haskell-gi-base-0.21.0: Foundation for libraries generated by haskell-gi

Safe HaskellNone
LanguageHaskell98

Data.GI.Base.ShortPrelude

Description

The Haskell Prelude exports a number of symbols that can easily collide with functions appearing in bindings. The generated code requires just a small subset of the functions in the Prelude, together with some of the functionality in Data.GI.Base, we reexport this explicitly here.

Synopsis

Documentation

module Data.Char

module Data.Int

module Data.Word

module Foreign.C

class Enum a where #

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

toEnum :: Int -> a #

Convert from an Int.

fromEnum :: a -> Int #

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

Instances

Enum Bool

Since: 2.1

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Enum Char

Since: 2.1

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Enum Int

Since: 2.1

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Enum Int8

Since: 2.1

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Enum Int16

Since: 2.1

Enum Int32

Since: 2.1

Enum Int64

Since: 2.1

Enum Integer

Since: 2.1

Enum Ordering

Since: 2.1

Enum Word

Since: 2.1

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Enum Word8

Since: 2.1

Enum Word16

Since: 2.1

Enum Word32

Since: 2.1

Enum Word64

Since: 2.1

Enum VecCount

Since: 4.10.0.0

Enum VecElem

Since: 4.10.0.0

Enum ()

Since: 2.1

Methods

succ :: () -> () #

pred :: () -> () #

toEnum :: Int -> () #

fromEnum :: () -> Int #

enumFrom :: () -> [()] #

enumFromThen :: () -> () -> [()] #

enumFromTo :: () -> () -> [()] #

enumFromThenTo :: () -> () -> () -> [()] #

Enum CChar 
Enum CSChar 
Enum CUChar 
Enum CShort 
Enum CUShort 
Enum CInt 

Methods

succ :: CInt -> CInt #

pred :: CInt -> CInt #

toEnum :: Int -> CInt #

fromEnum :: CInt -> Int #

enumFrom :: CInt -> [CInt] #

enumFromThen :: CInt -> CInt -> [CInt] #

enumFromTo :: CInt -> CInt -> [CInt] #

enumFromThenTo :: CInt -> CInt -> CInt -> [CInt] #

Enum CUInt 
Enum CLong 
Enum CULong 
Enum CLLong 
Enum CULLong 
Enum CBool 
Enum CFloat 
Enum CDouble 
Enum CPtrdiff 
Enum CSize 
Enum CWchar 
Enum CSigAtomic 
Enum CClock 
Enum CTime 
Enum CUSeconds 
Enum CSUSeconds 
Enum CIntPtr 
Enum CUIntPtr 
Enum CIntMax 
Enum CUIntMax 
Enum WordPtr 
Enum IntPtr 
Enum I16 

Methods

succ :: I16 -> I16 #

pred :: I16 -> I16 #

toEnum :: Int -> I16 #

fromEnum :: I16 -> Int #

enumFrom :: I16 -> [I16] #

enumFromThen :: I16 -> I16 -> [I16] #

enumFromTo :: I16 -> I16 -> [I16] #

enumFromThenTo :: I16 -> I16 -> I16 -> [I16] #

Integral a => Enum (Ratio a)

Since: 2.0.1

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Enum (Proxy k s)

Since: 4.7.0.0

Methods

succ :: Proxy k s -> Proxy k s #

pred :: Proxy k s -> Proxy k s #

toEnum :: Int -> Proxy k s #

fromEnum :: Proxy k s -> Int #

enumFrom :: Proxy k s -> [Proxy k s] #

enumFromThen :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromTo :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromThenTo :: Proxy k s -> Proxy k s -> Proxy k s -> [Proxy k s] #

Enum (f a) => Enum (Alt k f a) 

Methods

succ :: Alt k f a -> Alt k f a #

pred :: Alt k f a -> Alt k f a #

toEnum :: Int -> Alt k f a #

fromEnum :: Alt k f a -> Int #

enumFrom :: Alt k f a -> [Alt k f a] #

enumFromThen :: Alt k f a -> Alt k f a -> [Alt k f a] #

enumFromTo :: Alt k f a -> Alt k f a -> [Alt k f a] #

enumFromThenTo :: Alt k f a -> Alt k f a -> Alt k f a -> [Alt k f a] #

(~) k a b => Enum ((:~:) k a b)

