
#Puppet-Gluster ##A GlusterFS Puppet module by James ####Available
from: ####https://github.com/purpleidea/puppet-gluster/

####Also available from: ####https://forge.gluster.org/puppet-gluster/

####This documentation is available in: Markdown or PDF format.

####Table of Contents

1. Overview
2. Module description - What the module does
3. Setup - Getting started with Puppet-Gluster

• What can Puppet-Gluster manage?
• Simple setup
• Elastic setup
• Advanced setup
• Client setup

4. Usage/FAQ - Notes on management and frequently asked questions
5. Reference - Class and type reference

• gluster::simple
• gluster::elastic
• gluster::server
• gluster::host
• gluster::brick
• gluster::volume
• gluster::volume::property
• gluster::mount

6. Examples - Example configurations
7. Limitations - Puppet versions, OS compatibility, etc. . .
8. Development - Background on module development
9. Author - Author and contact information

##Overview

The Puppet-Gluster module installs, configures, and manages a GlusterFS clus-
ter.

##Module Description

This Puppet-Gluster module handles installation, configuration, and manage-
ment of GlusterFS across all of the hosts in the cluster.

##Setup

###What can Puppet-Gluster manage?

Puppet-Gluster is designed to be able to manage as much or as little of your
GlusterFS cluster as you wish. All features are optional. If there is a feature

1

https://ttboj.wordpress.com/
https://github.com/purpleidea/puppet-gluster/
https://forge.gluster.org/puppet-gluster/
https://github.com/purpleidea/puppet-gluster/blob/master/DOCUMENTATION.md
https://github.com/purpleidea/puppet-gluster/raw/master/puppet-gluster-documentation.pdf

that doesn’t appear to be optional, and you believe it should be, please let me
know. Having said that, it makes good sense to me to have Puppet-Gluster
manage as much of your GlusterFS infrastructure as it can. At the moment, it
cannot rack new servers, but I am accepting funding to explore this feature ;)
At the moment it can manage:

• GlusterFS packages (rpm)
• GlusterFS configuration files (/var/lib/glusterd/)
• GlusterFS host peering (gluster peer probe)
• GlusterFS storage partitioning (fdisk)
• GlusterFS storage formatting (mkfs)
• GlusterFS brick creation (mkdir)
• GlusterFS services (glusterd)
• GlusterFS firewalling (whitelisting)
• GlusterFS volume creation (gluster volume create)
• GlusterFS volume state (started/stopped)
• GlusterFS volume properties (gluster volume set)
• And much more. . .

###Simple setup
include ‘::gluster::simple’ is enough to get you up and running. When using
the gluster::simple class, or with any other Puppet-Gluster configuration, iden-
tical definitions must be used on all hosts in the cluster. The simplest way to
accomplish this is with a single shared puppet host definition like:

node /^annex\d+$/ { # annex{1,2,..N}
class { ’::gluster::simple’:
}

}

If you wish to pass in different parameters, you can specify them in the class
before you provision your hosts:

class { ’::gluster::simple’:
replica => 2,
volume => [’volume1’, ’volume2’, ’volumeN’],

}

###Elastic setup
The gluster::elastic class is not yet available. Stay tuned!
###Advanced setup
Some system administrators may wish to manually itemize each of the required
components for the Puppet-Gluster deployment. This happens automatically

2

with the higher level modules, but may still be a desirable feature, particularly
for non-elastic storage pools where the configuration isn’t expected to change
very often (if ever).

