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Chapter 1

Introduction

This document describes a Frama-C plug-in that uses external decision procedures to prove
ACSL annotations of C functions.
The WP plug-in is named after Weakest Precondition calculus, a technique used to prove pro-
gram properties initiated by Hoare [Hoa69], Floyd [Flo67] and Dijkstra [Dij68]. Recent tools
implement this technique with great performance, for instance Boogie [Lei08] and Why [Fil03].
There is already a Frama-C plug-in, Jessie [MM09], developed at INRIA, that implements a
weakest precondition calculus for C programs by compiling them into the Why language.
The WP plug-in is a novel implementation of such a Weakest Precondition calculus for an-
notated C programs, which focuses on parametrization w.r.t the memory model. It is a
complementary work to the Jessie plug-in, which relies on a separation memory model in the
spirit of Burstall’s work [Bur72]. The Jessie memory model is very efficient for a large variety
of well structured C-programs. However, it does not apply when low-level memory manipula-
tions, such as heterogeneous casts, are involved. Moreover, Jessie operates by compiling the
C program to Why, a solution that prevents the user from combining weakest precondition
calculus with other techniques, such as the Value analysis plug-in.
The WP plug-in has been designed with cooperation in mind. That is, you may use WP for
proving some annotations of your C programs, and prove others with different plug-ins. The
recent improvements of the Frama-C kernel are then responsible for managing such partial
proofs and consolidating them altogether.
This manual is divided into three parts. This first chapter introduces the WP plug-in, the
Weakest Precondition calculus and Memory Models. Then, Chapter 2 details how to use
and tune the plug-in within the Frama-C platform. Chapter 3 provides a description for the
included memory models. Finally, we present in Chapter 4 the simplifier module and the
efficient weakest precondition engine implemented in the WP plug-in.
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CHAPTER 1. INTRODUCTION

Installation

The WP plug-in is distributed with the Frama-C platform. However, you should install at
least one external prover in order to fulfill proof obligations. An easy choice is to install the
Alt-Ergo theorem prover developped at inria1. See section 2.1 for installing other provers.

Tutorial

Consider the very simple example of a function that swaps the values of two integers passed
by reference:
File swap.c

void swap(int *a,int *b)
{

int tmp = *a ;
*a = *b ;
*b = tmp ;
return ;

}

A simple, although incomplete, ACSL contract for this function can be:
File swap1.h

/∗@ ensures A: ∗a == \old(∗b) ;
@ ensures B: ∗b == \old(∗a) ;
@∗/

void swap(int *a,int *b) ;

You can run wp on this example with:
> frama-c -wp swap.c swap1.h
# frama-c -wp [...]
[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing swap.c (with preprocessing)
[kernel] Parsing swap1.h (with preprocessing)
[wp] Running WP plugin...
[wp] Loading driver 'share/wp.driver'
[wp] Collecting axiomatic usage
[wp] warning: Missing RTE guards
[wp] 2 goals scheduled
[wp] [Alt-Ergo] Goal typed_swap_post_A : Valid
[wp] [Qed] Goal typed_swap_post_B : Valid
[wp] Proved goals: 2 / 2

Qed: 1
Alt-Ergo: 1

----------------------------------------------------------
Functions WP Alt-Ergo Total Success
swap 1 1 (12) 2 100%
----------------------------------------------------------

As expected, running WP for the swap contract results in two proof obligations (one for each
’ensures’ clause). The first one is discharged internally by the Qed simplifier of WP, the
second one is terminated by Alt-Ergo.

1Alt-Ergo: http://alt-ergo.lri.fr
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1.2. TUTORIAL

You should notice the warning “Missing RTE guards”, emitted by the WP plug-in. That
is, the weakest precondition calculus implemented in WP relies on the hypothesis that your
program is runtime-error free. In this example, the swap function dereferences its two pa-
rameters, and these two pointers should be valid.
By default, the WP plug-in does not generate any proof obligation for verifying the absence of
runtime errors in your code. Absence of runtime errors can be proved with other techniques,
for instance by running the Value plug-in, or by generating all the necessary annotations with
the RTE plug-in.
The simple contract for the swap function above is not strong enough to prevent runtime
errors: pointers given as parameters might be invalid. Consider now the following new
contract for swap:
File swap2.h

/∗@ requires \valid(a) && \valid(b);
@ ensures A: ∗a == \old(∗b) ;
@ ensures B: ∗b == \old(∗a) ;
@ assigns ∗a,∗b ;
@∗/

void swap(int *a,int *b) ;

For simplicity, the WP plug-in is able to run the RTE plug-in for you, through the -wp-rte
option. Now, WP reports that the function swap completely fulfills its contract, without any
warnings regarding potential residual runtime errors:

> frama-c -wp -wp-rte swap.c swap2.h
# frama-c -wp -wp-rte [...]
[kernel] Parsing FRAMAC_SHARE/libc/__fc_builtin_for_normalization.i (no preprocessing)
[kernel] Parsing swap.c (with preprocessing)
[kernel] Parsing swap2.h (with preprocessing)
[wp] Running WP plugin...
[wp] Loading driver 'share/wp.driver'
[wp] Collecting axiomatic usage
[rte] annotating function swap
[wp] 9 goals scheduled
[wp] [Alt-Ergo] Goal typed_swap_post_A : Valid
[wp] [Qed] Goal typed_swap_post_B : Valid
[wp] [Alt-Ergo] Goal typed_swap_assert_rte_mem_access : Valid
[wp] [Qed] Goal typed_swap_assert_rte_mem_access_2 : Valid
[wp] [Alt-Ergo] Goal typed_swap_assert_rte_mem_access_3 : Valid
[wp] [Qed] Goal typed_swap_assert_rte_mem_access_4 : Valid
[wp] [Qed] Goal typed_swap_assign_part1 : Valid
[wp] [Qed] Goal typed_swap_assign_part2 : Valid
[wp] [Qed] Goal typed_swap_assign_part3 : Valid
[wp] Proved goals: 9 / 9

Qed: 6
Alt-Ergo: 3

----------------------------------------------------------
Functions WP Alt-Ergo Total Success
swap 6 3 (17) 9 100%
----------------------------------------------------------
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CHAPTER 1. INTRODUCTION

We have finished the job of validating this simple C program with respect to its specification,
as reported by the report plug-in that displays a consolidation status of all annotations:

> frama-c -wp-verbose 0 [...] -then -report
# frama-c -wp -wp-rte [...]
[rte] annotating function swap
----------------------------------------------------------
Functions WP Alt-Ergo Total Success
swap 6 3 (17) 9 100%
----------------------------------------------------------
[report] Computing properties status...

--------------------------------------------------------------------------------
--- Properties of Function 'swap'
--------------------------------------------------------------------------------

[ Valid ] Post-condition 'A'
by Wp.typed.

[ Valid ] Post-condition 'B'
by Wp.typed.

[ Valid ] Assigns (file swap2.h, line 4)
by Wp.typed.

[ Valid ] Assertion 'rte,mem_access' (file swap.c, line 3)
by Wp.typed.

[ Valid ] Assertion 'rte,mem_access' (file swap.c, line 4)
by Wp.typed.

[ Valid ] Assertion 'rte,mem_access' (file swap.c, line 4)
by Wp.typed.

[ Valid ] Assertion 'rte,mem_access' (file swap.c, line 5)
by Wp.typed.

[ Valid ] Default behavior
by Frama-C kernel.

