
Geometric Tools Engine Version 3.3
Installation Manual and Release Notes

David Eberly, Geometric Tools
Document Version 3.3.0
September 24, 2016

Contents

1 Introduction 3

1.1 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Copying the Distribution to Your Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Development on Microsoft Windows 6

2.1 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Compiling the Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Support for OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Automatic Generation of Project and Solution Files . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Running the Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Microsoft Visual Studio Custom Visualizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Falling Back to Direct3D 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 Falling Back to Direct3D 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.9 No Support Yet for Dynamic Libraries for GTEngine . . . . . . . . . . . . . . . . . . . . . . . 9

3 Development on Linux 9

3.1 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Dependencies on Other Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Compiling the Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Support for OpenGL via Proprietary Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 Running the Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Development on Macintosh OS X 11

1

https://www.geometrictools.com


5 Accessing the OpenGL Driver Information 11

6 Automatic Generation of a Wrapper for OpenGL 12

2



1 Introduction

You are about to install Geometric Tools Engine 3.3. Version 1.0 source code was the companion to the book
GPGPU Programming for Games and Science and was developed on Microsoft Windows 8.1 using Microsoft
Visual Studio 2013, C++ 11, and Direct3D 11.1. Version 3.x is close enough to what is in the book that you
should have no problem navigating the code as you read the book. The source code has been reorganized
using subfolders of Source and Include, and the header includes are now slightly different.

Version 3.x has a graphics engine that requires minimally OpenGL 4.3 (or later) and GLSL 4.3 (or later) in
order to support compute shaders and GLSL introspection, and it runs on both Microsoft Windows (WGL)
and Linux (GLX). Please observe that the engine and sample applications require OpenGL 4.3 (or later) and
GLSL 4.3 (or later). If your graphics driver does not support this, the applications will gracefully terminate
with a message to the console window: OpenGL 4.3 is required. In particular, the Nouveau Open Source
graphics drivers that ship with the various flavors of Linux do not currently support OpenGL 4.3 (or later)
or GLSL 4.3 (or later). You must install the graphics card manufacturer’s proprietary driver.

A Direct3D 12 engine is in development, but given that the programming model is significantly different from
Direct3D 11, the graphics subsystem of GTEngine needs to be redesigned. The plan is to factor GTEngine
into smaller projects, each graphics API having its own project and corresponding application support. The
mathematics library will also be factored into a stand-alone project to allow developers to use the code
without having to depend on all other parts of the library.

Visit the Geometric Tools website for updates, bug fixes, known problems, new features, and other materials.

3

http://www.amazon.com/exec/obidos/ASIN/1466595353/magicsoftwinc
https://www.geometrictools.com


1.1 License

The Geometric Tools Engine uses the Boost License, listed next.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization

obtaining a copy of the software and accompanying documentation covered by

this license (the Software) to use, reproduce, display, distribute,

execute, and transmit the Software, and to prepare derivative works of the

Software, and to permit third-parties to whom the Software is furnished to

do so, all subject to the following:

The copyright notices in the Software and this entire statement, including

the above license grant, this restriction and the following disclaimer,

must be included in all copies of the Software, in whole or in part, and

all derivative works of the Software, unless such copies or derivative

works are solely in the form of machine-executable object code generated by

a source language processor.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT

SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE

FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

4

http://www.boost.org/LICENSE_1_0.txt


1.2 Copying the Distribution to Your Machine

You may unzip the distribution to a folder of your choice. The top-level folder of the distribution is Geo-

metricTools and the subfolder for the distribution is named GTEngine. Some of the folder hierarchy is shown
next. The Include and Source folders contain all the code for the engine.

Geomet r i cToo l s
GTEngine // Root f o l d e r f o r Geometr i c Too l s Engine , s e t GTE PATH to he r e .

I n c l u d e // Loca t i on f o r ∗ . h f i l e s .
App l i c a t i o n s // Plat form−i ndependen t c l a s s e s .

GLX // Support f o r L inux GLX a p p l i c a t i o n s .
MSW // Support f o r M i c r o s o f t Windows a p p l i c a t i o n s .

DX11 // Support f o r Di rect3D 11 a p p l i c a t i o n s .
WGL // Support f o r WGL a p p l i c a t i o n s .

