
Nim Manual nimversion
Andreas Rumpf, Zahary Karadjov

July 26, 2019

Contents
1 About this document 2

2 Definitions 2

3 Lexical Analysis 3
3.1 Encoding . 3
3.2 Indentation . 3
3.3 Comments . 3
3.4 Multiline comments . 3
3.5 Identifiers & Keywords . 4
3.6 Identifier equality . 4
3.7 String literals . 5
3.8 Triple quoted string literals . 5
3.9 Raw string literals . 5
3.10 Generalized raw string literals . 6
3.11 Character literals . 6
3.12 Numerical constants . 6
3.13 Operators . 7
3.14 Other tokens . 8

4 Syntax 8
4.1 Associativity . 8
4.2 Precedence . 8
4.3 Grammar . 9

5 Order of evaluation 12

6 Types 12
6.1 Ordinal types . 13
6.2 Pre-defined integer types . 13
6.3 Subrange types . 14
6.4 Pre-defined floating point types . 14
6.5 Boolean type . 15
6.6 Character type . 15
6.7 Enumeration types . 16
6.8 String type . 17
6.9 cstring type . 17
6.10 Structured types . 18
6.11 Array and sequence types . 18
6.12 Open arrays . 18
6.13 Varargs . 18
6.14 Tuples and object types . 19
6.15 Object construction . 20
6.16 Object variants . 20

1

6.17 Package level objects . 21
6.18 Set type . 21
6.19 Reference and pointer types . 22
6.20 Not nil annotation . 24
6.21 Procedural type . 24
6.22 Distinct type . 25

6.22.1 Modelling currencies . 25
6.22.2 Avoiding SQL injection attacks . 27

6.23 Void type . 27
6.24 Auto type . 28

7 Type relations 28
7.1 Type equality . 28
7.2 Type equality modulo type distinction . 29
7.3 Subtype relation . 29
7.4 Covariance . 30
7.5 Convertible relation . 31
7.6 Assignment compatibility . 32

8 Overloading resolution 32
8.1 Overloading based on ’var T’ . 33
8.2 Automatic dereferencing . 33
8.3 Automatic self insertions . 34
8.4 Lazy type resolution for untyped . 34
8.5 Varargs matching . 34

9 Statements and expressions 35
9.1 Statement list expression . 35
9.2 Discard statement . 35
9.3 Void context . 35
9.4 Var statement . 36
9.5 let statement . 36
9.6 Tuple unpacking . 37
9.7 Const section . 37
9.8 Static statement/expression . 37
9.9 If statement . 37
9.10 Case statement . 38
9.11 When statement . 38
9.12 When nimvm statement . 39
9.13 Return statement . 39
9.14 Yield statement . 40
9.15 Block statement . 40
9.16 Break statement . 40
9.17 While statement . 40
9.18 Continue statement . 40
9.19 Assembler statement . 41
9.20 Using statement . 41
9.21 If expression . 41
9.22 When expression . 41
9.23 Case expression . 42
9.24 Table constructor . 42
9.25 Type conversions . 42
9.26 Type casts . 42
9.27 The addr operator . 43
9.28 The unsafeAddr operator . 43

2

10 Procedures 43
10.1 Export marker . 44
10.2 Method call syntax . 44
10.3 Properties . 45
10.4 Command invocation syntax . 45
10.5 Closures . 46

10.5.1 Creating closures in loops . 46
10.6 Anonymous Procs . 46
10.7 Func . 46
10.8 Do notation . 46
10.9 Nonoverloadable builtins . 47
10.10Var parameters . 47
10.11Var return type . 48

10.11.1Future directions . 48
10.12Overloading of the subscript operator . 48

11 Multi-methods 49
11.1 Inhibit dynamic method resolution via procCall . 49

12 Iterators and the for statement 50
12.1 Implict items/pairs invocations . 50
12.2 First class iterators . 51

13 Converters 52

14 Type sections 52

15 Exception handling 53
15.1 Try statement . 53
15.2 Try expression . 53
15.3 Except clauses . 54
15.4 Defer statement . 54
15.5 Raise statement . 54
15.6 Exception hierarchy . 55
15.7 Imported exceptions . 55

16 Effect system 55
16.1 Exception tracking . 55
16.2 Tag tracking . 56
16.3 Read/Write tracking . 56
16.4 Effects pragma . 56

17 Generics 57
17.1 Is operator . 57
17.2 Type Classes . 58
17.3 Generic inference restrictions . 59
17.4 Concepts . 59
17.5 Concept diagnostics . 60
17.6 Generic concepts and type binding rules . 61
17.7 Concept derived values . 63
17.8 Concept refinement . 63
17.9 Symbol lookup in generics . 64

17.9.1 Open and Closed symbols . 64
17.10Mixin statement . 64
17.11Bind statement . 64

3

18 Templates 65
18.1 Typed vs untyped parameters . 65
18.2 Passing a code block to a template . 66
18.3 Varargs of untyped . 66
18.4 Symbol binding in templates . 67
18.5 Identifier construction . 67
18.6 Lookup rules for template parameters . 67
18.7 Hygiene in templates . 68
18.8 Limitations of the method call syntax . 68

19 Macros 69
19.1 Expression Macros . 69
19.2 BindSym . 70
19.3 Statement Macros . 70
19.4 Macros as pragmas . 71
19.5 For loop macros . 71
19.6 Case statement macros . 71

20 Special Types 72
20.1 static[T] . 72
20.2 type[T] . 73
20.3 type operator . 73

21 Special Operators 74
21.1 dot operators . 74
21.2 operator . 74
21.3 operator .() . 74
21.4 operator .= . 74

22 Type bound operations 75
22.1 operator = . 75
22.2 destructors . 75
22.3 deepCopy . 76

23 Term rewriting macros 76
23.1 Parameter constraints . 77
23.2 Pattern operators . 77

23.2.1 The | operator . 77
23.2.2 The {} operator . 79
23.2.3 The ~ operator . 79
23.2.4 The * operator . 79
23.2.5 The ** operator . 80

23.3 Parameters . 80
23.4 Example: Partial evaluation . 80
23.5 Example: Hoisting . 80

24 AST based overloading 81
24.1 Move optimization . 81

25 Modules 81
25.0.1 Import statement . 82
25.0.2 Include statement . 82
25.0.3 Module names in imports . 82
25.0.4 Collective imports from a directory . 83
25.0.5 Pseudo import/include paths . 83
25.0.6 From import statement . 83
25.0.7 Export statement . 83

4

25.1 Scope rules . 84
25.1.1 Block scope . 84
25.1.2 Tuple or object scope . 84
25.1.3 Module scope . 84
25.1.4 Code reordering . 84

26 Compiler Messages 85

27 Pragmas 85
27.1 deprecated pragma . 85
27.2 noSideEffect pragma . 85
27.3 compileTime pragma . 86
27.4 noReturn pragma . 86
27.5 acyclic pragma . 86
27.6 final pragma . 86
27.7 shallow pragma . 86
27.8 pure pragma . 87
27.9 asmNoStackFrame pragma . 87
27.10error pragma . 87
27.11fatal pragma . 87
27.12warning pragma . 87
27.13hint pragma . 87
27.14line pragma . 87
27.15linearScanEnd pragma . 88
27.16computedGoto pragma . 88
27.17unroll pragma . 89
27.18immediate pragma . 89
27.19compilation option pragmas . 89
27.20push and pop pragmas . 90
27.21register pragma . 90
27.22global pragma . 90
27.23pragma pragma . 90
27.24Disabling certain messages . 90
27.25used pragma . 91
27.26experimental pragma . 91

28 Implementation Specific Pragmas 91
28.1 Bitsize pragma . 91
28.2 Volatile pragma . 92
28.3 NoDecl pragma . 92
28.4 Header pragma . 92
28.5 IncompleteStruct pragma . 92
28.6 Compile pragma . 92
28.7 Link pragma . 92
28.8 PassC pragma . 93
28.9 PassL pragma . 93
28.10Emit pragma . 93
28.11ImportCpp pragma . 93

28.11.1Namespaces . 94
28.11.2 Importcpp for enums . 94
28.11.3 Importcpp for procs . 94
28.11.4Wrapping constructors . 95
28.11.5Wrapping destructors . 95
28.11.6 Importcpp for objects . 96

28.12ImportObjC pragma . 96
28.13CodegenDecl pragma . 96

5

28.14InjectStmt pragma . 97
28.15compile time define pragmas . 97
28.16Custom annotations . 97

29 Foreign function interface 98
29.1 Importc pragma . 98
29.2 Exportc pragma . 99
29.3 Extern pragma . 99
29.4 Bycopy pragma . 99
29.5 Byref pragma . 99
29.6 Varargs pragma . 99
29.7 Union pragma . 99
29.8 Packed pragma . 100
29.9 Unchecked pragma . 100
29.10Dynlib pragma for import . 100
29.11Dynlib pragma for export . 101

30 Threads 101
30.1 Thread pragma . 101
30.2 GC safety . 101
30.3 Threadvar pragma . 102
30.4 Threads and exceptions . 102

31 Parallel & Spawn 102
31.1 Spawn statement . 102
31.2 Parallel statement . 103

32 Guards and locks 104
32.1 Guards and the locks section . 104

32.1.1 Protecting global variables . 104
32.1.2 Protecting general locations . 105

32.2 Lock levels . 105

33 Taint mode 106

6

"Complexity" seems to be a lot like "energy": you can transfer it from the end user to one/some
of the other players, but the total amount seems to remain pretty much constant for a given
task. – Ran

1 About this document
Note: This document is a draft! Several of Nim’s features may need more precise wording. This manual
is constantly evolving into a proper specification.

This document describes the lexis, the syntax, and the semantics of Nim.
The language constructs are explained using an extended BNF, in which (a)* means 0 or more a’s,

a+ means 1 or more a’s, and (a)? means an optional a. Parentheses may be used to group elements.
& is the lookahead operator; &a means that an a is expected but not consumed. It will be consumed

in the following rule.
The |, / symbols are used to mark alternatives and have the lowest precedence. / is the ordered

choice that requires the parser to try the alternatives in the given order. / is often used to ensure the
grammar is not ambiguous.

Non-terminals start with a lowercase letter, abstract terminal symbols are in UPPERCASE. Verbatim
terminal symbols (including keywords) are quoted with ’. An example:

ifStmt = ’if’ expr ’:’ stmts (’elif’ expr ’:’ stmts)* (’else’ stmts)?

The binary ^* operator is used as a shorthand for 0 or more occurrences separated by its second
argument; likewise ^+ means 1 or more occurrences: a ^+ b is short for a (b a)* and a ^* b is
short for (a (b a)*)?. Example:

arrayConstructor = ’[’ expr ^* ’,’ ’]’

Other parts of Nim - like scoping rules or runtime semantics are only described in the, more easily
comprehensible, informal manner for now.

2 Definitions
A Nim program specifies a computation that acts on a memory consisting of components called locations.
A variable is basically a name for a location. Each variable and location is of a certain type. The variable’s
type is called static type, the location’s type is called dynamic type. If the static type is not the same as
the dynamic type, it is a super-type or subtype of the dynamic type.

An identifier is a symbol declared as a name for a variable, type, procedure, etc. The region of the
program over which a declaration applies is called the scope of the declaration. Scopes can be nested. The
meaning of an identifier is determined by the smallest enclosing scope in which the identifier is declared
unless overloading resolution rules suggest otherwise.

An expression specifies a computation that produces a value or location. Expressions that produce
locations are called l-values. An l-value can denote either a location or the value the location contains,
depending on the context. Expressions whose values can be determined statically are called constant
expressions; they are never l-values.

A static error is an error that the implementation detects before program execution. Unless explicitly
classified, an error is a static error.

A checked runtime error is an error that the implementation detects and reports at runtime. The
method for reporting such errors is via raising exceptions or dying with a fatal error. However, the
implementation provides a means to disable these runtime checks. See the section pragmas27 for details.

Whether a checked runtime error results in an exception or in a fatal error at runtime is implementation
specific. Thus the following program is always invalid:
var a: array[0..1, char]
let i = 5
try:

a[i] = ’N’
except IndexError:
echo "invalid index"

7

An unchecked runtime error is an error that is not guaranteed to be detected, and can cause the
subsequent behavior of the computation to be arbitrary. Unchecked runtime errors cannot occur if only
safe language features are used.

3 Lexical Analysis
3.1 Encoding
All Nim source files are in the UTF-8 encoding (or its ASCII subset). Other encodings are not supported.
Any of the standard platform line termination sequences can be used - the Unix form using ASCII LF
(linefeed), the Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old
Macintosh form using the ASCII CR (return) character. All of these forms can be used equally, regardless
of platform.

3.2 Indentation
Nim’s standard grammar describes an indentation sensitive language. This means that all the control
structures are recognized by indentation. Indentation consists only of spaces; tabulators are not allowed.

The indentation handling is implemented as follows: The lexer annotates the following token with the
preceding number of spaces; indentation is not a separate token. This trick allows parsing of Nim with
only 1 token of lookahead.

The parser uses a stack of indentation levels: the stack consists of integers counting the spaces. The
indentation information is queried at strategic places in the parser but ignored otherwise: The pseudo
terminal IND{>} denotes an indentation that consists of more spaces than the entry at the top of the
stack; IND{=} an indentation that has the same number of spaces. DED is another pseudo terminal that
describes the action of popping a value from the stack, IND{>} then implies to push onto the stack.

With this notation we can now easily define the core of the grammar: A block of statements (simplified
example):

ifStmt = ’if’ expr ’:’ stmt
(IND{=} ’elif’ expr ’:’ stmt)*
(IND{=} ’else’ ’:’ stmt)?

simpleStmt = ifStmt / ...

stmt = IND{>} stmt ^+ IND{=} DED # list of statements
/ simpleStmt # or a simple statement

3.3 Comments
Comments start anywhere outside a string or character literal with the hash character #. Comments
consist of a concatenation of comment pieces. A comment piece starts with # and runs until the end of
the line. The end of line characters belong to the piece. If the next line only consists of a comment piece
with no other tokens between it and the preceding one, it does not start a new comment:

i = 0 # This is a single comment over multiple lines.
The scanner merges these two pieces.
The comment continues here.

Documentation comments are comments that start with two ##. Documentation comments are tokens;
they are only allowed at certain places in the input file as they belong to the syntax tree!

3.4 Multiline comments
Starting with version 0.13.0 of the language Nim supports multiline comments. They look like:

#[Comment here.Multiple linesare not a problem.]#

Multiline comments support nesting:

8

#[#[Multiline comment in already commented out code.]#proc p[T](x: T) = discard]#

Multiline documentation comments also exist and support nesting too:

proc foo =
##[Long documentation comment here.]##

3.5 Identifiers & Keywords
Identifiers in Nim can be any string of letters, digits and underscores, beginning with a letter. Two
immediate following underscores __ are not allowed:

letter ::= ’A’..’Z’ | ’a’..’z’ | ’\x80’..’\xff’
digit ::= ’0’..’9’
IDENTIFIER ::= letter ([’_’] (letter | digit))*

Currently any Unicode character with an ordinal value > 127 (non ASCII) is classified as a letter
and may thus be part of an identifier but later versions of the language may assign some Unicode
characters to belong to the operator characters instead.

The following keywords are reserved and cannot be used as identifiers:

addr and as asm
bind block break
case cast concept const continue converter
defer discard distinct div do
elif else end enum except export
finally for from func
if import in include interface is isnot iterator
let
macro method mixin mod
nil not notin
object of or out
proc ptr
raise ref return
shl shr static
template try tuple type
using
var
when while
xor
yield

Some keywords are unused; they are reserved for future developments of the language.

3.6 Identifier equality
Two identifiers are considered equal if the following algorithm returns true:

proc sameIdentifier(a, b: string): bool =
a[0] == b[0] and

a.replace("_", "").toLowerAscii == b.replace("_", "").toLowerAscii

That means only the first letters are compared in a case sensitive manner. Other letters are compared
case insensitively within the ASCII range and underscores are ignored.

This rather unorthodox way to do identifier comparisons is called partial case insensitivity and has
some advantages over the conventional case sensitivity:

It allows programmers to mostly use their own preferred spelling style, be it humpStyle or snake_style,
and libraries written by different programmers cannot use incompatible conventions. A Nim-aware editor
or IDE can show the identifiers as preferred. Another advantage is that it frees the programmer from
remembering the exact spelling of an identifier. The exception with respect to the first letter allows
common code like var foo: Foo to be parsed unambiguously.

Historically, Nim was a fully style-insensitive language. This meant that it was not case-sensitive and
underscores were ignored and there was not even a distinction between foo and Foo.

9

Escape sequence Meaning
\p platform specific newline: CRLF on Windows, LF

on Unix
\r, \c carriage return
\n, \l line feed (often called newline)
\f form feed
\t tabulator
\v vertical tabulator
\\ backslash
\" quotation mark
\’ apostrophe
\ ’0’..’9’+ character with decimal value d; all decimal digits

directly following are used for the character
\a alert
\b backspace
\e escape [ESC]
\x HH character with hex value HH; exactly two hex dig-

its are allowed

3.7 String literals
Terminal symbol in the grammar: STR_LIT.

String literals can be delimited by matching double quotes, and can contain the following escape
sequences:

Strings in Nim may contain any 8-bit value, even embedded zeros. However some operations may
interpret the first binary zero as a terminator.

3.8 Triple quoted string literals
Terminal symbol in the grammar: TRIPLESTR_LIT.

String literals can also be delimited by three double quotes """ ... """. Literals in this form may
run for several lines, may contain " and do not interpret any escape sequences. For convenience, when
the opening """ is followed by a newline (there may be whitespace between the opening """ and the
newline), the newline (and the preceding whitespace) is not included in the string. The ending of the
string literal is defined by the pattern """[^"], so this:

""""long string within quotes""""

Produces:

"long string within quotes"

3.9 Raw string literals
Terminal symbol in the grammar: RSTR_LIT.

There are also raw string literals that are preceded with the letter r (or R) and are delimited by
matching double quotes (just like ordinary string literals) and do not interpret the escape sequences.
This is especially convenient for regular expressions or Windows paths:

var f = openFile(r"C:\texts\text.txt") # a raw string, so ‘‘\t‘‘ is no tab

To produce a single " within a raw string literal, it has to be doubled:

r"a""b"

Produces:

a"b

10

Escape sequence Meaning
\r, \c carriage return
\n, \l line feed
\f form feed
\t tabulator
\v vertical tabulator
\\ backslash
\" quotation mark
\’ apostrophe
\ ’0’..’9’+ character with decimal value d; all decimal digits

directly following are used for the character
\a alert
\b backspace
\e escape [ESC]
\x HH character with hex value HH; exactly two hex dig-

its are allowed

r"""" is not possible with this notation, because the three leading quotes introduce a triple quoted
string literal. r""" is the same as """ since triple quoted string literals do not interpret escape sequences
either.

3.10 Generalized raw string literals
Terminal symbols in the grammar: GENERALIZED_STR_LIT, GENERALIZED_TRIPLESTR_LIT.

The construct identifier"string literal" (without whitespace between the identifier and
the opening quotation mark) is a generalized raw string literal. It is a shortcut for the construct
identifier(r"string literal"), so it denotes a procedure call with a raw string literal as its
only argument. Generalized raw string literals are especially convenient for embedding mini languages
directly into Nim (for example regular expressions).

The construct identifier"""string literal""" exists too. It is a shortcut for
identifier("""string literal""").

3.11 Character literals
Character literals are enclosed in single quotes ” and can contain the same escape sequences as strings
- with one exception: the platform dependent newline (\p) is not allowed as it may be wider than one
character (often it is the pair CR/LF for example). Here are the valid escape sequences for character
literals:

A character is not an Unicode character but a single byte. The reason for this is efficiency: for the
overwhelming majority of use-cases, the resulting programs will still handle UTF-8 properly as UTF-8
was specially designed for this. Another reason is that Nim can thus support array[char, int] or
set[char] efficiently as many algorithms rely on this feature. The Rune type is used for Unicode
characters, it can represent any Unicode character. Rune is declared in the unicode module.

3.12 Numerical constants
Numerical constants are of a single type and have the form:

hexdigit = digit | ’A’..’F’ | ’a’..’f’
octdigit = ’0’..’7’
bindigit = ’0’..’1’
HEX_LIT = ’0’ (’x’ | ’X’) hexdigit ([’_’] hexdigit)*
DEC_LIT = digit ([’_’] digit)*
OCT_LIT = ’0’ ’o’ octdigit ([’_’] octdigit)*
BIN_LIT = ’0’ (’b’ | ’B’) bindigit ([’_’] bindigit)*

INT_LIT = HEX_LIT

11

unicode.html

Type Suffix Resulting type of literal
’i8 int8
’i16 int16
’i32 int32
’i64 int64
’u uint
’u8 uint8
’u16 uint16
’u32 uint32
’u64 uint64
’f float32
’d float64
’f32 float32
’f64 float64

| DEC_LIT
| OCT_LIT
| BIN_LIT

INT8_LIT = INT_LIT [’\’’] (’i’ | ’I’) ’8’
INT16_LIT = INT_LIT [’\’’] (’i’ | ’I’) ’16’
INT32_LIT = INT_LIT [’\’’] (’i’ | ’I’) ’32’
INT64_LIT = INT_LIT [’\’’] (’i’ | ’I’) ’64’

UINT_LIT = INT_LIT [’\’’] (’u’ | ’U’)
UINT8_LIT = INT_LIT [’\’’] (’u’ | ’U’) ’8’
UINT16_LIT = INT_LIT [’\’’] (’u’ | ’U’) ’16’
UINT32_LIT = INT_LIT [’\’’] (’u’ | ’U’) ’32’
UINT64_LIT = INT_LIT [’\’’] (’u’ | ’U’) ’64’

exponent = (’e’ | ’E’) [’+’ | ’-’] digit ([’_’] digit)*
FLOAT_LIT = digit ([’_’] digit)* ((’.’ digit ([’_’] digit)* [exponent]) |exponent)
FLOAT32_SUFFIX = (’f’ | ’F’) [’32’]
FLOAT32_LIT = HEX_LIT ’\’’ FLOAT32_SUFFIX

| (FLOAT_LIT | DEC_LIT | OCT_LIT | BIN_LIT) [’\’’] FLOAT32_SUFFIX
FLOAT64_SUFFIX = ((’f’ | ’F’) ’64’) | ’d’ | ’D’
FLOAT64_LIT = HEX_LIT ’\’’ FLOAT64_SUFFIX

| (FLOAT_LIT | DEC_LIT | OCT_LIT | BIN_LIT) [’\’’] FLOAT64_SUFFIX

As can be seen in the productions, numerical constants can contain underscores for readability. Integer
and floating point literals may be given in decimal (no prefix), binary (prefix 0b), octal (prefix 0o) and
hexadecimal (prefix 0x) notation.