--------------------------------------------------------------------------------
--- Status Report Summary
--------------------------------------------------------------------------------

8 Completely validated
8 Total

--------------------------------------------------------------------------------

10



1.3. WEAKEST PRECONDITIONS

Weakest Preconditions

The principles of weakest precondition calculus are quite simple in essence. Given a code
annotation of your program, say, an assertion Q after a statement stmt, the weakest precon-
dition of P is by definition the “simplest” property P that must be valid before stmt such
that Q holds after the execution of stmt.

Hoare triples. In mathematical terms, we denote such a property by a Hoare triple:

{P} stmt {Q}

which reads: “whenever P holds, then after running stmt, Q holds”.
Thus, we can define the weakest precondition as a function wp over statements and properties
such that the following Hoare triple always holds:

{wp(stmt,Q)} stmt {Q}

For instance, consider a simple assignment over an integer local variable x; we have:

{x+ 1 > 0} x = x + 1; {x > 0}

It should be intuitive that in this simple case, the weakest precondition for this assignment
of a property Q over x can be obtained by replacing x with x + 1 in Q. More generally, for
any statement and any property, it is possible to define such a weakest precondition.

Verification. Consider now function contracts. We basically have pre-conditions, asser-
tions and post-conditions. Say function f has a precondition P and a post condition Q, we
now want to prove that f satisfies its contract, which can be formalized by:

{P} f {Q}

Introducing W = wp(f,Q), we have by definition of wp:

{W} f {Q}

Suppose now that we can prove that precondition P entails weakest precondition W ; we can
then conclude that P precondition of f always entails its postcondition Q. This proof can be
summarized by the following diagram:

(P =⇒W ) {W} f {Q}
{P} f {Q}

This is the main idea of how to prove a property by weakest precondition computation.
Consider an annotation Q, compute its weakest precondition W across all the statements
from Q up to the beginning of the function. Then, submit the property P =⇒ W to a
theorem prover, where P are the preconditions of the function. If this proof obligation is
discharged, then one may conclude the annotation Q is valid for all executions.
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CHAPTER 1. INTRODUCTION

Termination. We must point out a detail about program termination. Strictly speaking,
the weakest precondition of propertyQ through statement stmt should also ensure termination
and execution without runtime errors.
The proof obligations generated by WP do not entail systematic termination, unless you sys-
tematically specify and validate loop variant ACSL annotations. Nevertheless, exit behaviors
of a function are correctly handled by WP.
Regarding runtime errors, the proof obligations generated by WP assume your program never
raises any of them. As illustrated in the short tutorial example of section 1.2, you should
enforce the absence of runtime errors on your own, for instance by running the value analysis
plug-in or the rte generation one and proving the generated assertions.

Memory Models

The essence of a weakest precondition calculus is to translate code annotations into mathe-
matical properties. Consider the simple case of a property about an integer C-variable x:

x = x+1;
//@ assert P: x >= 0 ;

We can translate P into the mathematical property P (X) = X ≥ 0, where X stands for
the value of variable x at the appropriate program point. In this simple case, the effect of
statement x=x+1 over P is actually the substitution X 7→ X + 1, that is X + 1 ≥ 0.
The problem when applying weakest precondition calculus to C programs is dealing with
pointers. Consider now:

p = &x ;
x = x+1;
//@ assert Q: ∗p >= 0 ;

It is clear that, taking into account the aliasing between *p and x, the effect of the increment
of x cannot be translated by a simple substitution of X in Q.
This is where memory models come to rescue.
A memory model defines a mapping from values inside the C memory heap to mathematical
terms. The WP has been designed to support different memory models. There are currently
three memory models implemented, and we plan to implement new ones in future releases.
Those three models are all different from the one in the Jessie plug-in, which makes WP
complementary to Jessie.

Hoare model. A very efficient model that generates concise proof obligations. It simply
maps each C variable to one pure logical variable.
However, the heap cannot be represented in this model, and expressions such as *p
cannot be translated at all. You can still represent pointer values, but you cannot read
or write the heap through pointers.

Typed model. The default model for WP plug-in. Heap values are stored in several separated
global arrays, one for each atomic type (integers, floats, pointers) and an additional one
for memory allocation. Pointer values are translated into an index into these arrays.
In order to generate reasonable proof obligations, the values stored in the global array
are not the machine ones, but the logical ones. Hence, all C integer types are represented
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1.4. MEMORY MODELS

by mathematical integers and each pointer type to a given type is represented by a
specific logical abstract datatype.
A consequence of having separated arrays is that heterogeneous casts of pointers cannot
be translated in this model. For instance within this memory model, you cannot cast
a pointer to int into a pointer to char, and then access the internal representation of
the original int value into memory.
However, variants of the Typed model enable limited forms of casts. See chapter 3 for
details.

Bytes model. (Not Implemented Yet). This is a low-level memory model, where the
heap is represented as a wide array of bytes. Pointer values are exactly translated into
memory addresses. Read and write operations from/to the heap are translated into
manipulation of ranges of bits in the heap.
This model is very precise in the sense that all the details of the program are represented.
This comes at the cost of huge proof obligations that are very difficult to discharge by
automated provers, and generally require an interactive proof assistant.

Thus, each memory model offers a different trade-off between expressive power and ease of
discharging proof obligations. The Hoare memory model is very restricted but generates
easy proof obligations, Bytes is very expressive but generates difficult proof obligations, and
Typed offers an intermediate solution.
Chapter 3 is dedicated to a more detailed description of memory models, and how the WP
plug-in uses and combines them to generate efficient proof obligations.

Remark. The original Store and Runtime memory models are no longer available since
WP version 0.7; the Typed model replaces the Store one; the Runtime model will be entirely
re-implemented as Bytes model in some future release.
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CHAPTER 1. INTRODUCTION

Arithmetic Models

The WP plug-in is able to take into account the precise semantics of integral and floating-
point operations of C programs. However, doing so generally leads to very complex proof
obligations.
For tackling this complexity, the WP plug-in relies on several arithmetic models:

Natural Model: integer operations are performed on mathematical integers. Conversions
between different integer types are still translated with modulo, though. Generated
proof obligations with this model are well supported by state-of-the-art provers. But
the C operations must never overflow for the proof obligations to be correct.
This can be verified aside by running the RTE plug-in with specific options, or with the
-wp-rte option.

No-Range Model: similar to the Natural model but integer limits are never taken into
account. In the normal natural model, any integer type is known to fit some platform-
specific range of values. Rather, in the No-range natural model, only their signedness
would be known.

Machine Integer Model: integer operations are always performed with modulo. This
model removes the constraint of generating the guards against overflows. But the
generated proof obligations are generally difficult to discharge.

Real Model: floating-point operations are transformed on reals, with no rounding. This is
completely unsound with respect to C and IEEE semantics. There is no way of recovering
a correct or partial property from the generated proof obligations on floating-point
operations with this model.

Float Model: floating-point operations are defined to be the mathematical ones with a
rounding operation. This is fully consistent with the IEEE semantics. Most automated
provers are not able to discharge the generated proof obligations. Special support for
the Gappa theorem prover is available through Why3.

By default, the WP plug-in uses the Natural model for integers and the (unsound) Real model
for floating point.