Since: 4.7.0.0

Methods

succ :: (k :~: a) b -> (k :~: a) b #

pred :: (k :~: a) b -> (k :~: a) b #

toEnum :: Int -> (k :~: a) b #

fromEnum :: (k :~: a) b -> Int #

enumFrom :: (k :~: a) b -> [(k :~: a) b] #

enumFromThen :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromTo :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromThenTo :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

(~~) k1 k2 a b => Enum ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

succ :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b #

pred :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b #

toEnum :: Int -> (k1 :~~: k2) a b #

fromEnum :: (k1 :~~: k2) a b -> Int #

enumFrom :: (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

enumFromThen :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

enumFromTo :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

enumFromThenTo :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

class Show a where #

Conversion of values to readable Strings.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Methods

showsPrec #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS 

Convert a value to a readable String.

showsPrec should satisfy the law

showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

show :: a -> String #

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

showList :: [a] -> ShowS #

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Show Bool 

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Show Char

Since: 2.1

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Show Int

Since: 2.1

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Show Int8

Since: 2.1

Methods

showsPrec :: Int -> Int8 -> ShowS #

show :: Int8 -> String #

showList :: [Int8] -> ShowS #

Show Int16

Since: 2.1

Methods

showsPrec :: Int -> Int16 -> ShowS #

show :: Int16 -> String #

showList :: [Int16] -> ShowS #

Show Int32

Since: 2.1

Methods

showsPrec :: Int -> Int32 -> ShowS #

show :: Int32 -> String #

showList :: [Int32] -> ShowS #

Show Int64

Since: 2.1

Methods

showsPrec :: Int -> Int64 -> ShowS #

show :: Int64 -> String #

showList :: [Int64] -> ShowS #

Show Integer

Since: 2.1

Show Ordering 
Show Word

Since: 2.1

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Show Word8

Since: 2.1

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

Show Word16

Since: 2.1

Show Word32

Since: 2.1

Show Word64

Since: 2.1

Show CallStack

Since: 4.9.0.0

Show SomeTypeRep

Since: 4.10.0.0

Show () 

Methods

showsPrec :: Int -> () -> ShowS #

show :: () -> String #

showList :: [()] -> ShowS #

Show TyCon

Since: 2.1

Methods

showsPrec :: Int -> TyCon -> ShowS #

show :: TyCon -> String #

showList :: [TyCon] -> ShowS #

Show Module

Since: 4.9.0.0

Show TrName

Since: 4.9.0.0

Show Handle

Since: 4.1.0.0

Show HandleType

Since: 4.1.0.0

Methods

showsPrec :: Int -> HandleType -> ShowS #

show :: HandleType -> String #

showList :: [HandleType] -> ShowS #

Show PatternMatchFail

Since: 4.0

Show RecSelError

Since: 4.0

Show RecConError

Since: 4.0

Show RecUpdError

Since: 4.0

Show NoMethodError

Since: 4.0

Show TypeError

Since: 4.9.0.0

Show NonTermination

Since: 4.0

Show NestedAtomically

Since: 4.0

Show BufferMode 
Show Newline 
Show NewlineMode 
Show MaskingState 
Show ErrorCall

Since: 4.0.0.0

Show ArithException

Since: 4.0.0.0

Show All 

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Show Any 

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Show SomeSymbol

Since: 4.7.0.0

Show CChar 

Methods

showsPrec :: Int -> CChar -> ShowS #

show :: CChar -> String #

showList :: [CChar] -> ShowS #

Show CSChar 
Show CUChar 
Show CShort 
Show CUShort 
Show CInt 

Methods

showsPrec :: Int -> CInt -> ShowS #

show :: CInt -> String #

showList :: [CInt] -> ShowS #

Show CUInt 

Methods

showsPrec :: Int -> CUInt -> ShowS #

show :: CUInt -> String #

showList :: [CUInt] -> ShowS #

Show CLong 

Methods

showsPrec :: Int -> CLong -> ShowS #

show :: CLong -> String #

showList :: [CLong] -> ShowS #

Show CULong 
Show CLLong 
Show CULLong 
Show CBool 

Methods

showsPrec :: Int -> CBool -> ShowS #

show :: CBool -> String #

showList :: [CBool] -> ShowS #

Show CFloat 
Show CDouble 
Show CPtrdiff 
Show CSize 

Methods

showsPrec :: Int -> CSize -> ShowS #

show :: CSize -> String #

showList :: [CSize] -> ShowS #

Show CWchar 
Show CSigAtomic 
Show CClock 
Show CTime 

Methods

showsPrec :: Int -> CTime -> ShowS #

show :: CTime -> String #

showList :: [CTime] -> ShowS #

Show CUSeconds 
Show CSUSeconds 
Show CIntPtr 
Show CUIntPtr 
Show CIntMax 
Show CUIntMax 
Show WordPtr 
Show IntPtr 
Show SomeException

