[Top] [Contents] [Index] [ ? ]

Logic algebra package for Maxima


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1. Introduction

This is a draft version of logic algebra package for Maxima. It is being developed by Alexey Beshenov (al@beshenov.ru). All source code is available uder the terms of GNU GPL 2.1.

List of recognized operators:

Operator

Type

Binding power

Description

Properties

not

Prefix

70

Logical NOT (negation)

and

N-ary

65

Logical AND (conjunction)

Commutative

nand

N-ary

62

Sheffer stroke (alternative denial, NAND)

Commutative

nor

N-ary

61

Webb-operation or Peirce arrow (Quine's dagger, NOR)

Commutative

or

N-ary

60

Logical OR (disjunction)

Commutative

implies

Infix

59

Implication

eq

N-ary

58

Equivalence

Commutative

xor

N-ary

58

Sum modulo 2 (exclusive or)

Commutative


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

2. TeX output

logic.mac assigns the following TeX output:

not

\neg

and

\wedge

nand

\mid

nor

\downarrow

or

\vee

implies

\rightarrow

eq

\sim

xor

\oplus

Examples:

 
(%i1) load ("logic.mac")$
(%i2) tex (a implies b)$
$$a \rightarrow b$$
(%i3) tex ((a nor b) nand c)$
$$\left(a \downarrow b\right) \mid c$$
(%i4) tex (zhegalkin_form (a or b or c))$
$$a \wedge b \wedge c \oplus a \wedge b \oplus a \wedge c \oplus b
  \wedge c \oplus a \oplus b \oplus c$$
(%i5) tex (boolean_form (a implies b implies c));
$$ \neg \left( \neg a \vee b\right) \vee c$$
(%i6) tex (a eq b eq c);
$$a \sim b \sim c$$


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

3. Functions for logic algebra

Function: logic_simp (expr)

Returns a simplified version of logical expression expr.

Examples:

 
(%i1) load ("logic.mac")$
(%i2) logic_simp (a or (b or false or (a or b)));
(%o2)                               a or b
(%i3) logic_simp (b eq a eq false eq true);
(%o3)                           eq a eq b false
(%i4) logic_simp ((a xor true) xor b xor true);
(%o4)                               a xor b

The function applies only basic simplification rules without introducing new functions.

N.B. It should be merged somehow with the basic Maxima simplifier.

Function: characteristic_vector (expr, var_1, ..., var_n)

Returns a list of size 2^n with all possible values of expr.

For example, characteristic_vector (f(x,y,z), x, y, z) is equivalent to list

 
[
  f (false, false, false),
  f (false, false,  true),
  f (false,  true, false),
  f (false,  true,  true),
  f ( true, false, false),
  f ( true, false,  true),
  f ( true,  true, false),
  f ( true,  true,  true)
]

If var_1, ..., var_n is omitted, it is assumed that

 
[var_1, ..., var_n] = sort(listofvars(expr))

Examples:

 
(%i1) load ("logic.mac")$
(%i2) characteristic_vector (true);
(%o2)                               [true]
(%i3) characteristic_vector (a xor b);
(%o3)                     [false, true, true, false]
(%i4) characteristic_vector (a implies b);
(%o4)                      [true, true, false, true]
(%i5) characteristic_vector (a implies b, a, b);
(%o5)                      [true, true, false, true]
(%i6) characteristic_vector (a implies b, b, a);
(%o6)                      [true, false, true, true]
Function: zhegalkin_form (expr)

Returns the representation of expr in Zhegalkin basis {xor, and, true}.

Examples:

 
(%i1) load ("logic.mac")$
(%i2) zhegalkin_form (a or b or c);
(%o2) (a and b and c) xor (a and b) xor (a and c)
                               xor (b and c) xor a xor b xor c
(%i3) zhegalkin_form ((a implies b) or c);
(%o3) (a and b and c) xor (a and b) xor (a and c) xor a
                                                      xor true
Function: logic_equiv (expr_1, expr_2)

Returns true if expr_1 is equivalent to expr_2 and false otherwise.