14



Chapter 2

Using the WP Plug-in

The WP plug-in can be used from the Frama-C command line or within its graphical user
interface. It is a dynamically loaded plug-in, distributed with the kernel since the Carbon
release of Frama-C.
This plug-in computes proof obligations of programs annotated with ACSL annotations by
weakest precondition calculus, using a parametrized memory model to represent pointers and
heap values. The proof obligations may then be discharged by external decision procedures,
which range over automated theorem provers such as Alt-Ergo [CCK06], interactive proof
assistants like Coq [Coq10] and the interactive proof manager Why3 [BFMP11].
This chapter describes how to use the plug-in, from the Frama-C graphical user interface
(section 2.2), from the command line (section 2.3), or from another plug-in (section 2.4).
Additionally, the combination of the WP plug-in with the load and save commands of Frama-
C and/or the -then command-line option is explained in section 2.6.
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CHAPTER 2. USING THE WP PLUG-IN

Installing Provers

The WP plug-in requires external provers to work. The natively supported provers are:

Prover Version Download
Alt-Ergo 0.99.1 and 1.01 http://alt-ergo.ocamlpro.com [CCK06]

Coq 8.5 http://coq.inria.fr [Coq10]
Why3 0.87 http://why3.lri.fr [BFMP11]

Recent OPAM-provided versions should work smoothly.
Other provers, like Gappa, Z3, CVC3, CVC4, PVS, and many others, are accessible from WP
through Why3. We refer the user to the manual of Why3 to handle specific configuration
tasks.
Provers can be installed at any time, before or after the installation of Frama-C/WP. However,
when using Coq and Why-3, it is better to install them before, or to re-configure and re-install
WP, as explained below.

Configuration. When using Coq and Why-3, pre-compiled libraries are built during the
compilation of Frama-C, which speed up the proof process in a significant way. This behavior
can be turned on/off at configure time, typically:

# configure --disable-wp-coq --disable-wp-why3

Compilation. If you want to compile the Coq and Why-3 libraries manually, you can still
run:

# make wp-coq wp-why3
# [sudo] make wp-coq-install

Remark. The Why [Fil03] prover is no longer supported since WP version 0.7.
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2.2. GRAPHICAL USER INTERFACE

Graphical User Interface

To use the WP plug-in with the GUI, you simply need to run the Frama-C graphical user
interface. No additional option is required, although you can preselect some of the WP options
described in section 2.3:

$ frama-c-gui [options...] *.c

As we can see in figure 2.1, the memory model, the decision procedure, and some WP options
can be tuned from the WP side panel. Other options of the WP plug-in are still modifiable
from the Properties button in the main GUI toolbar.
To prove a property, just select it in the internal source view and choose WP from the
contextual menu. The Console window outputs some information about the computation.
Figure 2.2 displays an example of such a session.
If everything succeeds, a green bullet should appear on the left of the property. The com-
putation can also be run for a bundle of properties if the contextual menu is open from a
function or behavior selection.
The options from the WP side panel correspond to some options of the plug-in command-
line. Please refer to section 2.3 for more details. In the graphical user interface, there are also
specific panels that display more details related to the WP plug-in, that we shortly describe
below.

Source Panel. On the center of the Frama-C window, the status of each code annotation is
reported in the left margin. The meaning of icons is the same for all plug-ins in Frama-C and
more precisely described in the general user’s manual of the platform. The status emitted by
the WP plug-in are:

Icons for properties:
No proof attempted.
The property has not been validated.
The property is valid but has dependencies.
The property and all its dependencies are valid.

WP Goals Panel. This panel is dedicated to the WP plug-in. It shows the generated proof
obligations and their status for each prover. By double-clicking an annotation, you can view
its mathematical definition in a human readable format. By clicking on a prover column, you
can also submit a proof obligation to a prover by hand. Right-click provides more options
depending on the prover, such as proof-script editing for Coq.

Properties Panel. This panel summarizes the consolidated status of properties, from vari-
ous plug-ins. This panel is not automatically refreshed. You should press the Refresh button
to update it. This panel is described in more details in the general Frama-C platform user’s
manual.

Property Dependency Graph. By double-clicking on the status column of a property
in the properties panel, you can display a dependency graph for this property. The graph
displays the property, its status, which plug-in has participated in the proof, and on which
properties the proof directly depends on.
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CHAPTER 2. USING THE WP PLUG-IN

Figure 2.1: WP in the Frama-C GUI

Figure 2.2: WP run from the GUI
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2.3. COMMAND LINE OPTIONS

Command Line Options

The best way to know which options are available is to use:
# frama-c -wp-help

The WP plug-in generally operates in three steps:

1. Annotations are selected to produce a control-flow graph of elementary statements
annotated with hypotheses and goals.

2. Weakest preconditions are computed for all selected goals in the control-flow graph.
Proof obligations are emitted and saved on disk.

3. Decision procedures (provers) are run to discharge proof obligations.

The WP options allow to refine each step of this process. It is very convenient to use them
together with the standard -then option of Frama-C, in order to operate successive passes
on the project. See section 2.6 for details.

Goal Selection

This group of options refines the selection of annotations for which proof obligations are
generated. By default, all annotations are selected. A property which is already proved – by
WP or by any other plug-in – does not lead to any proof-obligation generation, unless the
property is individually selected from the graphical user interface of the programmatic API.

-wp generates proof obligations for all (selected) properties.

-wp-fct <f1,...,fn> selects annotations of functions f1,...,fn (defaults to all functions).

-wp-skip-fct <f1,...,fn> removes annotations of functions f1,...,fn (defaults to none).

-wp-bhv <b1,...,bn> selects annotations for behaviors b1,...bn (defaults to all behaviors)
of the selected functions.

-wp-prop <p1,...,pn> selects properties having p1 or ...pn as tagname (defaults to all prop-
erties). You may also replace a tagname by a @<category> of properties.
Recognized categories are: @lemma, @requires, @assigns, @ensures, @exits, @assert,
@invariant, @variant, @breaks, @continues, @returns,
@complete_behaviors, @disjoint_behaviors.
Properties can be prefixed with a minus sign to skip the associated annotations. For
example -wp-prop="-@assigns" removes all assigns and loop assigns properties
from the selection.

-wp-(no)-status-all includes in the goal selection all properties regardless of their current
status (default is: no).

-wp-(no)-status-valid includes in the goal selection those properties for which the current
status is already ’valid’ (default is: no).

-wp-(no)-status-invalid includes in the goal selection those properties for which the cur-
rent status is already ’invalid’ (default is: no).
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CHAPTER 2. USING THE WP PLUG-IN

-wp-(no)-status-maybe includes in the goal selection those properties with an undeter-
mined status (default is: yes).

Remark: options -wp-status-xxx are not taken into account when selecting a property by
its name or from the GUI.

Program Entry Point

The generic Frama-C options dealing with program entry point are taken into account by WP
plug-in as follows:

-main <f> designates f to be the main entry point (defaults to main).

-lib-entry the main entry point (as defined by option -main) is analyzed regardless of its
initial context (default is no).

These options impact the generation of proof-obligations for the “requires” contract of the
main entry point. More precisely, if there is a main entry point, and -lib-entry is not set:

• the global variables are set to their initial values at the beginning of the main entry
point for all its properties to be established;

• special proof obligations are generated for the preconditions of the main entry point,
hence to be proved with globals properly initialized.

Otherwise, initial values for globals are not taken into account and no proof obligation is
generated for preconditions of the main entry point.

Model Selection

These options modify the underlying memory model that is used for computing weakest
preconditions. See chapter 3 for details.