Graph i c s // Plat form−i ndependen t g r a p h i c s f i l e s .
DX11 // DX11−s p e c i f i c g r a p h i c s f i l e s .
GL4 // Plat form−i ndependen t OpenGL−s p e c i f i c g r a p h i c s f i l e s .

GLX // L inux GLX g r a p h i c s f i l e s .
WGL // WGL g r a p h i c s f i l e s .

Imag i c s // Image p r o c e s s i n g f i l e s .
LowLevel // S e v e r a l low− l e v e l u t i l i t y f i l e s .

MSW // M i c r o s o f t Windows−s p e c i f i c f i l e s .
Mathematics // The bu lk o f the eng i n e c o n s i s t s o f mathemat ics suppo r t .

MSW // M i c r o s o f t Windows−s p e c i f i c f i l e s .
Phy s i c s // Some ph y s i c s suppor t , not a l l WM5 ph y s i c s code has been po r t ed .

Source // Loca t i on f o r ∗ . cpp f i l e s .
App l i c a t i o n s // Plat form−i ndependen t c l a s s e s .

GLX // Support f o r L inux GLX a p p l i c a t i o n s .
MSW // Support f o r M i c r o s o f t Windows a p p l i c a t i o n s .

DX11 // Support f o r Di rect3D 11 a p p l i c a t i o n s .
WGL // Support f o r WGL a p p l i c a t i o n s .

Graph i c s // Plat form−i ndependen t g r a p h i c s f i l e s .
DX11 // DX11−s p e c i f i c g r a p h i c s f i l e s .
GL4 // Plat form−i ndependen t OpenGL−s p e c i f i c g r a p h i c s f i l e s .

GLX // L inux GLX g r a p h i c s f i l e s .
WGL // WGL g r a p h i c s f i l e s .

Imag i c s // Image p r o c e s s i n g f i l e s .
LowLevel // S e v e r a l low− l e v e l u t i l i t y f i l e s .

MSW // M i c r o s o f t Windows−s p e c i f i c f i l e s .
Mathematics // The bu lk o f the eng i n e c o n s i s t s o f mathemat ics suppo r t .

MSW // M i c r o s o f t Windows−s p e c i f i c f i l e s .
Phy s i c s // Some ph y s i c s suppor t , not a l l WM5 ph y s i c s code has been po r t ed .

Samples // Sample a p p l i c a t i o n s , many d i s c u s s e d i n the GPGPU book .
Data // A sma l l number o f data f i l e s f o r the samples .
Ba s i c s // Bas i c t u t o r i a l s f o r s e v e r a l HLSL concep t s .
Geomet r i c s // Samples f o r computa t i ona l geometry .
Graph i c s // Samples f o r g r a p h i c s and v i d eo s t r eams ( p a r a l l e l copy ) .
Imag i c s // Samples f o r 2D and 3D image p r o c e s s i n g .
Mathematics // Samples f o r mathemat i ca l a l g o r i t hm s and nume r i c a l methods .
Phy s i c s // Samples f o r 2D and 3D ph y s i c s .
DX11 // Samples s p e c i f i c a l l y f o r Di rect3D 11 .

Shader s // HLSL/GLSL shade r f i l e s ( embedded v e r s i o n s a r e i n the eng i n e s ou r c e ) .
Tools // S e v e r a l c on v en i e n t t o o l s .

BitmapFontCreator // Genera te . h / . cpp f i l e to r e p r e s e n t a g r a p h i c s f o n t .
Gene ra t eApp rox imat i on s // Used to g en e r a t e the minimax app rox ima t i on s f o r common f u n c t i o n s .
GenerateOpenGLWrapper // Source−code g e n e r a t o r f o r g l ∗ wrapper s d r i v e n by g l c o r e a r b . h .
Gene r a t eP r o j e c t // Genera te MSVS 2013/2015 vcxp ro j , s l n , h , and cpp f o r a p p l i c a t i o n s .

The Samples subfolders are many. Listing them here would make the displayed hierarchy difficult to read.
The projects all use paths relative to GTEngine and they do not rely on the top-level directory being located
at the root of a hard drive. An environment variable GTE PATH is used to locate data files required by the
application. How you set an environment variable depends on the operating system and/or shell you are
using.

5



2 Development on Microsoft Windows

The code is maintained currently on an Intel-based computer with Microsoft Windows 10, Version 1511 (OS
Build 10.586.420). If you develop on Microsoft Windows 7 or 8.x and encounter problems with the code,
contact us via the email address listed at the Geometric Tools website.