Examples:

 
(%i1) load ("logic.mac")$
(%i2) e : ((a or b) xor c) and d$
(%i3) zhegalkin_form (e);
(%o3) (a and b and d) xor (a and d) xor (b and d)
                                                 xor (c and d)
(%i4) logic_equiv (%i2, %o3);
(%o4)                                true
(%i5) is (characteristic_vector(%i2) = characteristic_vector(%o3));
(%o5)                                true
(%i6) logic_equiv (x and y eq x, x implies y);
(%o6)                                true
Function: dual_function (expr)
 
dual_function (f (x_1, ..., x_n)) := not f (not x_1, ..., not x_n).

Example:

 
(%i1) load ("logic.mac")$
(%i2) dual_function (x or y);
(%o2)                     not ((not x) or (not y))
(%i3) demorgan (%);
(%o3)                               x and y
Function: self_dual (expr)

Returns true if expr is equivalent to dual_function (expr) and false otherwise.

Examples:

 
(%i1) load ("logic.mac")$
(%i2) self_dual (a);
(%o2)                               true
(%i3) self_dual (not a);
(%o3)                               true
(%i4) self_dual (a eq b);
(%o4)                               false
Function: closed_under_f (expr)

closed_under_f (f (x_1, ..., x_n) returns true if f (false, ..., false) = false and false otherwise.

Examples:

 
(%i1) load ("logic.mac")$
(%i2) closed_under_f (x and y);
(%o2)                                true
(%i3) closed_under_f (x or y);
(%o3)                                true
Function: closed_under_t (expr)

closed_under_t (f (x_1, ..., x_n) returns true if f (true, ..., true) = true and false otherwise.

Examples:

 
(%i1) load ("logic.mac")$
(%i2) closed_under_t (x and y);
(%o2)                                true
(%i3) closed_under_t (x or y);
(%o3)                                true
Function: monotonic (expr)

Returns true if characteristic vector of expr is monotonic, i.e.

 
charvec : characteristic_vector(expr)
charvec[i] <= charvec[i+1],   i = 1, ..., n-1

where a<=b := (a=b or (a=false and b=true)).

Examples:

 
(%i1) load ("logic.mac")$
(%i2) monotonic (a or b);
(%o2)                                true
(%i3) monotonic (a and b);
(%o3)                                true
(%i4) monotonic (a implies b);
(%o4)                                false
(%i5) monotonic (a xor b);
(%o5)                                false
(%i6) characteristic_vector (a or b);
(%o6)                     [false, true, true, true]
(%i7) characteristic_vector (a and b);
(%o7)                    [false, false, false, true]
(%i8) characteristic_vector (a implies b);
(%o8)                     [true, true, false, true]
(%i9) characteristic_vector (a xor b);
(%o9)                    [false, true, true, false]
Function: linear (expr)

Returns true if zhegalkin_form(expr) is linear and false otherwise.

Examples:

 
(%i1) load ("logic.mac")$
(%i2) linear (a or b);
(%o2)                                false
(%i3) linear (a eq b);
(%o3)                                true
(%i4) zhegalkin_form (a or b);
(%o4)              (a and b) xor a xor b
(%i5) zhegalkin_form (a eq b);
(%o5)                 a xor b xor true

Linear functions are also known as counting or alternating functions.

Function: functionally_complete (expr_1, ..., expr_n)

Returns true if expr_1, ..., expr_n is a functionally complete system and false otherwise. The constants are essential (see the example below).

Examples:

 
(%i1) load ("logic.mac")$
(%i2) functionally_complete (x and y, x xor y);
(%o2)                                false
(%i3) functionally_complete (x and y, x xor y, true);
(%o3)                                true
(%i4) functionally_complete (x and y, x or y, not x);
(%o4)                                true
Function: logic_basis (expr_1, ..., expr_n)

Returns true if expr_1, ..., expr_n is a functionally complete system without redundant elements and false otherwise.

