17 #ifndef IGNITION_MATH_MATRIX3_HH_ 18 #define IGNITION_MATH_MATRIX3_HH_ 46 std::memset(this->data, 0,
sizeof(this->data[0][0])*9);
53 std::memcpy(this->data, _m.data,
sizeof(this->data[0][0])*9);
67 T _v10, T _v11, T _v12,
68 T _v20, T _v21, T _v22)
70 this->data[0][0] = _v00;
71 this->data[0][1] = _v01;
72 this->data[0][2] = _v02;
73 this->data[1][0] = _v10;
74 this->data[1][1] = _v11;
75 this->data[1][2] = _v12;
76 this->data[2][0] = _v20;
77 this->data[2][1] = _v21;
78 this->data[2][2] = _v22;
87 this->
Set(1 - 2*qt.
Y()*qt.
Y() - 2 *qt.
Z()*qt.
Z(),
88 2 * qt.
X()*qt.
Y() - 2*qt.
Z()*qt.
W(),
89 2 * qt.
X() * qt.
Z() + 2 * qt.
Y() * qt.
W(),
90 2 * qt.
X() * qt.
Y() + 2 * qt.
Z() * qt.
W(),
91 1 - 2*qt.
X()*qt.
X() - 2 * qt.
Z()*qt.
Z(),
92 2 * qt.
Y() * qt.
Z() - 2 * qt.
X() * qt.
W(),
93 2 * qt.
X() * qt.
Z() - 2 * qt.
Y() * qt.
W(),
94 2 * qt.
Y() * qt.
Z() + 2 * qt.
X() * qt.
W(),
95 1 - 2 * qt.
X()*qt.
X() - 2 * qt.
Y()*qt.
Y());
111 public:
void Set(T _v00, T _v01, T _v02,
112 T _v10, T _v11, T _v12,
113 T _v20, T _v21, T _v22)
115 this->data[0][0] = _v00;
116 this->data[0][1] = _v01;
117 this->data[0][2] = _v02;
118 this->data[1][0] = _v10;
119 this->data[1][1] = _v11;
120 this->data[1][2] = _v12;
121 this->data[2][0] = _v20;
122 this->data[2][1] = _v21;
123 this->data[2][2] = _v22;
134 this->
Col(0, _xAxis);
135 this->
Col(1, _yAxis);
136 this->
Col(2, _zAxis);
148 this->data[0][0] = _axis.
X()*_axis.
X()*C + c;
149 this->data[0][1] = _axis.
X()*_axis.
Y()*C - _axis.
Z()*s;
150 this->data[0][2] = _axis.
X()*_axis.
Z()*C + _axis.
Y()*s;
152 this->data[1][0] = _axis.
Y()*_axis.
X()*C + _axis.
Z()*s;
153 this->data[1][1] = _axis.
Y()*_axis.
Y()*C + c;
154 this->data[1][2] = _axis.
Y()*_axis.
Z()*C - _axis.
X()*s;
156 this->data[2][0] = _axis.
Z()*_axis.
X()*C - _axis.
Y()*s;
157 this->data[2][1] = _axis.
Z()*_axis.
Y()*C + _axis.
X()*s;
158 this->data[2][2] = _axis.
Z()*_axis.
Z()*C + c;
170 if (_v1LengthSquared <= 0.0)
173 this->
Set(1, 0, 0, 0, 1, 0, 0, 0, 1);
178 if (_v2LengthSquared <= 0.0)
181 this->
Set(1, 0, 0, 0, 1, 0, 0, 0, 1);
185 const T dot = _v1.
Dot(_v2) / sqrt(_v1LengthSquared * _v2LengthSquared);
186 if (fabs(dot - 1.0) <= 1e-6)
189 this->
Set(1, 0, 0, 0, 1, 0, 0, 0, 1);
192 else if (fabs(dot + 1.0) <= 1e-6)
195 this->
Set(-1, 0, 0, 0, -1, 0, 0, 0, -1);
201 this->
Axis(cross, acos(dot));
210 unsigned int c =
clamp(_c, 0u, 2u);
212 this->data[0][c] = _v.
X();
213 this->data[1][c] = _v.
Y();
214 this->data[2][c] = _v.