Since: 3.0

Show SrcLoc 
Show ByteString 
Show I16 

Methods

showsPrec :: Int -> I16 -> ShowS #

show :: I16 -> String #

showList :: [I16] -> ShowS #

Show UnexpectedNullPointerReturn # 
Show GVariantSignature # 
Show GVariantObjectPath # 
Show GVariantHandle # 
Show GError # 
Show a => Show [a]

Since: 2.1

Methods

showsPrec :: Int -> [a] -> ShowS #

show :: [a] -> String #

showList :: [[a]] -> ShowS #

Show a => Show (Maybe a) 

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Show a => Show (Ratio a)

Since: 2.0.1

Methods

showsPrec :: Int -> Ratio a -> ShowS #

show :: Ratio a -> String #

showList :: [Ratio a] -> ShowS #

Show (Ptr a)

Since: 2.1

Methods

showsPrec :: Int -> Ptr a -> ShowS #

show :: Ptr a -> String #

showList :: [Ptr a] -> ShowS #

Show (FunPtr a)

Since: 2.1

Methods

showsPrec :: Int -> FunPtr a -> ShowS #

show :: FunPtr a -> String #

showList :: [FunPtr a] -> ShowS #

Show (ForeignPtr a)

Since: 2.1

Show a => Show (ZipList a) 

Methods

showsPrec :: Int -> ZipList a -> ShowS #

show :: ZipList a -> String #

showList :: [ZipList a] -> ShowS #

Show a => Show (Dual a) 

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Show a => Show (Sum a) 

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Show a => Show (Product a) 

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Show a => Show (First a) 

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Show a => Show (Last a) 

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Show a => Show (GVariantSinglet a) # 
Show (TypeRep k a) 

Methods

showsPrec :: Int -> TypeRep k a -> ShowS #

show :: TypeRep k a -> String #

showList :: [TypeRep k a] -> ShowS #

(Show a, Show b) => Show (a, b)

Since: 2.1

Methods

showsPrec :: Int -> (a, b) -> ShowS #

show :: (a, b) -> String #

showList :: [(a, b)] -> ShowS #

Show (Proxy k s)

Since: 4.7.0.0

Methods

showsPrec :: Int -> Proxy k s -> ShowS #

show :: Proxy k s -> String #

showList :: [Proxy k s] -> ShowS #

(Show k, Show a) => Show (Map k a) 

Methods

showsPrec :: Int -> Map k a -> ShowS #

show :: Map k a -> String #

showList :: [Map k a] -> ShowS #

(Show value, Show key) => Show (GVariantDictEntry key value) # 

Methods

showsPrec :: Int -> GVariantDictEntry key value -> ShowS #

show :: GVariantDictEntry key value -> String #

showList :: [GVariantDictEntry key value] -> ShowS #

(Show a, Show b, Show c) => Show (a, b, c)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c) -> ShowS #

show :: (a, b, c) -> String #

showList :: [(a, b, c)] -> ShowS #

Show (f a) => Show (Alt k f a) 

Methods

showsPrec :: Int -> Alt k f a -> ShowS #

show :: Alt k f a -> String #

showList :: [Alt k f a] -> ShowS #

Show ((:~:) k a b) 

Methods

showsPrec :: Int -> (k :~: a) b -> ShowS #

show :: (k :~: a) b -> String #

showList :: [(k :~: a) b] -> ShowS #

(Show a, Show b, Show c, Show d) => Show (a, b, c, d)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d) -> ShowS #

show :: (a, b, c, d) -> String #

showList :: [(a, b, c, d)] -> ShowS #

Show ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

showsPrec :: Int -> (k1 :~~: k2) a b -> ShowS #

show :: (k1 :~~: k2) a b -> String #

showList :: [(k1 :~~: k2) a b] -> ShowS #

(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e) -> ShowS #

show :: (a, b, c, d, e) -> String #

showList :: [(a, b, c, d, e)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f) -> ShowS #

show :: (a, b, c, d, e, f) -> String #

showList :: [(a, b, c, d, e, f)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g) -> ShowS #

show :: (a, b, c, d, e, f, g) -> String #

showList :: [(a, b, c, d, e, f, g)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h) -> ShowS #

show :: (a, b, c, d, e, f, g, h) -> String #

showList :: [(a, b, c, d, e, f, g, h)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i) -> String #

showList :: [(a, b, c, d, e, f, g, h, i)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] -> ShowS #

class Eq a where #

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

Minimal complete definition: either == or /=.

