
Nim Tutorial (Part II) nimversion

Andreas Rumpf

July 26, 2019

Contents
1 Introduction 2

2 Pragmas 2

3 Object Oriented Programming 2
3.1 Objects . 2
3.2 Mutually recursive types . 3
3.3 Type conversions . 3
3.4 Object variants . 3
3.5 Methods . 4
3.6 Method call syntax . 4
3.7 Properties . 4
3.8 Dynamic dispatch . 5

4 Exceptions 6
4.1 Raise statement . 6
4.2 Try statement . 6
4.3 Annotating procs with raised exceptions . 7

5 Generics 7

6 Templates 8
6.1 Example: Lifting Procs . 9

7 Compilation to JavaScript 10

8 Part 3 10

1

1 Introduction
"Repetition renders the ridiculous reasonable." – Norman Wildberger

This document is a tutorial for the advanced constructs of the Nim programming language. Note that
this document is somewhat obsolete as the manual contains many more examples of the
advanced language features.

2 Pragmas
Pragmas are Nim’s method to give the compiler additional information/ commands without introducing
a massive number of new keywords. Pragmas are enclosed in the special {. and .} curly dot brackets.
This tutorial does not cover pragmas. See the manual or user guide for a description of the available
pragmas.

3 Object Oriented Programming
While Nim’s support for object oriented programming (OOP) is minimalistic, powerful OOP techniques
can be used. OOP is seen as one way to design a program, not the only way. Often a procedural approach
leads to simpler and more efficient code. In particular, preferring composition over inheritance is often
the better design.

3.1 Objects
Like tuples, objects are a means to pack different values together in a structured way. However, objects
provide many features that tuples do not: They provide inheritance and information hiding. Because
objects encapsulate data, the T() object constructor should only be used internally and the programmer
should provide a proc to initialize the object (this is called a constructor).

Objects have access to their type at runtime. There is an of operator that can be used to check the
object’s type:

type
Person = ref object of RootObj
name*: string # the * means that ‘name‘ is accessible from other modules
age: int # no * means that the field is hidden from other modules

Student = ref object of Person # Student inherits from Person
id: int # with an id field

var
student: Student
person: Person

assert(student of Student) # is true
object construction:
student = Student(name: "Anton", age: 5, id: 2)
echo student[]

Object fields that should be visible from outside the defining module have to be marked by *. In
contrast to tuples, different object types are never equivalent. New object types can only be defined
within a type section.

Inheritance is done with the object of syntax. Multiple inheritance is currently not supported. If
an object type has no suitable ancestor, RootObj can be used as its ancestor, but this is only a convention.
Objects that have no ancestor are implicitly final. You can use the inheritable pragma to introduce
new object roots apart from system.RootObj. (This is used in the GTK wrapper for instance.)

Ref objects should be used whenever inheritance is used. It isn’t strictly necessary, but with non-ref
objects assignments such as let person: Person = Student(id: 123) will truncate subclass
fields.

Note: Composition (has-a relation) is often preferable to inheritance (is-a relation) for simple code
reuse. Since objects are value types in Nim, composition is as efficient as inheritance.

2

manual.html
manual.html#pragmas
nimc.html#additional-features

3.2 Mutually recursive types
Objects, tuples and references can model quite complex data structures which depend on each other; they
are mutually recursive. In Nim these types can only be declared within a single type section. (Anything
else would require arbitrary symbol lookahead which slows down compilation.)

Example:

type
Node = ref object # a reference to an object with the following field:
le, ri: Node # left and right subtrees
sym: ref Sym # leaves contain a reference to a Sym

Sym = object # a symbol
name: string # the symbol’s name
line: int # the line the symbol was declared in
code: Node # the symbol’s abstract syntax tree

3.3 Type conversions
Nim distinguishes between type casts and type conversions. Casts are done with the cast operator and
force the compiler to interpret a bit pattern to be of another type.

Type conversions are a much more polite way to convert a type into another: They preserve the
abstract value, not necessarily the bit-pattern. If a type conversion is not possible, the compiler complains
or an exception is raised.

The syntax for type conversions is destination_type(expression_to_convert) (like an or-
dinary call):

proc getID(x: Person): int =
Student(x).id

The InvalidObjectConversionError exception is raised if x is not a Student.

3.4 Object variants
Often an object hierarchy is overkill in certain situations where simple variant types are needed.

An example:

This is an example how an abstract syntax tree could be modelled in Nim
type

NodeKind = enum # the different node types
nkInt, # a leaf with an integer value
nkFloat, # a leaf with a float value
nkString, # a leaf with a string value
nkAdd, # an addition
nkSub, # a subtraction
nkIf # an if statement

Node = ref object
case kind: NodeKind # the ‘‘kind‘‘ field is the discriminator
of nkInt: intVal: int
of nkFloat: floatVal: float
of nkString: strVal: string
of nkAdd, nkSub:

leftOp, rightOp: Node
of nkIf:

condition, thenPart, elsePart: Node

var n = Node(kind: nkFloat, floatVal: 1.0)
the following statement raises an ‘FieldError‘ exception, because
n.kind’s value does not fit:
n.strVal = ""

As can been seen from the example, an advantage to an object hierarchy is that no conversion between
different object types is needed. Yet, access to invalid object fields raises an exception.