Model Selectors models are identified by a combination of selectors which are defined
below:

Selector Description
Hoare Select Hoare memory model.
Typed Select Typed memory model with limited casts.
cast Select Typed memory model with unlimited casts (unsound).

nocast Select Typed memory model with no casts.
raw Disable the combination of memory models.
var Combination of memory models based on variable analysis.
ref Activate the detection of pointer variables used for reference passing style.

caveat Caveat memory model (see 3.7).
nat Integer model with bounds (no overflow assumed).
rg Integer model without bounds (no overflow assumed, no limits).

int/cint Use machine integers (modulo arithmetics).
real Use mathematical reals instead of floating point.
float Use floating-point operations.
cfloat alias for float.
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2.3. COMMAND LINE OPTIONS

Such selectors are both used in the GUI and in the command-line. The available WP
command-line options influencing the memory model are:

-wp-model <spec...> specifies the models to use. The specification is a list of selectors.
Selectors are usually separated by ‘,’ although other separators are accepted as well:
‘+’, ‘_’, spaces, newlines, tabs and parentheses ‘(’, ‘)’.
Selectors are case insensitive. The option -wp-model can be used several times. All pro-
vided selectors are processed from left to right, potentially reverting previous selectors.
Default setting corresponds to -wp-model "Typed,var,nat,real".

-wp-literals exports the contents of string literals to provers (default: no).

-wp-extern-arrays gives an arbitrary large size to arrays with no dimensions. This is a
modelization of infinite size arrays (default is: no).

-wp-(alias|unalias|ref|context)-vars <var,...> these options can be used to finely
tweak the memory model inferred by WP. Each variable with a given name can be
forced to be modeled as follows:

alias: the variable is known to have aliases, use Typed model for it.
noalias: the variable is known to have no alias, use Hoare model for it.

ref: the variable is a constant pointer, use the Ref model for it.
context: the variable points to a non-aliased memory location, use a fresh global to model it.

-wp-print-separation this option activate the calculus of separation hypotheses for the
generated proof obligations. For each model supporting this feature, and each concerned
function, an ACSL specification is printed on output. Currently, only the Caveat memory
model support this feature.

Computation Strategy

These options modify the way proof obligations are generated during weakest precondition
calculus.

-wp-(no)-rte generates RTE guards before computing weakest preconditions. This op-
tion calls the rte generation plug-in with the following options: -rte-mem, -rte-div,
-warn-signed-overflow and -warn-unsigned-overflow. The generated guards, when
proved1, fulfill the requirements for using the WP plug-in with a natural integer domain
(default is: no).

-wp-(no)-split conjunctions in generated proof obligations are recursively split into sub-
goals. The generated goal names are suffixed by “part<n>” (defaults to no).

-wp-(no)-invariants computes proof obligations for arbitrary invariants inside loops. Also
modifies the calculus for proper loop invariants2 (default is: no).

-wp-(no)-callee-precond includes preconditions of the callee after3 a call (default is: yes).
1It is still correct to prove these RTE annotations with the WP plug-in.
2To be efficient, it is better to put all the loop invariants inside only one annotation. Otherwise, Frama-C

inserts them at different program points. Then, the WP calculus cuts the generated proof obligations at each
invariant instead of proving all of them inside the same induction scheme. Notice that, when using the ACSL-
Importer plug-in, all the loop invariants are placed at one unique program point, and are treated efficiently by
the WP plug-in.

3Proof obligations are always generated to check preconditions.
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-wp-(no)-init-const uses initializers for global const variables (default is: no).

-wp-(no)-dynamic handles calls via function pointers (experimental, default is: no).

Trigger Generation

The ACSL language does not provide the user with a syntax for declaring triggers associated
to lemmas and axioms. However, triggers are generally necessary for SMT solvers to discharge
efficiently the generated proof obligations.
There is a limited support for triggers in WP. The sub-terms and sub-predicates marked with
label "TRIGGER" in an axiom or lemma are collected to generate a multi-trigger for their
associated free variables.

Qed Simplifier Engine

These options control the simplifications performed by the WP plug-in before sending proof
obligations to external provers.

-wp-(no)-simpl simplifies constant expressions and tautologies (default is: yes).

-wp-(no)-clean removes unused terms and variables from proof obligations (default is:
yes).

-wp-(no)-let propagates equalities by substitutions and let-bindings (default is: yes).

-wp-(no)-pruning eliminates trivial branches of conditionals (default is: yes).

-wp-(no)-bits simplifies bitwise operations (default is: yes).

-wp-(no)-simplify-is-cint eliminates redundant constraints on integers (default: no).
Variables of C-integer types in \forall are promoted to integer variables when possi-
ble. Typically, provided n is already an integer, \forall unsigned x; x < n ==> ...
will be simplified into \forall integer x; 0 <= x < n ==> ....

Decision Procedures Interface

The generated proof obligations are submitted to external decision procedures. If proof
obligations have just been generated, by using -wp, -wp-fct, -wp-bhv or -wp-prop, then
only the new proof obligations are sent. Otherwise, all unproved proof obligations are sent
to external decision procedures.

-wp-prover <dp,...> selects the decision procedures used to discharge proof obligations.
See below for supported provers. By default, alt-ergo is selected, but you may specify
another decision procedure or a list of to try with. Finally, you should supply none for
this option to skip the proof step.
It is possible to ask for several decision procedures to be tried. For each goal, the first
decision procedure that succeeds cancels the other attempts.

-wp-proof <dp,...> deprecated alias for -wp-prover for backward compatibility with
WP version 0.6.
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-wp-gen only generates proof obligations, does not run provers. See option -wp-out to obtain
the generated proof obligations.

-wp-par <n> limits the number of parallel process runs for decision procedures. Default is 4
processes. With -wp-par 1, the order of logged results is fixed. With more processes,
the order is runtime dependent.

-wp-filename-truncation <n> truncates the basename of proof obligation files to the first
n characters. Since numbers can be added as suffixes to ensure unique filenames, their
length can be longer than n. No truncation is performed when the value equals zero.

-wp-(no)-proof-trace asks for provers to output extra information on proved goals when
available (default is: no).

-wp-(no)-unsat-model asks for provers to output extra information when goals are not
proved (default is: no).

-wp-timeout <n> sets the timeout (in seconds) for the calls to the decision prover (defaults
to 10 seconds).

Alt-Ergo. Direct support for the Alt-Ergo prover is provided. You need at least version
0.99 of the prover. It is also the default selected prover.

-wp-prover alt-ergo selects Alt-Ergo.

-wp-prover altgr-ergo opens the graphical interface of Alt-Ergo when the goal is not
proved.

-wp-steps <n> sets the maximal number of Alt-Ergo steps. This can be used as a machine-
independent alternative to timeout.

-wp-depth <n> sets ’stop’ and ’age-limit’ parameters of Alt-Ergo such that n cycles of quan-
tifier instantiations are enabled.

-wp-alt-ergo-opt <opt,...> passes additional options to Alt-Ergo (default: none).

-wp-alt-ergo=’<cmd>’ override the alt-ergo command.

-wp-altgr-ergo=’<cmd>’ override the altgr-ergo command.

Coq. Direct support for the Coq proof assistant is provided. The generated proof obliga-
tions are accepted by Coq version 8.4. When working with Coq, you will enter an interactive
session, then save the proof scripts in order to replay them in batch mode.

