (1-u)/sqrt[u*(2-u)], and u = 1-t. 

14. A powerful integer relation detection facility, employing
Ferguson's PSLQ algorithm, is available in the mathtool program.
Given n real numbers x_i, an integer relation program finds integers
a_i, not all zero, such that a_1 x_1 + a_2 x_2 + ... + a_n x_n = 0.
If the largest integer among the a_i has d digits, then each entry of
the input real vector (a_i) must be calculated to at least n*d digits
accuracy, and the algorithm must be performed using at least n*d digit
accuracy, or else any recovered "relation" will not be numerically
meaningful.  By default, the standard one-level PSLQ algorithm is
used, which is adequate for modest-sized problems.  If the run time is
excessive, a two-level PSLQ program, which performs most PSLQ
iterations using double precision (updating the multiprecision arrays
only when necessary), is available by typing "pslqlevel = 2".  A
three-level PSLQ will be available by typing "pslqlevel = 3", although
this has not yet been implemented in the mathtool program.  By
default, PSLQ iterations are abandoned when the norm bound (the
maximum Euclidean norm of any possible integer relation vector)
exceeds 10^100.  This termination condition can be changed by typing,
for example, "pslqbound = 40", which terminates when the PSLQ bound
exceeds 10^40.  A third relevant parameter is epsilon.  By default,
epsilon is set to -digits, but it can be manually adjusted.  Typing
"epsilon = -80", for example, means that PSLQ will return a solution
vector if its inner product with the input real vector is less than
10^(-80).

V. Note on x86-Based Processors (MOST systems in use today)

The algorithms in this library assume IEEE double precision floating
point arithmetic.  Since Intel processors have extended (80-bit)
floating point registers, the round-to-double flag must be enabled in



the control word of the FPU for this library to function properly
under these processors.  

The preprocessor macro X86 (defined in config.h, if necessary)
will fill in the following functions with appropriate code to 
facilitate manipulation of this flag.  If the flag is not set, 
the functions do nothing (but still exist).  Note that this should
automatically be handled by the configure script.

fpu_fix_start    This turns on the round-to-double bit in the control 
word.
fpu_fix_end      This restores the control flag.

By default, fpu_fix_start will be called when mp::mp_init is called,
so in most cases no user intervention is necessary.  However, if this
change of rounding mode causes problems with the non-ARPREC portion of
the computation, the rounding mode can be explicitly turned on and off
by calling fpu_fix_start and fpu_fix_end.  For example,

    int main() {
      unsigned int old_cw;
      fpu_fix_start(&old_cw);
      mp::mp_init( ... )

      ... user code using ARPREC ...

      fpu_fix_end(&old_cw);

      ... user code not using ARPREC ...
    }

A Fortran-90 example is the following:

    program foo
    use mpmodule
    implicit none
    integer*4 old_cw

    call f_fpu_fix_start(old_cw)
    call mpinit( ... )

      ... user code using ARPREC ...

    call f_fpu_fix_end(old_cw)
      
      ... user code not using ARPREC ...

    end program




