
Nim Tutorial (Part III) nimversion

Arne Döring

July 26, 2019

Contents
1 Introduction 2

1.1 Macro Arguments . 2
1.2 Untyped Arguments . 2
1.3 Typed Arguments . 2
1.4 Static Arguments . 2
1.5 Code blocks as arguments . 3
1.6 The Syntax Tree . 3
1.7 Custom sematic checking . 3
1.8 Generating Code . 3
1.9 Building your first macro . 4
1.10 With Power Comes Responsibility . 5
1.11 Limitations . 5

2 More Examples 5
2.1 Strformat . 5
2.2 Ast Pattern Matching . 5
2.3 OpenGL Sandbox . 5

1

1 Introduction
"With Great Power Comes Great Responsibility." – Spider Man’s Uncle

This document is a tutorial about Nim’s macro system. A macro is a function that is executed at compile
time and transforms a Nim syntax tree into a different tree.

Examples of things that can be implemented in macros:

• An assert macro that prints both sides of a comparison operator, if

the assertion fails. myAssert(a == b) is converted to if a != b: quit($a " != " $b)

• A debug macro that prints the value and the name of the symbol.

myDebugEcho(a) is converted to echo "a: ", a

• Symbolic differentiation of an expression.

diff(a*pow(x,3) + b*pow(x,2) + c*x + d, x) is converted to 3*a*pow(x,2) + 2*a*x +
c

1.1 Macro Arguments
The types of macro arguments have two faces. One face is used for the overload resolution, and the
other face is used within the macro body. For example, if macro foo(arg: int) is called in an
expression foo(x), x has to be of a type compatible to int, but within the macro’s body arg has the
type NimNode, not int! Why it is done this way will become obvious later, when we have seen concrete
examples.

There are two ways to pass arguments to a macro, an argument can be either typed or untyped.

1.2 Untyped Arguments
Untyped macro arguments are passed to the macro before they are semantically checked. This means
the syntax tree that is passed down to the macro does not need to make sense for Nim yet, the only
limitation is that it needs to be parseable. Usually the macro does not check the argument either but
uses it in the transformation’s result somehow. The result of a macro expansion is always checked by the
compiler, so apart from weird error messages nothing bad can happen.

The downside for an untyped argument is that these do not play well with Nim’s overloading reso-
lution.

The upside for untyped arguments is that the syntax tree is quite predictable and less complex
compared to its typed counterpart.

1.3 Typed Arguments
For typed arguments, the semantic checker runs on the argument and does transformations on it, before
it is passed to the macro. Here identifier nodes are resolved as symbols, implicit type conversions are
visible in the tree as calls, templates are expanded and probably most importantly, nodes have type
information. Typed arguments can have the type typed in the arguments list. But all other types, such
as int, float or MyObjectType are typed arguments as well, and they are passed to the macro as a
syntax tree.

1.4 Static Arguments
Static arguments are a way to pass values as values and not as syntax tree nodes to a macro. For example
for macro foo(arg: static[int]) in the expression foo(x), x needs to be an integer constant,
but in the macro body arg is just like a normal parameter of type int.
import macros

macro myMacro(arg: static[int]): untyped =
echo arg # just an int (7), not ‘‘NimNode‘‘

myMacro(1 + 2 * 3)

2

1.5 Code blocks as arguments
It is possible to pass the last argument of a call expression in a separate code block with indentation. For
example the following code example is a valid (but not a recommended) way to call echo:

echo "Hello ":
let a = "Wor"
let b = "ld!"
a & b

For macros this way of calling is very useful; syntax trees of arbitrary complexity can be passed to
macros with this notation.

1.6 The Syntax Tree
In order to build a Nim syntax tree one needs to know how Nim source code is represented as a syntax
tree, and how such a tree needs to look like so that the Nim compiler will understand it. The nodes of the
Nim syntax tree are documented in the macros module. But a more interactive way to explore the Nim
syntax tree is with macros.treeRepr, it converts a syntax tree into a multi line string for printing on
the console. It can be used to explore how the argument expressions are represented in tree form and for
debug printing of generated syntax tree. dumpTree is a predefined macro that just prints its argument
in tree representation, but does nothing else. Here is an example of such a tree representation:

dumpTree:
var mt: MyType = MyType(a:123.456, b:"abcdef")

output:
StmtList
VarSection
IdentDefs
Ident "mt"
Ident "MyType"
ObjConstr
Ident "MyType"
ExprColonExpr
Ident "a"
FloatLit 123.456
ExprColonExpr
Ident "b"
StrLit "abcdef"

1.7 Custom sematic checking
The first thing that a macro should do with its arguments is to check if the argument is in the correct
form. Not every type of wrong input needs to be caught here, but anything that could cause a crash
during macro evaluation should be caught and create a nice error message. macros.expectKind and
macros.expectLen are a good start. If the checks need to be more complex, arbitrary error messages
can be created with the macros.error proc.