To put together your cluster piece by piece, you must manually include and
define each class and type that you wish to use. If there are certain aspects that
you wish to manage yourself, you can omit them from your configuration. See
the reference section below for the specifics. Here is one possible example:

class { ’::gluster::server’:
shorewall => true,

}

gluster::host { ’annex1.example.com’:
use uuidgen to make these
uuid => ’1f660ca2-2c78-4aa0-8f4d-21608218c69c’,

}

note that this is using a folder on your existing file system...
this can be useful for prototyping gluster using virtual machines
if this isn’t a separate partition, remember that your root fs will
run out of space when your gluster volume does!
gluster::brick { ’annex1.example.com:/data/gluster-storage1’:

areyousure => true,
}

gluster::host { ’annex2.example.com’:
NOTE: specifying a host uuid is now optional!
if you don’t choose one, one will be assigned
#uuid => ’2fbe6e2f-f6bc-4c2d-a301-62fa90c459f8’,

}

gluster::brick { ’annex2.example.com:/data/gluster-storage2’:
areyousure => true,

}

$brick_list = [
’annex1.example.com:/data/gluster-storage1’,
’annex2.example.com:/data/gluster-storage2’,

]

gluster::volume { ’examplevol’:
replica => 2,
bricks => $brick_list,
start => undef, # i’ll start this myself

}

3

namevar must be: <VOLNAME>#<KEY>
gluster::volume::property { ’examplevol#auth.reject’:

value => [’192.0.2.13’, ’198.51.100.42’, ’203.0.113.69’],
}

###Client setup

Mounting a GlusterFS volume on a client is fairly straightforward. Simply use
the ‘gluster::mount’ type.

gluster::mount { ’/mnt/gluster/puppet/’:
server => ’annex.example.com:/puppet’,
rw => true,
shorewall => false,

}

In this example, ‘annex.example.com’ points to the VIP of the GlusterFS cluster.
Using the VIP for mounting increases the chance that you’ll get an available
server when you try to mount. This generally works better than RRDNS or
similar schemes.

##Usage and frequently asked questions

All management should be done by manipulating the arguments on the appro-
priate Puppet-Gluster classes and types. Since certain manipulations are either
not yet possible with Puppet-Gluster, or are not supported by GlusterFS, at-
tempting to manipulate the Puppet configuration in an unsupported way will
result in undefined behaviour, and possible even data loss, however this is un-
likely.

###How do I change the replica count?

You must set this before volume creation. This is a limitation of GlusterFS.
There are certain situations where you can change the replica count by adding
a multiple of the existing brick count to get this desired effect. These cases are
not yet supported by Puppet-Gluster. If you want to use Puppet-Gluster before
and / or after this transition, you can do so, but you’ll have to do the changes
manually.

###Do I need to use a virtual IP?

Using a virtual IP (VIP) is strongly recommended as a distributed lock manager
(DLM) and also to provide a highly-available (HA) IP address for your clients
to connect to. For a more detailed explanation of the reasoning please see:

How to avoid cluster race conditions or: How to implement a distributed lock
manager in puppet

4

https://ttboj.wordpress.com/2012/08/23/how-to-avoid-cluster-race-conditions-or-how-to-implement-a-distributed-lock-manager-in-puppet/
https://ttboj.wordpress.com/2012/08/23/how-to-avoid-cluster-race-conditions-or-how-to-implement-a-distributed-lock-manager-in-puppet/

Remember that even if you’re using a hosted solution (such as AWS) that doesn’t
provide an additional IP address, or you want to avoid using an additional IP,
and you’re okay not having full HA client mounting, you can use an unused
private RFC1918 IP address as the DLM VIP. Remember that a layer 3 IP can
co-exist on the same layer 2 network with the layer 3 network that is used by
your cluster.

###Is it possible to have Puppet-Gluster complete in a single run?

No. This is a limitation of Puppet, and is related to how GlusterFS operates. For
example, it is not reliably possible to predict which ports a particular GlusterFS
volume will run on until after the volume is started. As a result, this module
will initially whitelist connections from GlusterFS host IP addresses, and then
further restrict this to only allow individual ports once this information is known.
This is possible in conjunction with the puppet-shorewall module. You should
notice that each run should complete without error. If you do see an error, it
means that either something is wrong with your system and / or configuration,
or because there is a bug in Puppet-Gluster.

###Can you integrate this with vagrant?

Yes, see the vagrant/ directory. This has been tested on Fedora 20, with vagrant-
libvirt, as I have no desire to use VirtualBox for fun. I have written an article
about this:

Automatically deploying GlusterFS with Puppet-Gluster + Vagrant!

