i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); |
i2 : time R' = integralClosure(R, Verbosity => 2) [jacobian time .00166796 sec #minors 3] integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2 [step 0: radical (use decompose) .0135172 seconds idlizer1: .0251802 seconds idlizer2: .0513755 seconds minpres: .0358795 seconds time .174725 sec #fractions 4] [step 1: radical (use decompose) .0143273 seconds idlizer1: .0297513 seconds idlizer2: .0966041 seconds minpres: .0581878 seconds time .255584 sec #fractions 4] [step 2: radical (use decompose) .0144402 seconds idlizer1: .0418903 seconds idlizer2: .303375 seconds minpres: .0436835 seconds time .458899 sec #fractions 5] [step 3: radical (use decompose) .0143632 seconds idlizer1: .0334222 seconds idlizer2: .159657 seconds minpres: .121105 seconds time .416265 sec #fractions 5] [step 4: radical (use decompose) .0147149 seconds idlizer1: .068071 seconds idlizer2: .335724 seconds minpres: .0562661 seconds time .559723 sec #fractions 5] [step 5: radical (use decompose) .0144764 seconds idlizer1: .0415488 seconds time .081648 sec #fractions 5] -- used 1.95984 seconds o2 = R' o2 : QuotientRing |
i3 : trim ideal R' 3 2 2 2 4 4 o3 = ideal (w z - x , w x - w , w x - y z - z - z, w x - w z, 4,0 4,0 1,1 1,1 4,0 1,1 ------------------------------------------------------------------------ 2 2 2 3 2 3 2 3 2 4 2 2 4 2 w w - x y z - x z - x , w + w x y - x*y z - x*y z - 2x*y z 4,0 1,1 4,0 4,0 ------------------------------------------------------------------------ 3 3 2 6 2 6 2 - x*z - x, w x - w + x y + x z ) 4,0 1,1 o3 : Ideal of QQ[w , w , x, y, z] 4,0 1,1 |
i4 : icFractions R 3 2 2 4 x y z + z + z o4 = {--, -------------, x, y, z} z x o4 : List |