Examples:

 
(%i1) load ("logic.mac")$
(%i2) logic_basis (x and y, x or y);
(%o2)                       false
(%i3) logic_basis (x and y, x or y, not x);
(%o3)                       false
(%i4) logic_basis (x and y, not x);
(%o4)                       true
(%i5) logic_basis (x or y, not x);
(%o5)                       true
(%i8) logic_basis (x and y, x xor y, true);
(%o8)                       true

All possible bases:

 
(%i1) load ("logic.mac")$
(%i2) logic_functions : { not x, x nand y, x nor y,
                          x implies y, x and y, x or y,
                          x eq y, x xor y, true, false }$
(%i3) subset (powerset(logic_functions),
              lambda ([s], apply ('logic_basis, listify(s))));
(%o3) {{false, x eq y, x and y}, {false, x eq y, x or y},
{false, x implies y}, {true, x xor y, x and y},
{true, x xor y, x or y}, {not x, x implies y},
{not x, x and y}, {not x, x or y},
{x eq y, x xor y, x and y}, {x eq y, x xor y, x or y},
{x implies y, x xor y}, {x nand y}, {x nor y}}
Function: logic_diff (f, x)

Returns the logic derivative df/dx of f wrt x.

 
logic_diff (f (x_1, ..., x_k, ..., x_n),  x_k) :=
    f (x_1, ..., true, ..., x_n)  xor
        f (x_1, ..., false, ..., x_n)

Examples:

 
(%i1) load ("logic.mac")$
(%i2) logic_diff (a or b or c, a);
(%o2)          (b and c) xor b xor c xor true
(%i3) logic_diff (a and b and c, a);
(%o3)                      b and c
(%i4) logic_diff (a or (not a), a);
(%o4)                       false
Function: boolean_form (expr)

Returns the representation of expr in Boolean basis {and, or, not}.

Examples:

 
(%i1) load ("logic.mac")$
(%i2) boolean_form (a implies b implies c);
(%o2)             (not ((not a) or b)) or c
(%i3) demorgan (%);
(%o3)               ((not b) and a) or c
(%i4) logic_equiv (boolean_form (a implies b implies c),
                   zhegalkin_form (a implies b implies c));
(%o4)                       true
Function: demorgan (expr)

Applies De Morgan's rules to expr:

 
not (x_1 and ... and x_n) => (not x_1  or ...  or not x_n)
not (x_1  or ...  or x_n) => (not x_1 and ... and not x_n)

Example:

 
(%i1) load ("logic.mac")$
(%i2) demorgan (boolean_form (a nor b nor c));
(%o2)          (not a) and (not b) and (not c)
Function: pdnf (expr)

Returns the perfect disjunctive normal form of expr.

Example:

 
(%i1) load ("logic.mac")$
(%i2) pdnf (x implies y);
(%o2) (x and y) or ((not x) and y) or ((not x) and (not y))
Function: pcnf (expr)

Returns the perfect conjunctive normal form of expr.

Example:

 
(%i1) load ("logic.mac")$
(%i2) pcnf (x implies y);
(%o2)                   (not x) or y

[Top] [Contents] [Index] [ ? ]

About This Document

This document was generated by Alexey Beshenov on January, 8 2009 using texi2html 1.78.

The buttons in the navigation panels have the following meaning:

Button Name Go to From 1.2.3 go to
[ < ] Back Previous section in reading order 1.2.2
[ > ] Forward Next section in reading order 1.2.4
[ << ] FastBack Beginning of this chapter or previous chapter 1
[ Up ] Up Up section 1.2
[ >> ] FastForward Next chapter 2
[Top] Top Cover (top) of document  
[Contents] Contents Table of contents  
[Index] Index Index  
[ ? ] About About (help)  

where the Example assumes that the current position is at Subsubsection One-Two-Three of a document of the following structure:


This document was generated by Alexey Beshenov on January, 8 2009 using texi2html 1.78.