2.1 Environment Variables

Create an environment variable named GTE PATH that stores the absolute directory path to the folder
GeometricTools/GTEngine. For example, if you unzipped the distribution to the root of the C drive, you would
set GTE PATH to C:/GeometricTools/GTEngine. You can set environment variables via System | Advanced system

settings, which launches the System Properties dialog with a button for Environment Variables.

2.2 Compiling the Source Code

Microsoft Visual Studion 2013 uses Version 12 of the compiler and Microsoft Visual Studio 2015 uses Version
14 of the compiler. The project and solution names have embedded in them v12 or v14; that is, both
versions of the compiler are supported. The engine solutions are GeometricTools/GTEngine/GTEngine.v12.sln

and GeometricTools/GTEngine/GTEngine.v14.sln. Each sample application or tool has its own solution with
all dependencies listed, so it is possible to open a sample application and compile and run it without

6

https://www.geometrictools.com


explicitly building the engine solution first. The folder GTEngine contains the solutions GTBuildAll.v12.sln and
GTBuildAll.v14.sln if you want to build the engine, samples, and tools at the same time rather than building
the projects separately.

2.3 Support for OpenGL

All the Microsoft Visual Studio projects have configurations Debug and Release that include compiling the
Direct3D 11 source code. The configurations DebugGL4 and ReleaseGL4 include compiling the OpenGL
source code. Although it is possible to have an application that creates both a Direct3D 11 engine and an
OpenGL engine, the current project design does not allow this. If you have such a need, you must create your
own GTEngine project that enables both sets of graphics code. For example, you might have an application
that uses OpenGL for rendering but uses Direct3D 11 for compute shaders (for GPGPU).

2.4 Automatic Generation of Project and Solution Files

Creating a new Microsoft Visual Studio project and manually setting its properties to match those of the
current sample applications is tedious. A tool is provided to generate a skeleton project, solution, and
source files, GeometricTools/GTEngine/Tools/GenerateProject. As an example of how to use the tool, suppose
you want to create a new project in the folder, GeometricTools/GTEngine/Samples/Graphics/MySample for a
sample application. Copy GenerateProject.exe to that folder, and in a command window opened in that folder,
execute

Gene r a t eP r o j e c t 3 MySample

The number 3 indicates the nesting of the MySample folder relative to the GTEngine folder. The tool creates the
files MySample.v12.sln, MySample.v12.vcxproj, MySample.v12.vcxproj.filters, MySample.v14.sln, MySample.v14.vcxproj,
MySample.v14.vcxproj.filters, MySampleWindow.h, and MySampleWindow.cpp. You can open the solution, build,
and run to see a blank window of size 512× 512. The copyright notice generated as the preamble of the files
MySampleWindow.* is for our convenience—you may delete those notices.

If you want the generated files to live in a folder outside the GTEngine hierarchy, you will need to modify the
include path in the projects to $(GTE PATH)/Include. You will also need to delete the GTEngine project from
the Required folder of the solution and re-add it so that the correct path occurs. This is necessary because
the Microsoft Visual Studio reference system is used to link in the GTEngine library.

Also, it is not necessary to copy GenerateProject.exe to the project folder. If the executable can be found via
the PATH statement, just execute it in any folder of your choosing and then copy the generated files to your
project folder.

2.5 Running the Samples

You can run the samples from within the Microsoft Visual Studio development environment. Samples that
access data files use the GTE PATH environment variable to locate those files; code is in place to assert when
the environment variable is not set. If you run from Microsoft Windows, presumably double-clicking an
executable via Windows Explorer, the environment variable is still necessary.

7



Many of the samples compile HLSL shaders at run time. This requires having D3Dcompiler *.dll in your path,
where * is the version number of the shader compiler. You might have to modify your PATH environment
variable to include the path. With latest Windows, the DLL should be in a Windows Kit bin folder.

2.6 Microsoft Visual Studio Custom Visualizers

A new file has been added, GeometricTools/GTEngine/gtengine.natvis, that provides a native visualizer for the
Vector and Matrix classes. Copy this to C:/Users/YOURLOGIN/Documents/Visual Studio 2015/Visualizers. More
visualizers will be added over time. Feel free to suggest GTEngine classes for which you want specialized
visualization during debugging.