There exists a literal for each numerical type that is defined. The suffix starting with an apostrophe
(”’) is called a type suffix. Literals without a type suffix are of an integer type, unless the literal contains
a dot or E|e in which case it is of type float. This integer type is int if the literal is in the range
low(i32)..high(i32), otherwise it is int64. For notational convenience the apostrophe of a type
suffix is optional if it is not ambiguous (only hexadecimal floating point literals with a type suffix can be
ambiguous).

The type suffixes are:
Floating point literals may also be in binary, octal or hexadecimal notation: 0B0_10001110100_0000101001000111101011101111111011000101001101001001’f64

is approximately 1.72826e35 according to the IEEE floating point standard.
Literals are bounds checked so that they fit the datatype. Non base-10 literals are used mainly for

flags and bit pattern representations, therefore bounds checking is done on bit width, not value range. If
the literal fits in the bit width of the datatype, it is accepted. Hence: 0b10000000’u8 == 0x80’u8 ==
128, but, 0b10000000’i8 == 0x80’i8 == -1 instead of causing an overflow error.

3.13 Operators
Nim allows user defined operators. An operator is any combination of the following characters:

12

= + - * / < >
@ $ ~ & % |
! ? ^ . : \

These keywords are also operators: and or not xor shl shr div mod in notin is
isnot of.

. =, :, :: are not available as general operators; they are used for other notational purposes.
*: is as a special case treated as the two tokens * and : (to support var v*: T).

3.14 Other tokens
The following strings denote other tokens:

‘ () { } [] , ; [. .] {. .} (. .) [:

The slice operator .. takes precedence over other tokens that contain a dot: {..} are the three tokens
{, .., } and not the two tokens {., .}.

4 Syntax
This section lists Nim’s standard syntax. How the parser handles the indentation is already described in
the Lexical Analysis3 section.

Nim allows user-definable operators. Binary operators have 11 different levels of precedence.

4.1 Associativity
Binary operators whose first character is ^ are right-associative, all other binary operators are left-
associative.

proc ‘^/‘(x, y: float): float =
a right-associative division operator
result = x / y

echo 12 ^/ 4 ^/ 8 # 24.0 (4 / 8 = 0.5, then 12 / 0.5 = 24.0)
echo 12 / 4 / 8 # 0.375 (12 / 4 = 3.0, then 3 / 8 = 0.375)

4.2 Precedence
Unary operators always bind stronger than any binary operator: $a + b is ($a) + b and not $(a +
b).

If an unary operator’s first character is @ it is a sigil-like operator which binds stronger than a
primarySuffix: @x.abc is parsed as (@x).abc whereas $x.abc is parsed as $(x.abc).

For binary operators that are not keywords the precedence is determined by the following rules:
Operators ending in either ->, ~> or => are called arrow like, and have the lowest precedence of all

operators.
If the operator ends with = and its first character is none of <, >, !, =, ~, ?, it is an assignment

operator which has the second lowest precedence.
Otherwise precedence is determined by the first character.
Whether an operator is used a prefix operator is also affected by preceding whitespace (this parsing

change was introduced with version 0.13.0):

echo $foo
is parsed as
echo($foo)

Spacing also determines whether (a, b) is parsed as an the argument list of a call or whether it is
parsed as a tuple constructor:

echo(1, 2) # pass 1 and 2 to echo

echo (1, 2) # pass the tuple (1, 2) to echo

13

Precedence level Operators First character Terminal symbol
10 (highest) $ ^ OP10
9 * / div mod shl

shr %
* % \ / OP9

8 + - + - ~ | OP8
7 & & OP7
6 .. . OP6
5 == <= < >= >

!= in notin is
isnot not of

= < > ! OP5

4 and OP4
3 or xor OP3
2 @ : ? OP2
1 assignment operator

(like +=, *=)
OP1

0 (lowest) arrow like operator
(like ->, =>)

OP0

4.3 Grammar
The grammar’s start symbol is module.

This file is generated by compiler/parser.nim.
module = stmt ^* (’;’ / IND{=})
comma = ’,’ COMMENT?
semicolon = ’;’ COMMENT?
colon = ’:’ COMMENT?
colcom = ’:’ COMMENT?
operator = OP0 | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 | OP7 | OP8 | OP9

| ’or’ | ’xor’ | ’and’
| ’is’ | ’isnot’ | ’in’ | ’notin’ | ’of’
| ’div’ | ’mod’ | ’shl’ | ’shr’ | ’not’ | ’static’ | ’..’

prefixOperator = operator
optInd = COMMENT? IND?
optPar = (IND{>} | IND{=})?
simpleExpr = arrowExpr (OP0 optInd arrowExpr)* pragma?
arrowExpr = assignExpr (OP1 optInd assignExpr)*
assignExpr = orExpr (OP2 optInd orExpr)*
orExpr = andExpr (OP3 optInd andExpr)*
andExpr = cmpExpr (OP4 optInd cmpExpr)*
cmpExpr = sliceExpr (OP5 optInd sliceExpr)*
sliceExpr = ampExpr (OP6 optInd ampExpr)*
ampExpr = plusExpr (OP7 optInd plusExpr)*
plusExpr = mulExpr (OP8 optInd mulExpr)*
mulExpr = dollarExpr (OP9 optInd dollarExpr)*
dollarExpr = primary (OP10 optInd primary)*
symbol = ’‘’ (KEYW|IDENT|literal|(operator|’(’|’)’|’[’|’]’|’{’|’}’|’=’)+)+ ’‘’

| IDENT | KEYW
exprColonEqExpr = expr (’:’|’=’ expr)?
exprList = expr ^+ comma
exprColonEqExprList = exprColonEqExpr (comma exprColonEqExpr)* (comma)?
dotExpr = expr ’.’ optInd (symbol | ’[:’ exprList ’]’)
explicitGenericInstantiation = ’[:’ exprList ’]’ (’(’ exprColonEqExpr ’)’)?
qualifiedIdent = symbol (’.’ optInd symbol)?
setOrTableConstr = ’{’ ((exprColonEqExpr comma)* | ’:’) ’}’
castExpr = ’cast’ ’[’ optInd typeDesc optPar ’]’ ’(’ optInd expr optPar ’)’
parKeyw = ’discard’ | ’include’ | ’if’ | ’while’ | ’case’ | ’try’

| ’finally’ | ’except’ | ’for’ | ’block’ | ’const’ | ’let’
| ’when’ | ’var’ | ’mixin’

par = ’(’ optInd
(&parKeyw complexOrSimpleStmt ^+ ’;’
| ’;’ complexOrSimpleStmt ^+ ’;’
| pragmaStmt
| simpleExpr ((’=’ expr (’;’ complexOrSimpleStmt ^+ ’;’)?)

| (’:’ expr (’,’ exprColonEqExpr ^+ ’,’)?)))

14

optPar ’)’
literal = | INT_LIT | INT8_LIT | INT16_LIT | INT32_LIT | INT64_LIT

| UINT_LIT | UINT8_LIT | UINT16_LIT | UINT32_LIT | UINT64_LIT
| FLOAT_LIT | FLOAT32_LIT | FLOAT64_LIT
| STR_LIT | RSTR_LIT | TRIPLESTR_LIT
| CHAR_LIT
| NIL

generalizedLit = GENERALIZED_STR_LIT | GENERALIZED_TRIPLESTR_LIT
identOrLiteral = generalizedLit | symbol | literal

| par | arrayConstr | setOrTableConstr
| castExpr

tupleConstr = ’(’ optInd (exprColonEqExpr comma?)* optPar ’)’
arrayConstr = ’[’ optInd (exprColonEqExpr comma?)* optPar ’]’
primarySuffix = ’(’ (exprColonEqExpr comma?)* ’)’ doBlocks?

| doBlocks
| ’.’ optInd symbol generalizedLit?
| ’[’ optInd indexExprList optPar ’]’
| ’{’ optInd indexExprList optPar ’}’
| &(’‘’|IDENT|literal|’cast’|’addr’|’type’) expr # command syntax

condExpr = expr colcom expr optInd
(’elif’ expr colcom expr optInd)*
’else’ colcom expr

ifExpr = ’if’ condExpr
whenExpr = ’when’ condExpr
pragma = ’{.’ optInd (exprColonExpr comma?)* optPar (’.}’ | ’}’)
identVis = symbol opr? # postfix position
identVisDot = symbol ’.’ optInd symbol opr?
identWithPragma = identVis pragma?
identWithPragmaDot = identVisDot pragma?
declColonEquals = identWithPragma (comma identWithPragma)* comma?

(’:’ optInd typeDesc)? (’=’ optInd expr)?
identColonEquals = ident (comma ident)* comma?

(’:’ optInd typeDesc)? (’=’ optInd expr)?)
inlTupleDecl = ’tuple’

[’ optInd (identColonEquals (comma/semicolon)?)* optPar ’]’
extTupleDecl = ’tuple’

COMMENT? (IND{>} identColonEquals (IND{=} identColonEquals)*)?
tupleClass = ’tuple’
paramList = ’(’ declColonEquals ^* (comma/semicolon) ’)’
paramListArrow = paramList? (’->’ optInd typeDesc)?
paramListColon = paramList? (’:’ optInd typeDesc)?
doBlock = ’do’ paramListArrow pragmas? colcom stmt
procExpr = ’proc’ paramListColon pragmas? (’=’ COMMENT? stmt)?
distinct = ’distinct’ optInd typeDesc
forStmt = ’for’ (identWithPragma ^+ comma) ’in’ expr colcom stmt
forExpr = forStmt
expr = (blockExpr

| ifExpr
| whenExpr
| caseExpr
| forExpr
| tryExpr)
/ simpleExpr

typeKeyw = ’var’ | ’out’ | ’ref’ | ’ptr’ | ’shared’ | ’tuple’
| ’proc’ | ’iterator’ | ’distinct’ | ’object’ | ’enum’

primary = typeKeyw typeDescK
/ prefixOperator* identOrLiteral primarySuffix*
/ ’bind’ primary

typeDesc = simpleExpr
typeDefAux = simpleExpr

| ’concept’ typeClass
postExprBlocks = ’:’ stmt? (IND{=} doBlock

| IND{=} ’of’ exprList ’:’ stmt
| IND{=} ’elif’ expr ’:’ stmt
| IND{=} ’except’ exprList ’:’ stmt
| IND{=} ’else’ ’:’ stmt)*

exprStmt = simpleExpr
((’=’ optInd expr colonBody?)
/ (expr ^+ comma

doBlocks

15

/ macroColon
))?

importStmt = ’import’ optInd expr
((comma expr)*
/ ’except’ optInd (expr ^+ comma))

includeStmt = ’include’ optInd expr ^+ comma
fromStmt = ’from’ moduleName ’import’ optInd expr (comma expr)*
returnStmt = ’return’ optInd expr?
raiseStmt = ’raise’ optInd expr?
yieldStmt = ’yield’ optInd expr?
discardStmt = ’discard’ optInd expr?
breakStmt = ’break’ optInd expr?
continueStmt = ’break’ optInd expr?
condStmt = expr colcom stmt COMMENT?

(IND{=} ’elif’ expr colcom stmt)*
(IND{=} ’else’ colcom stmt)?

ifStmt = ’if’ condStmt
whenStmt = ’when’ condStmt
whileStmt = ’while’ expr colcom stmt
ofBranch = ’of’ exprList colcom stmt
ofBranches = ofBranch (IND{=} ofBranch)*

(IND{=} ’elif’ expr colcom stmt)*
(IND{=} ’else’ colcom stmt)?

caseStmt = ’case’ expr ’:’? COMMENT?
(IND{>} ofBranches DED
| IND{=} ofBranches)

tryStmt = ’try’ colcom stmt &(IND{=}? ’except’|’finally’)
(IND{=}? ’except’ exprList colcom stmt)*
(IND{=}? ’finally’ colcom stmt)?

tryExpr = ’try’ colcom stmt &(optInd ’except’|’finally’)
(optInd ’except’ exprList colcom stmt)*
(optInd ’finally’ colcom stmt)?

exceptBlock = ’except’ colcom stmt
blockStmt = ’block’ symbol? colcom stmt
blockExpr = ’block’ symbol? colcom stmt
staticStmt = ’static’ colcom stmt
deferStmt = ’defer’ colcom stmt
asmStmt = ’asm’ pragma? (STR_LIT | RSTR_LIT | TRIPLESTR_LIT)
genericParam = symbol (comma symbol)* (colon expr)? (’=’ optInd expr)?
genericParamList = ’[’ optInd

genericParam ^* (comma/semicolon) optPar ’]’
pattern = ’{’ stmt ’}’
indAndComment = (IND{>} COMMENT)? | COMMENT?
routine = optInd identVis pattern? genericParamList?

paramListColon pragma? (’=’ COMMENT? stmt)? indAndComment
commentStmt = COMMENT
section(p) = COMMENT? p / (IND{>} (p / COMMENT)^+IND{=} DED)
constant = identWithPragma (colon typeDesc)? ’=’ optInd expr indAndComment
enum = ’enum’ optInd (symbol optInd (’=’ optInd expr COMMENT?)? comma?)+
objectWhen = ’when’ expr colcom objectPart COMMENT?

(’elif’ expr colcom objectPart COMMENT?)*
(’else’ colcom objectPart COMMENT?)?

objectBranch = ’of’ exprList colcom objectPart
objectBranches = objectBranch (IND{=} objectBranch)*

(IND{=} ’elif’ expr colcom objectPart)*
(IND{=} ’else’ colcom objectPart)?

objectCase = ’case’ identWithPragma ’:’ typeDesc ’:’? COMMENT?
(IND{>} objectBranches DED
| IND{=} objectBranches)

objectPart = IND{>} objectPart^+IND{=} DED
/ objectWhen / objectCase / ’nil’ / ’discard’ / declColonEquals

object = ’object’ pragma? (’of’ typeDesc)? COMMENT? objectPart
typeClassParam = (’var’ | ’out’)? symbol
typeClass = typeClassParam ^* ’,’ (pragma)? (’of’ typeDesc ^* ’,’)?

&IND{>} stmt
typeDef = identWithPragmaDot genericParamList? ’=’ optInd typeDefAux

indAndComment?
varTuple = ’(’ optInd identWithPragma ^+ comma optPar ’)’ ’=’ optInd expr
colonBody = colcom stmt doBlocks?
variable = (varTuple / identColonEquals) colonBody? indAndComment

16

bindStmt = ’bind’ optInd qualifiedIdent ^+ comma
mixinStmt = ’mixin’ optInd qualifiedIdent ^+ comma
pragmaStmt = pragma (’:’ COMMENT? stmt)?
simpleStmt = ((returnStmt | raiseStmt | yieldStmt | discardStmt | breakStmt

| continueStmt | pragmaStmt | importStmt | exportStmt | fromStmt
| includeStmt | commentStmt) / exprStmt) COMMENT?

complexOrSimpleStmt = (ifStmt | whenStmt | whileStmt
| tryStmt | forStmt
| blockStmt | staticStmt | deferStmt | asmStmt
| ’proc’ routine
| ’method’ routine
| ’iterator’ routine
| ’macro’ routine
| ’template’ routine
| ’converter’ routine
| ’type’ section(typeDef)
| ’const’ section(constant)
| (’let’ | ’var’ | ’using’) section(variable)
| bindStmt | mixinStmt)
/ simpleStmt

stmt = (IND{>} complexOrSimpleStmt^+(IND{=} / ’;’) DED)
/ simpleStmt ^+ ’;’

5 Order of evaluation
Order of evaluation is strictly left-to-right, inside-out as it is typical for most others imperative program-
ming languages:
var s = ""

proc p(arg: int): int =
s.add $arg
result = arg

discard p(p(1) + p(2))

doAssert s == "123"

Assignments are not special, the left-hand-side expression is evaluated before the right-hand side:
var v = 0
proc getI(): int =

result = v
inc v

var a, b: array[0..2, int]

proc someCopy(a: var int; b: int) = a = b

a[getI()] = getI()

doAssert a == [1, 0, 0]

v = 0
someCopy(b[getI()], getI())

doAssert b == [1, 0, 0]

Rationale: Consistency with overloaded assignment or assignment-like operations, a = b can be read
as performSomeCopy(a, b).

6 Types
All expressions have a type which is known at compile time. Nim is statically typed. One can declare
new types, which is in essence defining an identifier that can be used to denote this custom type.

These are the major type classes:

17

• ordinal types (consist of integer, bool, character, enumeration (and subranges thereof) types)

• floating point types

• string type

• structured types

• reference (pointer) type

• procedural type

• generic type

6.1 Ordinal types
Ordinal types have the following characteristics:

• Ordinal types are countable and ordered. This property allows the operation of functions as inc,
ord, dec on ordinal types to be defined.

• Ordinal values have a smallest possible value. Trying to count further down than the smallest value
gives a checked runtime or static error.

• Ordinal values have a largest possible value. Trying to count further than the largest value gives a
checked runtime or static error.

Integers, bool, characters and enumeration types (and subranges of these types) belong to ordinal types.
For reasons of simplicity of implementation the types uint and uint64 are not ordinal types.

6.2 Pre-defined integer types
These integer types are pre-defined:

int the generic signed integer type; its size is platform dependent and has the same size as a pointer.
This type should be used in general. An integer literal that has no type suffix is of this type if it is
in the range low(int32)..high(int32) otherwise the literal’s type is int64.

intXX additional signed integer types of XX bits use this naming scheme (example: int16 is a 16 bit
wide integer). The current implementation supports int8, int16, int32, int64. Literals of
these types have the suffix ’iXX.

uint the generic unsigned integer type; its size is platform dependent and has the same size as a pointer.
An integer literal with the type suffix ’u is of this type.

uintXX additional unsigned integer types of XX bits use this naming scheme (example: uint16 is a
16 bit wide unsigned integer). The current implementation supports uint8, uint16, uint32,
uint64. Literals of these types have the suffix ’uXX. Unsigned operations all wrap around; they
cannot lead to over- or underflow errors.

In addition to the usual arithmetic operators for signed and unsigned integers (+ - * etc.) there are
also operators that formally work on signed integers but treat their arguments as unsigned: They are
mostly provided for backwards compatibility with older versions of the language that lacked unsigned
integer types. These unsigned operations for signed integers use the % suffix as convention:

Automatic type conversion is performed in expressions where different kinds of integer types are used:
the smaller type is converted to the larger.

A narrowing type conversion converts a larger to a smaller type (for example int32 -> int16. A
widening type conversion converts a smaller type to a larger type (for example int16 -> int32). In
Nim only widening type conversions are implicit:

18

operation meaning
a +% b unsigned integer addition
a -% b unsigned integer subtraction
a *% b unsigned integer multiplication
a /% b unsigned integer division
a %% b unsigned integer modulo operation
a <% b treat a and b as unsigned and compare
a <=% b treat a and b as unsigned and compare
ze(a) extends the bits of a with zeros until it has the

width of the int type
toU8(a) treats a as unsigned and converts it to an unsigned

integer of 8 bits (but still the int8 type)
toU16(a) treats a as unsigned and converts it to an unsigned

integer of 16 bits (but still the int16 type)
toU32(a) treats a as unsigned and converts it to an unsigned

integer of 32 bits (but still the int32 type)

var myInt16 = 5i16
var myInt: int
myInt16 + 34 # of type ‘‘int16‘‘
myInt16 + myInt # of type ‘‘int‘‘
myInt16 + 2i32 # of type ‘‘int32‘‘

However, int literals are implicitly convertible to a smaller integer type if the literal’s value fits this
smaller type and such a conversion is less expensive than other implicit conversions, so myInt16 + 34
produces an int16 result.

For further details, see Convertible relation.

6.3 Subrange types
A subrange type is a range of values from an ordinal or floating point type (the base type). To define a
subrange type, one must specify it’s limiting values: the lowest and highest value of the type:

type
Subrange = range[0..5]
PositiveFloat = range[0.0..Inf]

Subrange is a subrange of an integer which can only hold the values 0 to 5. PositiveFloat defines
a subrange of all positive floating point values. NaN does not belong to any subrange of floating point
types. Assigning any other value to a variable of type Subrange is a checked runtime error (or static
error if it can be statically determined). Assignments from the base type to one of its subrange types
(and vice versa) are allowed.

A subrange type has the same size as its base type (int in the Subrange example).

6.4 Pre-defined floating point types
The following floating point types are pre-defined:

float the generic floating point type; its size used to be platform dependent, but now it is always
mapped to float64. This type should be used in general.

floatXX an implementation may define additional floating point types of XX bits using this naming
scheme (example: float64 is a 64 bit wide float). The current implementation supports float32
and float64. Literals of these types have the suffix ’fXX.

Automatic type conversion in expressions with different kinds of floating point types is performed: See
Convertible relation for further details. Arithmetic performed on floating point types follows the IEEE
standard. Integer types are not converted to floating point types automatically and vice versa.

The IEEE standard defines five types of floating-point exceptions:

19

• Invalid: operations with mathematically invalid operands, for example 0.0/0.0, sqrt(-1.0), and log(-
37.8).

• Division by zero: divisor is zero and dividend is a finite nonzero number, for example 1.0/0.0.

• Overflow: operation produces a result that exceeds the range of the exponent, for example MAX-
DOUBLE+0.0000000000001e308.

• Underflow: operation produces a result that is too small to be represented as a normal number, for
example, MINDOUBLE * MINDOUBLE.

• Inexact: operation produces a result that cannot be represented with infinite precision, for example,
2.0 / 3.0, log(1.1) and 0.1 in input.