Minimal complete definition

(==) | (/=)

Methods

(==) :: a -> a -> Bool infix 4 #

(/=) :: a -> a -> Bool infix 4 #

Instances

Eq Bool 

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Eq Char 

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Eq Double 

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Eq Float 

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Eq Int 

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Eq Int8

Since: 2.1

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Eq Int16

Since: 2.1

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Eq Int32

Since: 2.1

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Eq Int64

Since: 2.1

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Eq Integer 

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Eq Ordering 
Eq Word 

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Eq Word8

Since: 2.1

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Eq Word16

Since: 2.1

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Eq Word32

Since: 2.1

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Eq Word64

Since: 2.1

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Eq SomeTypeRep 
Eq () 

Methods

(==) :: () -> () -> Bool #

(/=) :: () -> () -> Bool #

Eq TyCon 

Methods

(==) :: TyCon -> TyCon -> Bool #

(/=) :: TyCon -> TyCon -> Bool #

Eq Module 

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq TrName 

Methods

(==) :: TrName -> TrName -> Bool #

(/=) :: TrName -> TrName -> Bool #

Eq Handle

Since: 4.1.0.0

Methods

(==) :: Handle -> Handle -> Bool #

(/=) :: Handle -> Handle -> Bool #

Eq BigNat 

Methods

(==) :: BigNat -> BigNat -> Bool #

(/=) :: BigNat -> BigNat -> Bool #

Eq SpecConstrAnnotation 
Eq BufferMode 
Eq Newline 

Methods

(==) :: Newline -> Newline -> Bool #

(/=) :: Newline -> Newline -> Bool #

Eq NewlineMode 
Eq MaskingState 
Eq ErrorCall 
Eq ArithException 
Eq All 

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Eq Any 

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Eq SomeSymbol

Since: 4.7.0.0

Eq CChar 

Methods

(==) :: CChar -> CChar -> Bool #

(/=) :: CChar -> CChar -> Bool #

Eq CSChar 

Methods

(==) :: CSChar -> CSChar -> Bool #

(/=) :: CSChar -> CSChar -> Bool #

Eq CUChar 

Methods

(==) :: CUChar -> CUChar -> Bool #

(/=) :: CUChar -> CUChar -> Bool #

Eq CShort 

Methods

(==) :: CShort -> CShort -> Bool #

(/=) :: CShort -> CShort -> Bool #

Eq CUShort 

Methods

(==) :: CUShort -> CUShort -> Bool #

(/=) :: CUShort -> CUShort -> Bool #

Eq CInt 

Methods

(==) :: CInt -> CInt -> Bool #

(/=) :: CInt -> CInt -> Bool #

Eq CUInt 

Methods

(==) :: CUInt -> CUInt -> Bool #

(/=) :: CUInt -> CUInt -> Bool #

Eq CLong 

Methods

(==) :: CLong -> CLong -> Bool #

(/=) :: CLong -> CLong -> Bool #

Eq CULong 

Methods

(==) :: CULong -> CULong -> Bool #

(/=) :: CULong -> CULong -> Bool #

Eq CLLong 

Methods

(==) :: CLLong -> CLLong -> Bool #

(/=) :: CLLong -> CLLong -> Bool #

Eq CULLong 

Methods

(==) :: CULLong -> CULLong -> Bool #

(/=) :: CULLong -> CULLong -> Bool #

Eq CBool 

Methods

(==) :: CBool -> CBool -> Bool #

(/=) :: CBool -> CBool -> Bool #

Eq CFloat 

Methods

(==) :: CFloat -> CFloat -> Bool #

(/=) :: CFloat -> CFloat -> Bool #

Eq CDouble 

Methods

(==) :: CDouble -> CDouble -> Bool #

(/=) :: CDouble -> CDouble -> Bool #

Eq CPtrdiff 
Eq CSize 

Methods

(==) :: CSize -> CSize -> Bool #

(/=) :: CSize -> CSize -> Bool #

Eq CWchar 

Methods

(==) :: CWchar -> CWchar -> Bool #

(/=) :: CWchar -> CWchar -> Bool #

Eq CSigAtomic 
Eq CClock 

Methods

(==) :: CClock -> CClock -> Bool #

(/=) :: CClock -> CClock -> Bool #

Eq CTime 

Methods

(==) :: CTime -> CTime -> Bool #

(/=) :: CTime -> CTime -> Bool #

Eq CUSeconds 
Eq CSUSeconds 
Eq CIntPtr 

Methods