2.7 Falling Back to Direct3D 10

For Microsoft Windows machines, the default settings for GTEngine are to use Direct3D 11.0 or later for
rendering and to compile the shaders for the built-in effects (such as Texture2Effect and VertexColorEffect)
using Shader Model 5. These settings are also used when compiling shaders that are part of the sample
application or those you write yourself. If you do not have graphics hardware recent enough to support the
default configuration, it is possible to modify the start-up code in the sample applications to fall back to
Direct3D 10.0 (Shader Model 4.0) or Direct3D 10.1 (Shader Model 4.1).

Open the graphics sample named VertexColoring. The main function has the block of code

Window : : Parameter s pa ramete r s (L”VertexCo lor ingWindow ” , 0 , 0 , 512 , 512 ) ;
auto window = TheWindowSystem . Create<VertexColor ingWindow>(pa ramete r s ) ;
TheWindowSystem . MessagePump (window , TheWindowSystem .DEFAULT ACTION ) ;
TheWindowSystem . Destroy<VertexColor ingWindow>(window ) ;

All the 2D and 3D windowed applications have similar blocks of code. The Window::Parameters structure
has a member named featureLevel that defaults to D3D FEATURE LEVEL 11 0. The general list of values from
which you can choose is

enum D3D FEATURE LEVEL
{

D3D FEATURE LEVEL 9 1 = 0x9100 , // 4 0 l e v e l 9 1
D3D FEATURE LEVEL 9 2 = 0x9200 , // 4 0 l e v e l 9 1
D3D FEATURE LEVEL 9 3 = 0x9300 , // 4 0 l e v e l 9 3
D3D FEATURE LEVEL 10 0 = 0xa000 , // 4 0
D3D FEATURE LEVEL 10 1 = 0xa100 , // 4 1
D3D FEATURE LEVEL 11 0 = 0xb000 , // 5 0
D3D FEATURE LEVEL 11 1 = 0xb100 // 5 1

}
D3D FEATURE LEVEL ;

The enumeration is found in d3dcommon.h. If you have a graphics card that supports at most Direct3D 10.0,
then modify the main code to

Window : : Parameter s pa ramete r s (L”VertexCo lor ingWindow ” , 0 , 0 , 512 , 512 ) ;
#i f ! d e f i n e d (GTE DEV OPENGL)

pa ramete r s . f e a t u r e L e v e l = D3D FEATURE LEVEL 10 0 ;
HLSLProgramFactory : : d e f a u l t V e r s i o n = ”4 0 ” ;

#end i f
auto window = TheWindowSystem . Create<VertexColor ingWindow>(pa ramete r s ) ;
TheWindowSystem . MessagePump (window , TheWindowSystem .DEFAULT ACTION ) ;
TheWindowSystem . Destroy<VertexColor ingWindow>(window ) ;

8



Comments were added after the enumerates to indicate what to assign to HLSLProgramFactory::defaultVersion.

For non-windowed applications, the DX11Engine constructors allow you to specify directly the feature level.

2.8 Falling Back to Direct3D 9

This is not really possible, because GTEngine uses constant buffers and other concepts without equivalent
DX9 representations. The best you can do is specify one of the feature levels mentioned in the previous
section for which LEVEL 9 is part of the name. Note that there is no shader profile with name 4 0 level 9 2. If
you set the version string to “3 0”, the D3DReflect call will fail with HRESULT 0x8876086C, which is not listed
in winerror.h. This is the code for the obsolete D3DERR INVALIDCALL. The HLSL assembly instructions for
Shader Model 3 do not contain constant buffer register assignments (because they did not exist then).

2.9 No Support Yet for Dynamic Libraries for GTEngine

Currently, the engine solution generates static libraries. The hooks are in place for dynamic libraries, but
the build configurations have not yet been added to the projects.

3 Development on Linux

The GTEngine source code and sample applications have been tested on four flavors of Linux: Fedora 24,
Debian 8.5.0, Ubuntu 16.04, and Linux Mint 18 (MATE). As mentioned previously, your graphics driver
must be capable of OpenGL 4.3 (or later) and GLSL 4.3 (or later).

If you have obtained GTEngine 3.2 as a package already part of the Linux distribution, all you need do is
set an environment variable and compile the sample applications. The GTEngine libraries should already
be built, and the headers and libraries should be installed in the default locations. The other directions
provided here are for those obtaining the package from the Geometric Tools website.

