i1 : R = QQ[x,y]; |
i2 : D = divisorPoset({0,1}, {2,2}, R) o2 = Poset{cache => CacheTable{} } 2 2 2 2 2 GroundSet => {y, y , x*y, x*y , x y, x y } RelationMatrix => | 1 1 1 1 1 1 | | 0 1 0 1 0 1 | | 0 0 1 1 1 1 | | 0 0 0 1 0 1 | | 0 0 0 0 1 1 | | 0 0 0 0 0 1 | 2 2 2 2 2 2 2 2 2 2 2 Relations => {{y, y }, {y, x*y}, {y , x*y }, {x*y, x*y }, {x*y, x y}, {x*y , x y }, {x y, x y }} o2 : Poset |
i3 : D == divisorPoset(y, x^2*y^2) o3 = true |