The IEEE exceptions are either ignored at runtime or mapped to the Nim exceptions: FloatInvalidOp-
Error, FloatDivByZeroError, FloatOverflowError, FloatUnderflowError, and FloatInexactError. These
exceptions inherit from the FloatingPointError base class.

Nim provides the pragmas nanChecks and infChecks to control whether the IEEE exceptions are
ignored or trap a Nim exception:

{.nanChecks: on, infChecks: on.}
var a = 1.0
var b = 0.0
echo b / b # raises FloatInvalidOpError
echo a / b # raises FloatOverflowError

In the current implementation FloatDivByZeroError and FloatInexactError are never raised.
FloatOverflowError is raised instead of FloatDivByZeroError. There is also a floatChecks
pragma that is a short-cut for the combination of nanChecks and infChecks pragmas. floatChecks
are turned off as default.

The only operations that are affected by the floatChecks pragma are the +, -, *, / operators for
floating point types.

An implementation should always use the maximum precision available to evaluate floating
pointer values at compile time; this means expressions like 0.09’f32 + 0.01’f32 == 0.09’f64
+ 0.01’f64 are true.

6.5 Boolean type
The boolean type is named bool in Nim and can be one of the two pre-defined values true and false.
Conditions in while, if, elif, when-statements need to be of type bool.

This condition holds:

ord(false) == 0 and ord(true) == 1

The operators not, and, or, xor, <, <=, >, >=, !=, == are defined for the bool type.
The and and or operators perform short-cut evaluation. Example:

while p != nil and p.name != "xyz":
p.name is not evaluated if p == nil
p = p.next

The size of the bool type is one byte.

6.6 Character type
The character type is named char in Nim. Its size is one byte. Thus it cannot represent an UTF-8
character, but a part of it. The reason for this is efficiency: for the overwhelming majority of use-cases,
the resulting programs will still handle UTF-8 properly as UTF-8 was specially designed for this. Another
reason is that Nim can support array[char, int] or set[char] efficiently as many algorithms rely
on this feature. The Rune type is used for Unicode characters, it can represent any Unicode character.
Rune is declared in the unicode module.

20

unicode.html

6.7 Enumeration types
Enumeration types define a new type whose values consist of the ones specified. The values are ordered.
Example:

type
Direction = enum
north, east, south, west

Now the following holds:

ord(north) == 0
ord(east) == 1
ord(south) == 2
ord(west) == 3

Also allowed:
ord(Direction.west) == 3

Thus, north < east < south < west. The comparison operators can be used with enumeration types.
Instead of north etc, the enum value can also be qualified with the enum type that it resides in,
Direction.north.

For better interfacing to other programming languages, the fields of enum types can be assigned an
explicit ordinal value. However, the ordinal values have to be in ascending order. A field whose ordinal
value is not explicitly given is assigned the value of the previous field + 1.

An explicit ordered enum can have holes:

type
TokenType = enum

a = 2, b = 4, c = 89 # holes are valid

However, it is then not an ordinal anymore, so it is not possible to use these enums as an index type
for arrays. The procedures inc, dec, succ and pred are not available for them either.

The compiler supports the built-in stringify operator $ for enumerations. The stringify’s result can
be controlled by explicitly giving the string values to use:

type
MyEnum = enum

valueA = (0, "my value A"),
valueB = "value B",
valueC = 2,
valueD = (3, "abc")

As can be seen from the example, it is possible to both specify a field’s ordinal value and its string
value by using a tuple. It is also possible to only specify one of them.

An enum can be marked with the pure pragma so that it’s fields are added to a special module
specific hidden scope that is only queried as the last attempt. Only non-ambiguous symbols are added
to this scope. But one can always access these via type qualification written as MyEnum.value:

type
MyEnum {.pure.} = enum

valueA, valueB, valueC, valueD, amb

OtherEnum {.pure.} = enum
valueX, valueY, valueZ, amb

echo valueA # MyEnum.valueA
echo amb # Error: Unclear whether it’s MyEnum.amb or OtherEnum.amb
echo MyEnum.amb # OK.

21

6.8 String type
All string literals are of the type string. A string in Nim is very similar to a sequence of characters.
However, strings in Nim are both zero-terminated and have a length field. One can retrieve the length
with the builtin len procedure; the length never counts the terminating zero.

The terminating zero cannot be accessed unless the string is converted to the cstring type first.
The terminating zero assures that this conversion can be done in O(1) and without any allocations.

The assignment operator for strings always copies the string. The & operator concatenates strings.
Most native Nim types support conversion to strings with the special $ proc. When calling the echo

proc, for example, the built-in stringify operation for the parameter is called:
echo 3 # calls ‘$‘ for ‘int‘

Whenever a user creates a specialized object, implementation of this procedure provides for string
representation.
type

Person = object
name: string
age: int

proc ‘$‘(p: Person): string = # ‘$‘ always returns a string
result = p.name & " is " &

$p.age & # we *need* the ‘$‘ in front of p.age which
is natively an integer to convert it to
a string

" years old."

While $p.name can also be used, the $ operation on a string does nothing. Note that we cannot rely
on automatic conversion from an int to a string like we can for the echo proc.

Strings are compared by their lexicographical order. All comparison operators are available. Strings
can be indexed like arrays (lower bound is 0). Unlike arrays, they can be used in case statements:
case paramStr(i)
of "-v": incl(options, optVerbose)
of "-h", "-?": incl(options, optHelp)
else: write(stdout, "invalid command line option!\n")

Per convention, all strings are UTF-8 strings, but this is not enforced. For example, when reading
strings from binary files, they are merely a sequence of bytes. The index operation s[i] means the i-th
char of s, not the i-th unichar. The iterator runes from the unicode module can be used for iteration
over all Unicode characters.

6.9 cstring type
The cstring type meaning compatible string is the native representation of a string for the compilation
backend. For the C backend the cstring type represents a pointer to a zero-terminated char array
compatible to the type char* in Ansi C. Its primary purpose lies in easy interfacing with C. The index
operation s[i] means the i-th char of s; however no bounds checking for cstring is performed making
the index operation unsafe.

A Nim string is implicitly convertible to cstring for convenience. If a Nim string is passed to a
C-style variadic proc, it is implicitly converted to cstring too:
proc printf(formatstr: cstring) {.importc: "printf", varargs,

header: "<stdio.h>".}

printf("This works %s", "as expected")

Even though the conversion is implicit, it is not safe: The garbage collector does not consider a
cstring to be a root and may collect the underlying memory. However in practice this almost never
happens as the GC considers stack roots conservatively. One can use the builtin procs GC_ref and
GC_unref to keep the string data alive for the rare cases where it does not work.

A $ proc is defined for cstrings that returns a string. Thus to get a nim string from a cstring:
var str: string = "Hello!"
var cstr: cstring = str
var newstr: string = $cstr

22

unicode.html

6.10 Structured types
A variable of a structured type can hold multiple values at the same time. Structured types can be nested
to unlimited levels. Arrays, sequences, tuples, objects and sets belong to the structured types.

6.11 Array and sequence types
Arrays are a homogeneous type, meaning that each element in the array has the same type. Arrays always
have a fixed length which is specified at compile time (except for open arrays). They can be indexed
by any ordinal type. A parameter A may be an open array, in which case it is indexed by integers from
0 to len(A)-1. An array expression may be constructed by the array constructor []. The element
type of this array expression is inferred from the type of the first element. All other elements need to be
implicitly convertable to this type.

Sequences are similar to arrays but of dynamic length which may change during runtime (like strings).
Sequences are implemented as growable arrays, allocating pieces of memory as items are added. A
sequence S is always indexed by integers from 0 to len(S)-1 and its bounds are checked. Sequences
can be constructed by the array constructor [] in conjunction with the array to sequence operator @.
Another way to allocate space for a sequence is to call the built-in newSeq procedure.

A sequence may be passed to a parameter that is of type open array.
Example:

type
IntArray = array[0..5, int] # an array that is indexed with 0..5
IntSeq = seq[int] # a sequence of integers

var
x: IntArray
y: IntSeq

x = [1, 2, 3, 4, 5, 6] # [] is the array constructor
y = @[1, 2, 3, 4, 5, 6] # the @ turns the array into a sequence

let z = [1.0, 2, 3, 4] # the type of z is array[0..3, float]

The lower bound of an array or sequence may be received by the built-in proc low(), the higher
bound by high(). The length may be received by len(). low() for a sequence or an open array
always returns 0, as this is the first valid index. One can append elements to a sequence with the add()
proc or the & operator, and remove (and get) the last element of a sequence with the pop() proc.

The notation x[i] can be used to access the i-th element of x.
Arrays are always bounds checked (at compile-time or at runtime). These checks can be disabled via

pragmas or invoking the compiler with the -boundChecks:off command line switch.

6.12 Open arrays
Often fixed size arrays turn out to be too inflexible; procedures should be able to deal with arrays of
different sizes. The openarray type allows this; it can only be used for parameters. Openarrays are always
indexed with an int starting at position 0. The len, low and high operations are available for open
arrays too. Any array with a compatible base type can be passed to an openarray parameter, the index
type does not matter. In addition to arrays sequences can also be passed to an open array parameter.

The openarray type cannot be nested: multidimensional openarrays are not supported because this
is seldom needed and cannot be done efficiently.

proc testOpenArray(x: openArray[int]) = echo repr(x)

testOpenArray([1,2,3]) # array[]
testOpenArray(@[1,2,3]) # seq[]

6.13 Varargs
A varargs parameter is an openarray parameter that additionally allows to pass a variable number of
arguments to a procedure. The compiler converts the list of arguments to an array implicitly:

23

proc myWriteln(f: File, a: varargs[string]) =
for s in items(a):

write(f, s)
write(f, "\n")

myWriteln(stdout, "abc", "def", "xyz")
is transformed to:
myWriteln(stdout, ["abc", "def", "xyz"])

This transformation is only done if the varargs parameter is the last parameter in the procedure
header. It is also possible to perform type conversions in this context:

proc myWriteln(f: File, a: varargs[string, ‘$‘]) =
for s in items(a):

write(f, s)
write(f, "\n")

myWriteln(stdout, 123, "abc", 4.0)
is transformed to:
myWriteln(stdout, [$123, $"def", $4.0])

In this example $ is applied to any argument that is passed to the parameter a. (Note that $ applied
to strings is a nop.)

Note that an explicit array constructor passed to a varargs parameter is not wrapped in another
implicit array construction:

proc takeV[T](a: varargs[T]) = discard

takeV([123, 2, 1]) # takeV’s T is "int", not "array of int"

varargs[typed] is treated specially: It matches a variable list of arguments of arbitrary type but
always constructs an implicit array. This is required so that the builtin echo proc does what is expected:

proc echo*(x: varargs[typed, ‘$‘]) {...}

echo @[1, 2, 3]
prints "@[1, 2, 3]" and not "123"

6.14 Tuples and object types
A variable of a tuple or object type is a heterogeneous storage container. A tuple or object defines various
named fields of a type. A tuple also defines an order of the fields. Tuples are meant for heterogeneous
storage types with no overhead and few abstraction possibilities. The constructor () can be used to
construct tuples. The order of the fields in the constructor must match the order of the tuple’s definition.
Different tuple-types are equivalent if they specify the same fields of the same type in the same order.
The names of the fields also have to be identical.

The assignment operator for tuples copies each component. The default assignment operator for
objects copies each component. Overloading of the assignment operator is described in type-bound-
operations-operator??.

type
Person = tuple[name: string, age: int] # type representing a person:

a person consists of a name
and an age

var
person: Person

person = (name: "Peter", age: 30)
the same, but less readable:
person = ("Peter", 30)

A tuple with one unnamed field can be constructed with the parentheses and a trailing comma:

proc echoUnaryTuple(a: (int,)) =
echo a[0]

echoUnaryTuple (1,)

24

In fact, a trailing comma is allowed for every tuple construction.
The implementation aligns the fields for best access performance. The alignment is compatible with

the way the C compiler does it.
For consistency with object declarations, tuples in a type section can also be defined with inden-

tation instead of []:

type
Person = tuple # type representing a person
name: string # a person consists of a name
age: natural # and an age

Objects provide many features that tuples do not. Object provide inheritance and information hiding.
Objects have access to their type at runtime, so that the of operator can be used to determine the object’s
type. The of operator is similar to the instanceof operator in Java.

type
Person = object of RootObj

name*: string # the * means that ‘name‘ is accessible from other modules
age: int # no * means that the field is hidden

Student = ref object of Person # a student is a person
id: int # with an id field

var
student: Student
person: Person

assert(student of Student) # is true
assert(student of Person) # also true

Object fields that should be visible from outside the defining module, have to be marked by *. In
contrast to tuples, different object types are never equivalent. Objects that have no ancestor are implicitly
final and thus have no hidden type field. One can use the inheritable pragma to introduce new
object roots apart from system.RootObj.

6.15 Object construction
Objects can also be created with an object construction expression that has the syntax T(fieldA:
valueA, fieldB: valueB, ...) where T is an object type or a ref object type:

var student = Student(name: "Anton", age: 5, id: 3)

Note that, unlike tuples, objects require the field names along with their values. For a ref object
type system.new is invoked implicitly.

6.16 Object variants
Often an object hierarchy is overkill in certain situations where simple variant types are needed.

An example:

This is an example how an abstract syntax tree could be modelled in Nim
type

NodeKind = enum # the different node types
nkInt, # a leaf with an integer value
nkFloat, # a leaf with a float value
nkString, # a leaf with a string value
nkAdd, # an addition
nkSub, # a subtraction
nkIf # an if statement

Node = ref NodeObj
NodeObj = object
case kind: NodeKind # the ‘‘kind‘‘ field is the discriminator
of nkInt: intVal: int
of nkFloat: floatVal: float
of nkString: strVal: string
of nkAdd, nkSub:

25

leftOp, rightOp: Node
of nkIf:

condition, thenPart, elsePart: Node

create a new case object:
var n = Node(kind: nkIf, condition: nil)
accessing n.thenPart is valid because the ‘‘nkIf‘‘ branch is active:
n.thenPart = Node(kind: nkFloat, floatVal: 2.0)

the following statement raises an ‘FieldError‘ exception, because
n.kind’s value does not fit and the ‘‘nkString‘‘ branch is not active:
n.strVal = ""

invalid: would change the active object branch:
n.kind = nkInt

var x = Node(kind: nkAdd, leftOp: Node(kind: nkInt, intVal: 4),
rightOp: Node(kind: nkInt, intVal: 2))

valid: does not change the active object branch:
x.kind = nkSub

As can been seen from the example, an advantage to an object hierarchy is that no casting between
different object types is needed. Yet, access to invalid object fields raises an exception.

The syntax of case in an object declaration follows closely the syntax of the case statement: The
branches in a case section may be indented too.

In the example the kind field is called the discriminator: For safety its address cannot be taken and
assignments to it are restricted: The new value must not lead to a change of the active object branch.
For an object branch switch system.reset has to be used. Also, when the fields of a particular branch
are specified during object construction, the correct value for the discriminator must be supplied at
compile-time.

6.17 Package level objects
Every Nim module resides in a (nimble) package. An object type can be attached to the package it
resides in. If that is done, the type can be referenced from other modules as an incomplete object type.
This features allows to break up recursive type dependencies accross module boundaries. Incomplete
object types are always passed byref and can only be used in pointer like contexts (var/ref/ptr
IncompleteObject) in general since the compiler does not yet know the size of the object. To complete
an incomplete object the package pragma has to be used. package implies byref.

As long as a type T is incomplete sizeof(T) or "runtime type information" for T is not available.
Example:

module A (in an arbitrary package)
type

Pack.SomeObject = object ## declare as incomplete object of package ’Pack’
Triple = object

a, b, c: ref SomeObject ## pointers to incomplete objects are allowed

Incomplete objects can be used as parameters:
proc myproc(x: SomeObject) = discard

module B (in package "Pack")
type

SomeObject* {.package.} = object ## Use ’package’ to complete the object
s, t: string
x, y: int

6.18 Set type
The set type models the mathematical notion of a set. The set’s basetype can only be an ordinal type of
a certain size, namely:

• int8-int16
• uint8/byte-uint16

26

operation meaning
A + B union of two sets
A * B intersection of two sets
A - B difference of two sets (A without B’s elements)
A == B set equality
A <= B subset relation (A is subset of B or equal to B)
A < B strong subset relation (A is a real subset of B)
e in A set membership (A contains element e)
e notin A A does not contain element e
contains(A, e) A contains element e
card(A) the cardinality of A (number of elements in A)
incl(A, elem) same as A = A + {elem}
excl(A, elem) same as A = A - {elem}

• char

• enum

or equivalent. The reason is that sets are implemented as high performance bit vectors. Attempting to
declare a set with a larger type will result in an error:

var s: set[int64] # Error: set is too large

Sets can be constructed via the set constructor: {} is the empty set. The empty set is type compatible
with any concrete set type. The constructor can also be used to include elements (and ranges of elements):

type
CharSet = set[char]

var
x: CharSet

x = {’a’..’z’, ’0’..’9’} # This constructs a set that contains the
letters from ’a’ to ’z’ and the digits
from ’0’ to ’9’

These operations are supported by sets:
Sets are often used to define a type for the flags of a procedure. This is a much cleaner (and type

safe) solution than just defining integer constants that should be or’ed together.

6.19 Reference and pointer types
References (similar to pointers in other programming languages) are a way to introduce many-to-one
relationships. This means different references can point to and modify the same location in memory (also
called aliasing).

Nim distinguishes between traced and untraced references. Untraced references are also called pointers.
Traced references point to objects of a garbage collected heap, untraced references point to manually
allocated objects or to objects somewhere else in memory. Thus untraced references are unsafe. However
for certain low-level operations (accessing the hardware) untraced references are unavoidable.

Traced references are declared with the ref keyword, untraced references are declared with the ptr
keyword. In general, a ptr T is implicitly convertible to the pointer type.

An empty subscript [] notation can be used to derefer a reference, the addr procedure returns the
address of an item. An address is always an untraced reference. Thus the usage of addr is an unsafe
feature.

The . (access a tuple/object field operator) and [] (array/string/sequence index operator) operators
perform implicit dereferencing operations for reference types:

type
Node = ref NodeObj
NodeObj = object
le, ri: Node
data: int

27

var
n: Node

new(n)
n.data = 9
no need to write n[].data; in fact n[].data is highly discouraged!

Automatic dereferencing is also performed for the first argument of a routine call. But currently this
feature has to be only enabled via {.experimental: "implicitDeref".}:
{.experimental: "implicitDeref".}

proc depth(x: NodeObj): int = ...

var
n: Node

new(n)
echo n.depth
no need to write n[].depth either

In order to simplify structural type checking, recursive tuples are not valid:
invalid recursion
type MyTuple = tuple[a: ref MyTuple]

Likewise T = ref T is an invalid type.
As a syntactical extension object types can be anonymous if declared in a type section via the

ref object or ptr object notations. This feature is useful if an object should only gain reference
semantics:
type

Node = ref object
le, ri: Node
data: int

To allocate a new traced object, the built-in procedure new has to be used. To deal with untraced
memory, the procedures alloc, dealloc and realloc can be used. The documentation of the system
module contains further information.

If a reference points to nothing, it has the value nil.
Special care has to be taken if an untraced object contains traced objects like traced references, strings

or sequences: in order to free everything properly, the built-in procedure GCunref has to be called before
freeing the untraced memory manually:
type

Data = tuple[x, y: int, s: string]

allocate memory for Data on the heap:
var d = cast[ptr Data](alloc0(sizeof(Data)))

create a new string on the garbage collected heap:
d.s = "abc"

tell the GC that the string is not needed anymore:
GCunref(d.s)

free the memory:
dealloc(d)

Without the GCunref call the memory allocated for the d.s string would never be freed. The
example also demonstrates two important features for low level programming: the sizeof proc returns
the size of a type or value in bytes. The cast operator can circumvent the type system: the compiler is
forced to treat the result of the alloc0 call (which returns an untyped pointer) as if it would have the
type ptr Data. Casting should only be done if it is unavoidable: it breaks type safety and bugs can
lead to mysterious crashes.

Note: The example only works because the memory is initialized to zero (alloc0 instead of alloc
does this): d.s is thus initialized to binary zero which the string assignment can handle. One needs to
know low level details like this when mixing garbage collected data with unmanaged memory.

28

6.20 Not nil annotation
All types for that nil is a valid value can be annotated to exclude nil as a valid value with the not
nil annotation:

type
PObject = ref TObj not nil
TProc = (proc (x, y: int)) not nil

proc p(x: PObject) =
echo "not nil"

compiler catches this:
p(nil)

and also this:
var x: PObject
p(x)

The compiler ensures that every code path initializes variables which contain non nilable pointers.
The details of this analysis are still to be specified here.

6.21 Procedural type
A procedural type is internally a pointer to a procedure. nil is an allowed value for variables of a
procedural type. Nim uses procedural types to achieve functional programming techniques.

Examples:

proc printItem(x: int) = ...

proc forEach(c: proc (x: int) {.cdecl.}) =
...

forEach(printItem) # this will NOT compile because calling conventions differ

type
OnMouseMove = proc (x, y: int) {.closure.}

proc onMouseMove(mouseX, mouseY: int) =
has default calling convention
echo "x: ", mouseX, " y: ", mouseY

proc setOnMouseMove(mouseMoveEvent: OnMouseMove) = discard

ok, ’onMouseMove’ has the default calling convention, which is compatible
to ’closure’:
setOnMouseMove(onMouseMove)

A subtle issue with procedural types is that the calling convention of the procedure influences the
type compatibility: procedural types are only compatible if they have the same calling convention. As
a special extension, a procedure of the calling convention nimcall can be passed to a parameter that
expects a proc of the calling convention closure.

Nim supports these calling conventions:

nimcall is the default convention used for a Nim proc. It is the same as fastcall, but only for C
compilers that support fastcall.

closure is the default calling convention for a procedural type that lacks any pragma annotations.
It indicates that the procedure has a hidden implicit parameter (an environment). Proc vars that
have the calling convention closure take up two machine words: One for the proc pointer and
another one for the pointer to implicitly passed environment.

stdcall This the stdcall convention as specified by Microsoft. The generated C procedure is declared
with the __stdcall keyword.