(==) :: CIntPtr -> CIntPtr -> Bool #

(/=) :: CIntPtr -> CIntPtr -> Bool #

Eq CUIntPtr 
Eq CIntMax 

Methods

(==) :: CIntMax -> CIntMax -> Bool #

(/=) :: CIntMax -> CIntMax -> Bool #

Eq CUIntMax 
Eq WordPtr 

Methods

(==) :: WordPtr -> WordPtr -> Bool #

(/=) :: WordPtr -> WordPtr -> Bool #

Eq IntPtr 

Methods

(==) :: IntPtr -> IntPtr -> Bool #

(/=) :: IntPtr -> IntPtr -> Bool #

Eq SrcLoc 

Methods

(==) :: SrcLoc -> SrcLoc -> Bool #

(/=) :: SrcLoc -> SrcLoc -> Bool #

Eq ByteString 
Eq I16 

Methods

(==) :: I16 -> I16 -> Bool #

(/=) :: I16 -> I16 -> Bool #

Eq GVariantSignature # 
Eq GVariantObjectPath # 
Eq GVariantHandle # 
Eq a => Eq [a] 

Methods

(==) :: [a] -> [a] -> Bool #

(/=) :: [a] -> [a] -> Bool #

Eq a => Eq (Maybe a) 

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Eq a => Eq (Ratio a) 

Methods

(==) :: Ratio a -> Ratio a -> Bool #

(/=) :: Ratio a -> Ratio a -> Bool #

Eq (Ptr a) 

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Eq (FunPtr a) 

Methods

(==) :: FunPtr a -> FunPtr a -> Bool #

(/=) :: FunPtr a -> FunPtr a -> Bool #

Eq (ForeignPtr a)

Since: 2.1

Methods

(==) :: ForeignPtr a -> ForeignPtr a -> Bool #

(/=) :: ForeignPtr a -> ForeignPtr a -> Bool #

Eq a => Eq (ZipList a) 

Methods

(==) :: ZipList a -> ZipList a -> Bool #

(/=) :: ZipList a -> ZipList a -> Bool #

Eq (IORef a)

Since: 4.1.0.0

Methods

(==) :: IORef a -> IORef a -> Bool #

(/=) :: IORef a -> IORef a -> Bool #

Eq a => Eq (Dual a) 

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Eq a => Eq (Sum a) 

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Eq a => Eq (Product a) 

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Eq a => Eq (First a) 

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a) 

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq a => Eq (GVariantSinglet a) # 
Eq (TypeRep k a)

Since: 2.1

Methods

(==) :: TypeRep k a -> TypeRep k a -> Bool #

(/=) :: TypeRep k a -> TypeRep k a -> Bool #

(Eq a, Eq b) => Eq (a, b) 

Methods

(==) :: (a, b) -> (a, b) -> Bool #

(/=) :: (a, b) -> (a, b) -> Bool #

Eq (Proxy k s)

Since: 4.7.0.0

Methods

(==) :: Proxy k s -> Proxy k s -> Bool #

(/=) :: Proxy k s -> Proxy k s -> Bool #

(Eq k, Eq a) => Eq (Map k a) 

Methods

(==) :: Map k a -> Map k a -> Bool #

(/=) :: Map k a -> Map k a -> Bool #

(Eq value, Eq key) => Eq (GVariantDictEntry key value) # 

Methods

(==) :: GVariantDictEntry key value -> GVariantDictEntry key value -> Bool #

(/=) :: GVariantDictEntry key value -> GVariantDictEntry key value -> Bool #

(Eq a, Eq b, Eq c) => Eq (a, b, c) 

Methods

(==) :: (a, b, c) -> (a, b, c) -> Bool #

(/=) :: (a, b, c) -> (a, b, c) -> Bool #

Eq (f a) => Eq (Alt k f a) 

Methods

(==) :: Alt k f a -> Alt k f a -> Bool #

(/=) :: Alt k f a -> Alt k f a -> Bool #

Eq ((:~:) k a b) 

Methods

(==) :: (k :~: a) b -> (k :~: a) b -> Bool #

(/=) :: (k :~: a) b -> (k :~: a) b -> Bool #

(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 

Methods

(==) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(/=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

Eq ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

(==) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

(/=) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 

Methods

(==) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(/=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 

Methods

(==) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(/=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 

Methods

(==) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(/=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 

Methods

(==) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

data IO a :: * -> * #

A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a.