3.1 Environment Variables

Create an environment variable named GTE PATH that stores the absolute directory path to the folder
GeometricTools/GTEngine. For example, if you use a bash shell, you would define the environment variable in
the file .bashrc by adding the line

GTE PATH=/home/YOURLOGIN/Geomet r i cToo l s /GTEngine ; expor t GTE PATH

The actual path depends on YOURLOGIN and where you copied the GTEngine distribution. The .bashrc file
is processed when you login; however, if you modify it after logging in, you may process it by executing

s ou r c e . ba sh r c

from a terminal window whose active directory is your home folder. For other versions of Linux or other
shells, consult your user’s guide on how to create an environment variable.

9

https://www.geometrictools.com


3.2 Dependencies on Other Packages

Each of the three supported flavors of Linux was installed from Live distributions. GTEngine depends on
development packages for X11, OpenGL, GLX, and libpng. The latter package is used for a simple reader/writer
of PNG files for the sample applications. The package manager for Fedora 24 is dnf and the package manager
for Debian 8.5.0, Ubuntu 16.04, and Linux Mint 18 is apt. The names of the dependent packages vary with
Linux distribution.

3.3 Compiling the Source Code

The makefile to build the GTEngine library is GeometricTools/GTEngine/makeengine.gte where both static and
shared library builds are supported. From a terminal window execute

make CFG=c o n f i g u r a t i o n −f makeengine . g te

where configuration is Debug or Release for static libraries abd is DebugDynamic or ReleaseDynamic for shared
libraries.

You can build all samples by changing directory to GeometricTools/GTEngine/Samples and executing

make CFG=c o n f i g u r a t i o n −f makea l l s amp l e s . g te

If you want to build a single sample application, change directory to the sample folder. For example, change
directory to GeometricTools/GTEngine/Samples/Graphics/VertexColoring and execute

make CFG=c o n f i g u r a t i o n APP=Ve r t e xCo l o r i n g −f . . / . . / makesample . g te

3.4 Support for OpenGL via Proprietary Drivers

On Fedora 24, Ubuntu 16.04, and Linux Mint 18, glxinfo showed that the Nouveau drivers are OpenGL 4.1.
On Debian 8.5.0, the Nouveau driver is OpenGL 3.3. In all cases, you cannot run the sample applications
with the Nouveau drivers—you need the proprietary drivers.

Installing the NVIDIA proprietary driver (version 367.27) was challenging. This version of the driver supports
OpenGL 4.5. The installation directions varied for each Linux OS. After searching the Internet, the following
links led to successful installation. The directions are not for the most recent versions of the operating
systems, but the directions still apply.

• Install on Fedora 24

• Install on Debian 8.5.0

• Install on Ubuntu 16.04

The Ubuntu directions are via a search using Google, and there is a simple summary of steps listed at the
top of the search page. The installation of NVIDIA proprietary driver on Linux Mint was trivial (via the
Hardware Drivers menu).

The bare minimum of GLX functions is used to create windows that allow OpenGL accelerated rendering.
All functions are included in the GLX packages for Linux, so there is no need for GLX extensions.

10

http://www.if-not-true-then-false.com/2015/fedora-nvidia-guide/
http://www.allaboutlinux.eu/remove-nouveau-and-install-nvidia-driver-in-debian-8/2/
https://www.google.com/?ion=1&espv=2#q=ubuntu+install+nvidia+driver


3.5 Running the Samples

For the static library builds, you can simply open a terminal window and change directory to the project di-
rectory. For example, if you built the static release library and the Graphics/BlendedTerrain sample application,
the application can be launched by executing ./BlendedTerrain.Release

For shared library builds, the libraries are stored in GeometricTools/GTEngine/lib. Once GTEngine 3.2 becomes
part of the Linux distributions, you will find these libraries in the standard locations. Before then, a simple
way to launch the application is the following. Suppose you have a terminal window open and you have
changed directory to Samples/Graphics/BlendedTerrain and that you have built the shared release versions of
the engine and application. Execute the following

LD LIBRARY PATH=$GTE PATH/ l i b /ReleaseDynamic . / B l endedTe r r a i n . Re l e a s e

4 Development on Macintosh OS X

Support for graphics on the Macintosh has been discontinued because compute shaders and GLSL intro-
spection require OpenGL 4.3 (or later) but Apple has not updated their OpenGL support from version
4.1. However, the nongraphics and nonapplication code compiles. An Xcode project (actually a folder and
subfolders) is provided, GeometricTools/GTEngine/GTEngine.xcodeproj, that allows you to build any of four con-
figurations. The Debug and Release configurations generate static libraries. The Debug Dynamic and Release

Dynamic configurations generate shared libraries.