3

3.5 Methods
In ordinary object oriented languages, procedures (also called methods) are bound to a class. This has
disadvantages:

• Adding a method to a class the programmer has no control over is impossible or needs ugly
workarounds.

• Often it is unclear where the method should belong to: is join a string method or an array method?

Nim avoids these problems by not assigning methods to a class. All methods in Nim are multi-methods.
As we will see later, multi-methods are distinguished from procs only for dynamic binding purposes.

3.6 Method call syntax
There is a syntactic sugar for calling routines: The syntax obj.method(args) can be used instead of
method(obj, args). If there are no remaining arguments, the parentheses can be omitted: obj.len
(instead of len(obj)).

This method call syntax is not restricted to objects, it can be used for any type:

import strutils

echo "abc".len # is the same as echo len("abc")
echo "abc".toUpperAscii()
echo({’a’, ’b’, ’c’}.card)
stdout.writeLine("Hallo") # the same as writeLine(stdout, "Hallo")

(Another way to look at the method call syntax is that it provides the missing postfix notation.)
So "pure object oriented" code is easy to write:

import strutils, sequtils

stdout.writeLine("Give a list of numbers (separated by spaces): ")
stdout.write(stdin.readLine.splitWhitespace.map(parseInt).max.‘$‘)
stdout.writeLine(" is the maximum!")

3.7 Properties
As the above example shows, Nim has no need for get-properties: Ordinary get-procedures that are called
with the method call syntax achieve the same. But setting a value is different; for this a special setter
syntax is needed:

type
Socket* = ref object of RootObj

h: int # cannot be accessed from the outside of the module due to missing star

proc ‘host=‘*(s: var Socket, value: int) {.inline.} =
setter of host address
s.h = value

proc host*(s: Socket): int {.inline.} =
getter of host address
s.h

var s: Socket
new s
s.host = 34 # same as ‘host=‘(s, 34)

(The example also shows inline procedures.)
The [] array access operator can be overloaded to provide array properties:

type
Vector* = object

x, y, z: float

4

proc ‘[]=‘* (v: var Vector, i: int, value: float) =
setter
case i
of 0: v.x = value
of 1: v.y = value
of 2: v.z = value
else: assert(false)

proc ‘[]‘* (v: Vector, i: int): float =
getter
case i
of 0: result = v.x
of 1: result = v.y
of 2: result = v.z
else: assert(false)

The example is silly, since a vector is better modelled by a tuple which already provides v[] access.

3.8 Dynamic dispatch
Procedures always use static dispatch. For dynamic dispatch replace the proc keyword by method:

type
Expression = ref object of RootObj ## abstract base class for an expression
Literal = ref object of Expression
x: int

PlusExpr = ref object of Expression
a, b: Expression

watch out: ’eval’ relies on dynamic binding
method eval(e: Expression): int =
override this base method
quit "to override!"

method eval(e: Literal): int = e.x
method eval(e: PlusExpr): int = eval(e.a) + eval(e.b)

proc newLit(x: int): Literal = Literal(x: x)
proc newPlus(a, b: Expression): PlusExpr = PlusExpr(a: a, b: b)

echo eval(newPlus(newPlus(newLit(1), newLit(2)), newLit(4)))

Note that in the example the constructors newLit and newPlus are procs because it makes more
sense for them to use static binding, but eval is a method because it requires dynamic binding.

In a multi-method all parameters that have an object type are used for the dispatching:

type
Thing = ref object of RootObj
Unit = ref object of Thing
x: int

method collide(a, b: Thing) {.inline.} =
quit "to override!"

method collide(a: Thing, b: Unit) {.inline.} =
echo "1"

method collide(a: Unit, b: Thing) {.inline.} =
echo "2"

var a, b: Unit
new a
new b
collide(a, b) # output: 2

As the example demonstrates, invocation of a multi-method cannot be ambiguous: Collide 2 is pre-
ferred over collide 1 because the resolution works from left to right. Thus Unit, Thing is preferred
over Thing, Unit.

5

Performance note: Nim does not produce a virtual method table, but generates dispatch trees. This
avoids the expensive indirect branch for method calls and enables inlining. However, other optimizations
like compile time evaluation or dead code elimination do not work with methods.

4 Exceptions
In Nim exceptions are objects. By convention, exception types are suffixed with ’Error’. The sys-
tem module defines an exception hierarchy that you might want to stick to. Exceptions derive from
system.Exception, which provides the common interface.