There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main.

IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.

Instances

Monad IO

Since: 2.1

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Functor IO

Since: 2.1

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Applicative IO

Since: 2.1

Methods

pure :: a -> IO a #

(<*>) :: IO (a -> b) -> IO a -> IO b #

liftA2 :: (a -> b -> c) -> IO a -> IO b -> IO c #

(*>) :: IO a -> IO b -> IO b #

(<*) :: IO a -> IO b -> IO a #

MonadIO IO

Since: 4.9.0.0

Methods

liftIO :: IO a -> IO a #

Alternative IO

Since: 4.9.0.0

Methods

empty :: IO a #

(<|>) :: IO a -> IO a -> IO a #

some :: IO a -> IO [a] #

many :: IO a -> IO [a] #

MonadPlus IO

Since: 4.9.0.0

Methods

mzero :: IO a #

mplus :: IO a -> IO a -> IO a #

Monoid a => Monoid (IO a)

Since: 4.9.0.0

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

class Applicative m => Monad (m :: * -> *) where #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following laws:

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1 #

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

(>>) :: m a -> m b -> m b infixl 1 #

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

return :: a -> m a #

Inject a value into the monadic type.

fail :: String -> m a #

Fail with a message. This operation is not part of the mathematical definition of a monad, but is invoked on pattern-match failure in a do expression.

As part of the MonadFail proposal (MFP), this function is moved to its own class MonadFail (see Control.Monad.Fail for more details). The definition here will be removed in a future release.

Instances

Monad []

Since: 2.1

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] #

(>>) :: [a] -> [b] -> [b] #

return :: a -> [a] #

fail :: String -> [a] #

Monad Maybe

Since: 2.1

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Monad IO

Since: 2.1

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Monad Dual

Since: 4.8.0.0

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

fail :: String -> Dual a #

Monad Sum

Since: 4.8.0.0

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

fail :: String -> Sum a #

Monad Product

Since: 4.8.0.0

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

fail :: String -> Product a #

Monad First 

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Monad Last 

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Monoid a => Monad ((,) a)

Since: 4.9.0.0

Methods

(>>=) :: (a, a) -> (a -> (a, b)) -> (a, b) #

(>>) :: (a, a) -> (a, b) -> (a, b) #

return :: a -> (a, a) #

fail :: String -> (a, a) #

Monad m => Monad (WrappedMonad m) 

Methods

(>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b #

(>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

return :: a -> WrappedMonad m a #

fail :: String -> WrappedMonad m a #

Monad (Proxy *)

Since: 4.7.0.0

Methods

(>>=) :: Proxy * a -> (a -> Proxy * b) -> Proxy * b #

(>>) :: Proxy * a -> Proxy * b -> Proxy * b #

return :: a -> Proxy * a #

fail :: String -> Proxy * a #

Monad f => Monad (Alt * f) 

Methods

(>>=) :: Alt * f a -> (a -> Alt * f b) -> Alt * f b #

(>>) :: Alt * f a -> Alt * f b -> Alt * f b #

return :: a -> Alt * f a #

fail :: String -> Alt * f a #

Monad ((->) LiftedRep LiftedRep r)

Since: 2.1

Methods

(>>=) :: (LiftedRep -> LiftedRep) r a -> (a -> (LiftedRep -> LiftedRep) r b) -> (LiftedRep -> LiftedRep) r b #

(>>) :: (LiftedRep -> LiftedRep) r a -> (LiftedRep -> LiftedRep) r b -> (LiftedRep -> LiftedRep) r b #

return :: a -> (LiftedRep -> LiftedRep) r a #

fail :: String -> (LiftedRep -> LiftedRep) r a #

(Applicative f, Monad f) => Monad (WhenMissing f k x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)) .