-wp-prover coq runs coqc with the default tactic or with the available proof script (see
below).

-wp-prover coqide first tries to replay some known proof script (if any). If it does not
succeed, then a new interactive session for coqide is opened. As soon as coqide exits,
the edited proof script is saved back (see below) and finally checked by coqc.
The only part of the edited file retained by WP is the proof script between “Proof. . . Qed.”.
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-wp-script <f.script> specifies the file which proof scripts are retrieved from, or saved
to. The format of this file is private to the WP plug-in. It is, however, a regular text
file from which you can cut and paste part of previously written script proofs. The WP
plug-in manages the content of this file for you.

-wp-(no)-update-script if turned off, the user’s script file will not be modified. A warning
is emitted if the script data base changed.

-wp-tactic <ltac> specifies the Coq tactic to try with when no user script is found. The
default tactic is "auto with zarith". See also how to load external libraries and
user-defined tactics in section 2.3.9.

-wp-tryhints When both the user-provided script and the default tactic fail to solve the
goal, other scripts for similar goals can be tried instead.

-wp-hints <n> sets the maximal number of suggested proof scripts.

-wp-coq-timeout <n> sets the maximal time in seconds for running the coqc checker. Does
not apply to coqide (default: 30s).

-wp-coq-opt <opt,...> additional options for coqc and coqide (default: none).

-wp-coqc=’<cmd>’ override the coqc command.

-wp-coqide=’<cmd>’ override the coqide command. If the command line contains the
emacs word (case-insensitive), coq-options are not passed to the command, but a coq-
project is used instead. This conforms to Proof General 4.3 settings. The project file
can be changed (see below).

-wp-coq-project=’<name>’ override the _CoqProject file name for Emacs and Proof Gen-
eral.

Why3. Since WP version 0.7, native support for Why3 and Why3-Ide are provided. The
older system Why 2.x is no longer supported.

-wp-prover "why3ide" runs Why3-Ide with all generated goals. On exit, the WP plug-in
reads back your Why3 session and updates the proof obligation status accordingly.

-wp-prover "<p>" runs a Why3 prover named <p>.

-wp-prover "why3:<p>" useful alias when "<p>" can be ambiguous. It is actually different
to run alt-ergo or coq directly from WP or through Why3.

-wp-detect lists the provers available with Why3. This command calls why3 –list-provers
but you have to configure Why3 on your own before, for instance by using why3config.
Consult the Why3 user manual for details. The listed prover names can be directly used
with the -wp-prover option.

-wp-why3=’<cmd>’ override the why3 command.
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Sessions. Your Why3 session is saved in the "project.session" sub-directory of -wp-out.
You may run why3ide by hand by issuing the following command:

# why3ide -I <frama-c-share>/wp <out>/project.session

Proof recovering features of Why3 are fully available, and you can interleave proving from
WP with manual runs of why3ide. Interactive proofs with Why3 are completely separated
from those managed by the native WP interface with Coq.

Generated Proof Obligations

Your proof obligations are generated and saved to several text files. With the -wp-out
option, you can specify a directory of your own where all these files are generated. By
default, this output directory is determined as follows: in the GUI, it is <home>/.frama-c-wp
where <home> is the user’s home directory returned by the HOME environment variable. In
command-line, a temporary directory is automatically created and removed when Frama-C
exits.

Other options controlling the output of generated proof obligations are:

-wp-(no)-print pretty-prints the generated proof obligations on the standard output. Re-
sults obtained by provers are reported as well (default is: no).

-wp-out <dir> sets the user directory where proof obligations are saved. The directory is
created if it does not exist yet. Its content is not cleaned up automatically.

Additional Proof Libraries

It is possible to add additional bases of knowledge to decision procedures. This support is
provided for Alt-Ergo, Why3 and Coq thanks to the following options:

-wp-share <dir> modifies the default directory where resources are found. This option can
be useful for running a modified or patched distribution of WP.

-wp-include <dir,...,++sharedir> (deprecated use driver instead) sets the directories
where external libraries and driver files are looked for. The current directory (implicitly
added to that list) is always looked up first. Relative directory names are relative to
the current directory except for names prefixed by the characters ++. In such a name,
the directory is relative to the main FRAMAC_SHARE directory.

-wp-alt-ergo-lib <f,...> (deprecated use altergo.file in driver instead) looks for Alt-
Ergo library files "f.mlw" and inlines them into the proof obligation files for Alt-Ergo.

-wp-coq-lib <f,...> (deprecated use coq.file in driver instead) looks for Coq files "f.v"
or "f.vo". If "f.vo" is not found, then WP copies "f.v" into its working directory
(see option -wp-out) and compiles it locally.

-wp-why-lib <f,...> (deprecated use why3.file in driver instead) looks for Why3 library
file "f.why" and opens the library "f.F" for the proving the goals.
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Linking ACSL Symbols to External Libraries

Besides additional proof libraries, it is also possible to link declared ACSL symbols to external
or predefined symbols. In such case, the corresponding ACSL definitions, if any, are not
exported by WPs.
External linkage is specified in driver files. It is possible to load one or several drivers with
the following WP plug-in option:

-wp-driver <file,...> load specified driver files, replacing deprecated features from sec-
tion 2.3.9.

Each driver file contains a list of bindings with the following syntax:

library "lib": "lib" . . . "lib"
group.field := string
group.field += string

type symbol = "link" ;
ctor type symbol ( type,. . . ,type ) = "link" ;

logic type symbol ( type,. . . ,type ) = property-tags "link" ;
predicate symbol ( type,. . . ,type ) = "link" ;

It is also possible to define aliases to other ACSL symbols, rather than external links. In this
case, you may replace = by := and use an ACSL identifier in place of the external "link". No
property tag is allowed when defining aliases.
Library specification is optional and applies to subsequent linked symbols. If provided, the
WP plug-in automatically loads the specified external libraries when linked symbols are used
in a goal. Dependencies among libraries can also be specified, after the ’:’.
Generic group.field options have a specific value for each theory. The binding applies to
the current theory. Binding with the := operator resets the option to the singleton of the
given string and binding with the += operator adds the given string to the current value
of the option. The following options are defined by the plugin: coq.file, altergo.file,
why3.file and why3.import.
C-Comments are allowed in the file. For overloaded ACSL symbols, it is necessary to provide
one "link" symbol for each existing signature. The same "link" symbol is used for all provers,
and must be defined in the specified libraries, or in the external ones (see 2.3.9).
It is also possible to specify different names for each prover, with the following syntax:
{coq="a ";altergo="b ";why3="c "}. Alternatively, a link-name can be an arbitrary string
with patterns substituted by arguments, "(%1+%2)" for instance.
When a library "lib" is specified, the loaded module depends on the target solver:

Option Format
Coq: coq.file [dir:]path.v
Alt-Ergo: altergo.file path.mlw
Why3: why3.file path.why[:name][:as]

why3.import theory[:as]

Precise meaning of formats is given by the following examples (all filenames are relatives to
the driver file’s directory):
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coq.file="mydir/bar.v" Imports module Bar from file mydir/bar.vo.

coq.file="mydir/foo:Foo.v" Loads coq library foo.Foo from file mydir/foo/Foo.vo.

why3.file="mydir/foo.why" Imports theory foo.Foo from directory mydir.

why3.file="mydir/foo.why:Bar" Imports theory foo.Bar from directory mydir.

why3.file="mydir/foo.why:Bar:T" Imports theory foo.Bar as T from directory mydir.

why3.import="foo.Bar" Imports theory foo.Bar with no additional includes.

why3.import="foo.Bar:T" Imports theory foo.Bar as T with no additional includes.