Z();
222 memcpy(this->data, _mat.data,
sizeof(this->data[0][0])*9);
230 this->data[0][0] - _m(0, 0),
231 this->data[0][1] - _m(0, 1),
232 this->data[0][2] - _m(0, 2),
233 this->data[1][0] - _m(1, 0),
234 this->data[1][1] - _m(1, 1),
235 this->data[1][2] - _m(1, 2),
236 this->data[2][0] - _m(2, 0),
237 this->data[2][1] - _m(2, 1),
238 this->data[2][2] - _m(2, 2));
245 this->data[0][0]+_m(0, 0),
246 this->data[0][1]+_m(0, 1),
247 this->data[0][2]+_m(0, 2),
248 this->data[1][0]+_m(1, 0),
249 this->data[1][1]+_m(1, 1),
250 this->data[1][2]+_m(1, 2),
251 this->data[2][0]+_m(2, 0),
252 this->data[2][1]+_m(2, 1),
253 this->data[2][2]+_m(2, 2));
260 _s * this->data[0][0], _s * this->data[0][1], _s * this->data[0][2],
261 _s * this->data[1][0], _s * this->data[1][1], _s * this->data[1][2],
262 _s * this->data[2][0], _s * this->data[2][1], _s * this->data[2][2]);
272 this->data[0][0]*_m(0, 0)+
273 this->data[0][1]*_m(1, 0)+
274 this->data[0][2]*_m(2, 0),
276 this->data[0][0]*_m(0, 1)+
277 this->data[0][1]*_m(1, 1)+
278 this->data[0][2]*_m(2, 1),
280 this->data[0][0]*_m(0, 2)+
281 this->data[0][1]*_m(1, 2)+
282 this->data[0][2]*_m(2, 2),
285 this->data[1][0]*_m(0, 0)+
286 this->data[1][1]*_m(1, 0)+
287 this->data[1][2]*_m(2, 0),
289 this->data[1][0]*_m(0, 1)+
290 this->data[1][1]*_m(1, 1)+
291 this->data[1][2]*_m(2, 1),
293 this->data[1][0]*_m(0, 2)+
294 this->data[1][1]*_m(1, 2)+
295 this->data[1][2]*_m(2, 2),
298 this->data[2][0]*_m(0, 0)+
299 this->data[2][1]*_m(1, 0)+
300 this->data[2][2]*_m(2, 0),
302 this->data[2][0]*_m(0, 1)+
303 this->data[2][1]*_m(1, 1)+
304 this->data[2][2]*_m(2, 1),
306 this->data[2][0]*_m(0, 2)+
307 this->data[2][1]*_m(1, 2)+
308 this->data[2][2]*_m(2, 2));
318 this->data[0][0]*_vec.
X() + this->data[0][1]*_vec.
Y() +
319 this->data[0][2]*_vec.
Z(),
320 this->data[1][0]*_vec.
X() + this->data[1][1]*_vec.
Y() +
321 this->data[1][2]*_vec.
Z(),
322 this->data[2][0]*_vec.
X() + this->data[2][1]*_vec.
Y() +
323 this->data[2][2]*_vec.
Z());
345 _m(0, 0)*_v.
X() + _m(1, 0)*_v.
Y() + _m(2, 0)*_v.
Z(),
346 _m(0, 1)*_v.
X() + _m(1, 1)*_v.
Y() + _m(2, 1)*_v.
Z(),
347 _m(0, 2)*_v.
X() + _m(1, 2)*_v.
Y() + _m(2, 2)*_v.