29

cdecl The cdecl convention means that a procedure shall use the same convention as the C compiler.
Under windows the generated C procedure is declared with the __cdecl keyword.

safecall This is the safecall convention as specified by Microsoft. The generated C procedure is declared
with the __safecall keyword. The word safe refers to the fact that all hardware registers shall
be pushed to the hardware stack.

inline The inline convention means the the caller should not call the procedure, but inline its code
directly. Note that Nim does not inline, but leaves this to the C compiler; it generates __inline
procedures. This is only a hint for the compiler: it may completely ignore it and it may inline
procedures that are not marked as inline.

fastcall Fastcall means different things to different C compilers. One gets whatever the C __fastcall
means.

syscall The syscall convention is the same as __syscall in C. It is used for interrupts.

noconv The generated C code will not have any explicit calling convention and thus use the C compiler’s
default calling convention. This is needed because Nim’s default calling convention for procedures
is fastcall to improve speed.

Most calling conventions exist only for the Windows 32-bit platform.
The default calling convention is nimcall, unless it is an inner proc (a proc inside of a proc). For an

inner proc an analysis is performed whether it accesses its environment. If it does so, it has the calling
convention closure, otherwise it has the calling convention nimcall.

6.22 Distinct type
A distinct type is new type derived from a base type that is incompatible with its base type. In
particular, it is an essential property of a distinct type that it does not imply a subtype relation
between it and its base type. Explicit type conversions from a distinct type to its base type and vice
versa are allowed. See also distinctBase to get the reverse operation.

6.22.1 Modelling currencies

A distinct type can be used to model different physical units with a numerical base type, for example.
The following example models currencies.

Different currencies should not be mixed in monetary calculations. Distinct types are a perfect tool
to model different currencies:

type
Dollar = distinct int
Euro = distinct int

var
d: Dollar
e: Euro

echo d + 12
Error: cannot add a number with no unit and a ‘‘Dollar‘‘

Unfortunately, d + 12.Dollar is not allowed either, because + is defined for int (among others),
not for Dollar. So a + for dollars needs to be defined:

proc ‘+‘ (x, y: Dollar): Dollar =
result = Dollar(int(x) + int(y))

It does not make sense to multiply a dollar with a dollar, but with a number without unit; and the
same holds for division:

30

proc ‘*‘ (x: Dollar, y: int): Dollar =
result = Dollar(int(x) * y)

proc ‘*‘ (x: int, y: Dollar): Dollar =
result = Dollar(x * int(y))

proc ‘div‘ ...

This quickly gets tedious. The implementations are trivial and the compiler should not generate all
this code only to optimize it away later - after all + for dollars should produce the same binary code as +
for ints. The pragma borrow has been designed to solve this problem; in principle it generates the above
trivial implementations:

proc ‘*‘ (x: Dollar, y: int): Dollar {.borrow.}
proc ‘*‘ (x: int, y: Dollar): Dollar {.borrow.}
proc ‘div‘ (x: Dollar, y: int): Dollar {.borrow.}

The borrow pragma makes the compiler use the same implementation as the proc that deals with
the distinct type’s base type, so no code is generated.

But it seems all this boilerplate code needs to be repeated for the Euro currency. This can be solved
with templates18.

template additive(typ: type) =
proc ‘+‘ *(x, y: typ): typ {.borrow.}
proc ‘-‘ *(x, y: typ): typ {.borrow.}

unary operators:
proc ‘+‘ *(x: typ): typ {.borrow.}
proc ‘-‘ *(x: typ): typ {.borrow.}

template multiplicative(typ, base: type) =
proc ‘*‘ *(x: typ, y: base): typ {.borrow.}
proc ‘*‘ *(x: base, y: typ): typ {.borrow.}
proc ‘div‘ *(x: typ, y: base): typ {.borrow.}
proc ‘mod‘ *(x: typ, y: base): typ {.borrow.}

template comparable(typ: type) =
proc ‘<‘ * (x, y: typ): bool {.borrow.}
proc ‘<=‘ * (x, y: typ): bool {.borrow.}
proc ‘==‘ * (x, y: typ): bool {.borrow.}

template defineCurrency(typ, base: untyped) =
type

typ* = distinct base
additive(typ)
multiplicative(typ, base)
comparable(typ)

defineCurrency(Dollar, int)
defineCurrency(Euro, int)

The borrow pragma can also be used to annotate the distinct type to allow certain builtin operations
to be lifted:

type
Foo = object

a, b: int
s: string

Bar {.borrow: ‘.‘.} = distinct Foo

var bb: ref Bar
new bb
field access now valid
bb.a = 90
bb.s = "abc"

Currently only the dot accessor can be borrowed in this way.

31

6.22.2 Avoiding SQL injection attacks

An SQL statement that is passed from Nim to an SQL database might be modelled as a string. However,
using string templates and filling in the values is vulnerable to the famous SQL injection attack:

import strutils

proc query(db: DbHandle, statement: string) = ...

var
username: string

db.query("SELECT FROM users WHERE name = ’$1’" % username)
Horrible security hole, but the compiler does not mind!

This can be avoided by distinguishing strings that contain SQL from strings that don’t. Distinct
types provide a means to introduce a new string type SQL that is incompatible with string:

type
SQL = distinct string

proc query(db: DbHandle, statement: SQL) = ...

var
username: string

db.query("SELECT FROM users WHERE name = ’$1’" % username)
Error at compile time: ‘query‘ expects an SQL string!

It is an essential property of abstract types that they do not imply a subtype relation between the
abstract type and its base type. Explicit type conversions from string to SQL are allowed:

import strutils, sequtils

proc properQuote(s: string): SQL =
quotes a string properly for an SQL statement
return SQL(s)

proc ‘%‘ (frmt: SQL, values: openarray[string]): SQL =
quote each argument:
let v = values.mapIt(SQL, properQuote(it))
we need a temporary type for the type conversion :-(
type StrSeq = seq[string]
call strutils.‘%‘:
result = SQL(string(frmt) % StrSeq(v))

db.query("SELECT FROM users WHERE name = ’$1’".SQL % [username])

Now we have compile-time checking against SQL injection attacks. Since "".SQL is transformed
to SQL("") no new syntax is needed for nice looking SQL string literals. The hypothetical SQL type
actually exists in the library as the TSqlQuery type of modules like db_sqlite.

6.23 Void type
The void type denotes the absence of any type. Parameters of type void are treated as non-existent,
void as a return type means that the procedure does not return a value:

proc nothing(x, y: void): void =
echo "ha"

nothing() # writes "ha" to stdout

The void type is particularly useful for generic code:

proc callProc[T](p: proc (x: T), x: T) =
when T is void:

p()

32

db_sqlite.html#TSqlQuery
db_sqlite.html

else:
p(x)

proc intProc(x: int) = discard
proc emptyProc() = discard

callProc[int](intProc, 12)
callProc[void](emptyProc)

However, a void type cannot be inferred in generic code:

callProc(emptyProc)
Error: type mismatch: got (proc ())
but expected one of:
callProc(p: proc (T), x: T)

The void type is only valid for parameters and return types; other symbols cannot have the type
void.

6.24 Auto type
The auto type can only be used for return types and parameters. For return types it causes the compiler
to infer the type from the routine body:

proc returnsInt(): auto = 1984

For parameters it currently creates implicitly generic routines:

proc foo(a, b: auto) = discard

Is the same as:

proc foo[T1, T2](a: T1, b: T2) = discard

However later versions of the language might change this to mean "infer the parameters’ types from
the body". Then the above foo would be rejected as the parameters’ types can not be inferred from an
empty discard statement.

7 Type relations
The following section defines several relations on types that are needed to describe the type checking
done by the compiler.

7.1 Type equality
Nim uses structural type equivalence for most types. Only for objects, enumerations and distinct types
name equivalence is used. The following algorithm, in pseudo-code, determines type equality:

proc typeEqualsAux(a, b: PType,
s: var HashSet[(PType, PType)]): bool =

if (a,b) in s: return true
incl(s, (a,b))
if a.kind == b.kind:

case a.kind
of int, intXX, float, floatXX, char, string, cstring, pointer,

bool, nil, void:
leaf type: kinds identical; nothing more to check
result = true

of ref, ptr, var, set, seq, openarray:
result = typeEqualsAux(a.baseType, b.baseType, s)

of range:
result = typeEqualsAux(a.baseType, b.baseType, s) and

(a.rangeA == b.rangeA) and (a.rangeB == b.rangeB)
of array:

33

result = typeEqualsAux(a.baseType, b.baseType, s) and
typeEqualsAux(a.indexType, b.indexType, s)

of tuple:
if a.tupleLen == b.tupleLen:

for i in 0..a.tupleLen-1:
if not typeEqualsAux(a[i], b[i], s): return false

result = true
of object, enum, distinct:

result = a == b
of proc:
result = typeEqualsAux(a.parameterTuple, b.parameterTuple, s) and

typeEqualsAux(a.resultType, b.resultType, s) and
a.callingConvention == b.callingConvention

proc typeEquals(a, b: PType): bool =
var s: HashSet[(PType, PType)] = {}
result = typeEqualsAux(a, b, s)

Since types are graphs which can have cycles, the above algorithm needs an auxiliary set s to detect
this case.

7.2 Type equality modulo type distinction
The following algorithm (in pseudo-code) determines whether two types are equal with no respect to
distinct types. For brevity the cycle check with an auxiliary set s is omitted:

proc typeEqualsOrDistinct(a, b: PType): bool =
if a.kind == b.kind:

case a.kind
of int, intXX, float, floatXX, char, string, cstring, pointer,

bool, nil, void:
leaf type: kinds identical; nothing more to check
result = true

of ref, ptr, var, set, seq, openarray:
result = typeEqualsOrDistinct(a.baseType, b.baseType)

of range:
result = typeEqualsOrDistinct(a.baseType, b.baseType) and
(a.rangeA == b.rangeA) and (a.rangeB == b.rangeB)

of array:
result = typeEqualsOrDistinct(a.baseType, b.baseType) and

typeEqualsOrDistinct(a.indexType, b.indexType)
of tuple:

if a.tupleLen == b.tupleLen:
for i in 0..a.tupleLen-1:

if not typeEqualsOrDistinct(a[i], b[i]): return false
result = true

of distinct:
result = typeEqualsOrDistinct(a.baseType, b.baseType)

of object, enum:
result = a == b

of proc:
result = typeEqualsOrDistinct(a.parameterTuple, b.parameterTuple) and

typeEqualsOrDistinct(a.resultType, b.resultType) and
a.callingConvention == b.callingConvention

elif a.kind == distinct:
result = typeEqualsOrDistinct(a.baseType, b)

elif b.kind == distinct:
result = typeEqualsOrDistinct(a, b.baseType)

7.3 Subtype relation
If object a inherits from b, a is a subtype of b. This subtype relation is extended to the types var, ref,
ptr:

proc isSubtype(a, b: PType): bool =
if a.kind == b.kind:

case a.kind
of object:

34

var aa = a.baseType
while aa != nil and aa != b: aa = aa.baseType
result = aa == b

of var, ref, ptr:
result = isSubtype(a.baseType, b.baseType)

7.4 Covariance
Covariance in Nim can be introduced only though pointer-like types such as ptr and ref. Sequence,
Array and OpenArray types, instantiated with pointer-like types will be considered covariant if and only
if they are also immutable. The introduction of a var modifier or additional ptr or ref indirections
would result in invariant treatment of these types.

proc types are currently always invariant, but future versions of Nim may relax this rule.
User-defined generic types may also be covariant with respect to some of their parameters. By default,

all generic params are considered invariant, but you may choose the apply the prefix modifier in to a
parameter to make it contravariant or out to make it covariant:

type
AnnotatedPtr[out T] =

metadata: MyTypeInfo
p: ref T

RingBuffer[out T] =
startPos: int
data: seq[T]

Action {.importcpp: "std::function<void (’0)>".} [in T] = object

When the designated generic parameter is used to instantiate a pointer-like type as in the case of
AnnotatedPtr above, the resulting generic type will also have pointer-like covariance:

type
GuiWidget = object of RootObj
Button = object of GuiWidget
ComboBox = object of GuiWidget

var
widgetPtr: AnnotatedPtr[GuiWidget]
buttonPtr: AnnotatedPtr[Button]

...

proc drawWidget[T](x: AnnotatedPtr[GuiWidget]) = ...

you can call procs expecting base types by supplying a derived type
drawWidget(buttonPtr)

and you can convert more-specific pointer types to more general ones
widgetPtr = buttonPtr

Just like with regular pointers, covariance will be enabled only for immutable values:

proc makeComboBox[T](x: var AnnotatedPtr[GuiWidget]) =
x.p = new(ComboBox)

makeComboBox(buttonPtr) # Error, AnnotatedPtr[Button] cannot be modified
to point to a ComboBox

On the other hand, in the RingBuffer example above, the designated generic param is used to instan-
tiate the non-pointer seq type, which means that the resulting generic type will have covariance that
mimics an array or sequence (i.e. it will be covariant only when instantiated with ptr and ref types):

type
Base = object of RootObj
Derived = object of Base

35

proc consumeBaseValues(b: RingBuffer[Base]) = ...

var derivedValues: RingBuffer[Derived]

consumeBaseValues(derivedValues) # Error, Base and Derived values may differ
in size

proc consumeBasePointers(b: RingBuffer[ptr Base]) = ...

var derivedPointers: RingBuffer[ptr Derived]

consumeBaseValues(derivedPointers) # This is legal

Please note that Nim will treat the user-defined pointer-like types as proper alternatives to the built-
in pointer types. That is, types such as seq[AnnotatedPtr[T]] or RingBuffer[AnnotatedPtr[T]] will also
be considered covariant and you can create new pointer-like types by instantiating other user-defined
pointer-like types.

The contravariant parameters introduced with the in modifier are currently useful only when inter-
facing with imported types having such semantics.

7.5 Convertible relation
A type a is implicitly convertible to type b iff the following algorithm returns true:

XXX range types?
proc isImplicitlyConvertible(a, b: PType): bool =

if isSubtype(a, b) or isCovariant(a, b):
return true

case a.kind
of int: result = b in {int8, int16, int32, int64, uint, uint8, uint16,

uint32, uint64, float, float32, float64}
of int8: result = b in {int16, int32, int64, int}
of int16: result = b in {int32, int64, int}
of int32: result = b in {int64, int}
of uint: result = b in {uint32, uint64}
of uint8: result = b in {uint16, uint32, uint64}
of uint16: result = b in {uint32, uint64}
of uint32: result = b in {uint64}
of float: result = b in {float32, float64}
of float32: result = b in {float64, float}
of float64: result = b in {float32, float}
of seq:

result = b == openArray and typeEquals(a.baseType, b.baseType)
of array:

result = b == openArray and typeEquals(a.baseType, b.baseType)
if a.baseType == char and a.indexType.rangeA == 0:

result = b = cstring
of cstring, ptr:

result = b == pointer
of string:

result = b == cstring

A type a is explicitly convertible to type b iff the following algorithm returns true:

proc isIntegralType(t: PType): bool =
result = isOrdinal(t) or t.kind in {float, float32, float64}

proc isExplicitlyConvertible(a, b: PType): bool =
result = false
if isImplicitlyConvertible(a, b): return true
if typeEqualsOrDistinct(a, b): return true
if isIntegralType(a) and isIntegralType(b): return true
if isSubtype(a, b) or isSubtype(b, a): return true

The convertible relation can be relaxed by a user-defined type converter.

converter toInt(x: char): int = result = ord(x)

36

var
x: int
chr: char = ’a’

implicit conversion magic happens here
x = chr
echo x # => 97
you can use the explicit form too
x = chr.toInt
echo x # => 97

The type conversion T(a) is an L-value if a is an L-value and typeEqualsOrDistinct(T,
type(a)) holds.

7.6 Assignment compatibility
An expression b can be assigned to an expression a iff a is an l-value and isImplicitlyConvertible(b.typ,
a.typ) holds.

8 Overloading resolution
In a call p(args) the routine p that matches best is selected. If multiple routines match equally well,
the ambiguity is reported at compiletime.

Every arg in args needs to match. There are multiple different categories how an argument can match.
Let f be the formal parameter’s type and a the type of the argument.

1. Exact match: a and f are of the same type.

2. Literal match: a is an integer literal of value v and f is a signed or unsigned integer type and v is
in f’s range. Or: a is a floating point literal of value v and f is a floating point type and v is in
f’s range.

3. Generic match: f is a generic type and a matches, for instance a is int and f is a generic
(constrained) parameter type (like in [T] or [T: int|char].

4. Subrange or subtype match: a is a range[T] and T matches f exactly. Or: a is a subtype of f.

5. Integral conversion match: a is convertible to f and f and a is some integer or floating point type.

6. Conversion match: a is convertible to f, possibly via a user defined converter.

These matching categories have a priority: An exact match is better than a literal match and that is
better than a generic match etc. In the following count(p, m) counts the number of matches of the
matching category m for the routine p.

A routine p matches better than a routine q if the following algorithm returns true:

for each matching category m in ["exact match", "literal match",
"generic match", "subtype match",
"integral match", "conversion match"]:

if count(p, m) > count(q, m): return true
elif count(p, m) == count(q, m):

discard "continue with next category m"
else:

return false
return "ambiguous"

Some examples:

proc takesInt(x: int) = echo "int"
proc takesInt[T](x: T) = echo "T"
proc takesInt(x: int16) = echo "int16"

takesInt(4) # "int"

37

var x: int32
takesInt(x) # "T"
var y: int16
takesInt(y) # "int16"
var z: range[0..4] = 0
takesInt(z) # "T"

If this algorithm returns "ambiguous" further disambiguation is performed: If the argument a matches
both the parameter type f of p and g of q via a subtyping relation, the inheritance depth is taken into
account:

type
A = object of RootObj
B = object of A
C = object of B

proc p(obj: A) =
echo "A"

proc p(obj: B) =
echo "B"

var c = C()
not ambiguous, calls ’B’, not ’A’ since B is a subtype of A
but not vice versa:
p(c)

proc pp(obj: A, obj2: B) = echo "A B"
proc pp(obj: B, obj2: A) = echo "B A"

but this is ambiguous:
pp(c, c)

Likewise for generic matches the most specialized generic type (that still matches) is preferred:

proc gen[T](x: ref ref T) = echo "ref ref T"
proc gen[T](x: ref T) = echo "ref T"
proc gen[T](x: T) = echo "T"

var ri: ref int
gen(ri) # "ref T"

8.1 Overloading based on ’var T’
If the formal parameter f is of type var T in addition to the ordinary type checking, the argument is
checked to be an l-value. var T matches better than just T then.

proc sayHi(x: int): string =
matches a non-var int
result = $x

proc sayHi(x: var int): string =
matches a var int
result = $(x + 10)

proc sayHello(x: int) =
var m = x # a mutable version of x
echo sayHi(x) # matches the non-var version of sayHi
echo sayHi(m) # matches the var version of sayHi

sayHello(3) # 3
13

8.2 Automatic dereferencing
If the experimental mode is active and no other match is found, the first argument a is dereferenced
automatically if it’s a pointer type and overloading resolution is tried with a[] instead.

38

8.3 Automatic self insertions
Note: The .this pragma is deprecated and should not be used anymore.

Starting with version 0.14 of the language, Nim supports field as a shortcut for self.field
comparable to the this keyword in Java or C++. This feature has to be explicitly enabled via a {.this:
self.} statement pragma. This pragma is active for the rest of the module:

type
Parent = object of RootObj

parentField: int
Child = object of Parent
childField: int

{.this: self.}
proc sumFields(self: Child): int =
result = parentField + childField
is rewritten to:
result = self.parentField + self.childField

Instead of self any other identifier can be used too, but {.this: self.} will become the default
directive for the whole language eventually.

In addition to fields, routine applications are also rewritten, but only if no other interpretation of the
call is possible:

proc test(self: Child) =
echo childField, " ", sumFields()
is rewritten to:
echo self.childField, " ", sumFields(self)
but NOT rewritten to:
echo self, self.childField, " ", sumFields(self)

8.4 Lazy type resolution for untyped
Note: An unresolved expression is an expression for which no symbol lookups and no type checking have
been performed.

Since templates and macros that are not declared as immediate participate in overloading resolution
it’s essential to have a way to pass unresolved expressions to a template or macro. This is what the meta-
type untyped accomplishes:

template rem(x: untyped) = discard

rem unresolvedExpression(undeclaredIdentifier)

A parameter of type untyped always matches any argument (as long as there is any argument passed
to it).

But one has to watch out because other overloads might trigger the argument’s resolution:

template rem(x: untyped) = discard
proc rem[T](x: T) = discard

undeclared identifier: ’unresolvedExpression’
rem unresolvedExpression(undeclaredIdentifier)

untyped and varargs[untyped] are the only metatype that are lazy in this sense, the other
metatypes typed and type are not lazy.

8.5 Varargs matching
See Varargs.

39

9 Statements and expressions
Nim uses the common statement/expression paradigm: Statements do not produce a value in contrast
to expressions. However, some expressions are statements.

Statements are separated into simple statements and complex statements. Simple statements are
statements that cannot contain other statements like assignments, calls or the return statement; com-
plex statements can contain other statements. To avoid the dangling else problem, complex statements
always have to be indented. The details can be found in the grammar.

9.1 Statement list expression
Statements can also occur in an expression context that looks like (stmt1; stmt2; ...; ex). This
is called an statement list expression or (;). The type of (stmt1; stmt2; ...; ex) is the type of
ex. All the other statements must be of type void. (One can use discard to produce a void type.)
(;) does not introduce a new scope.

9.2 Discard statement
Example:

proc p(x, y: int): int =
result = x + y

discard p(3, 4) # discard the return value of ‘p‘

The discard statement evaluates its expression for side-effects and throws the expression’s resulting
value away.

