i1 : for d from 1 to 6 list isWellDefined projectiveSpace d o1 = {true, true, true, true, true, true} o1 : List |
i2 : setRandomSeed(currentTime()); |
i3 : a = sort apply(3, i -> random(7)) o3 = {0, 0, 6} o3 : List |
i4 : isWellDefined kleinschmidt(4,a) o4 = true |
i5 : q = apply(5, j -> random(1,9)); |
i6 : while not all(subsets(q,#q-1), s -> gcd s === 1) do ( q = apply(5, j -> random(1,9))); |
i7 : q o7 = {4, 7, 9, 2, 2} o7 : List |
i8 : isWellDefined weightedProjectiveSpace q o8 = true |
i9 : Sigma = max projectiveSpace 2; |
i10 : X1 = normalToricVariety({{-1,-1},{1,0},{0,1},{-1,0}},Sigma); |
i11 : isWellDefined X1 o11 = false |
i12 : debugLevel = 1; |
i13 : isWellDefined X1 -- some ray does not appear in maximal cone o13 = false |
i14 : Sigma' = {{0,1},{0,3},{1,2},{2,3},{3}}; |
i15 : X2 = normalToricVariety({{-1,0},{0,-1},{1,-1},{0,1}},Sigma'); |
i16 : isWellDefined X2 -- some cone is not maximal o16 = false |
i17 : X3 = normalToricVariety({{-1,-1},{1,0},{0,1,1}},Sigma); |
i18 : isWellDefined X3 -- not all rays have the same length o18 = false |
i19 : X4 = normalToricVariety({{-1,-1/1},{1,0},{0,1}},Sigma); |
i20 : isWellDefined X4 -- not all rays are lists of integers o20 = false |
i21 : X5 = normalToricVariety({{1,0},{0,1},{-1,0}},{{0,1,2}}); |
i22 : isWellDefined X5 -- not all maximal cones are strongly convex o22 = false |
i23 : X6 = normalToricVariety({{1,0},{0,1},{1,1}},{{0,1,2}}); |
i24 : isWellDefined X6 -- the rays are not the primitive generators o24 = false |
i25 : X7 = normalToricVariety({{1,0,0},{0,1,0},{0,0,2}},{{0,1,2}}); |
i26 : isWellDefined X7 -- the rays are not the primitive generators o26 = false |
i27 : X8 = normalToricVariety({{1,0},{0,1},{1,1}},{{0,1},{1,2}}); |
i28 : isWellDefined X8 -- intersection of cones is not a cone o28 = false |