Z());
357 return equal<T>(this->data[0][0], _m(0, 0), _tol)
358 && equal<T>(this->data[0][1], _m(0, 1), _tol)
359 && equal<T>(this->data[0][2], _m(0, 2), _tol)
360 && equal<T>(this->data[1][0], _m(1, 0), _tol)
361 && equal<T>(this->data[1][1], _m(1, 1), _tol)
362 && equal<T>(this->data[1][2], _m(1, 2), _tol)
363 && equal<T>(this->data[2][0], _m(2, 0), _tol)
364 && equal<T>(this->data[2][1], _m(2, 1), _tol)
365 && equal<T>(this->data[2][2], _m(2, 2), _tol);
373 return this->
Equal(_m, static_cast<T>(1e-6));
389 return !(*
this == _m);
396 public:
inline const T &
operator()(
size_t _row,
size_t _col)
const 416 T t0 = this->data[2][2]*this->data[1][1]
417 - this->data[2][1]*this->data[1][2];
419 T t1 = -(this->data[2][2]*this->data[1][0]
420 -this->data[2][0]*this->data[1][2]);
422 T t2 = this->data[2][1]*this->data[1][0]
423 - this->data[2][0]*this->data[1][1];
425 return t0 * this->data[0][0]
426 + t1 * this->data[0][1]
427 + t2 * this->data[0][2];
434 T t0 = this->data[2][2]*this->data[1][1] -
435 this->data[2][1]*this->data[1][2];
437 T t1 = -(this->data[2][2]*this->data[1][0] -
438 this->data[2][0]*this->data[1][2]);
440 T t2 = this->data[2][1]*this->data[1][0] -
441 this->data[2][0]*this->data[1][1];
443 T invDet = 1.0 / (t0 * this->data[0][0] +
444 t1 * this->data[0][1] +
445 t2 * this->data[0][2]);
449 - (this->data[2][2] * this->data[0][1] -
450 this->data[2][1] * this->data[0][2]),
451 + (this->data[1][2] * this->data[0][1] -
452 this->data[1][1] * this->data[0][2]),
454 + (this->data[2][2] * this->data[0][0] -
455 this->data[2][0] * this->data[0][2]),
456 - (this->data[1][2] * this->data[0][0] -
457 this->data[1][0] * this->data[0][2]),
459 - (this->data[2][1] * this->data[0][0] -
460 this->data[2][0] * this->data[0][1]),
461 + (this->data[1][1] * this->data[0][0] -
462 this->data[1][0] * this->data[0][1]));
468 std::swap(this->data[0][1], this->data[1][0]);
469 std::swap(this->data[0][2], this->data[2][0]);
470 std::swap(this->data[1][2], this->data[2][1]);
478 this->data[0][0], this->data[1][0], this->data[2][0],
479 this->data[0][1], this->data[1][1], this->data[2][1],
480 this->data[0][2], this->data[1][2], this->data[2][2]);
510 _in.setf(std::ios_base::skipws);
512 _in >> d[0] >> d[1] >> d[2]
513 >> d[3] >> d[4] >> d[5]
514 >> d[6] >> d[7] >> d[8];
516 _m.
Set(d[0], d[1], d[2],
523 private: T data[3][3];
const T & W() const
Get the w component.
Definition: Quaternion.hh:935
T X() const
Get the x value.
Definition: Vector3.hh:635
friend std::istream & operator>>(std::istream &_in, ignition::math::Matrix3< T > &_m)
Stream extraction operator.
Definition: Matrix3.hh:506
const T & Z() const
Get the z component.
Definition: Quaternion.hh:956
Matrix3< double > Matrix3d
Definition: Matrix3.hh:539
Matrix3< T > operator*(const T &_s) const
returns the element wise scalar multiplication
Definition: Matrix3.hh:257
T precision(const T &_a, const unsigned int &_precision)
get value at a specified precision
Definition: Helpers.hh:576
Matrix3< int > Matrix3i
Definition: Matrix3.hh:538
Matrix3(const Matrix3< T > &_m)
Copy constructor.
Definition: Matrix3.hh:51
Matrix3()
Constructor.
Definition: Matrix3.hh:44
static const size_t IGN_ZERO_SIZE_T
size_t type with a value of 0
Definition: Helpers.hh:213
T & operator()(size_t _row, size_t _col)
Array subscript operator.
Definition: Matrix3.hh:406
friend Vector3< T > operator*(const Vector3< T > &_v, const Matrix3< T > &_m)
Matrix left multiplication operator for Vector3.
Definition: Matrix3.hh:341
Matrix3< T > & operator=(const Matrix3< T > &_mat)
Equal operator.
Definition: Matrix3.hh:220
void From2Axes(const Vector3< T > &_v1, const Vector3< T > &_v2)
Set the matrix to represent rotation from vector _v1 to vector _v2, so that _v2.Normalize() == this *...
Definition: Matrix3.hh:167
Matrix3< T > operator*(const Matrix3< T > &_m) const
Matrix multiplication operator.