You’ll probably first need to read my three earlier articles to learn some vagrant
tricks, and to get the needed dependencies installed:

• Vagrant on Fedora with libvirt
• Vagrant vsftp and other tricks
• Vagrant clustered SSH and ‘screen’

###Puppet runs fail with “Invalid relationship” errors.

When running Puppet, you encounter a compilation failure like:

Error: Could not retrieve catalog from remote server:
Error 400 on SERVER: Invalid relationship: Exec[gluster-volume-stuck-volname] {
require => Gluster::Brick[annex2.example.com:/var/lib/puppet/tmp/gluster/data/]
}, because Gluster::Brick[annex2.example.com:/var/lib/puppet/tmp/gluster/data/]
doesn’t seem to be in the catalog
Warning: Not using cache on failed catalog
Error: Could not retrieve catalog; skipping run

This can occur if you have changed (usually removed) the available bricks, but
have not cleared the exported resources on the Puppet master, or if there are

5

https://github.com/purpleidea/puppet-shorewall
https://github.com/purpleidea/puppet-gluster/tree/master/vagrant
https://ttboj.wordpress.com/2014/01/08/automatically-deploying-glusterfs-with-puppet-gluster-vagrant/
https://ttboj.wordpress.com/2013/12/09/vagrant-on-fedora-with-libvirt/
https://ttboj.wordpress.com/2013/12/21/vagrant-vsftp-and-other-tricks/
https://ttboj.wordpress.com/2014/01/02/vagrant-clustered-ssh-and-screen/

stale (incorrect) brick “tags” on the individual host. These tags can usually
be found in the /var/lib/puppet/tmp/gluster/brick/ directory. In other words,
when a multi host cluster comes up, each puppet agent tells the master about
which bricks it has available, and each agent also pulls down this list and stores
it in the brick directory. If there is a discrepancy, then the compile will fail
because the individual host is using old data as part of its facts when it uses
the stale brick data as part of its compilation.

This commonly happens if you’re trying to deploy a different Puppet-Gluster
setup without having first erased the host specific exported resources on the
Puppet master or if the machine hasn’t been re-provisioned from scratch.

To solve this problem, do a clean install, and make sure that you’ve cleaned the
Puppet master with:

puppet node deactivate HOSTNAME

for each host you’re using, and that you’ve removed all of the files from the
brick directories on each host.

###Puppet runs fail with “Connection refused - connect(2)” errors.

You may see a “Connection refused - connect(2)” message when running puppet.
This typically happens if your puppet vm guest is overloaded. When running
high guest counts on your laptop, or running without hardware virtualization
support this is quite common. Another common causes of this is if your domain
type is set to qemu instead of the accelerated kvm. Since the qemu domain
type is much slower, puppet timeouts and failures are common when it doesn’t
respond.

###Provisioning fails with: “Can’t open /dev/sdb1 exclusively.”

If when provisioning you get an error like:

“Can’t open /dev/sdb1 exclusively. Mounted filesystem?”

It is possible that dracut might have found an existing logical volume on the
device, and device mapper has made it available. This is common if you are
re-using dirty block devices that haven’t run through a dd first. Here is an
example of the diagnosis and treatment of this problem:

[root@server mapper]# pwd
/dev/mapper
[root@server mapper]# dmesg | grep dracut
dracut: dracut-004-336.el6_5.2
dracut: rd_NO_LUKS: removing cryptoluks activation
dracut: Starting plymouth daemon
dracut: rd_NO_DM: removing DM RAID activation
dracut: rd_NO_MD: removing MD RAID activation

6

dracut: Scanning devices sda3 sdb for LVM logical volumes myvg/rootvol
dracut: inactive ’/dev/vg_foo/lv’ [4.35 TiB] inherit
dracut: inactive ’/dev/myvg/rootvol’ [464.00 GiB] inherit
dracut: Mounted root filesystem /dev/mapper/myvg-rootvol
dracut: Loading SELinux policy
dracut:
dracut: Switching root
[root@server mapper]# /sbin/pvcreate --dataalignment 2560K /dev/sdb1