Ignoring the return value of a procedure without using a discard statement is a static error.
The return value can be ignored implicitly if the called proc/iterator has been declared with the

discardable pragma:

proc p(x, y: int): int {.discardable.} =
result = x + y

p(3, 4) # now valid

An empty discard statement is often used as a null statement:

proc classify(s: string) =
case s[0]
of SymChars, ’_’: echo "an identifier"
of ’0’..’9’: echo "a number"
else: discard

9.3 Void context
In a list of statements every expression except the last one needs to have the type void. In addition to
this rule an assignment to the builtin result symbol also triggers a mandatory void context for the
subsequent expressions:

proc invalid*(): string =
result = "foo"
"invalid" # Error: value of type ’string’ has to be discarded

proc valid*(): string =
let x = 317
"valid"

40

Type default value
any integer type 0
any float 0.0
char ’\0’
bool false
ref or pointer type nil
procedural type nil
sequence @[]
string ""
tuple[x: A, y: B, ...] (default(A), default(B), ...) (analogous for ob-

jects)
array[0..., T] [default(T), ...]
range[T] default(T); this may be out of the valid range
T = enum cast[T](0); this may be an invalid value

9.4 Var statement
Var statements declare new local and global variables and initialize them. A comma separated list of
variables can be used to specify variables of the same type:

var
a: int = 0
x, y, z: int

If an initializer is given the type can be omitted: the variable is then of the same type as the initializing
expression. Variables are always initialized with a default value if there is no initializing expression. The
default value depends on the type and is always a zero in binary.

The implicit initialization can be avoided for optimization reasons with the noinit pragma:

var
a {.noInit.}: array[0..1023, char]

If a proc is annotated with the noinit pragma this refers to its implicit result variable:

proc returnUndefinedValue: int {.noinit.} = discard

The implicit initialization can be also prevented by the requiresInit type pragma. The compiler
requires an explicit initialization for the object and all of its fields. However it does a control flow
analysis to prove the variable has been initialized and does not rely on syntactic properties:

type
MyObject = object {.requiresInit.}

proc p() =
the following is valid:
var x: MyObject
if someCondition():

x = a()
else:
x = a()

use x

9.5 let statement
A let statement declares new local and global single assignment variables and binds a value to them.
The syntax is the same as that of the var statement, except that the keyword var is replaced by the
keyword let. Let variables are not l-values and can thus not be passed to var parameters nor can their
address be taken. They cannot be assigned new values.

For let variables the same pragmas are available as for ordinary variables.

41

9.6 Tuple unpacking
In a var or let statement tuple unpacking can be performed. The special identifier _ can be used to
ignore some parts of the tuple:
proc returnsTuple(): (int, int, int) = (4, 2, 3)

let (x, _, z) = returnsTuple()

9.7 Const section
Constants are symbols which are bound to a value. The constant’s value cannot change. The compiler
must be able to evaluate the expression in a constant declaration at compile time.

Nim contains a sophisticated compile-time evaluator, so procedures which have no side-effect can be
used in constant expressions too:
import strutils
const

constEval = contains("abc", ’b’) # computed at compile time!

The rules for compile-time computability are:

1. Literals are compile-time computable.

2. Type conversions are compile-time computable.

3. Procedure calls of the form p(X) are compile-time computable if p is a proc without side-effects (see
the noSideEffect pragma for details) and if X is a (possibly empty) list of compile-time computable
arguments.

Constants cannot be of type ptr, ref or var, nor can they contain such a type.

9.8 Static statement/expression
A static statement/expression can be used to enforce compile time evaluation explicitly. Enforced compile
time evaluation can even evaluate code that has side effects:
static:

echo "echo at compile time"

It’s a static error if the compiler cannot perform the evaluation at compile time.
The current implementation poses some restrictions for compile time evaluation: Code which contains

cast or makes use of the foreign function interface cannot be evaluated at compile time. Later versions
of Nim will support the FFI at compile time.

9.9 If statement
Example:
var name = readLine(stdin)

if name == "Andreas":
echo "What a nice name!"

elif name == "":
echo "Don’t you have a name?"

else:
echo "Boring name..."

The if statement is a simple way to make a branch in the control flow: The expression after the
keyword if is evaluated, if it is true the corresponding statements after the : are executed. Otherwise
the expression after the elif is evaluated (if there is an elif branch), if it is true the corresponding
statements after the : are executed. This goes on until the last elif. If all conditions fail, the else
part is executed. If there is no else part, execution continues with the next statement.

In if statements new scopes begin immediately after the if/elif/else keywords and ends after
the corresponding then block. For visualization purposes the scopes have been enclosed in {| |} in the
following example:

42

if {| (let m = input =~ re"(\w+)=\w+"; m.isMatch):
echo "key ", m[0], " value ", m[1] |}

elif {| (let m = input =~ re""; m.isMatch):
echo "new m in this scope" |}

else: {|
echo "m not declared here" |}

9.10 Case statement
Example:
case readline(stdin)
of "delete-everything", "restart-computer":
echo "permission denied"

of "go-for-a-walk": echo "please yourself"
else: echo "unknown command"

indentation of the branches is also allowed; and so is an optional colon
after the selecting expression:
case readline(stdin):
of "delete-everything", "restart-computer":

echo "permission denied"
of "go-for-a-walk": echo "please yourself"
else: echo "unknown command"

The case statement is similar to the if statement, but it represents a multi-branch selection. The
expression after the keyword case is evaluated and if its value is in a slicelist the corresponding statements
(after the of keyword) are executed. If the value is not in any given slicelist the else part is executed. If
there is no else part and not all possible values that expr can hold occur in a slicelist, a static error
occurs. This holds only for expressions of ordinal types. "All possible values" of expr are determined by
expr’s type. To suppress the static error an else part with an empty discard statement should be
used.

For non ordinal types it is not possible to list every possible value and so these always require an
else part.

As case statements perform compile-time exhaustiveness checks, the value in every of branch must
be known at compile time. This fact is also exploited to generate more performant code.

As a special semantic extension, an expression in an of branch of a case statement may evaluate to
a set or array constructor; the set or array is then expanded into a list of its elements:
const

SymChars: set[char] = {’a’..’z’, ’A’..’Z’, ’\x80’..’\xFF’}

proc classify(s: string) =
case s[0]
of SymChars, ’_’: echo "an identifier"
of ’0’..’9’: echo "a number"
else: echo "other"

is equivalent to:
proc classify(s: string) =
case s[0]
of ’a’..’z’, ’A’..’Z’, ’\x80’..’\xFF’, ’_’: echo "an identifier"
of ’0’..’9’: echo "a number"
else: echo "other"

9.11 When statement
Example:
when sizeof(int) == 2:
echo "running on a 16 bit system!"

elif sizeof(int) == 4:
echo "running on a 32 bit system!"

elif sizeof(int) == 8:
echo "running on a 64 bit system!"

else:
echo "cannot happen!"

43

The when statement is almost identical to the if statement with some exceptions:

• Each condition (expr) has to be a constant expression (of type bool).

• The statements do not open a new scope.

• The statements that belong to the expression that evaluated to true are translated by the com-
piler, the other statements are not checked for semantics! However, each condition is checked for
semantics.

The when statement enables conditional compilation techniques. As a special syntactic extension, the
when construct is also available within object definitions.

9.12 When nimvm statement
nimvm is a special symbol, that may be used as expression of when nimvm statement to differentiate
execution path between runtime and compile time.

Example:

proc someProcThatMayRunInCompileTime(): bool =
when nimvm:
This code runs in compile time
result = true

else:
This code runs in runtime
result = false

const ctValue = someProcThatMayRunInCompileTime()
let rtValue = someProcThatMayRunInCompileTime()
assert(ctValue == true)
assert(rtValue == false)

when nimvm statement must meet the following requirements:

• Its expression must always be nimvm. More complex expressions are not allowed.

• It must not contain elif branches.

• It must contain else branch.

• Code in branches must not affect semantics of the code that follows the when nimvm statement.
E.g. it must not define symbols that are used in the following code.

9.13 Return statement
Example:

return 40+2

The return statement ends the execution of the current procedure. It is only allowed in procedures.
If there is an expr, this is syntactic sugar for:

result = expr
return result

return without an expression is a short notation for return result if the proc has a return
type. The result variable is always the return value of the procedure. It is automatically declared by the
compiler. As all variables, result is initialized to (binary) zero:

proc returnZero(): int =
implicitly returns 0

44

9.14 Yield statement
Example:
yield (1, 2, 3)

The yield statement is used instead of the return statement in iterators. It is only valid in iterators.
Execution is returned to the body of the for loop that called the iterator. Yield does not end the iteration
process, but execution is passed back to the iterator if the next iteration starts. See the section about
iterators (Iterators and the for statement12) for further information.

9.15 Block statement
Example:
var found = false
block myblock:

for i in 0..3:
for j in 0..3:

if a[j][i] == 7:
found = true
break myblock # leave the block, in this case both for-loops

echo found

The block statement is a means to group statements to a (named) block. Inside the block, the
break statement is allowed to leave the block immediately. A break statement can contain a name of
a surrounding block to specify which block is to leave.

9.16 Break statement
Example:
break

The break statement is used to leave a block immediately. If symbol is given, it is the name of the
enclosing block that is to leave. If it is absent, the innermost block is left.

9.17 While statement
Example:
echo "Please tell me your password:"
var pw = readLine(stdin)
while pw != "12345":

echo "Wrong password! Next try:"
pw = readLine(stdin)

The while statement is executed until the expr evaluates to false. Endless loops are no error.
while statements open an implicit block, so that they can be left with a break statement.

9.18 Continue statement
A continue statement leads to the immediate next iteration of the surrounding loop construct. It is
only allowed within a loop. A continue statement is syntactic sugar for a nested block:
while expr1:

stmt1
continue
stmt2

Is equivalent to:
while expr1:

block myBlockName:
stmt1
break myBlockName
stmt2

45

9.19 Assembler statement
The direct embedding of assembler code into Nim code is supported by the unsafe asm statement.
Identifiers in the assembler code that refer to Nim identifiers shall be enclosed in a special character
which can be specified in the statement’s pragmas. The default special character is ’‘’:

{.push stackTrace:off.}
proc addInt(a, b: int): int =

a in eax, and b in edx
asm """ mov eax, ‘a‘ add eax, ‘b‘ jno theEnd call ‘raiseOverflow‘ theEnd: """

{.pop.}

If the GNU assembler is used, quotes and newlines are inserted automatically:

proc addInt(a, b: int): int =
asm """ addl %%ecx, %%eax jno 1 call ‘raiseOverflow‘ 1: :"=a"(‘result‘) :"a"(‘a‘), "c"(‘b‘) """

Instead of:

proc addInt(a, b: int): int =
asm """ "addl %%ecx, %%eax\n" "jno 1\n" "call ‘raiseOverflow‘\n" "1: \n" :"=a"(‘result‘) :"a"(‘a‘), "c"(‘b‘) """

9.20 Using statement
The using statement provides syntactic convenience in modules where the same parameter names and
types are used over and over. Instead of:

proc foo(c: Context; n: Node) = ...
proc bar(c: Context; n: Node, counter: int) = ...
proc baz(c: Context; n: Node) = ...

One can tell the compiler about the convention that a parameter of name c should default to type
Context, n should default to Node etc.:

using
c: Context
n: Node
counter: int

proc foo(c, n) = ...
proc bar(c, n, counter) = ...
proc baz(c, n) = ...

proc mixedMode(c, n; x, y: int) =
’c’ is inferred to be of the type ’Context’
’n’ is inferred to be of the type ’Node’
But ’x’ and ’y’ are of type ’int’.

The using section uses the same indentation based grouping syntax as a var or let section.
Note that using is not applied for template since untyped template parameters default to the type

system.untyped.
Mixing parameters that should use the using declaration with parameters that are explicitly typed

is possible and requires a semicolon between them.

9.21 If expression
An if expression is almost like an if statement, but it is an expression. Example:

var y = if x > 8: 9 else: 10

An if expression always results in a value, so the else part is required. Elif parts are also allowed.

9.22 When expression
Just like an if expression, but corresponding to the when statement.

46

9.23 Case expression
The case expression is again very similar to the case statement:

var favoriteFood = case animal
of "dog": "bones"
of "cat": "mice"
elif animal.endsWith"whale": "plankton"
else:
echo "I’m not sure what to serve, but everybody loves ice cream"
"ice cream"

As seen in the above example, the case expression can also introduce side effects. When multiple
statements are given for a branch, Nim will use the last expression as the result value.

9.24 Table constructor
A table constructor is syntactic sugar for an array constructor:

{"key1": "value1", "key2", "key3": "value2"}

is the same as:
[("key1", "value1"), ("key2", "value2"), ("key3", "value2")]

The empty table can be written {:} (in contrast to the empty set which is {}) which is thus another
way to write as the empty array constructor []. This slightly unusual way of supporting tables has lots
of advantages:

• The order of the (key,value)-pairs is preserved, thus it is easy to support ordered dicts with for
example {key: val}.newOrderedTable.

• A table literal can be put into a const section and the compiler can easily put it into the exe-
cutable’s data section just like it can for arrays and the generated data section requires a minimal
amount of memory.

• Every table implementation is treated equal syntactically.

• Apart from the minimal syntactic sugar the language core does not need to know about tables.

9.25 Type conversions
Syntactically a type conversion is like a procedure call, but a type name replaces the procedure name.
A type conversion is always safe in the sense that a failure to convert a type to another results in an
exception (if it cannot be determined statically).

Ordinary procs are often preferred over type conversions in Nim: For instance, $ is the toString
operator by convention and toFloat and toInt can be used to convert from floating point to integer
or vice versa.

9.26 Type casts
Example:

cast[int](x)

Type casts are a crude mechanism to interpret the bit pattern of an expression as if it would be of
another type. Type casts are only needed for low-level programming and are inherently unsafe.

47

9.27 The addr operator
The addr operator returns the address of an l-value. If the type of the location is T, the addr operator
result is of the type ptr T. An address is always an untraced reference. Taking the address of an object
that resides on the stack is unsafe, as the pointer may live longer than the object on the stack and
can thus reference a non-existing object. One can get the address of variables, but one can’t use it on
variables declared through let statements:

let t1 = "Hello"
var

t2 = t1
t3 : pointer = addr(t2)

echo repr(addr(t2))
--> ref 0x7fff6b71b670 --> 0x10bb81050"Hello"
echo cast[ptr string](t3)[]
--> Hello
The following line doesn’t compile:
echo repr(addr(t1))
Error: expression has no address

9.28 The unsafeAddr operator
For easier interoperability with other compiled languages such as C, retrieving the address of a let
variable, a parameter or a for loop variable, the unsafeAddr operation can be used:

let myArray = [1, 2, 3]
foreignProcThatTakesAnAddr(unsafeAddr myArray)

10 Procedures
What most programming languages call methods or functions are called procedures in Nim. A procedure
declaration consists of an identifier, zero or more formal parameters, a return value type and a block of
code. Formal parameters are declared as a list of identifiers separated by either comma or semicolon. A
parameter is given a type by : typename. The type applies to all parameters immediately before it,
until either the beginning of the parameter list, a semicolon separator or an already typed parameter, is
reached. The semicolon can be used to make separation of types and subsequent identifiers more distinct.

Using only commas
proc foo(a, b: int, c, d: bool): int

Using semicolon for visual distinction
proc foo(a, b: int; c, d: bool): int

Will fail: a is untyped since ’;’ stops type propagation.
proc foo(a; b: int; c, d: bool): int

A parameter may be declared with a default value which is used if the caller does not provide a value
for the argument.

b is optional with 47 as its default value
proc foo(a: int, b: int = 47): int

Parameters can be declared mutable and so allow the proc to modify those arguments, by using the
type modifier var.

"returning" a value to the caller through the 2nd argument
Notice that the function uses no actual return value at all (ie void)
proc foo(inp: int, outp: var int) =

outp = inp + 47

If the proc declaration has no body, it is a forward declaration. If the proc returns a value, the
procedure body can access an implicitly declared variable named result that represents the return value.
Procs can be overloaded. The overloading resolution algorithm determines which proc is the best match
for the arguments. Example:

48

proc toLower(c: char): char = # toLower for characters
if c in {’A’..’Z’}:

result = chr(ord(c) + (ord(’a’) - ord(’A’)))
else:
result = c

proc toLower(s: string): string = # toLower for strings
result = newString(len(s))
for i in 0..len(s) - 1:

result[i] = toLower(s[i]) # calls toLower for characters; no recursion!

Calling a procedure can be done in many different ways:

proc callme(x, y: int, s: string = "", c: char, b: bool = false) = ...

call with positional arguments # parameter bindings:
callme(0, 1, "abc", ’\t’, true) # (x=0, y=1, s="abc", c=’\t’, b=true)
call with named and positional arguments:
callme(y=1, x=0, "abd", ’\t’) # (x=0, y=1, s="abd", c=’\t’, b=false)
call with named arguments (order is not relevant):
callme(c=’\t’, y=1, x=0) # (x=0, y=1, s="", c=’\t’, b=false)
call as a command statement: no () needed:
callme 0, 1, "abc", ’\t’ # (x=0, y=1, s="abc", c=’\t’, b=false)

A procedure may call itself recursively.
Operators are procedures with a special operator symbol as identifier:

proc ‘$‘ (x: int): string =
converts an integer to a string; this is a prefix operator.
result = intToStr(x)

Operators with one parameter are prefix operators, operators with two parameters are infix operators.
(However, the parser distinguishes these from the operator’s position within an expression.) There is no
way to declare postfix operators: all postfix operators are built-in and handled by the grammar explicitly.

Any operator can be called like an ordinary proc with the ’opr ’ notation. (Thus an operator can have
more than two parameters):

proc ‘*+‘ (a, b, c: int): int =
Multiply and add
result = a * b + c

assert ‘*+‘(3, 4, 6) == ‘+‘(‘*‘(a, b), c)

10.1 Export marker
If a declared symbol is marked with an asterisk it is exported from the current module:

proc exportedEcho*(s: string) = echo s
proc ‘*‘*(a: string; b: int): string =
result = newStringOfCap(a.len * b)
for i in 1..b: result.add a

var exportedVar*: int
const exportedConst* = 78
type

ExportedType* = object
exportedField*: int

10.2 Method call syntax
For object oriented programming, the syntax obj.method(args) can be used instead of method(obj,
args). The parentheses can be omitted if there are no remaining arguments: obj.len (instead of
len(obj)).

This method call syntax is not restricted to objects, it can be used to supply any type of first argument
for procedures:

49

echo "abc".len # is the same as echo len "abc"
echo "abc".toUpper()
echo {’a’, ’b’, ’c’}.card
stdout.writeLine("Hallo") # the same as writeLine(stdout, "Hallo")

Another way to look at the method call syntax is that it provides the missing postfix notation.
The method call syntax conflicts with explicit generic instantiations: p[T](x) cannot be written as

x.p[T] because x.p[T] is always parsed as (x.p)[T].
See also: Limitations of the method call syntax.
The [:] notation has been designed to mitigate this issue: x.p[:T] is rewritten by the parser

to p[T](x), x.p[:T](y) is rewritten to p[T](x, y). Note that [:] has no AST representation,
the rewrite is performed directly in the parsing step.

10.3 Properties
Nim has no need for get-properties: Ordinary get-procedures that are called with the method call syntax
achieve the same. But setting a value is different; for this a special setter syntax is needed:

Module asocket
type

Socket* = ref object of RootObj
host: int # cannot be accessed from the outside of the module

proc ‘host=‘*(s: var Socket, value: int) {.inline.} =
setter of hostAddr.
This accesses the ’host’ field and is not a recursive call to
‘‘host=‘‘ because the builtin dot access is preferred if it is
avaliable:
s.host = value

proc host*(s: Socket): int {.inline.} =
getter of hostAddr
This accesses the ’host’ field and is not a recursive call to
‘‘host‘‘ because the builtin dot access is preferred if it is
avaliable:
s.host

module B
import asocket
var s: Socket
new s
s.host = 34 # same as ‘host=‘(s, 34)

10.4 Command invocation syntax
Routines can be invoked without the () if the call is syntactically a statement. This command invocation
syntax also works for expressions, but then only a single argument may follow. This restriction means
echo f 1, f 2 is parsed as echo(f(1), f(2)) and not as echo(f(1, f(2))). The method call
syntax may be used to provide one more argument in this case:

proc optarg(x: int, y: int = 0): int = x + y
proc singlearg(x: int): int = 20*x

echo optarg 1, " ", singlearg 2 # prints "1 40"

let fail = optarg 1, optarg 8 # Wrong. Too many arguments for a command call
let x = optarg(1, optarg 8) # traditional procedure call with 2 arguments
let y = 1.optarg optarg 8 # same thing as above, w/o the parenthesis
assert x == y

The command invocation syntax also can’t have complex expressions as arguments. For example:
(anonymous procs??), if, case or try. The (do notation??) is limited, but usable for a single proc (see
the example in the corresponding section). Function calls with no arguments still needs () to distinguish
between a call and the function itself as a first class value.

50

10.5 Closures
Procedures can appear at the top level in a module as well as inside other scopes, in which case they are
called nested procs. A nested proc can access local variables from its enclosing scope and if it does so
it becomes a closure. Any captured variables are stored in a hidden additional argument to the closure
(its environment) and they are accessed by reference by both the closure and its enclosing scope (i.e. any
modifications made to them are visible in both places). The closure environment may be allocated on
the heap or on the stack if the compiler determines that this would be safe.

10.5.1 Creating closures in loops

Since closures capture local variables by reference it is often not wanted behavior inside loop bodies. See
closureScope for details on how to change this behavior.

10.6 Anonymous Procs
Procs can also be treated as expressions, in which case it’s allowed to omit the proc’s name.

var cities = @["Frankfurt", "Tokyo", "New York", "Kyiv"]

cities.sort(proc (x,y: string): int =
cmp(x.len, y.len))

Procs as expressions can appear both as nested procs and inside top level executable code.