Definition: Matrix3.hh:268
static const Matrix3< T > Zero
Zero matrix.
Definition: Matrix3.hh:41
Matrix3< T > Inverse() const
Return the inverse matrix.
Definition: Matrix3.hh:432
friend Matrix3< T > operator*(T _s, const Matrix3< T > &_m)
Matrix multiplication operator for scaling.
Definition: Matrix3.hh:330
T Dot(const Vector3< T > &_v) const
Return the dot product of this vector and another vector.
Definition: Vector3.hh:195
virtual ~Matrix3()
Desctructor.
Definition: Matrix3.hh:99
T SquaredLength() const
Return the square of the length (magnitude) of the vector.
Definition: Vector3.hh:120
bool Equal(const Matrix3 &_m, const T &_tol) const
Equality test with tolerance.
Definition: Matrix3.hh:355
void Col(unsigned int _c, const Vector3< T > &_v)
Set a column.
Definition: Matrix3.hh:208
A 3x3 matrix class.
Definition: Matrix3.hh:35
bool operator==(const Matrix3< T > &_m) const
Equality test operator.
Definition: Matrix3.hh:371
Matrix3< float > Matrix3f
Definition: Matrix3.hh:540
const T & Y() const
Get the y component.
Definition: Quaternion.hh:949
Matrix3< T > Transposed() const
Return the transpose of this matrix.
Definition: Matrix3.hh:475
T Y() const
Get the y value.
Definition: Vector3.hh:642
Vector3< T > operator*(const Vector3< T > &_vec) const
Multiplication operator with Vector3 on the right treated like a column vector.
Definition: Matrix3.hh:315
Matrix3< T > & operator=(const Quaternion< T > &_q)
Set the matrix3 from a quaternion.
Definition: Matrix3.hh:379
bool operator!=(const Matrix3< T > &_m) const
Inequality test operator.
Definition: Matrix3.hh:387
static const size_t IGN_TWO_SIZE_T
size_t type with a value of 2
Definition: Helpers.hh:219
const T & X() const
Get the x component.
Definition: Quaternion.hh:942
const T & operator()(size_t _row, size_t _col) const
Array subscript operator.
Definition: Matrix3.hh:396
The Vector3 class represents the generic vector containing 3 elements.
Definition: Vector3.hh:36
static const Matrix3< T > Identity
Identity matrix.
Definition: Matrix3.hh:38
void Set(T _v00, T _v01, T _v02, T _v10, T _v11, T _v12, T _v20, T _v21, T _v22)
Set values.
Definition: Matrix3.hh:111
T Z() const
Get the z value.
Definition: Vector3.hh:649
Matrix3< T > operator+(const Matrix3< T > &_m) const
returns the element wise sum of two matrices
Definition: Matrix3.hh:242
Vector3 Cross(const Vector3< T > &_v) const
Return the cross product of this vector with another vector.
Definition: Vector3.hh:185
void Transpose()
Transpose this matrix.
Definition: Matrix3.hh:466
T Determinant() const
Return the determinant of the matrix.
Definition: Matrix3.hh:414
friend std::ostream & operator<<(std::ostream &_out, const ignition::math::Matrix3< T > &_m)
Stream insertion operator.
Definition: Matrix3.hh:487
void Axes(const Vector3< T > &_xAxis, const Vector3< T > &_yAxis, const Vector3< T > &_zAxis)
Set the matrix from three axis (1 per column)
Definition: Matrix3.hh:130
Matrix3(const Quaternion< T > &_q)
Construct Matrix3 from a quaternion.
Definition: Matrix3.hh:83
void Axis(const Vector3< T > &_axis, T _angle)
Set the matrix from an axis and angle.
Definition: Matrix3.hh:142
void Normalize()
Normalize the quaternion.
Definition: Quaternion.hh:220
A quaternion class.
Definition: Matrix3.hh:30
Matrix3< T > operator-(const Matrix3< T > &_m) const
returns the element wise difference of two matrices
Definition: Matrix3.hh:227
Matrix3(T _v00, T _v01, T _v02, T _v10, T _v11, T _v12, T _v20, T _v21, T _v22)
Constructor.
Definition: Matrix3.hh:66
T clamp(T _v, T _min, T _max)
Simple clamping function.
Definition: Helpers.hh:392