Can’t open /dev/sdb1 exclusively. Mounted filesystem?
[root@server mapper]# ls
control myvg-rootvol vg_foo-lv
[root@server mapper]# ls -lAh
total 0
crw-rw----. 1 root root 10, 58 Mar 7 16:42 control
lrwxrwxrwx. 1 root root 7 Mar 13 09:56 myvg-rootvol -> ../dm-0
lrwxrwxrwx. 1 root root 7 Mar 13 09:56 vg_foo-lv -> ../dm-1
[root@server mapper]# dmsetup remove vg_foo-lv
[root@server mapper]# ls
control myvg-rootvol
[root@server mapper]# pvcreate --dataalignment 2560K /dev/sdb1

Physical volume "/dev/sdb1" successfully created
[root@server mapper]# HAPPY_ADMIN=’yes’

If you frequently start with “dirty” block devices, you may consider adding a
dd to your hardware provisioning step. The downside is that this can be very
time consuming, and potentially dangerous if you accidentally re-provision the
wrong machine.

###I changed the hardware manually, and now my system won’t boot.

If you’re using Puppet-Gluster to manage storage, the filesystem will be
mounted with UUID entries in /etc/fstab. This ensures that the correct
filesystem will be mounted, even if the device order changes. If a filesystem is
not available at boot time, startup will abort and offer you the chance to go
into read-only maintenance mode. Either fix the hardware issue, or edit the
/etc/fstab file.

###I can’t edit /etc/fstab in the maintenance shell because it is read-only.

In the maintenance shell, your root filesystem will be mounted read-only, to
prevent changes. If you need to edit a file such as /etc/fstab, you’ll first need
to remount the root filesystem in read-write mode. You can do this with:

mount -n -o remount /

###Awesome work, but it’s missing support for a feature and/or platform!

7

Since this is an Open Source / Free Software project that I also give away for
free (as in beer, free as in gratis, free as in libre), I’m unable to provide unlimited
support. Please consider donating funds, hardware, virtual machines, and other
resources. For specific needs, you could perhaps sponsor a feature!

###You didn’t answer my question, or I have a question!

Contact me through my technical blog and I’ll do my best to help. If you have
a good question, please remind me to add my answer to this documentation!

##Reference Please note that there are a number of undocumented options.
For more information on these options, please view the source at: https://
github.com/purpleidea/puppet-gluster/. If you feel that a well used option
needs documenting here, please contact me.

###Overview of classes and types

• gluster::simple: Simple Puppet-Gluster deployment.
• gluster::elastic: Under construction.
• gluster::server: Base class for server hosts.
• gluster::host: Host type for each participating host.
• gluster::brick: Brick type for each defined brick, per host.
• gluster::volume: Volume type for each defined volume.
• gluster::volume::property: Manages properties for each volume.
• gluster::mount: Client volume mount point management.

###gluster::simple This is gluster::simple. It should probably take care of 80%
of all use cases. It is particularly useful for deploying quick test clusters. It uses
a finite-state machine (FSM) to decide when the cluster has settled and volume
creation can begin. For more information on the FSM in Puppet-Gluster see:
https://ttboj.wordpress.com/2013/09/28/finite-state-machines-in-puppet/

####replica The replica count. Can’t be changed automatically after initial
deployment.

####volume The volume name or list of volume names to create.

####path The valid brick path for each host. Defaults to local file system.
If you need a different path per host, then Gluster::Simple will not meet your
needs.

####count Number of bricks to build per host. This value is used unless
brick_params is being used.

####vip The virtual IP address to be used for the cluster distributed lock
manager. This option can be used in conjunction with the vrrp option, but it
does not require it. If you don’t want to provide a virtual ip, but you do want
to enforce that certain operations only run on one host, then you can set this
option to be the ip address of an arbitrary host in your cluster. Keep in mind
that if that host is down, certain options won’t ever occur.