10.7 Func
The func keyword introduces a shortcut for a noSideEffect proc.

func binarySearch[T](a: openArray[T]; elem: T): int

Is short for:

proc binarySearch[T](a: openArray[T]; elem: T): int {.noSideEffect.}

10.8 Do notation
As a special more convenient notation, proc expressions involved in procedure calls can use the do
keyword:

sort(cities) do (x,y: string) -> int:
cmp(x.len, y.len)

Less parenthesis using the method plus command syntax:
cities = cities.map do (x:string) -> string:
"City of " & x

In macros, the do notation is often used for quasi-quoting
macroResults.add quote do:
if not ‘ex‘:

echo ‘info‘, ": Check failed: ", ‘expString‘

do is written after the parentheses enclosing the regular proc params. The proc expression represented
by the do block is appended to them. In calls using the command syntax, the do block will bind to the
immediately preceeding expression, transforming it in a call.

do with parentheses is an anonymous proc; however a do without parentheses is just a block of code.
The do notation can be used to pass multiple blocks to a macro:

macro performWithUndo(task, undo: untyped) = ...

performWithUndo do:
multiple-line block of code
to perform the task

do:
code to undo it

51

system.html#closureScope

10.9 Nonoverloadable builtins
The following builtin procs cannot be overloaded for reasons of implementation simplicity (they require
specialized semantic checking):

declared, defined, definedInScope, compiles, sizeOf,
is, shallowCopy, getAst, astToStr, spawn, procCall

Thus they act more like keywords than like ordinary identifiers; unlike a keyword however, a redefini-
tion may shadow the definition in the system module. From this list the following should not be written
in dot notation x.f since x cannot be type checked before it gets passed to f:

declared, defined, definedInScope, compiles, getAst, astToStr

10.10 Var parameters
The type of a parameter may be prefixed with the var keyword:

proc divmod(a, b: int; res, remainder: var int) =
res = a div b
remainder = a mod b

var
x, y: int

divmod(8, 5, x, y) # modifies x and y
assert x == 1
assert y == 3

In the example, res and remainder are var parameters. Var parameters can be modified by the
procedure and the changes are visible to the caller. The argument passed to a var parameter has to be
an l-value. Var parameters are implemented as hidden pointers. The above example is equivalent to:

proc divmod(a, b: int; res, remainder: ptr int) =
res[] = a div b
remainder[] = a mod b

var
x, y: int

divmod(8, 5, addr(x), addr(y))
assert x == 1
assert y == 3

In the examples, var parameters or pointers are used to provide two return values. This can be done
in a cleaner way by returning a tuple:

proc divmod(a, b: int): tuple[res, remainder: int] =
(a div b, a mod b)

var t = divmod(8, 5)

assert t.res == 1
assert t.remainder == 3

One can use tuple unpacking to access the tuple’s fields:

var (x, y) = divmod(8, 5) # tuple unpacking
assert x == 1
assert y == 3

Note: var parameters are never necessary for efficient parameter passing. Since non-var parameters
cannot be modified the compiler is always free to pass arguments by reference if it considers it can speed
up execution.

52

10.11 Var return type
A proc, converter or iterator may return a var type which means that the returned value is an l-value
and can be modified by the caller:

var g = 0

proc writeAccessToG(): var int =
result = g

writeAccessToG() = 6
assert g == 6

It is a compile time error if the implicitly introduced pointer could be used to access a location beyond
its lifetime:

proc writeAccessToG(): var int =
var g = 0
result = g # Error!

For iterators, a component of a tuple return type can have a var type too:

iterator mpairs(a: var seq[string]): tuple[key: int, val: var string] =
for i in 0..a.high:

yield (i, a[i])

In the standard library every name of a routine that returns a var type starts with the prefix m per
convention.

Memory safety for returning by var T is ensured by a simple borrowing rule: If result does not
refer to a location pointing to the heap (that is in result = X the X involves a ptr or ref access)
then it has to be deviated by the routine’s first parameter:

proc forward[T](x: var T): var T =
result = x # ok, deviated from the first parameter.

proc p(param: var int): var int =
var x: int
we know ’forward’ provides a view into the location deviated by
its first argument ’x’.
result = forward(x) # Error: location is derived from ‘‘x‘‘

which is not p’s first parameter and lives
on the stack.

In other words, the lifetime of what result points to is attached to the lifetime of the first parameter
and that is enough knowledge to verify memory safety at the callsite.

10.11.1 Future directions

Later versions of Nim can be more precise about the borrowing rule with a syntax like:

proc foo(other: Y; container: var X): var T from container

Here var T from container explicitly exposes that the location is deviated from the second
parameter (called ’container’ in this case). The syntax var T from p specifies a type varTy[T, 2]
which is incompatible with varTy[T, 1].

10.12 Overloading of the subscript operator
The [] subscript operator for arrays/openarrays/sequences can be overloaded.

53

11 Multi-methods
Procedures always use static dispatch. Multi-methods use dynamic dispatch. For dynamic dispatch to
work on an object it should be a reference type as well.

type
Expression = ref object of RootObj ## abstract base class for an expression
Literal = ref object of Expression
x: int

PlusExpr = ref object of Expression
a, b: Expression

method eval(e: Expression): int {.base.} =
override this base method
quit "to override!"

method eval(e: Literal): int = return e.x

method eval(e: PlusExpr): int =
watch out: relies on dynamic binding
result = eval(e.a) + eval(e.b)

proc newLit(x: int): Literal =
new(result)
result.x = x

proc newPlus(a, b: Expression): PlusExpr =
new(result)
result.a = a
result.b = b

echo eval(newPlus(newPlus(newLit(1), newLit(2)), newLit(4)))

In the example the constructors newLit and newPlus are procs because they should use static
binding, but eval is a method because it requires dynamic binding.

As can be seen in the example, base methods have to be annotated with the base pragma. The base
pragma also acts as a reminder for the programmer that a base method m is used as the foundation to
determine all the effects that a call to m might cause.

In a multi-method all parameters that have an object type are used for the dispatching:

type
Thing = ref object of RootObj
Unit = ref object of Thing
x: int

method collide(a, b: Thing) {.base, inline.} =
quit "to override!"

method collide(a: Thing, b: Unit) {.inline.} =
echo "1"

method collide(a: Unit, b: Thing) {.inline.} =
echo "2"

var a, b: Unit
new a
new b
collide(a, b) # output: 2

Invocation of a multi-method cannot be ambiguous: collide 2 is preferred over collide 1 because the
resolution works from left to right. In the example Unit, Thing is preferred over Thing, Unit.

Note: Compile time evaluation is not (yet) supported for methods.

11.1 Inhibit dynamic method resolution via procCall
Dynamic method resolution can be inhibited via the builtin system.procCall. This is somewhat compa-
rable to the super keyword that traditional OOP languages offer.

54

type
Thing = ref object of RootObj
Unit = ref object of Thing
x: int

method m(a: Thing) {.base.} =
echo "base"

method m(a: Unit) =
Call the base method:
procCall m(Thing(a))
echo "1"

12 Iterators and the for statement
The for statement is an abstract mechanism to iterate over the elements of a container. It relies on an
iterator to do so. Like while statements, for statements open an implicit block, so that they can be
left with a break statement.

The for loop declares iteration variables - their scope reaches until the end of the loop body. The
iteration variables’ types are inferred by the return type of the iterator.

An iterator is similar to a procedure, except that it can be called in the context of a for loop.
Iterators provide a way to specify the iteration over an abstract type. A key role in the execution of a
for loop plays the yield statement in the called iterator. Whenever a yield statement is reached the
data is bound to the for loop variables and control continues in the body of the for loop. The iterator’s
local variables and execution state are automatically saved between calls. Example:

this definition exists in the system module
iterator items*(a: string): char {.inline.} =

var i = 0
while i < len(a):

yield a[i]
inc(i)

for ch in items("hello world"): # ‘ch‘ is an iteration variable
echo ch

The compiler generates code as if the programmer would have written this:

var i = 0
while i < len(a):

var ch = a[i]
echo ch
inc(i)

If the iterator yields a tuple, there can be as many iteration variables as there are components in the
tuple. The i’th iteration variable’s type is the type of the i’th component. In other words, implicit tuple
unpacking in a for loop context is supported.

12.1 Implict items/pairs invocations
If the for loop expression e does not denote an iterator and the for loop has exactly 1 variable, the for
loop expression is rewritten to items(e); ie. an items iterator is implicitly invoked:

for x in [1,2,3]: echo x

If the for loop has exactly 2 variables, a pairs iterator is implicitly invoked.
Symbol lookup of the identifiers items/pairs is performed after the rewriting step, so that all

overloads of items/pairs are taken into account.

55

12.2 First class iterators
There are 2 kinds of iterators in Nim: inline and closure iterators. An inline iterator is an iterator that’s
always inlined by the compiler leading to zero overhead for the abstraction, but may result in a heavy
increase in code size. Inline iterators are second class citizens; They can be passed as parameters only to
other inlining code facilities like templates, macros and other inline iterators.

In contrast to that, a closure iterator can be passed around more freely:

iterator count0(): int {.closure.} =
yield 0

iterator count2(): int {.closure.} =
var x = 1
yield x
inc x
yield x

proc invoke(iter: iterator(): int {.closure.}) =
for x in iter(): echo x

invoke(count0)
invoke(count2)

Closure iterators have other restrictions than inline iterators:

1. yield in a closure iterator can not occur in a try statement.

2. For now, a closure iterator cannot be evaluated at compile time.

3. return is allowed in a closure iterator (but rarely useful) and ends iteration.

4. Neither inline nor closure iterators can be recursive.

5. Closure iterators are not supported by the js backend.

Iterators that are neither marked {.closure.} nor {.inline.} explicitly default to being inline, but
this may change in future versions of the implementation.

The iterator type is always of the calling convention closure implicitly; the following example
shows how to use iterators to implement a collaborative tasking system:

simple tasking:
type

Task = iterator (ticker: int)

iterator a1(ticker: int) {.closure.} =
echo "a1: A"
yield
echo "a1: B"
yield
echo "a1: C"
yield
echo "a1: D"

iterator a2(ticker: int) {.closure.} =
echo "a2: A"
yield
echo "a2: B"
yield
echo "a2: C"

proc runTasks(t: varargs[Task]) =
var ticker = 0
while true:

let x = t[ticker mod t.len]
if finished(x): break
x(ticker)
inc ticker

runTasks(a1, a2)

56

The builtin system.finished can be used to determine if an iterator has finished its operation; no
exception is raised on an attempt to invoke an iterator that has already finished its work.

Note that system.finished is error prone to use because it only returns true one iteration after
the iterator has finished:

iterator mycount(a, b: int): int {.closure.} =
var x = a
while x <= b:

yield x
inc x

var c = mycount # instantiate the iterator
while not finished(c):
echo c(1, 3)

Produces
1
2
3
0

Instead this code has to be used:

var c = mycount # instantiate the iterator
while true:

let value = c(1, 3)
if finished(c): break # and discard ’value’!
echo value

It helps to think that the iterator actually returns a pair (value, done) and finished is used
to access the hidden done field.

Closure iterators are resumable functions and so one has to provide the arguments to every call. To
get around this limitation one can capture parameters of an outer factory proc:

proc mycount(a, b: int): iterator (): int =
result = iterator (): int =
var x = a
while x <= b:

yield x
inc x

let foo = mycount(1, 4)

for f in foo():
echo f

13 Converters
A converter is like an ordinary proc except that it enhances the "implicitly convertible" type relation (see
Convertible relation):

bad style ahead: Nim is not C.
converter toBool(x: int): bool = x != 0

if 4:
echo "compiles"

A converter can also be explicitly invoked for improved readability. Note that implicit converter
chaining is not supported: If there is a converter from type A to type B and from type B to type C the
implicit conversion from A to C is not provided.

14 Type sections
Example:

57

type # example demonstrating mutually recursive types
Node = ref object # an object managed by the garbage collector (ref)

le, ri: Node # left and right subtrees
sym: ref Sym # leaves contain a reference to a Sym

Sym = object # a symbol
name: string # the symbol’s name
line: int # the line the symbol was declared in
code: Node # the symbol’s abstract syntax tree

A type section begins with the type keyword. It contains multiple type definitions. A type definition
binds a type to a name. Type definitions can be recursive or even mutually recursive. Mutually recursive
types are only possible within a single type section. Nominal types like objects or enums can only
be defined in a type section.

15 Exception handling
15.1 Try statement
Example:

read the first two lines of a text file that should contain numbers
and tries to add them
var

f: File
if open(f, "numbers.txt"):
try:

var a = readLine(f)
var b = readLine(f)
echo "sum: " & $(parseInt(a) + parseInt(b))

except OverflowError:
echo "overflow!"

except ValueError:
echo "could not convert string to integer"

except IOError:
echo "IO error!"

except:
echo "Unknown exception!"

finally:
close(f)

The statements after the try are executed in sequential order unless an exception e is raised. If the
exception type of e matches any listed in an except clause the corresponding statements are executed.
The statements following the except clauses are called exception handlers.

The empty except clause is executed if there is an exception that is not listed otherwise. It is similar
to an else clause in if statements.

If there is a finally clause, it is always executed after the exception handlers.
The exception is consumed in an exception handler. However, an exception handler may raise another

exception. If the exception is not handled, it is propagated through the call stack. This means that often
the rest of the procedure - that is not within a finally clause - is not executed (if an exception occurs).

15.2 Try expression
Try can also be used as an expression; the type of the try branch then needs to fit the types of except
branches, but the type of the finally branch always has to be void:

let x = try: parseInt("133a")
except: -1
finally: echo "hi"

To prevent confusing code there is a parsing limitation; if the try follows a (it has to be written as
a one liner:

let x = (try: parseInt("133a") except: -1)

58

15.3 Except clauses
Within an except clause, it is possible to use getCurrentException to retrieve the exception that
has been raised:

try:
...

except IOError:
let e = getCurrentException()
Now use "e"

Note that getCurrentException always returns a ref Exception type. If a variable of the
proper type is needed (in the example above, IOError), one must convert it explicitly:

try:
...

except IOError:
let e = (ref IOError)(getCurrentException())
"e" is now of the proper type

However, this is seldom needed. The most common case is to extract an error message from e, and
for such situations it is enough to use getCurrentExceptionMsg:

try:
...

except IOError:
echo "I/O error: " & getCurrentExceptionMsg()

15.4 Defer statement
Instead of a try finally statement a defer statement can be used.

Any statements following the defer in the current block will be considered to be in an implicit try
block:

proc main =
var f = open("numbers.txt")
defer: close(f)
f.write "abc"
f.write "def"

Is rewritten to:

proc main =
var f = open("numbers.txt")
try:

f.write "abc"
f.write "def"

finally:
close(f)

Top level defer statements are not supported since it’s unclear what such a statement should refer
to.

15.5 Raise statement
Example:

raise newEOS("operating system failed")

Apart from built-in operations like array indexing, memory allocation, etc. the raise statement is
the only way to raise an exception.

If no exception name is given, the current exception is re-raised. The ReraiseError exception is raised
if there is no exception to re-raise. It follows that the raise statement always raises an exception.

59

15.6 Exception hierarchy
The exception tree is defined in the system module. Every exception inherits from system.Exception.
Exceptions that indicate programming bugs inherit from system.Defect (which is a subtype of
Exception) and are stricly speaking not catchable as they can also be mapped to an operation that
terminates the whole process. Exceptions that indicate any other runtime error that can be caught inherit
from system.CatchableError (which is a subtype of Exception).

15.7 Imported exceptions
It is possible to raise/catch imported C++ exceptions. Types imported using importcpp can be raised or
caught. Exceptions are raised by value and caught by reference. Example:

type
std_exception {.importcpp: "std::exception", header: "<exception>".} = object

proc what(s: std_exception): cstring {.importcpp: "((char *)#.what())".}

try:
raise std_exception()

except std_exception as ex:
echo ex.what()

16 Effect system
16.1 Exception tracking
Nim supports exception tracking. The raises pragma can be used to explicitly define which exceptions a
proc/iterator/method/converter is allowed to raise. The compiler verifies this:

proc p(what: bool) {.raises: [IOError, OSError].} =
if what: raise newException(IOError, "IO")
else: raise newException(OSError, "OS")

An empty raises list (raises: []) means that no exception may be raised:

proc p(): bool {.raises: [].} =
try:

unsafeCall()
result = true

except:
result = false

A raises list can also be attached to a proc type. This affects type compatibility:

type
Callback = proc (s: string) {.raises: [IOError].}

var
c: Callback

proc p(x: string) =
raise newException(OSError, "OS")

c = p # type error

For a routine p the compiler uses inference rules to determine the set of possibly raised exceptions;
the algorithm operates on p’s call graph:

1. Every indirect call via some proc type T is assumed to raise system.Exception (the base type
of the exception hierarchy) and thus any exception unless T has an explicit raises list. However
if the call is of the form f(...) where f is a parameter of the currently analysed routine it is
ignored. The call is optimistically assumed to have no effect. Rule 2 compensates for this case.

2. Every expression of some proc type within a call that is not a call itself (and not nil) is assumed to
be called indirectly somehow and thus its raises list is added to p’s raises list.

60

system.html

3. Every call to a proc q which has an unknown body (due to a forward declaration or an importc
pragma) is assumed to raise system.Exception unless q has an explicit raises list.

4. Every call to a method m is assumed to raise system.Exception unless m has an explicit raises
list.

5. For every other call the analysis can determine an exact raises list.

6. For determining a raises list, the raise and try statements of p are taken into consideration.

Rules 1-2 ensure the following works:

proc noRaise(x: proc()) {.raises: [].} =
unknown call that might raise anything, but valid:
x()

proc doRaise() {.raises: [IOError].} =
raise newException(IOError, "IO")

proc use() {.raises: [].} =
doesn’t compile! Can raise IOError!
noRaise(doRaise)

So in many cases a callback does not cause the compiler to be overly conservative in its effect analysis.

16.2 Tag tracking
The exception tracking is part of Nim’s effect system. Raising an exception is an effect. Other effects can
also be defined. A user defined effect is a means to tag a routine and to perform checks against this tag:

type IO = object ## input/output effect
proc readLine(): string {.tags: [IO].} = discard

proc no_IO_please() {.tags: [].} =
the compiler prevents this:
let x = readLine()

A tag has to be a type name. A tags list - like a raises list - can also be attached to a proc type.
This affects type compatibility.

The inference for tag tracking is analogous to the inference for exception tracking.

16.3 Read/Write tracking
Note: Read/write tracking is not yet implemented!

The inference for read/write tracking is analogous to the inference for exception tracking.

16.4 Effects pragma
The effects pragma has been designed to assist the programmer with the effects analysis. It is a
statement that makes the compiler output all inferred effects up to the effects’s position:

proc p(what: bool) =
if what:

raise newException(IOError, "IO")
{.effects.}

else:
raise newException(OSError, "OS")

The compiler produces a hint message that IOError can be raised. OSError is not listed as it
cannot be raised in the branch the effects pragma appears in.

61

17 Generics
Generics are Nim’s means to parametrize procs, iterators or types with type parameters. Depending
on context, the brackets are used either to introduce type parameters or to instantiate a generic proc,
iterator or type.

The following example shows a generic binary tree can be modelled:

type
BinaryTree*[T] = ref object # BinaryTree is a generic type with

generic param ‘‘T‘‘
le, ri: BinaryTree[T] # left and right subtrees; may be nil
data: T # the data stored in a node

proc newNode*[T](data: T): BinaryTree[T] =
constructor for a node
result = BinaryTree[T](le: nil, ri: nil, data: data)

proc add*[T](root: var BinaryTree[T], n: BinaryTree[T]) =
insert a node into the tree
if root == nil:

root = n
else:
var it = root
while it != nil:
compare the data items; uses the generic ‘‘cmp‘‘ proc
that works for any type that has a ‘‘==‘‘ and ‘‘<‘‘ operator
var c = cmp(it.data, n.data)
if c < 0:

if it.le == nil:
it.le = n
return

it = it.le
else:
if it.ri == nil:
it.ri = n
return

it = it.ri

proc add*[T](root: var BinaryTree[T], data: T) =
convenience proc:
add(root, newNode(data))

iterator preorder*[T](root: BinaryTree[T]): T =
Preorder traversal of a binary tree.
Since recursive iterators are not yet implemented,
this uses an explicit stack (which is more efficient anyway):
var stack: seq[BinaryTree[T]] = @[root]
while stack.len > 0:

var n = stack.pop()
while n != nil:

yield n.data
add(stack, n.ri) # push right subtree onto the stack
n = n.le # and follow the left pointer

var
root: BinaryTree[string] # instantiate a BinaryTree with ‘‘string‘‘

add(root, newNode("hello")) # instantiates ‘‘newNode‘‘ and ‘‘add‘‘
add(root, "world") # instantiates the second ‘‘add‘‘ proc
for str in preorder(root):
stdout.writeLine(str)

The T is called a generic type parameter or a type variable.

17.1 Is operator
The is operator checks for type equivalence at compile time. It is therefore very useful for type special-
ization within generic code:

62

type class matches
object any object type
tuple any tuple type

enum any enumeration
proc any proc type
ref any ref type
ptr any ptr type
var any var type
distinct any distinct type
array any array type
set any set type
seq any seq type
auto any type
any distinct auto (see below)

type
Table[Key, Value] = object

keys: seq[Key]
values: seq[Value]
when not (Key is string): # empty value for strings used for optimization
deletedKeys: seq[bool]

17.2 Type Classes
A type class is a special pseudo-type that can be used to match against types in the context of overload
resolution or the is operator. Nim supports the following built-in type classes:

Furthermore, every generic type automatically creates a type class of the same name that will match
any instantiation of the generic type.

Type classes can be combined using the standard boolean operators to form more complex type
classes:

create a type class that will match all tuple and object types
type RecordType = tuple or object

proc printFields(rec: RecordType) =
for key, value in fieldPairs(rec):
echo key, " = ", value

Procedures utilizing type classes in such manner are considered to be implicitly generic. They will be
instantiated once for each unique combination of param types used within the program.

Nim also allows for type classes and regular types to be specified as type constraints of the generic
type parameter:

proc onlyIntOrString[T: int|string](x, y: T) = discard

onlyIntOrString(450, 616) # valid
onlyIntOrString(5.0, 0.0) # type mismatch
onlyIntOrString("xy", 50) # invalid as ’T’ cannot be both at the same time

By default, during overload resolution each named type class will bind to exactly one concrete type.
We call such type classes bind once types. Here is an example taken directly from the system module to
illustrate this:

proc ‘==‘*(x, y: tuple): bool =
requires ‘x‘ and ‘y‘ to be of the same tuple type
generic ‘‘==‘‘ operator for tuples that is lifted from the components
of ‘x‘ and ‘y‘.
result = true
for a, b in fields(x, y):
if a != b: result = false

63

Alternatively, the distinct type modifier can be applied to the type class to allow each param
matching the type class to bind to a different type. Such type classes are called bind many types.