Methods

(>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b #

(>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b #

return :: a -> WhenMissing f k x a #

fail :: String -> WhenMissing f k x a #

(Monad f, Applicative f) => Monad (WhenMatched f k x y)

Equivalent to ReaderT k (ReaderT x (ReaderT y (MaybeT f)))

Methods

(>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b #

(>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b #

return :: a -> WhenMatched f k x y a #

fail :: String -> WhenMatched f k x y a #

data Maybe a :: * -> * #

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of type a (represented as Just a), or it is empty (represented as Nothing). Using Maybe is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error.

The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented by Nothing. A richer error monad can be built using the Either type.

Constructors

Nothing 
Just a 

Instances

Monad Maybe

Since: 2.1

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Functor Maybe

Since: 2.1

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Applicative Maybe

Since: 2.1

Methods

pure :: a -> Maybe a #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

liftA2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

(*>) :: Maybe a -> Maybe b -> Maybe b #

(<*) :: Maybe a -> Maybe b -> Maybe a #

Foldable Maybe

Since: 2.1

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Traversable Maybe

Since: 2.1

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Alternative Maybe

Since: 2.1

Methods

empty :: Maybe a #

(<|>) :: Maybe a -> Maybe a -> Maybe a #

some :: Maybe a -> Maybe [a] #

many :: Maybe a -> Maybe [a] #

MonadPlus Maybe

Since: 2.1

Methods

mzero :: Maybe a #

mplus :: Maybe a -> Maybe a -> Maybe a #

Eq a => Eq (Maybe a) 

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Ord a => Ord (Maybe a) 

Methods

compare :: Maybe a -> Maybe a -> Ordering #

(<) :: Maybe a -> Maybe a -> Bool #

(<=) :: Maybe a -> Maybe a -> Bool #

(>) :: Maybe a -> Maybe a -> Bool #

(>=) :: Maybe a -> Maybe a -> Bool #

max :: Maybe a -> Maybe a -> Maybe a #

min :: Maybe a -> Maybe a -> Maybe a #

Show a => Show (Maybe a) 

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there used to be no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Since: 2.1

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

NullToNothing (Maybe a) Source # 

Methods

nullToNothing :: MonadIO m => IO (Maybe a) -> m (Maybe (UnMaybe (Maybe a))) Source #

IsGVariant a => IsGVariant (Maybe a) Source # 
IsGValue (Maybe String) Source # 
IsGValue (Maybe Text) Source # 
type (==) (Maybe k) a b 
type (==) (Maybe k) a b = EqMaybe k a b

(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 #

Function composition.

($) :: (a -> b) -> a -> b infixr 0 #

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

    f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

(++) :: [a] -> [a] -> [a] infixr 5 #

Append two lists, i.e.,

[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]

If the first list is not finite, the result is the first list.

(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #

Same as >>=, but with the arguments interchanged.

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #

Left-to-right Kleisli composition of monads.

data Bool :: * #

Constructors

False 
True 

Instances

Bounded Bool

Since: 2.1

Enum Bool

Since: 2.1

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Eq Bool 

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Ord Bool 

Methods

compare :: Bool -> Bool -> Ordering #

(<) :: Bool -> Bool -> Bool #

(<=) :: Bool -> Bool -> Bool #

(>) :: Bool -> Bool -> Bool #

(>=) :: Bool -> Bool -> Bool #

max :: Bool -> Bool -> Bool #

min :: Bool -> Bool -> Bool #

Show Bool 

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Storable Bool

Since: 2.1

Methods

sizeOf :: Bool -> Int #

alignment :: Bool -> Int #

peekElemOff :: Ptr Bool -> Int -> IO Bool #

pokeElemOff :: Ptr Bool -> Int -> Bool -> IO () #

peekByteOff :: Ptr b -> Int -> IO Bool #

pokeByteOff :: Ptr b -> Int -> Bool -> IO () #

peek :: Ptr Bool -> IO Bool #

poke :: Ptr Bool -> Bool -> IO () #

Bits Bool

Interpret Bool as 1-bit bit-field

Since: 4.7.0.0

FiniteBits Bool

Since: 4.7.0.0

IsGVariantBasicType Bool Source # 
IsGVariant Bool Source # 
IsGValue Bool Source # 
type (==) Bool a b 
type (==) Bool a b = EqBool a b