8

https://ttboj.wordpress.com/contact/
https://github.com/purpleidea/puppet-gluster/
https://github.com/purpleidea/puppet-gluster/
https://ttboj.wordpress.com/2013/09/28/finite-state-machines-in-puppet/

####vrrp Whether to automatically deploy and manage Keepalived for use
as a DLM and for use in volume mounting, etc. . . Using this option requires
the vip option.
####layout Which brick layout to use. The available options are: chained,
and (default). To generate a default (symmetrical, balanced) layout, leave this
option blank. If you’d like to include an algorithm that generates a different
type of brick layout, it is easy to drop in an algorithm. Please contact me with
the details!
####version Which version of GlusterFS do you want to install? This is
especially handy when testing new beta releases. You can read more about the
technique at: Testing GlusterFS during Glusterfest.
####repo Whether or not to add the necessary software repositories to in-
stall the needed packages. This will typically pull in GlusterFS from down-
load.gluster.org and should be set to false if you have your own mirrors or
repositories managed as part of your base image.
####brick_params This parameter lets you specify a hash to use when cre-
ating the individual bricks. This is especially useful because it lets you have the
power of Gluster::Simple when managing a cluster of iron (physical machines)
where you’d like to specify brick specific parameters. This sets the brick count
when the count parameter is 0. The format of this parameter might look like:

$brick_params = {
fqdn1 => [

{dev => ’/dev/disk/by-uuid/01234567-89ab-cdef-0123-456789abcdef’},
{dev => ’/dev/sdc’, partition => false},

],
fqdn2 => [{

dev => ’/dev/disk/by-path/pci-0000:02:00.0-scsi-0:1:0:0’,
raid_su => 256, raid_sw => 10,

}],
fqdnN => [...],

}

####brick_param_defaults This parameter lets you specify a hash of de-
faults to use when creating each brick with the brick_params parameter. It is
useful because it avoids the need to repeat the values that are common across
all bricks in your cluster. Since most options work this way, this is an especially
nice feature to have. The format of this parameter might look like:

$brick_param_defaults = {
lvm => false,
xfs_inode64 => true,
force => true,

}

9

https://ttboj.wordpress.com/2014/01/16/testing-glusterfs-during-glusterfest/

####brick_params_defaults This parameter lets you specify a list of de-
faults to use when creating each brick. Each element in the list represents a
different brick. The value of each element is a hash with the actual defaults that
you’d like to use for creating that brick. If you do not specify a brick count by
any other method, then the number of elements in this array will be used as the
brick count. This is very useful if you have consistent device naming across your
entire cluster, because you can very easily specify the devices and brick counts
once for all hosts. If for some reason a particular device requires unique values,
then it can be set manually with the brick_params parameter. Please note the
spelling of this parameter. It is not the same as the brick_param_defaults pa-
rameter which is a global defaults parameter which will apply to all bricks. The
format of this parameter might look like:

$brick_params_defaults = [
{’dev’ => ’/dev/sdb’},
{’dev’ => ’/dev/sdc’},
{’dev’ => ’/dev/sdd’},
{’dev’ => ’/dev/sde’},

]

####setgroup Set a volume property group. The two most common or well-
known groups are the virt group, and the small-file-perf group. This func-
tionality is emulated whether you’re using the RHS version of GlusterFS or if
you’re using the upstream GlusterFS project, which doesn’t (currently) have
the volume set group command. As package managers update the list of avail-
able groups or their properties, Puppet-Gluster will automatically keep your set
group up-to-date. It is easy to extend Puppet-Gluster to add a custom group
without needing to patch the GlusterFS source.

####ping Whether to use fping or not to help with ensuring the required
hosts are available before doing certain types of operations. Optional, but rec-
ommended. Boolean value.

####again Do you want to use Exec[‘again’] ? This helps build your cluster
quickly!

####baseport Specify the base port option as used in the glusterd.vol file.
This is useful if the default port range of GlusterFS conflicts with the ports
used for virtual machine migration, or if you simply like to choose the ports
that you’re using. Integer value.