Procs written with the implicitly generic style will often need to refer to the type parameters of the
matched generic type. They can be easily accessed using the dot syntax:

type Matrix[T, Rows, Columns] = object
...

proc ‘[]‘(m: Matrix, row, col: int): Matrix.T =
m.data[col * high(Matrix.Columns) + row]

Alternatively, the type operator can be used over the proc params for similar effect when anonymous
or distinct type classes are used.

When a generic type is instantiated with a type class instead of a concrete type, this results in another
more specific type class:

seq[ref object] # Any sequence storing references to any object type

type T1 = auto
proc foo(s: seq[T1], e: T1)
seq[T1] is the same as just ‘seq‘, but T1 will be allowed to bind
to a single type, while the signature is being matched

Matrix[Ordinal] # Any Matrix instantiation using integer values

As seen in the previous example, in such instantiations, it’s not necessary to supply all type parameters
of the generic type, because any missing ones will be inferred to have the equivalent of the any type class
and thus they will match anything without discrimination.

17.3 Generic inference restrictions
The types var T and typedesc[T] cannot be inferred in a generic instantiation. The following is not
allowed:

proc g[T](f: proc(x: T); x: T) =
f(x)

proc c(y: int) = echo y
proc v(y: var int) =
y += 100

var i: int

allowed: infers ’T’ to be of type ’int’
g(c, 42)

not valid: ’T’ is not inferred to be of type ’var int’
g(v, i)

also not allowed: explict instantiation via ’var int’
g[var int](v, i)

17.4 Concepts
Note: Concepts are still in development.

Concepts, also known as "user-defined type classes", are used to specify an arbitrary set of requirements
that the matched type must satisfy.

Concepts are written in the following form:

type
Comparable = concept x, y

(x < y) is bool

Stack[T] = concept s, var v
s.pop() is T
v.push(T)

64

s.len is Ordinal

for value in s:
value is T

The concept is a match if:

1. all of the expressions within the body can be compiled for the tested type

2. all statically evaluable boolean expressions in the body must be true

The identifiers following the concept keyword represent instances of the currently matched type. You
can apply any of the standard type modifiers such as var, ref, ptr and static to denote a more
specific type of instance. You can also apply the type modifier to create a named instance of the type
itself:

type
MyConcept = concept x, var v, ref r, ptr p, static s, type T

...

Within the concept body, types can appear in positions where ordinary values and parameters are
expected. This provides a more convenient way to check for the presence of callable symbols with specific
signatures:

type
OutputStream = concept var s
s.write(string)

In order to check for symbols accepting type params, you must prefix the type with the explicit
type modifier. The named instance of the type, following the concept keyword is also considered to
have the explicit modifier and will be matched only as a type.

type
Let’s imagine a user-defined casting framework with operators
such as ‘val.to(string)‘ and ‘val.to(JSonValue)‘. We can test
for these with the following concept:
MyCastables = concept x

x.to(type string)
x.to(type JSonValue)

Let’s define a couple of concepts, known from Algebra:
AdditiveMonoid* = concept x, y, type T
x + y is T
T.zero is T # require a proc such as ‘int.zero‘ or ’Position.zero’

AdditiveGroup* = concept x, y, type T
x is AdditiveMonoid
-x is T
x - y is T

Please note that the is operator allows one to easily verify the precise type signatures of the required
operations, but since type inference and default parameters are still applied in the concept body, it’s also
possible to describe usage protocols that do not reveal implementation details.

Much like generics, concepts are instantiated exactly once for each tested type and any static code
included within the body is executed only once.

17.5 Concept diagnostics
By default, the compiler will report the matching errors in concepts only when no other overload can be
selected and a normal compilation error is produced. When you need to understand why the compiler
is not matching a particular concept and, as a result, a wrong overload is selected, you can apply the
explain pragma to either the concept body or a particular call-site.

65

type
MyConcept {.explain.} = concept ...

overloadedProc(x, y, z) {.explain.}

This will provide Hints in the compiler output either every time the concept is not matched or only
on the particular call-site.

17.6 Generic concepts and type binding rules
The concept types can be parametric just like the regular generic types:

matrixalgo.nim

import typetraits

type
AnyMatrix*[R, C: static int; T] = concept m, var mvar, type M

M.ValueType is T
M.Rows == R
M.Cols == C

m[int, int] is T
mvar[int, int] = T

type TransposedType = stripGenericParams(M)[C, R, T]

AnySquareMatrix*[N: static int, T] = AnyMatrix[N, N, T]

AnyTransform3D* = AnyMatrix[4, 4, float]

proc transposed*(m: AnyMatrix): m.TransposedType =
for r in 0 ..< m.R:

for c in 0 ..< m.C:
result[r, c] = m[c, r]

proc determinant*(m: AnySquareMatrix): int =
...

proc setPerspectiveProjection*(m: AnyTransform3D) =
...

matrix.nim

type
Matrix*[M, N: static int; T] = object
data: array[M*N, T]

proc ‘[]‘*(M: Matrix; m, n: int): M.T =
M.data[m * M.N + n]

proc ‘[]=‘*(M: var Matrix; m, n: int; v: M.T) =
M.data[m * M.N + n] = v

Adapt the Matrix type to the concept’s requirements
template Rows*(M: type Matrix): int = M.M
template Cols*(M: type Matrix): int = M.N
template ValueType*(M: type Matrix): type = M.T

usage.nim

import matrix, matrixalgo

var
m: Matrix[3, 3, int]
projectionMatrix: Matrix[4, 4, float]

66

echo m.transposed.determinant
setPerspectiveProjection projectionMatrix

When the concept type is matched against a concrete type, the unbound type parameters are inferred
from the body of the concept in a way that closely resembles the way generic parameters of callable
symbols are inferred on call sites.

Unbound types can appear both as params to calls such as s.push(T) and on the right-hand side of
the is operator in cases such as x.pop is T and x.data is seq[T].

Unbound static params will be inferred from expressions involving the == operator and also when
types dependent on them are being matched:

type
MatrixReducer[M, N: static int; T] = concept x
x.reduce(SquareMatrix[N, T]) is array[M, int]

The Nim compiler includes a simple linear equation solver, allowing it to infer static params in some
situations where integer arithmetic is involved.

Just like in regular type classes, Nim discriminates between bind once and bind many types when
matching the concept. You can add the distinct modifier to any of the otherwise inferable types to
get a type that will be matched without permanently inferring it. This may be useful when you need to
match several procs accepting the same wide class of types:

type
Enumerable[T] = concept e

for v in e:
v is T

type
MyConcept = concept o
this could be inferred to a type such as Enumerable[int]
o.foo is distinct Enumerable

this could be inferred to a different type such as Enumerable[float]
o.bar is distinct Enumerable

it’s also possible to give an alias name to a ‘bind many‘ type class
type Enum = distinct Enumerable
o.baz is Enum

On the other hand, using bind once types allows you to test for equivalent types used in multiple
signatures, without actually requiring any concrete types, thus allowing you to encode implementation-
defined types:

type
MyConcept = concept x
type T1 = auto
x.foo(T1)
x.bar(T1) # both procs must accept the same type

type T2 = seq[SomeNumber]
x.alpha(T2)
x.omega(T2) # both procs must accept the same type

and it must be a numeric sequence

As seen in the previous examples, you can refer to generic concepts such as Enumerable[T] just by
their short name. Much like the regular generic types, the concept will be automatically instantiated
with the bind once auto type in the place of each missing generic param.

Please note that generic concepts such as Enumerable[T] can be matched against concrete types such
as string. Nim doesn’t require the concept type to have the same number of parameters as the type being
matched. If you wish to express a requirement towards the generic parameters of the matched type, you
can use a type mapping operator such as genericHead or stripGenericParams within the body of the
concept to obtain the uninstantiated version of the type, which you can then try to instantiate in any
required way. For example, here is how one might define the classic Functor concept from Haskell and
then demonstrate that Nim’s Option[T] type is an instance of it:

67

import sugar, typetraits

type
Functor[A] = concept f

type MatchedGenericType = genericHead(f.type)
‘f‘ will be a value of a type such as ‘Option[T]‘
‘MatchedGenericType‘ will become the ‘Option‘ type

f.val is A
The Functor should provide a way to obtain
a value stored inside it

type T = auto
map(f, A -> T) is MatchedGenericType[T]
And it should provide a way to map one instance of
the Functor to a instance of a different type, given
a suitable ‘map‘ operation for the enclosed values

import options
echo Option[int] is Functor # prints true

17.7 Concept derived values
All top level constants or types appearing within the concept body are accessible through the dot operator
in procs where the concept was successfully matched to a concrete type:

type
DateTime = concept t1, t2, type T

const Min = T.MinDate
T.Now is T

t1 < t2 is bool

type TimeSpan = type(t1 - t2)
TimeSpan * int is TimeSpan
TimeSpan + TimeSpan is TimeSpan

t1 + TimeSpan is T

proc eventsJitter(events: Enumerable[DateTime]): float =
var

this variable will have the inferred TimeSpan type for
the concrete Date-like value the proc was called with:
averageInterval: DateTime.TimeSpan

deviation: float
...

17.8 Concept refinement
When the matched type within a concept is directly tested against a different concept, we say that the
outer concept is a refinement of the inner concept and thus it is more-specific. When both concepts are
matched in a call during overload resolution, Nim will assign a higher precedence to the most specific
one. As an alternative way of defining concept refinements, you can use the object inheritance syntax
involving the of keyword:

type
Graph = concept g, type G of EqualyComparable, Copyable
type

VertexType = G.VertexType
EdgeType = G.EdgeType

VertexType is Copyable
EdgeType is Copyable

var
v: VertexType
e: EdgeType

68

IncidendeGraph = concept of Graph
symbols such as variables and types from the refined
concept are automatically in scope:

g.source(e) is VertexType
g.target(e) is VertexType

g.outgoingEdges(v) is Enumerable[EdgeType]

BidirectionalGraph = concept g, type G
The following will also turn the concept into a refinement when it
comes to overload resolution, but it doesn’t provide the convenient
symbol inheritance
g is IncidendeGraph

g.incomingEdges(G.VertexType) is Enumerable[G.EdgeType]

proc f(g: IncidendeGraph)
proc f(g: BidirectionalGraph) # this one will be preferred if we pass a type

matching the BidirectionalGraph concept

17.9 Symbol lookup in generics
17.9.1 Open and Closed symbols

The symbol binding rules in generics are slightly subtle: There are "open" and "closed" symbols. A
"closed" symbol cannot be re-bound in the instantiation context, an "open" symbol can. Per default
overloaded symbols are open and every other symbol is closed.

Open symbols are looked up in two different contexts: Both the context at definition and the context
at instantiation are considered:

type
Index = distinct int

proc ‘==‘ (a, b: Index): bool {.borrow.}

var a = (0, 0.Index)
var b = (0, 0.Index)

echo a == b # works!

In the example the generic == for tuples (as defined in the system module) uses the == operators of
the tuple’s components. However, the == for the Index type is defined after the == for tuples; yet the
example compiles as the instantiation takes the currently defined symbols into account too.

17.10 Mixin statement
A symbol can be forced to be open by a mixin declaration:

proc create*[T](): ref T =
there is no overloaded ’init’ here, so we need to state that it’s an
open symbol explicitly:
mixin init
new result
init result

17.11 Bind statement
The bind statement is the counterpart to the mixin statement. It can be used to explicitly declare
identifiers that should be bound early (i.e. the identifiers should be looked up in the scope of the
template/generic definition):

Module A
var

lastId = 0

69

template genId*: untyped =
bind lastId
inc(lastId)
lastId

Module B
import A

echo genId()

But a bind is rarely useful because symbol binding from the definition scope is the default.

18 Templates
A template is a simple form of a macro: It is a simple substitution mechanism that operates on Nim’s
abstract syntax trees. It is processed in the semantic pass of the compiler.

The syntax to invoke a template is the same as calling a procedure.
Example:

template ‘!=‘ (a, b: untyped): untyped =
this definition exists in the System module
not (a == b)

assert(5 != 6) # the compiler rewrites that to: assert(not (5 == 6))

The !=, >, >=, in, notin, isnot operators are in fact templates:
a > b is transformed into b < a.

a in b is transformed into contains(b, a).
notin and isnot have the obvious meanings.

The "types" of templates can be the symbols untyped, typed or type. These are "meta types", they
can only be used in certain contexts. Regular types can be used too; this implies that typed expressions
are expected.

18.1 Typed vs untyped parameters
An untyped parameter means that symbol lookups and type resolution is not performed before the
expression is passed to the template. This means that for example undeclared identifiers can be passed
to the template:

template declareInt(x: untyped) =
var x: int

declareInt(x) # valid
x = 3

template declareInt(x: typed) =
var x: int

declareInt(x) # invalid, because x has not been declared and so has no type

A template where every parameter is untyped is called an immediate template. For historical reasons
templates can be explicitly annotated with an immediate pragma and then these templates do not take
part in overloading resolution and the parameters’ types are ignored by the compiler. Explicit immediate
templates are now deprecated.

Note: For historical reasons stmt was an alias for typed and expr was an alias for untyped, but
they are removed.

70

18.2 Passing a code block to a template
You can pass a block of statements as the last argument to a template following the special : syntax:

template withFile(f, fn, mode, actions: untyped): untyped =
var f: File
if open(f, fn, mode):

try:
actions

finally:
close(f)

else:
quit("cannot open: " & fn)

withFile(txt, "ttempl3.txt", fmWrite): # special colon
txt.writeLine("line 1")
txt.writeLine("line 2")

In the example, the two writeLine statements are bound to the actions parameter.
Usually to pass a block of code to a template the parameter that accepts the block needs to be of

type untyped. Because symbol lookups are then delayed until template instantiation time:

template t(body: typed) =
block:
body

t:
var i = 1
echo i

t:
var i = 2 # fails with ’attempt to redeclare i’
echo i

The above code fails with the mysterious error message that i has already been declared. The reason
for this is that the var i = ... bodies need to be type-checked before they are passed to the body
parameter and type checking in Nim implies symbol lookups. For the symbol lookups to succeed i needs
to be added to the current (i.e. outer) scope. After type checking these additions to the symbol table
are not rolled back (for better or worse). The same code works with untyped as the passed body is not
required to be type-checked:

template t(body: untyped) =
block:
body

t:
var i = 1
echo i

t:
var i = 2 # compiles
echo i

18.3 Varargs of untyped
In addition to the untyped meta-type that prevents type checking there is also varargs[untyped]
so that not even the number of parameters is fixed:

template hideIdentifiers(x: varargs[untyped]) = discard

hideIdentifiers(undeclared1, undeclared2)

However, since a template cannot iterate over varargs, this feature is generally much more useful for
macros.

71

18.4 Symbol binding in templates
A template is a hygienic macro and so opens a new scope. Most symbols are bound from the definition
scope of the template:
Module A
var

lastId = 0

template genId*: untyped =
inc(lastId)
lastId

Module B
import A

echo genId() # Works as ’lastId’ has been bound in ’genId’s defining scope

As in generics symbol binding can be influenced via mixin or bind statements.

18.5 Identifier construction
In templates identifiers can be constructed with the backticks notation:
template typedef(name: untyped, typ: type) =
type

‘T name‘* {.inject.} = typ
‘P name‘* {.inject.} = ref ‘T name‘

typedef(myint, int)
var x: PMyInt

In the example name is instantiated with myint, so ‘T name‘ becomes Tmyint.

18.6 Lookup rules for template parameters
A parameter p in a template is even substituted in the expression x.p. Thus template arguments can be
used as field names and a global symbol can be shadowed by the same argument name even when fully
qualified:
module ’m’

type
Lev = enum

levA, levB

var abclev = levB

template tstLev(abclev: Lev) =
echo abclev, " ", m.abclev

tstLev(levA)
produces: ’levA levA’

But the global symbol can properly be captured by a bind statement:
module ’m’

type
Lev = enum

levA, levB

var abclev = levB

template tstLev(abclev: Lev) =
bind m.abclev
echo abclev, " ", m.abclev

tstLev(levA)
produces: ’levA levB’

72

18.7 Hygiene in templates
Per default templates are hygienic: Local identifiers declared in a template cannot be accessed in the
instantiation context:

template newException*(exceptn: type, message: string): untyped =
var

e: ref exceptn # e is implicitly gensym’ed here
new(e)
e.msg = message
e

so this works:
let e = "message"
raise newException(IoError, e)

Whether a symbol that is declared in a template is exposed to the instantiation scope is controlled
by the inject and gensym pragmas: gensym’ed symbols are not exposed but inject’ed are.

The default for symbols of entity type, var, let and const is gensym and for proc, iterator,
converter, template, macro is inject. However, if the name of the entity is passed as a template
parameter, it is an inject’ed symbol:

template withFile(f, fn, mode: untyped, actions: untyped): untyped =
block:

var f: File # since ’f’ is a template param, it’s injected implicitly
...

withFile(txt, "ttempl3.txt", fmWrite):
txt.writeLine("line 1")
txt.writeLine("line 2")

The inject and gensym pragmas are second class annotations; they have no semantics outside of a
template definition and cannot be abstracted over:

{.pragma myInject: inject.}

template t() =
var x {.myInject.}: int # does NOT work

To get rid of hygiene in templates, one can use the dirty pragma for a template. inject and gensym
have no effect in dirty templates.

18.8 Limitations of the method call syntax
The expression x in x.f needs to be semantically checked (that means symbol lookup and type checking)
before it can be decided that it needs to be rewritten to f(x). Therefore the dot syntax has some
limitations when it is used to invoke templates/macros:

template declareVar(name: untyped) =
const name {.inject.} = 45

Doesn’t compile:
unknownIdentifier.declareVar

Another common example is this:

from sequtils import toSeq

iterator something: string =
yield "Hello"
yield "World"

var info = something().toSeq

The problem here is that the compiler already decided that something() as an iterator is not
callable in this context before toSeq gets its chance to convert it into a sequence.

73

19 Macros
A macro is a special function that is executed at compile-time. Normally the input for a macro is an
abstract syntax tree (AST) of the code that is passed to it. The macro can then do transformations on
it and return the transformed AST. The transformed AST is then passed to the compiler as if the macro
invocation would have been replaced by its result in the source code. This can be used to implement
domain specific languages.

While macros enable advanced compile-time code transformations, they cannot change Nim’s syntax.
However, this is no real restriction because Nim’s syntax is flexible enough anyway.

To write macros, one needs to know how the Nim concrete syntax is converted to an AST.
There are two ways to invoke a macro:

1. invoking a macro like a procedure call (expression macros)

2. invoking a macro with the special macrostmt syntax (statement macros)

19.1 Expression Macros
The following example implements a powerful debug command that accepts a variable number of argu-
ments:

to work with Nim syntax trees, we need an API that is defined in the
‘‘macros‘‘ module:
import macros

macro debug(args: varargs[untyped]): untyped =
‘args‘ is a collection of ‘NimNode‘ values that each contain the
AST for an argument of the macro. A macro always has to
return a ‘NimNode‘. A node of kind ‘nnkStmtList‘ is suitable for
this use case.
result = nnkStmtList.newTree()
iterate over any argument that is passed to this macro:
for n in args:

add a call to the statement list that writes the expression;
‘toStrLit‘ converts an AST to its string representation:
result.add newCall("write", newIdentNode("stdout"), newLit(n.repr))
add a call to the statement list that writes ": "
result.add newCall("write", newIdentNode("stdout"), newLit(": "))
add a call to the statement list that writes the expressions value:
result.add newCall("writeLine", newIdentNode("stdout"), n)

var
a: array[0..10, int]
x = "some string"

a[0] = 42
a[1] = 45

debug(a[0], a[1], x)

The macro call expands to:

write(stdout, "a[0]")
write(stdout, ": ")
writeLine(stdout, a[0])

write(stdout, "a[1]")
write(stdout, ": ")
writeLine(stdout, a[1])

write(stdout, "x")
write(stdout, ": ")
writeLine(stdout, x)

Arguments that are passed to a varargs parameter are wrapped in an array constructor expression.
This is why debug iterates over all of n’s children.

74

19.2 BindSym
The above debug macro relies on the fact that write, writeLine and stdout are declared in the
system module and thus visible in the instantiating context. There is a way to use bound identifiers (aka
symbols) instead of using unbound identifiers. The bindSym builtin can be used for that:

import macros

macro debug(n: varargs[typed]): untyped =
result = newNimNode(nnkStmtList, n)
for x in n:

we can bind symbols in scope via ’bindSym’:
add(result, newCall(bindSym"write", bindSym"stdout", toStrLit(x)))
add(result, newCall(bindSym"write", bindSym"stdout", newStrLitNode(": ")))
add(result, newCall(bindSym"writeLine", bindSym"stdout", x))

var
a: array[0..10, int]
x = "some string"

a[0] = 42
a[1] = 45

debug(a[0], a[1], x)

The macro call expands to:

write(stdout, "a[0]")
write(stdout, ": ")
writeLine(stdout, a[0])

write(stdout, "a[1]")
write(stdout, ": ")
writeLine(stdout, a[1])

write(stdout, "x")
write(stdout, ": ")
writeLine(stdout, x)

However, the symbols write, writeLine and stdout are already bound and are not looked up
again. As the example shows, bindSym does work with overloaded symbols implicitly.

19.3 Statement Macros
Statement macros are defined just as expression macros. However, they are invoked by an expression
following a colon.

