next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

             2 2         2   2    2     2 2    2   2   2         2 2    2 
o2 = ideal (h r  - b*m, e o*x  - p , b*u v  - k , b s*v  - q, a*j o  - b ,
     ------------------------------------------------------------------------
      2 2 2    2   2 2 2
     b e u  - n , b j p  - e)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 2 2 4 2 3    3 4 4 2   4 3 2 4   4     3 4 3   3 4 4   3 3 2  
o3 = ideal (g l n q u x  - c e j s , c e j k p*v w - h o s , a b c f*h q s  -
     ------------------------------------------------------------------------
      4 4 4   3 4 3 4 3 2 3    3 2 4
     e m r , d g i l p u x  - e j v )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.