####rpcauthallowinsecure This is needed in some setups in the glusterd.vol
file, particularly (I think) for some users of libgfapi. Boolean value.

####shorewall Boolean to specify whether puppet-shorewall integration
should be used or not.

###gluster::elastic Under construction.

10

###gluster::server Main server class for the cluster. Must be included when
building the GlusterFS cluster manually. Wrapper classes such as gluster::simple
include this automatically.

####vip The virtual IP address to be used for the cluster distributed lock
manager.

####shorewall Boolean to specify whether puppet-shorewall integration
should be used or not.

###gluster::host Main host type for the cluster. Each host participating in
the GlusterFS cluster must define this type on itself, and on every other host.
As a result, this is not a singleton like the gluster::server class.

####ip Specify which IP address this host is using. This defaults to the
$::ipaddress variable. Be sure to set this manually if you’re declaring this your-
self on each host without using exported resources. If each host thinks the
other hosts should have the same IP address as itself, then Puppet-Gluster and
GlusterFS won’t work correctly.

####uuid Universally unique identifier (UUID) for the host. If empty,
Puppet-Gluster will generate this automatically for the host. You can
generate your own manually with uuidgen, and set them yourself. I found
this particularly useful for testing, because I would pick easy to recognize
UUID’s like: aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa, bbbbbbbb-bbbb-bbbb-
bbbb-bbbbbbbbbbbb, and so on. If you set a UUID manually, and Puppet-Gluster
has a chance to run, then it will remember your choice, and store it locally to
be used again if you no longer specify the UUID. This is particularly useful for
upgrading an existing un-managed GlusterFS installation to a Puppet-Gluster
managed one, without changing any UUID’s.

###gluster::brick Main brick type for the cluster. Each brick is an individual
storage segment to be used on a host. Each host must have at least one brick to
participate in the cluster, but usually a host will have multiple bricks. A brick
can be as simple as a file system folder, or it can be a separate file system. Please
read the official GlusterFS documentation, if you aren’t entirely comfortable
with the concept of a brick.

For most test clusters, and for experimentation, it is easiest to use a directory on
the root file system. You can even use a /tmp sub folder if you don’t care about
the persistence of your data. For more serious clusters, you might want to create
separate file systems for your data. On self-hosted iron, it is not uncommon to
create multiple RAID-6 drive pools, and to then create a separate file system
per virtual drive. Each file system can then be used as a single brick.

So that each volume in GlusterFS has the maximum ability to grow, without
having to partition storage separately, the bricks in Puppet-Gluster are actually
folders (on whatever backing store you wish) which then contain sub folders–
one for each volume. As a result, all the volumes on a given GlusterFS cluster
can share the total available storage space. If you wish to limit the storage

11

used by each volume, you can setup quotas. Alternatively, you can buy more
hardware, and elastically grow your GlusterFS volumes, since the price per
GB will be significantly less than any proprietary storage system. The one
downside to this brick sharing, is that if you have chosen the brick per host
count specifically to match your performance requirements, and each GlusterFS
volume on the same cluster has drastically different brick per host performance
requirements, then this won’t suit your needs. I doubt that anyone actually has
such requirements, but if you do insist on needing this compartmentalization,
then you can probably use the Puppet-Gluster grouping feature to accomplish
this goal. Please let me know about your use-case, and be warned that the
grouping feature hasn’t been extensively tested.

To prove to you that I care about automation, this type offers the ability to
automatically partition and format your file systems. This means you can plug
in new iron, boot, provision and configure the entire system automatically. Re-
grettably, I don’t have a lot of test hardware to routinely use this feature. If
you’d like to donate some, I’d be happy to test this thoroughly. Having said
that, I have used this feature, I consider it to be extremely safe, and it has
never caused me to lose data. If you’re uncertain, feel free to look at the code,
or avoid using this feature entirely. If you think there’s a way to make it even
safer, then feel free to let me know.