See also the default WP driver file, in [wp-share]/wp.driver.
Optional property-tags can be given to logic "link" symbols to allow the WP to perform
additional simplifications (See section 4). Tags consist of an identifier with column (‘:’),
sometimes followed by a link (‘"link";’). The available tags are depicted on figure 2.3.

Tags Operator Properties
commutative: specify a commutative symbol: x� y = y � x
associative: specify an associative symbol: (x� y)� z = x� (y � z)
ac: shortcut for associative: commutative:
left: balance the operator on left during export to solvers (re-

quires the associative tag): x� y � z = (x� y)� z
right: balance the operator on right during export to solvers (re-

quires the associative tag): x� y � z = x� (y � z)
absorbant: "a-link": specify "a-link" as being the absorbant element of the sym-

bol:
"a-link"� x = "a-link"
x� "a-link" = "a-link"

neutral: "e-link": specify "e-link" as being the neutral element of the symbol:
"e-link"� x = x
x� "e-link" = x

inversible: specify simplification relying on the existence of an inverse:
x� y = x� z ⇐⇒ y = z
y � x = z � x⇐⇒ y = z

idempotent: specify an idempotent symbol: x� x = x

injective: specify an injective function:
f(x1, . . . , xn) = f(y1, . . . , yn) =⇒ ∀i xi = yi

constructor: specify an injective function, that constructs different values
from any other constructor. Formally, whenever f and g
are two distinct constructors, they are both injective and:
f(x1, . . . , xn) 6= g(y1, . . . , ym) forall xi and yj .

Figure 2.3: Driver Property Tags
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Plug-in Developer Interface

The WP plug-in has several entry points registered in the Dynamic4 module of Frama-C.
Those entry points are however deprecated. Instead, a full featured OCaml API is now
exported with the Wp plug-in. As documented in the Frama-C user manual, simply add the
directive PLUGIN_DEPENDENCIES+=Wp to the Makefile of your plug-in.
The high-level API for generating and proving properties is exported in module Wp.API. The
logical interface, compilers, and memory models are also accessible. See the generated HTML
documentation of the platform for details.

Proof Obligation Reports

The WP plug-in can export statistics on generated proof obligations. These statistics are
called WP reports and are distinct from those property reports generated by the Report plug-
in. Actually,WP reports are statistics on proof obligations generated by WP, whereas property
reports are consolidated status of properties, generated by the Frama-C kernel from various
analyzers. We only discuss WP reports in this section.
Reports are generated with the following command-line options:

-wp-report <Rspec1,...,Rspecn> specifies the list of reports to export. Each value Rspeci

is a WP report specification file (described below).

-wp-report-basename <name> set the basename for exported reports (described below).

Reports are created from user defined wp-report specification files. The general format of a
wp-report file is as follows:

<configuration section...>
@HEAD
<head contents...>
@CHAPTER
<per chapter contents...>
@SECTION
<per section contents of a chapter...>
@TAIL
<tail contents...>
@END

The configuration section consists of optional commands, one per line, among:

@CONSOLE the report is printed on the standard output.
Also prints all numbers right-aligned on 4 ASCII characters.

@FILE "<file >" the report is generated in file file.

@SUFFIX "<ext >" the report is generated in file base.ext,
where base can be set with -wp-report-basename option.

@ZERO "<text >" text to be printed for 0-numbers. Default is "-".
4See the plug-in development guide

28



2.5. PROOF OBLIGATION REPORTS

@GLOBAL_SECTION "<text >" text to be printed for the chapter name about globals

@AXIOMATIC_SECTION "<text >" text to be printed for the chapter name about axiomatics

@FUNCTION_SECTION "<text >" text to be printed for the chapter name about functions

@AXIOMATIC_PREFIX "<text >" text to be printed before axiomatic names. Default is "Axiomatic"
(with a trailing space).

@FUNCTION_PREFIX "<text >" text to be printed before function names. Default is empty.

@GLOBAL_PREFIX "<text >" text to be printed before global property names. Default is
"(Global)" (with a trailing space).

@LEMMA_PREFIX "<text >" text to be printed before lemma names. Default is "Lemma" (with
a trailing space).

@PROPERTY_PREFIX "<text >" text to be printed before other property names.

The generated report consists of several optional parts, corresponding to Head, Chapter and
Tail sections of the wp-report specification file. First, the head contents lines are produced.
Then the chapters and their sections are produced. Finally, the Tail content lines are printed.
The different chapters are about globals, axiomatics and functions. Outputs for these chapters
can be specified using these directives:

@CHAPTER <chapter header...>

@GLOBAL <global section contents...>

@AXIOMATIC <per axiomatic section contents...>
For each axiomatic, a specific section is produced under the chapter about axiomatics.

@FUNCTION <per function section contents...>
For each function analyzed by WP, a specific section is produced under the chapter
about functions.

@SECTION <default section contents...>

@PROPERTY <per property contents...>
For each property of a section, a specific textual content can be specified.

Textual contents use special formatters that will be replaced by actual statistic values when
the report is generated. There are several categories of formatters (PO stands for Proof
Obligations):

Formatters Description
&<col>: insert spaces up to column col
&& prints a "&"
%% prints a "%"
%<stat> statistics for section
%prop percentage of proved properties in section
%prop:total number of covered properties
%prop:valid number of proved properties
%prop:failed number of remaining unproved properties
%<prover> PO discharged by prover
%<prover>:<stat> statistics for prover in section
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Provers
(<prover>) A prover name (see -wp-prover)
Statistics
(<prover>)
total number of generated PO
valid number of discharged PO
failed number of non-discharged PO
time maximal time used by prover for one PO
steps maximal steps used by prover for one PO
success percentage of discharged PO

Remarks: &ergo is a shortcut for &alt-ergo. Formatters can be written "%.." or "%{..}".
Textual contents can use naming formatters that will be replaced by current names:

Names Description
%chapter current chapter name
%section current section name
%global current global name (under the chapter about globals)
%axiomatic current axiomatic name (under the chapter about axiomatics)
%function current function name (under the chapter about functions)
%name current name defined by the context:

- property name inside @PROPERTY contents,
- function name inside @FUNCTION contents,
- axiomatic name inside @AXIOMATIC contents,
- global name inside @GLOBAL contents,
- section name inside @SECTION contents,
- chapter name inside @CHAPTER contents.
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Plug-in Persistent Data

As a general observation, almost none of the internal WP data is kept in memory after each
execution. Most of the generated proof-obligation data is stored on disk before being sent
to provers, and they are stored in a temporary directory that is removed upon Frama-C exit
(see also -wp-out option).
The only information which is added to the Frama-C kernel consists in a new status for those
properties proved by WP plug-in with their dependencies.
Thus, when combining WP options with -then, -save and -load options, the user should
be aware of the following precisions:

-wp, -wp-prop, -wp-fct, -wp-bhv. These options make the WP plug-in generate proof-
obligations for the selected properties. The values of theses options are never saved and
they are cleared by -then. Hence, running -wp-prop A -then -wp-fct F does what
you expect: properties tagged by A are proved only once.

-wp-print, -wp-prover, -wp-gen, -wp-detect. These options do not generate new proof-
obligations, but run other actions on all previously generated ones. For the same rea-
sons, they are not saved and cleared by -then.

