Given an ideal I in a polynomial ring k[x1, ..., xn], mu(e, I, J) or mu(e, f, J) outputs the maximal integer N such that the N-th generalized Frobenius power of I, or fN, is not contained in the pe-th Frobenius power of J.
i1 : R = ZZ/3[x,y]; |
i2 : I = ideal(x^2, x+y); o2 : Ideal of R |
i3 : J = ideal(x, y^2); o3 : Ideal of R |
i4 : mu(2,I,J) o4 = 17 |
i5 : mu(3,I) o5 = 26 |
i6 : mu(3,x^3+y^3,J) o6 = 17 |