####dev Block device, such as /dev/sdc or /dev/disk/by-id/scsi-
0123456789abcdef. By default, Puppet-Gluster will assume you’re using
a folder to store the brick data, if you don’t specify this parameter.

####raid_su Get this information from your RAID device. This is used to
do automatic calculations for alignment, so that the:

dev -> part -> lvm -> fs

stack is aligned properly. Future work is possible to manage your RAID devices,
and to read these values automatically. Specify this value as an integer number
of kilobytes (k).

####raid_sw Get this information from your RAID device. This is used to
do automatic calculations for alignment, so that the:

dev -> part -> lvm -> fs

stack is aligned properly. Future work is possible to manage your RAID devices,
and to read these values automatically. Specify this value as an integer.

####partition Do you want to partition the device and build the next layer
on that partition, or do you want to build on the block device directly? The
“next layer” will typically be lvm if you’re using lvm, or your file system (such
as xfs) if you’re skipping the lvm layer.

12

####labeltype Only gpt is supported. Other options include msdos, but
this has never been used because of it’s size limitations.
####lvm Do you want to use lvm on the lower level device (typically a par-
tition, or the device itself), or not. Using lvm might be required when using a
commercially supported GlusterFS solution.
####lvm_thinp Set to true to enable LVM thin provisioning. Read ‘man 7
lvmthin’ to understand what thin provisioning is all about. This is needed for
one form of GlusterFS snapshots. Obviously this requires that you also enable
LVM.
####lvm_virtsize The value that will be passed to –virtualsize. By default
this will pass in a command that will return the size of your volume group. This
is usually a sane value, and help you to remember not to overcommit.
####lvm_chunksize Value of –chunksize for lvcreate when using thin provi-
sioning.
####lvm_metadatasize Value of –poolmetadatasize for lvcreate when using
thin provisioning.
####fsuuid File system UUID. This ensures we can distinctly identify a file
system. You can set this to be used with automatic file system creation, or
you can specify the file system UUID that you’d like to use. If you leave this
blank, then Puppet-Gluster can automatically pick an fs UUID for you. This is
especially useful if you are automatically deploying a large cluster on physical
iron.
####fstype This should be xfs or ext4. Using xfs is recommended, but ext4
is also quite common. This only affects a file system that is getting created by
this module. If you provision a new machine, with a root file system of ext4, and
the brick you create is a root file system path, then this option does nothing.
####xfs_inode64 Set inode64 mount option when using the xfs fstype.
Choose true to set.
####xfs_nobarrier Set nobarrier mount option when using the xfs fstype.
Choose true to set.
####ro Whether the file system should be mounted read only. For emergen-
cies only.
####force If true, this will overwrite any xfs file system it sees. This is useful
for rebuilding GlusterFS repeatedly and wiping data. There are other safeties
in place to stop this. In general, you probably don’t ever want to touch this.
####areyousure Do you want to allow Puppet-Gluster to do dangerous
things? You have to set this to true to allow Puppet-Gluster to fdisk and
mkfs your file system.
####again Do you want to use Exec[‘again’] ? This helps build your cluster
quickly!

13

####comment Add any comment you want. This is also occasionally used
internally to do magic things.

###gluster::volume Main volume type for the cluster. This is where a lot of
the magic happens. Remember that changing some of these parameters after the
volume has been created won’t work, and you’ll experience undefined behaviour.
There could be FSM based error checking to verify that no changes occur, but
it has been left out so that this code base can eventually support such changes,
and so that the user can manually change a parameter if they know that it is
safe to do so.

####bricks List of bricks to use for this volume. If this is left at the default
value of true, then this list is built automatically. The algorithm that determines
this order does not support all possible situations, and most likely can’t handle
certain corner cases. It is possible to examine the FSM to view the selected
brick order before it has a chance to create the volume. The volume creation
script won’t run until there is a stable brick list as seen by the FSM running on
the host that has the DLM. If you specify this list of bricks manually, you must
choose the order to match your desired volume layout. If you aren’t sure about
how to order the bricks, you should review the GlusterFS documentation first.