-wp-xxx. All other options are tunings that can be easily turned on and off or set to the
desired value. They are saved and kept across -then commands.
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WP Models

Basically, a memory model is a set of datatypes, operations and properties that are used to
abstract the values living inside the heap during the program execution.
Each memory model defines its own representation of pointers, memory and data actually
stored in the memory. The memory models also define some types, functions and properties
required to translate C programs and ACSL annotations into first order logic formulæ.
The interest of developing several memory models is to manage the trade-off between the
precision of the heap’s values representation and the difficulty of discharging the generated
proof obligations by external decision procedures. If you choose a very accurate and detailed
memory model, you shall be able to generate proof obligations for any program and anno-
tations, but most of them would not be discharged by state-of-the art external provers. On
the other hand, for most C programs, simplified models are applicable and will generate less
complex proof obligations that are easier to discharge.
A practical methodology is to use the simpler models whenever it is possible, and to up the
ante with more involved models on the remaining, more complex parts of the code.
This chapter is dedicated to the description of the memory models implemented by the WP
plug-in. In this manual, we only provide a high-level description of the memory models you
might select with option -wp-model (section 3.2 and 3.3). Then we focus on two general
powerful optimizations. The first one, activated by default (section 3.4), mixes the selected
memory model with the purely logical Hoare model for those parts of your program that
never manipulate pointers. The second one (section 3.5) is dedicated to those pointers that
are formal parameters of function passed by reference.

Language of Proof Obligations

The work of WP consists in translating C and ACSL constructs into first order logical formulæ.
We denote by L the logic language for constructing proof obligations. Shortly, this logical
language is made of terms (t : term) and propositions (P : prop) that consist of:

• Natural, signed, unbounded integer constants and their operations;

• Natural real numbers and their operations;

• Arrays (as total maps) and records (tuples with named fields);

• Abstract (polymorphic) data types;
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• Anonymous function symbols with (optional) algebraic properties;

• Logical connectors;

• Universally and existentially quantified variables.

Actually, the task of the memory model consists in mapping any heap C-values at a given
program point to some variable or term in the logical L language.

The Hoare Memory Model

This is the simplest model, inspired by the historical definition of Weakest Precondition
Calculus for programs with no pointers. In such programs, each global and local variable is
assigned a distinct variable in L.
Consider for instance the statement x++; where x has been declared as an int . In the Hoare
memory model, this C-variable will be assigned to two L-variables, say x1 before the state-
ment, and x2 after the statement, with the obvious relation x2 = x1 + 1 (if no overflow
occurred).
Of course, this model is not capable of handling memory reads or writes through pointer
values, because there is no way of representing aliasing.
You select this memory model in the WP plug-in with the option -wp-model Hoare; the
analyzer will complain whenever you attempt to access memory through pointers with this
model.

Memory Models with Pointers

Realistic memory models must deal with reads and writes to memory through pointers.
However, there are many ways for modeling the raw bit stream the heap consists of. All
memory modelsM actually implement a common signature:

Pointer Type: τ , generally a pair of a base address and an offset.

Heap Variables: for each program point, there is a set of logical variables to model the
heap. For instance, you may have a variable for the values at a given address, and
another one for the allocation table. The heap variables m1 . . .mk are denoted by m.

Read Operation: given the heap variables m, a pointer value p : τ , and some C-type T ,
the model will define an operation:

readT (m, p) : term

that defines the representation in L of the value of C-type T which is stored at address
p in the heap.

Write Operation: given the heap variablesm before a statement, and their associated heap
variables m′ after the statement, a pointer value p : τ and a value v of C-type T , the
model will define a relation:

writeT (m, p, v,m′) : prop

that relates the heap before and after writing value v at address p in the heap.
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Typically, consider the statement (*p)++ where p is a C-variable of type ( int*). The memory
modelM will assign a unique pointer value P : τ to the address of p in memory.
Then, it retrieves the actual value of the pointer p, say Ap, by reading a value of type int*
into the memory variables m at address P :

Ap = readint∗(m,P )

Next, the model retrieves the previous int -value at actual address Ap, say Vp:

Vp = readint(m,Ap)

Finally, the model relates the final memory state m′ with the incremented value Vp + 1 at
address P :

writeint(m,Ap, Vp + 1,m′)

Hoare Variables mixed with Pointers

As illustrated above, a very simple statement is generally translated by memory models into
complex formulæ. However, it is possible in some situations to mix the Hoare memory model
with the other ones.
For instance, assume the address of variable x is never taken in the program. Hence, it is not
possible to create a pointer aliased with &x. It is thus legal to manage the value of x with
the Hoare memory model, and other values with another memory-modelM that deals with
pointers.
Common occurrences of such a situation are pointer variables. For instance, assume p is a
variable of type int*; it is often the case that the value of p is used (as in *p), but not the
address of the variable p itself, namely &p. Then, it is very efficient to manage the value of p
with the Hoare memory model, and the value of *p with a memory model with pointers.
Such an optimization is possible whenever the address of a variable is never taken in the
program. It is activated by default in the WP plug-in, since it is very effective in practice.
You can nevertheless deactivate it with selector “-wp-model raw”.

Hoare Variables for Reference Parameters

A common programming pattern in C programs is to use pointers for function arguments
passed by reference. For instance, consider the swap function below:

void swap(int *a,int *b)
{

int tmp = *a ;
*a = *b ;
*b = tmp ;

}

Since neither the address of a nor the one of b are taken, their values can be managed by
the Hoare Model as described in the previous section. But we can do even better. Remark
that none of the pointer values contained in variables a and b is stored in memory. The only
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occurrences of these pointer values are in expressions *a and *b. Thus, there can be no alias
with these pointer values elsewhere in memory, provided they are not aliased initially.
Hence, not only can a and b be managed by the Hoare model, but we can also treat (*a) and
(*b) expressions as two independent variables of type int with the Hoare memory model.
For the callers of the swap function, we can also take benefit from such by-reference passing
arguments. Typically, consider the following caller program:

void f(void)
{

int x=1,y=2 ;
swap(&x,&y);

}

Strictly speaking, this program takes the addresses of x and y. Thus, it would be natural to
handle those variables by a model with pointers. However, swap will actually always use *&x
and *&y, which are respectively x and y.
In such a situation it is then correct to handle those variables with the Hoare model, and
this is a very effective optimization in practice. Notice however, that in the example above,
the optimization is only correct because x and y have disjoint addresses.
These optimizations can be activated in the WP plug-in with selector “-wp-model ref”, and
the necessary separation conditions are generated on-the-fly. This memory model first detects
pointer or array variables that are always passed by reference. The detected variables are
then assigned to the Hoare memory model.
This optimization is not activated by default, since the non-aliasing assumptions at call sites
are sometimes irrelevant.

The Typed Memory Model

This memory model is actually a reformulation of the Store memory model used in previous
versions of the WP plug-in. In theory, its power of expression is equivalent. However, in
practice, the reformulation we performed makes better usage of built-in theories of Alt-Ergo
theorem prover and Coq features. The main modifications concern the heap encoding and
the representation of addresses.

Addresses. We now use native records of L and provers to encode addresses as pairs of
base and offset (integers). This greatly simplifies reasoning about pointer separation and
commutation of memory accesses and updates.