macro myAssert(arg: untyped): untyped =
arg.expectKind nnkInfix

1.8 Generating Code
There are two ways to generate the code. Either by creating the syntax tree with expressions that contain
a lot of calls to newTree and newLit, or with quote do: expressions. The first option offers the best
low level control for the syntax tree generation, but the second option is much less verbose. If you choose
to create the syntax tree with calls to newTree and newLit the macro marcos.dumpAstGen can help
you with the verbosity. quote do: allows you to write the code that you want to generate literally,
backticks are used to insert code from NimNode symbols into the generated expression. This means that
you can’t use backticks within quote do: for anything else than injecting symbols. Make sure to inject
only symbols of type NimNode into the generated syntax tree. You can use newLit to convert arbitrary
values into expressions trees of type NimNode so that it is safe to inject them into the tree.

3

macros.html

import macros

type
MyType = object

a: float
b: string

macro myMacro(arg: untyped): untyped =
var mt: MyType = MyType(a:123.456, b:"abcdef")

...

let mtLit = newLit(mt)

result = quote do:
echo ‘arg‘
echo ‘mtLit‘

myMacro("Hallo")

The call to myMacro will generate the following code:
echo "Hallo"
echo MyType(a: 123.456’f64, b: "abcdef")

1.9 Building your first macro
To give a footstart to writing macros we will show now how to implement the myDebug macro mentioned
earlier. The first thing to do is to build a simple example of the macro usage, and then just print the
argument. This way it is possible to get an idea of a correct argument should be look like.
import macros

macro myAssert(arg: untyped): untyped =
echo arg.treeRepr

let a = 1
let b = 2

myAssert(a != b)

Infix
Ident "!="
Ident "a"
Ident "b"

From the output it is possible to see that the information that the argument is an infix operator (node
kind is "Infix"), as well as that the two operands are at index 1 and 2. With this information the actual
macro can be written.
import macros

macro myAssert(arg: untyped): untyped =
all node kind identifiers are prefixed with "nnk"
arg.expectKind nnkInfix
arg.expectLen 3
operator as string literal
let op = newLit(" " & arg[0].repr & " ")
let lhs = arg[1]
let rhs = arg[2]

result = quote do:
if not ‘arg‘:
raise newException(AssertionError,$‘lhs‘ & ‘op‘ & $‘rhs‘)

let a = 1
let b = 2

myAssert(a != b)
myAssert(a == b)

4

This is the code that will be generated. To debug what the macro actually generated, the statement
echo result.repr can be used, in the last line of the macro. It is also the statement that has been
used to get this output.

if not (a != b):
raise newException(AssertionError, $a & " != " & $b)

1.10 With Power Comes Responsibility
Macros are very powerful. A good advice is to use them as little as possible, but as much as necessary.
Macros can change the semantics of expressions, making the code incomprehensible for anybody who
does not know exactly what the macro does with it. So whenever a macro is not necessary and the same
logic can be implemented using templates or generics, it is probably better not to use a macro. And
when a macro is used for something, the macro should better have a well written documentation. For
all the people who claim to write only perfectly self-explanatory code: when it comes to macros, the
implementation is not enough for documentation.

1.11 Limitations
Since macros are evaluated in the compiler in the NimVM, macros share all the limitations of the NimVM.
They have to be implemented in pure Nim code. Macros can start external processes on the shell, but
they cannot call C functions except from those that are built in the compiler.

2 More Examples
This tutorial can only cover the basics of the macro system. There are macros out there that could be
an inspiration for you of what is possible with it.

2.1 Strformat
In the Nim standard library, the strformat library provides a macro that parses a string literal at
compile time. Parsing a string in a macro like here is generally not recommended. The parsed AST
cannot have type information, and parsing implemented on the VM is generally not very fast. Working
on AST nodes is almost always the recommended way. But still strformat is a good example for a
practical use case for a macro that is slightly more complex that the assert macro.

Strformat

2.2 Ast Pattern Matching
Ast Pattern Matching is a macro library to aid in writing complex macros. This can be seen as a good
example of how to repurpose the Nim syntax tree with new semantics.

Ast Pattern Matching

2.3 OpenGL Sandbox
This project has a working Nim to GLSL compiler written entirely in macros. It scans recursively though
all used function symbols to compile them so that cross library functions can be executed on the GPU.

OpenGL Sandbox

5

https://github.com/nim-lang/Nim/blob/5845716df8c96157a047c2bd6bcdd795a7a2b9b1/lib/pure/strformat.nim#L280
https://github.com/krux02/ast-pattern-matching
https://github.com/krux02/opengl-sandbox

	Introduction
	Macro Arguments
	Untyped Arguments
	Typed Arguments
	Static Arguments
	Code blocks as arguments
	The Syntax Tree
	Custom sematic checking
	Generating Code
	Building your first macro
	With Power Comes Responsibility
	Limitations

	More Examples
	Strformat
	Ast Pattern Matching
	OpenGL Sandbox