data Float :: * #

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Instances

Eq Float 

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Floating Float

Since: 2.1

Ord Float 

Methods

compare :: Float -> Float -> Ordering #

(<) :: Float -> Float -> Bool #

(<=) :: Float -> Float -> Bool #

(>) :: Float -> Float -> Bool #

(>=) :: Float -> Float -> Bool #

max :: Float -> Float -> Float #

min :: Float -> Float -> Float #

RealFloat Float

Since: 2.1

Storable Float

Since: 2.1

Methods

sizeOf :: Float -> Int #

alignment :: Float -> Int #

peekElemOff :: Ptr Float -> Int -> IO Float #

pokeElemOff :: Ptr Float -> Int -> Float -> IO () #

peekByteOff :: Ptr b -> Int -> IO Float #

pokeByteOff :: Ptr b -> Int -> Float -> IO () #

peek :: Ptr Float -> IO Float #

poke :: Ptr Float -> Float -> IO () #

IsGValue Float Source # 
Foldable (URec * Float) 

Methods

fold :: Monoid m => URec * Float m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Float a -> m #

foldr :: (a -> b -> b) -> b -> URec * Float a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Float a -> b #

foldl :: (b -> a -> b) -> b -> URec * Float a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Float a -> b #

foldr1 :: (a -> a -> a) -> URec * Float a -> a #

foldl1 :: (a -> a -> a) -> URec * Float a -> a #

toList :: URec * Float a -> [a] #

null :: URec * Float a -> Bool #

length :: URec * Float a -> Int #

elem :: Eq a => a -> URec * Float a -> Bool #

maximum :: Ord a => URec * Float a -> a #

minimum :: Ord a => URec * Float a -> a #

sum :: Num a => URec * Float a -> a #

product :: Num a => URec * Float a -> a #

Traversable (URec * Float) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Float a -> f (URec * Float b) #

sequenceA :: Applicative f => URec * Float (f a) -> f (URec * Float a) #

mapM :: Monad m => (a -> m b) -> URec * Float a -> m (URec * Float b) #

sequence :: Monad m => URec * Float (m a) -> m (URec * Float a) #

data Double :: * #

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Instances

Eq Double 

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Floating Double

Since: 2.1

Ord Double 
RealFloat Double

Since: 2.1

Storable Double

Since: 2.1

IsGVariantBasicType Double Source # 
IsGVariant Double Source # 
IsGValue Double Source # 
Foldable (URec * Double) 

Methods

fold :: Monoid m => URec * Double m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Double a -> m #

foldr :: (a -> b -> b) -> b -> URec * Double a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Double a -> b #

foldl :: (b -> a -> b) -> b -> URec * Double a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Double a -> b #

foldr1 :: (a -> a -> a) -> URec * Double a -> a #

foldl1 :: (a -> a -> a) -> URec * Double a -> a #

toList :: URec * Double a -> [a] #

null :: URec * Double a -> Bool #

length :: URec * Double a -> Int #

elem :: Eq a => a -> URec * Double a -> Bool #

maximum :: Ord a => URec * Double a -> a #

minimum :: Ord a => URec * Double a -> a #

sum :: Num a => URec * Double a -> a #

product :: Num a => URec * Double a -> a #

Traversable (URec * Double) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Double a -> f (URec * Double b) #

sequenceA :: Applicative f => URec * Double (f a) -> f (URec * Double a) #

mapM :: Monad m => (a -> m b) -> URec * Double a -> m (URec * Double b) #

sequence :: Monad m => URec * Double (m a) -> m (URec * Double a) #

undefined :: HasCallStack => a #

A special case of error. It is expected that compilers will recognize this and insert error messages which are more appropriate to the context in which undefined appears.

error :: HasCallStack => [Char] -> a #

error stops execution and displays an error message.

map :: (a -> b) -> [a] -> [b] #

map f xs is the list obtained by applying f to each element of xs, i.e.,

map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
map f [x1, x2, ...] == [f x1, f x2, ...]

length :: Foldable t => forall a. t a -> Int #

Returns the size/length of a finite structure as an Int. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.

mapM :: Traversable t => forall (m :: * -> *) a b. Monad m => (a -> m b) -> t a -> m (t b) #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see mapM_.

mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results see mapM.

As of base 4.8.0.0, mapM_ is just traverse_, specialized to Monad.

when :: Applicative f => Bool -> f () -> f () #

Conditional execution of Applicative expressions. For example,

when debug (putStrLn "Debugging")

will output the string Debugging if the Boolean value debug is True, and otherwise do nothing.

fromIntegral :: (Integral a, Num b) => a -> b #

general coercion from integral types

realToFrac :: (Real a, Fractional b) => a -> b #

general coercion to fractional types