next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2    2    2 2         2 2        2 2     2   2 2 2       2 2 2
o2 = ideal (o*p  - t u, g w  - h*x, g j k - n, a e k - b , s v x  - u, c f q 
     ------------------------------------------------------------------------
        2   2 2 2 2
     - p , i l q x  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             4 3 3 3 2      3 2 2 4   3 2 2 4 3 2    2 4 4 3   3 4 4 2 4  
o3 = ideal (d i k l o  - c*f h m t , a g n o s t  - b d f k , d e m t w  -
     ------------------------------------------------------------------------
      2 4     4   4 2 4 2 3 4      2 3
     i l o*q*r , a i n o p t  - d*g u x)

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.