Store Memory. In the Storememory model, the heap is represented by one single memory
variable holding an array of data indexed by addresses. Then, integers, floats and pointers
must be boxed into data and unboxed from data to implement read and write operations.
These boxing-unboxing operations typically prevent Alt-Ergo from making maximal usage of
its native array theory.

Typed Memory. In the Typed memory model, the heap is now represented by three mem-
ory variables, holding respectively arrays of integers, floats and addresses indexed by ad-
dresses. This way, all boxing and unboxing operations are avoided. Moreover, the native
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array theory of Alt-Ergo works very well with its record native theory used for addresses:
memory variables access-update commutation can now rely on record theory to decide that
two addresses are different (separated).

The Caveat Memory Model

This memory model simulates the behavior of the Caveat analyser, with additional enhance-
ments. It is implemented as an extension of the Typed memory model, with a specific treat-
ment of formal variables of pointer type.
To activate this model, simply use ’-wp-model Typed+Caveat’ or ’-wp-model Caveat’ for
short.
A specific detection of variables to be treated as reference parameters is used. This detection
is more clever than the standard one since it only takes into account local usage of each
function (not global ones). However, it can not be applied with axiomatics that read into the
memory. Only pure logic functions and pure predicates can be defined in axiomatics with
this model.
Additionaly, the Caveat memory model of Frama-C performs a local allocation of formal
parameters with pointer types that cannot be treated as reference parameters. This makes
explicit the separation hypothesis of memory regions pointed by formals in the Caveat tool.
The major benefit of the WP version is that aliases are taken into account by the Typed
memory model, hence, there are no more suspicious aliasing warnings.

Warning: using the Caveat memory model, the user must check by manual code review
that no aliases are introduced via pointers passed to formal parameters at call sites.
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WP Simplifier

The logical language L used to build proof obligations is now equipped with built-in sim-
plifications. This allows for proof obligations to be simplified before being sent to external
provers, and sometimes to be reduced to trivial goals.

This chapter is dedicated to the description of the simplifier and how to use it with the WP
plug-in. It also presents how combinatorial explosion of path exploration is now tackled down
thanks to passive form transformation and automated sub-terms factorization [FS01, Lei03].
This also leads to more compact and (somehow) more readable proof obligations, with less
memory, less disk usage and lower external prover time overhead, compared to WP versions
0.6 and lower.

Logic Normalizations

The new logic language L is naturally equipped with term normalization and maximal sub-
term sharing. It is only used with new memory models, not with the standard ones.

Maximal sub-term sharing is responsible for the introduction of let-bindings whenever a sub-
expression appears several times in the generated proof obligations. The occupied memory
and disk usage of WP is also reduced compared to other models.

The normalization rules can not be turned off, and are responsible for local simplifications.
Although modest, they allow a proof obligation to be trivially discharged.

Logic normalization by commutativity and associativity; absorption and neutral elements;
elimination of redundant facts; propagation of negations (Morgan laws); simplification
of conditionals.

Arithmetic normalization by commutativity and associativity; absorption and neutral ele-
ments; factorization with linear forms; constant folding; normalization of linear equali-
ties and inequalities.

Array elimination of consecutive accesses and updates.

Record elimination of consecutive accesses and updates;
simplification of structural equalities and inequalities.
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Simplifier Engine (Qed)

Built on top of our normalizing logic language L, we have a simplifier engine named Qed[Cor14].
The simplifier engine is used by the WP plug-in to simplify the generated proof contexts and
proof obligations. The basic feature of Qed is to manage a knowledge base Γ. It is possible to
add new facts (hypotheses) to Γ, and to simplify (rewrite) a term of a property with respect
to Γ.

By default, the only rewriting performed by Qed is the propagation of equality classes by nor-
malization. The Qed engine can be enriched by means of plug-ins to perform more dedicated
simplifications. For instance, we have developed a simplifier plug-in for array and record
theories, and a prototype for linear inequalities.

WP uses the simplification engine to simplify proof contexts by recursively combining basic
laws involving the simplifier engine. Each law is applied with respect to a local knowledge
base Γ (initially empty).

Adding a new fact H to Γ is denoted by Γ⊕H ; rewriting a term of predicate e into e′ with
respect to Γ is denoted by Γ |= e . e′.

Inference Law. A hypothesis is simplified and added to the knowledge base to simplify
the goal.

Γ |= H . H ′ Γ⊕H ′ |= G . G′

Γ |= (H → G) . (H ′ → G′)

Conjunction Law. Each side of a conjunction is simplified with the added knowledge of
the other side. This law scales up to the conjunction of n facts, and simplifications can be
performed incrementally.

Γ⊕B |= A . A′ Γ⊕A |= B . B′

Γ |= (A ∧B) . (A′ ∧B′)

Conditional Law. The conditional expression is simplified, before simplifying each branch
under the appropriate hypothesis.

Γ |= H . H ′ Γ⊕H ′ |= A . A′ Γ⊕ ¬H ′ |= B . B′

Γ |= (H ?A : B) . (H ′ ?A′ : B′)

Inside the WP plug-in, the proof contexts are only built in terms of conjunctions, conditional
and inference rules. Hence, these laws are sufficient to perform proof context simplifications.
Technically, simplification has a quadratic complexity in the width and depth of the proof
formula. Options will be added to control the risk of combinatorial explosion. In practice,
simplification is delayed until submission of the proof obligation to external provers, that
have similar complexity. Since we account on simplification for enhancing prover efficiency,
we expect it to be worth the cost.

The power of the simplification process depends on the simplification plug-ins loaded in the
Qed engine, and will be the purpose of further developments.
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Efficient WP Computation

During the Weakest Precondition calculus, proof obligations are constructed backwardly for
each program instruction. Conditional statements are of particular interest, since they intro-
duce a fork in the generated proof contexts.
More precisely, consider a conditional statement if (e) A else B. Let WA be the weakest
precondition calculus from block A, and WB the one from block B. Provided the translation
of expression e in the current memory model leads to assumption E, the naive weakest
precondition of the conditional is: (E ?WA : WB).
With this formula, the weakest preconditions of the program after the conditional are dupli-
cated inside WA and WB. Moreover, these common postconditions have been transformed
by the effects of A and B. Then, the factorization of common sub-terms of logic language L
is not capable of avoiding the duplication. In the presence of successive conditionals, proof
obligations generated become twice as big at each conditional statement.
To tackle this problem, the solution is to put the program in passive form [FS01, Lei03]. Each
variable of the program is assigned a different logic variable in each branch. The different
variables are joined at conditionals into new fresh variables and equality conditions.
In practice, the passive form transformation is done during the weakest precondition calculus,
together with the translation of C and ACSL by the memory model. Hence, a translation map
σ is maintained at each program point from memory model variables to L logic variables.
Joining maps σ1 and σ2 from the branches of a conditional leads to a new map σ assigning
a new logic variable x to memory variable m whenever σ1(m) and σ2(m) are different. This
join also produces the two sets of equalities H1 and H2 associated to this variable renaming.
Hence σ(m) = σ1(m) below is member of H1 and σ(m) = σ2(m) is member of H2.
Now, if W is the postcondition of the conditional program below, WA and WB can always
be decomposed into: WA = W 0

A ∧W and WB = W 0
B ∧W . Finally, the weakest precondition

of the conditional is:
(E ? H1 ∧W 0

A : H2 ∧W 0
B ) ∧W

This form actually factorizes the common postcondition to A and B, which makes the weakest
precondition calculus linear in the number of program statements.
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