Exceptions have to be allocated on the heap because their lifetime is unknown. The compiler will
prevent you from raising an exception created on the stack. All raised exceptions should at least specify
the reason for being raised in the msg field.

A convention is that exceptions should be raised in exceptional cases: For example, if a file cannot be
opened, this should not raise an exception since this is quite common (the file may not exist).

4.1 Raise statement
Raising an exception is done with the raise statement:

var
e: ref OSError

new(e)
e.msg = "the request to the OS failed"
raise e

If the raise keyword is not followed by an expression, the last exception is re-raised. For the purpose
of avoiding repeating this common code pattern, the template newException in the system module
can be used:

raise newException(OSError, "the request to the OS failed")

4.2 Try statement
The try statement handles exceptions:

from strutils import parseInt

read the first two lines of a text file that should contain numbers
and tries to add them
var

f: File
if open(f, "numbers.txt"):
try:

let a = readLine(f)
let b = readLine(f)
echo "sum: ", parseInt(a) + parseInt(b)

except OverflowError:
echo "overflow!"

except ValueError:
echo "could not convert string to integer"

except IOError:
echo "IO error!"

except:
echo "Unknown exception!"
reraise the unknown exception:
raise

finally:
close(f)

The statements after the try are executed unless an exception is raised. Then the appropriate
except part is executed.

The empty except part is executed if there is an exception that is not explicitly listed. It is similar
to an else part in if statements.

6

system.html
system.html

If there is a finally part, it is always executed after the exception handlers.
The exception is consumed in an except part. If an exception is not handled, it is propagated

through the call stack. This means that often the rest of the procedure - that is not within a finally
clause - is not executed (if an exception occurs).

If you need to access the actual exception object or message inside an except branch you can use
the getCurrentException() and getCurrentExceptionMsg() procs from the system module. Example:

try:
doSomethingHere()

except:
let

e = getCurrentException()
msg = getCurrentExceptionMsg()

echo "Got exception ", repr(e), " with message ", msg

4.3 Annotating procs with raised exceptions
Through the use of the optional {.raises.} pragma you can specify that a proc is meant to raise a
specific set of exceptions, or none at all. If the {.raises.} pragma is used, the compiler will verify
that this is true. For instance, if you specify that a proc raises IOError, and at some point it (or one
of the procs it calls) starts raising a new exception the compiler will prevent that proc from compiling.
Usage example:

proc complexProc() {.raises: [IOError, ArithmeticError].} =
...

proc simpleProc() {.raises: [].} =
...

Once you have code like this in place, if the list of raised exception changes the compiler will stop with
an error specifying the line of the proc which stopped validating the pragma and the raised exception not
being caught, along with the file and line where the uncaught exception is being raised, which may help
you locate the offending code which has changed.

If you want to add the {.raises.} pragma to existing code, the compiler can also help you. You
can add the {.effects.} pragma statement to your proc and the compiler will output all inferred
effects up to that point (exception tracking is part of Nim’s effect system). Another more roundabout
way to find out the list of exceptions raised by a proc is to use the Nim doc2 command which generates
documentation for a whole module and decorates all procs with the list of raised exceptions. You can
read more about Nim’s effect system and related pragmas in the manual.

5 Generics
Generics are Nim’s means to parametrize procs, iterators or types with type parameters. They are most
useful for efficient type safe containers:

type
BinaryTree*[T] = ref object # BinaryTree is a generic type with

generic param ‘‘T‘‘
le, ri: BinaryTree[T] # left and right subtrees; may be nil
data: T # the data stored in a node

proc newNode*[T](data: T): BinaryTree[T] =
constructor for a node
new(result)
result.data = data

proc add*[T](root: var BinaryTree[T], n: BinaryTree[T]) =
insert a node into the tree
if root == nil:

root = n
else:
var it = root
while it != nil:

7

system.html#getCurrentException
system.html#getCurrentExceptionMsg
system.html
manual.html#effect-system

compare the data items; uses the generic ‘‘cmp‘‘ proc
that works for any type that has a ‘‘==‘‘ and ‘‘<‘‘ operator
var c = cmp(it.data, n.data)
if c < 0:

if it.le == nil:
it.le = n
return

it = it.le
else:
if it.ri == nil:

it.ri = n
return

it = it.ri

proc add*[T](root: var BinaryTree[T], data: T) =
convenience proc:
add(root, newNode(data))

iterator preorder*[T](root: BinaryTree[T]): T =
Preorder traversal of a binary tree.
Since recursive iterators are not yet implemented,
this uses an explicit stack (which is more efficient anyway):
var stack: seq[BinaryTree[T]] = @[root]
while stack.len > 0:

var n = stack.pop()
while n != nil:

yield n.data
add(stack, n.ri) # push right subtree onto the stack
n = n.le # and follow the left pointer

var
root: BinaryTree[string] # instantiate a BinaryTree with ‘‘string‘‘

add(root, newNode("hello")) # instantiates ‘‘newNode‘‘ and ‘‘add‘‘
add(root, "world") # instantiates the second ‘‘add‘‘ proc
for str in preorder(root):
stdout.writeLine(str)

The example shows a generic binary tree. Depending on context, the brackets are used either to
introduce type parameters or to instantiate a generic proc, iterator or type. As the example shows,
generics work with overloading: the best match of add is used. The built-in add procedure for sequences
is not hidden and is used in the preorder iterator.