####transport Only tcp is supported. Possible values can include rdma,
but this won’t get any testing if I don’t have access to infiniband hardware.
Donations welcome.

####replica Replica count. Usually you’ll want to set this to 2. Some
users choose 3. Other values are seldom seen. A value of 1 can be used for
simply testing a distributed setup, when you don’t care about your data or high
availability. A value greater than 4 is probably wasteful and unnecessary. It
might even cause performance issues if a synchronous write is waiting on a slow
fourth server.

####stripe Stripe count. Thoroughly unsupported and untested option.
Not recommended for use by GlusterFS.

####layout Which brick layout to use. The available options are: chained,
and (default). To generate a default (symmetrical, balanced) layout, leave this
option blank. If you’d like to include an algorithm that generates a different
type of brick layout, it is easy to drop in an algorithm. Please contact me with
the details!

####ping Do we want to include ping checks with fping?

####settle Do we want to run settle checks?

####again Do you want to use Exec[‘again’] ? This helps build your cluster
quickly!

####start Requested state for the volume. Valid values include: true (start),
false (stop), or undef (un-managed start/stop state).

14

###gluster::volume::property Main volume property type for the cluster. This
allows you to manage GlusterFS volume specific properties. There are a wide
range of properties that volumes support. For the full list of properties, you
should consult the GlusterFS documentation, or run the gluster volume set
help command. To set a property you must use the special name pattern of:
volume#key. The value argument is used to set the associated value. It is smart
enough to accept values in the most logical format for that specific property.
Some properties aren’t yet supported, so please report any problems you have
with this functionality. Because this feature is an awesome way to document
as code the volume specific optimizations that you’ve made, make sure you use
this feature even if you don’t use all the others.

####value The value to be used for this volume property.

###gluster::mount Main type to use to mount GlusterFS volumes. This type
offers special features, like shorewall integration, and repo support.

####server Server specification to use when mounting. Format is :/volume.
You may use an FQDN or an IP address to specify the server.

####rw Mount read-write or read-only. Defaults to read-only. Specify true
for read-write.

####mounted Mounted argument from standard mount type. Defaults to
true (mounted).

####repo Boolean to select if you want automatic repository (package) man-
agement or not.

####version Specify which GlusterFS version you’d like to use.

####ip IP address of this client. This is usually auto-detected, but you can
choose your own value manually in case there are multiple options available.

####shorewall Boolean to specify whether puppet-shorewall integration
should be used or not.

##Examples For example configurations, please consult the examples/ direc-
tory in the git source repository. It is available from:

https://github.com/purpleidea/puppet-gluster/tree/master/examples

It is also available from:

https://forge.gluster.org/puppet-gluster/puppet-gluster/trees/master/examples

##Limitations

This module has been tested against open source Puppet 3.2.4 and higher.

The module has been tested on:

• CentOS 6.4/6.5

15

https://github.com/purpleidea/puppet-gluster/tree/master/examples
https://github.com/purpleidea/puppet-gluster/tree/master/examples
https://forge.gluster.org/puppet-gluster/puppet-gluster/trees/master/examples/

It will probably work without incident or without major modification on:

• CentOS 5.x/6.x
• RHEL 5.x/6.x

It will most likely work with other Puppet versions and on other platforms, but
testing under other conditions has been light due to lack of resources. It will
most likely not work on Debian/Ubuntu systems without modification. I would
really love to add support for these operating systems, but I do not have any
test resources to do so. Please sponsor this if you’d like to see it happen.

##Development

This is my personal project that I work on in my free time. Donations of funding,
hardware, virtual machines, and other resources are appreciated. Please contact
me if you’d like to sponsor a feature, invite me to talk/teach or for consulting.

You can follow along on my technical blog.

##Author

Copyright (C) 2010-2013+ James Shubin

• github
• [@purpleidea](https://twitter.com/#!/purpleidea)
• https://ttboj.wordpress.com/

16

https://ttboj.wordpress.com/
https://github.com/purpleidea/
https://ttboj.wordpress.com/