With the introduction of Mac OS X 10.7, access to environment variables via the library function getenv

appears to have been disabled. A plist mechanism used to work with earlier versions of the operating system,
but no longer. The Wild Magic 5 distribution had a workaround for this, but the sample applications in
GTEngine are not supported on the Macintosh, so there is no need for the workaround.

5 Accessing the OpenGL Driver Information

This section is applicable both to Microsoft Windows and to Linux.

The GL4Engine code is designed to allow you to write to disk information about the OpenGL driver. Extending
the example for VertexColoring described in the previous sections, modify the main code

Window : : Parameter s pa ramete r s (L”VertexCo lor ingWindow ” , 0 , 0 , 512 , 512 ) ;
#i f d e f i n e d (GTE DEV OPENGL)

pa ramete r s . d e v i c eC r e a t i o n F l a g s = 1 ;
#end i f

auto window = TheWindowSystem . Create<VertexColor ingWindow>(pa ramete r s ) ;
TheWindowSystem . MessagePump (window , TheWindowSystem .DEFAULT ACTION ) ;
TheWindowSystem . Destroy<VertexColor ingWindow>(window ) ;

For now the only device creation flags for OpenGL are the default 0 or 1, the latter causing the OpenGL
driver information to be written to a file named OpenGLDriverInfo.txt. The first several lines of the file show
the vendor, the renderer (graphics card model and related), and the OpenGL version supported by the
driver. The remaining lines list supported OpenGL extensions.

11



6 Automatic Generation of a Wrapper for OpenGL

Several packages may be found online that provide wrappers that query for OpenGL function pointers and
that encapsulate many of the gory details in using the OpenGL API. As an alternative, GTEngine ships
with a tool to build a wrapper, GeometricTools/GTEngine/Tools/GenerateOpenGLWrapper. The file GteOpenGL.h

was written manually—do not modify it. The file GteOpenGL.cpp is generated by parsing glcorearb.h, a file
that is available from the OpenGL Registry. This file is introduced in the OpenGL 4.3 Specification.

If the file is updated, or if you want to use a previous version, you can copy your file to the tool’s project
folder and then use the wrapper tool to regenerate GteOpenGL.cpp and copy it to

GeometricTools/GTEngine/Source/Graphics/GL4/GteOpenGL.cpp

You must also copy your version of glcorearb.h to

GeometricTools/GTEngine/Include/Graphics/GL4/GL/glcorearb.h

The extension files from the OpenGL Registry were also copied to the same folder as glcorearb.h. These
include glext.h, glxext.h, and wglext.h. The first three are not used by the engine, but the last one is used by
the WGL OpenGL engine.

The GenerateOpenGLWrapper tool has projects for Microsoft Visual Studio. To build this on Linux,

g++ −s t d=c++14 −c GenerateOpenGLWrapper . c −o GenerateOpenGLWrapper . o
g++ GenerateOpenGLWrapper . o −o GenerateOpenGLWrapper

and then execute the program in the project folder.

12

https://www.opengl.org/registry/

	1 Introduction
	1.1 License
	1.2 Copying the Distribution to Your Machine

	2 Development on Microsoft Windows
	2.1 Environment Variables
	2.2 Compiling the Source Code
	2.3 Support for OpenGL
	2.4 Automatic Generation of Project and Solution Files
	2.5 Running the Samples
	2.6 Microsoft Visual Studio Custom Visualizers
	2.7 Falling Back to Direct3D 10
	2.8 Falling Back to Direct3D 9
	2.9 No Support Yet for Dynamic Libraries for GTEngine

	3 Development on Linux
	3.1 Environment Variables
	3.2 Dependencies on Other Packages
	3.3 Compiling the Source Code
	3.4 Support for OpenGL via Proprietary Drivers
	3.5 Running the Samples

	4 Development on Macintosh OS X
	5 Accessing the OpenGL Driver Information
	6 Automatic Generation of a Wrapper for OpenGL