6 Templates
Templates are a simple substitution mechanism that operates on Nim’s abstract syntax trees. Templates
are processed in the semantic pass of the compiler. They integrate well with the rest of the language and
share none of C’s preprocessor macros flaws.

To invoke a template, call it like a procedure.
Example:

template ‘!=‘ (a, b: untyped): untyped =
this definition exists in the System module
not (a == b)

assert(5 != 6) # the compiler rewrites that to: assert(not (5 == 6))

The !=, >, >=, in, notin, isnot operators are in fact templates: this has the benefit that if you
overload the == operator, the != operator is available automatically and does the right thing. (Except
for IEEE floating point numbers - NaN breaks basic boolean logic.)

a > b is transformed into b < a. a in b is transformed into contains(b, a). notin and
isnot have the obvious meanings.

Templates are especially useful for lazy evaluation purposes. Consider a simple proc for logging:

const
debug = true

8

proc log(msg: string) {.inline.} =
if debug: stdout.writeLine(msg)

var
x = 4

log("x has the value: " & $x)

This code has a shortcoming: if debug is set to false someday, the quite expensive $ and & operations
are still performed! (The argument evaluation for procedures is eager).

Turning the log proc into a template solves this problem:

const
debug = true

template log(msg: string) =
if debug: stdout.writeLine(msg)

var
x = 4

log("x has the value: " & $x)

The parameters’ types can be ordinary types or the meta types untyped, typed, or type. type
suggests that only a type symbol may be given as an argument, and untyped means symbol lookups
and type resolution is not performed before the expression is passed to the template.

If the template has no explicit return type, void is used for consistency with procs and methods.
To pass a block of statements to a template, use ’untyped’ for the last parameter:

template withFile(f: untyped, filename: string, mode: FileMode,
body: untyped): typed =

let fn = filename
var f: File
if open(f, fn, mode):

try:
body

finally:
close(f)

else:
quit("cannot open: " & fn)

withFile(txt, "ttempl3.txt", fmWrite):
txt.writeLine("line 1")
txt.writeLine("line 2")

In the example the two writeLine statements are bound to the body parameter. The withFile
template contains boilerplate code and helps to avoid a common bug: to forget to close the file. Note
how the let fn = filename statement ensures that filename is evaluated only once.

6.1 Example: Lifting Procs
import math

template liftScalarProc(fname) =
Lift a proc taking one scalar parameter and returning a
scalar value (eg ‘‘proc sssss[T](x: T): float‘‘),
to provide templated procs that can handle a single
parameter of seq[T] or nested seq[seq[]] or the same type
##
.. code-block:: Nim
liftScalarProc(abs)
now abs(@[@[1,-2], @[-2,-3]]) == @[@[1,2], @[2,3]]
proc fname[T](x: openarray[T]): auto =
var temp: T
type outType = type(fname(temp))
result = newSeq[outType](x.len)
for i in 0..<x.len:

result[i] = fname(x[i])

9

liftScalarProc(sqrt) # make sqrt() work for sequences
echo sqrt(@[4.0, 16.0, 25.0, 36.0]) # => @[2.0, 4.0, 5.0, 6.0]

7 Compilation to JavaScript
Nim code can be compiled to JavaScript. However in order to write JavaScript-compatible code you
should remember the following:

• addr and ptr have slightly different semantic meaning in JavaScript. It is recommended to avoid
those if you’re not sure how they are translated to JavaScript.

• cast[T](x) in JavaScript is translated to (x), except for casting between signed/unsigned ints,
in which case it behaves as static cast in C language.

• cstring in JavaScript means JavaScript string. It is a good practice to use cstring only when
it is semantically appropriate. E.g. don’t use cstring as a binary data buffer.

8 Part 3
Next part will be entirely about metaprogramming via macros: Part III

10

tut3.html

	Introduction
	Pragmas
	Object Oriented Programming
	Objects
	Mutually recursive types
	Type conversions
	Object variants
	Methods
	Method call syntax
	Properties
	Dynamic dispatch

	Exceptions
	Raise statement
	Try statement
	Annotating procs with raised exceptions

	Generics
	Templates
	Example: Lifting Procs

	Compilation to JavaScript
	Part 3