The following example outlines a macro that generates a lexical analyzer from regular expressions:

import macros

macro case_token(n: untyped): untyped =
creates a lexical analyzer from regular expressions
... (implementation is an exercise for the reader :-)
discard

case_token: # this colon tells the parser it is a macro statement
of r"[A-Za-z_]+[A-Za-z_0-9]*":
return tkIdentifier

of r"0-9+":
return tkInteger

of r"[\+\-*\?]+":
return tkOperator

else:
return tkUnknown

Style note: For code readability, it is the best idea to use the least powerful programming construct
that still suffices. So the "check list" is:

1. Use an ordinary proc/iterator, if possible.

75

2. Else: Use a generic proc/iterator, if possible.

3. Else: Use a template, if possible.

4. Else: Use a macro.

19.4 Macros as pragmas
Whole routines (procs, iterators etc.) can also be passed to a template or a macro via the pragma
notation:

template m(s: untyped) = discard

proc p() {.m.} = discard

This is a simple syntactic transformation into:

template m(s: untyped) = discard

m:
proc p() = discard

19.5 For loop macros
A macro that takes as its only input parameter an expression of the special type system.ForLoopStmt
can rewrite the entirety of a for loop:

import macros
{.experimental: "forLoopMacros".}

macro enumerate(x: ForLoopStmt): untyped =
expectKind x, nnkForStmt
we strip off the first for loop variable and use
it as an integer counter:
result = newStmtList()
result.add newVarStmt(x[0], newLit(0))
var body = x[^1]
if body.kind != nnkStmtList:

body = newTree(nnkStmtList, body)
body.add newCall(bindSym"inc", x[0])
var newFor = newTree(nnkForStmt)
for i in 1..x.len-3:

newFor.add x[i]
transform enumerate(X) to ’X’
newFor.add x[^2][1]
newFor.add body
result.add newFor
now wrap the whole macro in a block to create a new scope
result = quote do:

block: ‘result‘

for a, b in enumerate(items([1, 2, 3])):
echo a, " ", b

without wrapping the macro in a block, we’d need to choose different
names for ‘a‘ and ‘b‘ here to avoid redefinition errors
for a, b in enumerate([1, 2, 3, 5]):
echo a, " ", b

Currently for loop macros must be enabled explicitly via {.experimental: "forLoopMacros".}.

19.6 Case statement macros
A macro that needs to be called match can be used to rewrite case statements in order to implement
pattern matching for certain types. The following example implements a simplistic form of pattern
matching for tuples, leveraging the existing equality operator for tuples (as provided in system.==):

76

{.experimental: "caseStmtMacros".}

import macros

macro match(n: tuple): untyped =
result = newTree(nnkIfStmt)
let selector = n[0]
for i in 1 ..< n.len:

let it = n[i]
case it.kind
of nnkElse, nnkElifBranch, nnkElifExpr, nnkElseExpr:

result.add it
of nnkOfBranch:

for j in 0..it.len-2:
let cond = newCall("==", selector, it[j])
result.add newTree(nnkElifBranch, cond, it[^1])

else:
error "’match’ cannot handle this node", it

echo repr result

case ("foo", 78)
of ("foo", 78): echo "yes"
of ("bar", 88): echo "no"
else: discard

Currently case statement macros must be enabled explicitly via {.experimental:
"caseStmtMacros".}.

match macros are subject to overload resolution. First the case’s selector expression is used to
determine which match macro to call. To this macro is then passed the complete case statement body
and the macro is evaluated.

In other words, the macro needs to transform the full case statement but only the statement’s selector
expression is used to determine which macro to call.

20 Special Types
20.1 static[T]
Note: static[T] is still in development.

As their name suggests, static parameters must be known at compile-time:

proc precompiledRegex(pattern: static string): RegEx =
var res {.global.} = re(pattern)
return res

precompiledRegex("/d+") # Replaces the call with a precompiled
regex, stored in a global variable

precompiledRegex(paramStr(1)) # Error, command-line options
are not known at compile-time

For the purposes of code generation, all static params are treated as generic params - the proc will
be compiled separately for each unique supplied value (or combination of values).

Static params can also appear in the signatures of generic types:

type
Matrix[M,N: static int; T: Number] = array[0..(M*N - 1), T]

Note how ‘Number‘ is just a type constraint here, while
‘static int‘ requires us to supply a compile-time int value

AffineTransform2D[T] = Matrix[3, 3, T]
AffineTransform3D[T] = Matrix[4, 4, T]

var m1: AffineTransform3D[float] # OK
var m2: AffineTransform2D[string] # Error, ‘string‘ is not a ‘Number‘

77

Please note that static T is just a syntactic convenience for the underlying generic type
static[T]. The type param can be omitted to obtain the type class of all values known at compile-time.
A more specific type class can be created by instantiating static with another type class.

You can force the evaluation of a certain expression at compile-time by coercing it to a corresponding
static type:

import math

echo static(fac(5)), " ", static[bool](16.isPowerOfTwo)

The complier will report any failure to evaluate the expression or a possible type mismatch error.

20.2 type[T]
In many contexts, Nim allows you to treat the names of types as regular values. These values exists only
during the compilation phase, but since all values must have a type, type is considered their special
type.

type acts like a generic type. For instance, the type of the symbol int is type[int]. Just like
with regular generic types, when the generic param is ommited, type denotes the type class of all types.
As a syntactic convenience, you can also use type as a modifier. type int is considered the same as
type[int].

Procs featuring type params are considered implicitly generic. They will be instantiated for each
unique combination of supplied types and within the body of the proc, the name of each param will refer
to the bound concrete type:

proc new(T: type): ref T =
echo "allocating ", T.name
new(result)

var n = Node.new
var tree = new(BinaryTree[int])

When multiple type params are present, they will bind freely to different types. To force a bind-once
behavior one can use an explicit generic param:

proc acceptOnlyTypePairs[T, U](A, B: type[T]; C, D: type[U])

Once bound, type params can appear in the rest of the proc signature:

template declareVariableWithType(T: type, value: T) =
var x: T = value

declareVariableWithType int, 42

Overload resolution can be further influenced by constraining the set of types that will match the
type param:

template maxval(T: type int): int = high(int)
template maxval(T: type float): float = Inf

var i = int.maxval
var f = float.maxval
when false:
var s = string.maxval # error, maxval is not implemented for string

The constraint can be a concrete type or a type class.

20.3 type operator
You can obtain the type of a given expression by constructing a type value from it (in many other
languages this is known as the typeof operator):

var x = 0
var y: type(x) # y has type int

78

You may add a constraint to the resulting type to trigger a compile-time error if the expression doesn’t
have the expected type:

var x = 0
var y: type[object](x) # Error: type mismatch: got <int> but expected ’object’

If type is used to determine the result type of a proc/iterator/converter call c(X) (where X stands
for a possibly empty list of arguments), the interpretation where c is an iterator is preferred over the
other interpretations:

import strutils

strutils contains both a ‘‘split‘‘ proc and iterator, but since an
an iterator is the preferred interpretation, ‘y‘ has the type ‘‘string‘‘:
var y: type("a b c".split)

21 Special Operators
21.1 dot operators
Note: Dot operators are still experimental and so need to be enabled via {.experimental:
"dotOperators".}.

Nim offers a special family of dot operators that can be used to intercept and rewrite proc call and
field access attempts, referring to previously undeclared symbol names. They can be used to provide a
fluent interface to objects lying outside the static confines of the type system such as values from dynamic
scripting languages or dynamic file formats such as JSON or XML.

When Nim encounters an expression that cannot be resolved by the standard overload resolution
rules, the current scope will be searched for a dot operator that can be matched against a re-written form
of the expression, where the unknown field or proc name is passed to an untyped parameter:

a.b # becomes ‘.‘(a, b)
a.b(c, d) # becomes ‘.‘(a, b, c, d)

The matched dot operators can be symbols of any callable kind (procs, templates and macros),
depending on the desired effect:

template ‘.‘ (js: PJsonNode, field: untyped): JSON = js[astToStr(field)]

var js = parseJson("{ x: 1, y: 2}")
echo js.x # outputs 1
echo js.y # outputs 2

The following dot operators are available:

21.2 operator .
This operator will be matched against both field accesses and method calls.

21.3 operator .()
This operator will be matched exclusively against method calls. It has higher precedence than the .
operator and this allows one to handle expressions like x.y and x.y() differently if one is interfacing with
a scripting language for example.

21.4 operator .=
This operator will be matched against assignments to missing fields.

a.b = c # becomes ‘.=‘(a, b, c)

79

22 Type bound operations
There are 3 operations that are bound to a type:

1. Assignment

2. Destruction

3. Deep copying for communication between threads

These operations can be overridden instead of overloaded. This means the implementation is automat-
ically lifted to structured types. For instance if type T has an overridden assignment operator = this
operator is also used for assignments of the type seq[T]. Since these operations are bound to a type
they have to be bound to a nominal type for reasons of simplicity of implementation: This means an
overridden deepCopy for ref T is really bound to T and not to ref T. This also means that one cannot
override deepCopy for both ptr T and ref T at the same time; instead a helper distinct or object
type has to be used for one pointer type.

22.1 operator =
This operator is the assignment operator. Note that in the contexts result = expr, parameter
= defaultValue or for parameter passing no assignment is performed. For a type T that has an
overloaded assignment operator var v = T() is rewritten to var v: T; v = T(); in other words
var and let contexts do count as assignments.

The assignment operator needs to be attached to an object or distinct type T. Its signature has to be
(var T, T). Example:

type
Concrete = object

a, b: string

proc ‘=‘(d: var Concrete; src: Concrete) =
shallowCopy(d.a, src.a)
shallowCopy(d.b, src.b)
echo "Concrete ’=’ called"

var x, y: array[0..2, Concrete]
var cA, cB: Concrete

var cATup, cBTup: tuple[x: int, ha: Concrete]

x = y
cA = cB
cATup = cBTup

22.2 destructors
A destructor must have a single parameter with a concrete type (the name of a generic type is allowed
too). The name of the destructor has to be =destroy.

=destroy(v) will be automatically invoked for every local stack variable v that goes out of scope.
If a structured type features a field with destructable type and the user has not provided an explicit

implementation, a destructor for the structured type will be automatically generated. Calls to any base
class destructors in both user-defined and generated destructors will be inserted.

A destructor is attached to the type it destructs; expressions of this type can then only be used in
destructible contexts and as parameters:

type
MyObj = object

x, y: int
p: pointer

proc ‘=destroy‘(o: var MyObj) =
if o.p != nil: dealloc o.p

80

proc open: MyObj =
result = MyObj(x: 1, y: 2, p: alloc(3))

proc work(o: MyObj) =
echo o.x
No destructor invoked here for ’o’ as ’o’ is a parameter.

proc main() =
destructor automatically invoked at the end of the scope:
var x = open()
valid: pass ’x’ to some other proc:
work(x)

Error: usage of a type with a destructor in a non destructible context
echo open()

A destructible context is currently only the following:

1. The expr in var x = expr.

2. The expr in let x = expr.

3. The expr in return expr.

4. The expr in result = expr where result is the special symbol introduced by the compiler.

These rules ensure that the construction is tied to a variable and can easily be destructed at its scope
exit. Later versions of the language will improve the support of destructors.

Be aware that destructors are not called for objects allocated with new. This may change in future
versions of language, but for now the finalizer parameter to new has to be used.

Note: Destructors are still experimental and the spec might change significantly in order to incorpo-
rate an escape analysis.

22.3 deepCopy
=deepCopy is a builtin that is invoked whenever data is passed to a spawn’ed proc to ensure memory
safety. The programmer can override its behaviour for a specific ref or ptr type T. (Later versions of
the language may weaken this restriction.)

The signature has to be:

proc ‘=deepCopy‘(x: T): T

This mechanism will be used by most data structures that support shared memory like channels to
implement thread safe automatic memory management.

The builtin deepCopy can even clone closures and their environments. See the documentation of
spawn for details.

23 Term rewriting macros
Term rewriting macros are macros or templates that have not only a name but also a pattern that is
searched for after the semantic checking phase of the compiler: This means they provide an easy way to
enhance the compilation pipeline with user defined optimizations:

template optMul{‘*‘(a, 2)}(a: int): int = a+a

let x = 3
echo x * 2

The compiler now rewrites x * 2 as x + x. The code inside the curlies is the pattern to match
against. The operators *, **, |, ~ have a special meaning in patterns if they are written in infix
notation, so to match verbatim against * the ordinary function call syntax needs to be used.

81

Term rewriting macro are applied recursively, up to a limit. This means that if the result of a term
rewriting macro is eligible for another rewriting, the compiler will try to perform it, and so on, until no
more optimizations are applicable. To avoid putting the compiler into an infinite loop, there is a hard
limit on how many times a single term rewriting macro can be applied. Once this limit has been passed,
the term rewriting macro will be ignored.

Unfortunately optimizations are hard to get right and even the tiny example is wrong:

template optMul{‘*‘(a, 2)}(a: int): int = a+a

proc f(): int =
echo "side effect!"
result = 55

echo f() * 2

We cannot duplicate ’a’ if it denotes an expression that has a side effect! Fortunately Nim supports
side effect analysis:

template optMul{‘*‘(a, 2)}(a: int{noSideEffect}): int = a+a

proc f(): int =
echo "side effect!"
result = 55

echo f() * 2 # not optimized ;-)

You can make one overload matching with a constraint and one without, and the one with a constraint
will have precedence, and so you can handle both cases differently.

So what about 2 * a? We should tell the compiler * is commutative. We cannot really do that
however as the following code only swaps arguments blindly:

template mulIsCommutative{‘*‘(a, b)}(a, b: int): int = b*a

What optimizers really need to do is a canonicalization:

template canonMul{‘*‘(a, b)}(a: int{lit}, b: int): int = b*a

The int{lit} parameter pattern matches against an expression of type int, but only if it’s a literal.

23.1 Parameter constraints
The parameter constraint expression can use the operators | (or), & (and) and ~ (not) and the following
predicates:

Predicates that share their name with a keyword have to be escaped with backticks: ‘‘ const . The
‘‘alias and noalias predicates refer not only to the matching AST, but also to every other bound
parameter; syntactically they need to occur after the ordinary AST predicates:

template ex{a = b + c}(a: int{noalias}, b, c: int) =
this transformation is only valid if ’b’ and ’c’ do not alias ’a’:
a = b
inc a, c

23.2 Pattern operators
The operators *, **, |, ~ have a special meaning in patterns if they are written in infix notation.

23.2.1 The | operator

The | operator if used as infix operator creates an ordered choice:

template t{0|1}(): untyped = 3
let a = 1
outputs 3:
echo a

82

Predicate Meaning
atom The matching node has no children.
lit The matching node is a literal like "abc", 12.
sym The matching node must be a symbol (a bound

identifier).
ident The matching node must be an identifier (an un-

bound identifier).
call The matching AST must be a call/apply expres-

sion.
lvalue The matching AST must be an lvalue.
sideeffect The matching AST must have a side effect.
nosideeffect The matching AST must have no side effect.
param A symbol which is a parameter.
genericparam A symbol which is a generic parameter.
module A symbol which is a module.
type A symbol which is a type.
var A symbol which is a variable.
let A symbol which is a let variable.
const A symbol which is a constant.
result The special result variable.
proc A symbol which is a proc.
method A symbol which is a method.
iterator A symbol which is an iterator.
converter A symbol which is a converter.
macro A symbol which is a macro.
template A symbol which is a template.
field A symbol which is a field in a tuple or an object.
enumfield A symbol which is a field in an enumeration.
forvar A for loop variable.
label A label (used in block statements).
nk* The matching AST must have the specified kind.

(Example: nkIfStmt denotes an if statement.)
alias States that the marked parameter needs to alias

with some other parameter.
noalias States that every other parameter must not alias

with the marked parameter.

83

The matching is performed after the compiler performed some optimizations like constant folding, so
the following does not work:

template t{0|1}(): untyped = 3
outputs 1:
echo 1

The reason is that the compiler already transformed the 1 into "1" for the echo statement. However,
a term rewriting macro should not change the semantics anyway. In fact they can be deactivated with
the -patterns:off command line option or temporarily with the patterns pragma.

23.2.2 The {} operator

A pattern expression can be bound to a pattern parameter via the expr{param} notation:

template t{(0|1|2){x}}(x: untyped): untyped = x+1
let a = 1
outputs 2:
echo a

23.2.3 The ~ operator

The ~ operator is the not operator in patterns:

template t{x = (~x){y} and (~x){z}}(x, y, z: bool) =
x = y
if x: x = z

var
a = false
b = true
c = false

a = b and c
echo a

23.2.4 The * operator

The * operator can flatten a nested binary expression like a & b & c to &(a, b, c):

var
calls = 0

proc ‘&&‘(s: varargs[string]): string =
result = s[0]
for i in 1..len(s)-1: result.add s[i]
inc calls

template optConc{ ‘&&‘ * a }(a: string): untyped = &&a

let space = " "
echo "my" && (space & "awe" && "some ") && "concat"

check that it’s been optimized properly:
doAssert calls == 1

The second operator of * must be a parameter; it is used to gather all the arguments. The expression
"my" && (space & "awe" && "some ") && "concat" is passed to optConc in a as a special
list (of kind nkArgList) which is flattened into a call expression; thus the invocation of optConc
produces:

‘&&‘("my", space & "awe", "some ", "concat")

84

23.2.5 The ** operator

The ** is much like the * operator, except that it gathers not only all the arguments, but also the
matched operators in reverse polish notation:

import macros

type
Matrix = object

dummy: int

proc ‘*‘(a, b: Matrix): Matrix = discard
proc ‘+‘(a, b: Matrix): Matrix = discard
proc ‘-‘(a, b: Matrix): Matrix = discard
proc ‘$‘(a: Matrix): string = result = $a.dummy
proc mat21(): Matrix =
result.dummy = 21

macro optM{ (‘+‘|‘-‘|‘*‘) ** a }(a: Matrix): untyped =
echo treeRepr(a)
result = newCall(bindSym"mat21")

var x, y, z: Matrix

echo x + y * z - x

This passes the expression x + y * z - x to the optM macro as an nnkArgList node containing:

Arglist
Sym "x"
Sym "y"
Sym "z"
Sym "*"
Sym "+"
Sym "x"
Sym "-"

(Which is the reverse polish notation of x + y * z - x.)

23.3 Parameters
Parameters in a pattern are type checked in the matching process. If a parameter is of the type varargs
it is treated specially and it can match 0 or more arguments in the AST to be matched against:

template optWrite{
write(f, x)
((write|writeLine){w})(f, y)

}(x, y: varargs[untyped], f: File, w: untyped) =
w(f, x, y)

23.4 Example: Partial evaluation
The following example shows how some simple partial evaluation can be implemented with term rewriting:

proc p(x, y: int; cond: bool): int =
result = if cond: x + y else: x - y

template optP1{p(x, y, true)}(x, y: untyped): untyped = x + y
template optP2{p(x, y, false)}(x, y: untyped): untyped = x - y

23.5 Example: Hoisting
The following example shows how some form of hoisting can be implemented:

85

import pegs

template optPeg{peg(pattern)}(pattern: string{lit}): Peg =
var gl {.global, gensym.} = peg(pattern)
gl

for i in 0 .. 3:
echo match("(a b c)", peg"’(’ @ ’)’")
echo match("W_HI_Le", peg"\y ’while’")

The optPeg template optimizes the case of a peg constructor with a string literal, so that the
pattern will only be parsed once at program startup and stored in a global gl which is then re-used.
This optimization is called hoisting because it is comparable to classical loop hoisting.

24 AST based overloading
Parameter constraints can also be used for ordinary routine parameters; these constraints affect ordinary
overloading resolution then:

proc optLit(a: string{lit|‘const‘}) =
echo "string literal"

proc optLit(a: string) =
echo "no string literal"

const
constant = "abc"

var
variable = "xyz"

optLit("literal")
optLit(constant)
optLit(variable)

However, the constraints alias and noalias are not available in ordinary routines.

24.1 Move optimization
The call constraint is particularly useful to implement a move optimization for types that have copying
semantics:

proc ‘[]=‘*(t: var Table, key: string, val: string) =
puts a (key, value)-pair into ‘t‘. The semantics of string require
a copy here:
let idx = findInsertionPosition(key)
t[idx].key = key
t[idx].val = val

proc ‘[]=‘*(t: var Table, key: string{call}, val: string{call}) =
puts a (key, value)-pair into ‘t‘. Optimized version that knows that
the strings are unique and thus don’t need to be copied:
let idx = findInsertionPosition(key)
shallowCopy t[idx].key, key
shallowCopy t[idx].val, val

var t: Table
overloading resolution ensures that the optimized []= is called here:
t[f()] = g()

25 Modules
Nim supports splitting a program into pieces by a module concept. Each module needs to be in its own
file and has its own namespace. Modules enable information hiding and separate compilation. A module
may gain access to symbols of another module by the import statement. Recursive module dependencies

86

are allowed, but slightly subtle. Only top-level symbols that are marked with an asterisk (*) are exported.
A valid module name can only be a valid Nim identifier (and thus its filename is identifier.nim).

The algorithm for compiling modules is:

• compile the whole module as usual, following import statements recursively

• if there is a cycle only import the already parsed symbols (that are exported); if an unknown
identifier occurs then abort

This is best illustrated by an example:

Module A
type

T1* = int # Module A exports the type ‘‘T1‘‘
import B # the compiler starts parsing B

proc main() =
var i = p(3) # works because B has been parsed completely here

main()

Module B
import A # A is not parsed here! Only the already known symbols

of A are imported.

proc p*(x: A.T1): A.T1 =
this works because the compiler has already
added T1 to A’s interface symbol table
result = x + 1

25.0.1 Import statement

After the import statement a list of module names can follow or a single module name followed by an
except list to prevent some symbols to be imported:

import strutils except ‘%‘, toUpperAscii

doesn’t work then:
echo "$1" % "abc".toUpperAscii

It is not checked that the except list is really exported from the module. This feature allows to
compile against an older version of the module that does not export these identifiers.

25.0.2 Include statement

The include statement does something fundamentally different than importing a module: it merely
includes the contents of a file. The include statement is useful to split up a large module into several
files:

include fileA, fileB, fileC

25.0.3 Module names in imports

A module alias can be introduced via the as keyword:

import strutils as su, sequtils as qu

echo su.format("$1", "lalelu")

The original module name is then not accessible. The notations path/to/module or
"path/to/module" can be used to refer to a module in subdirectories:

import lib/pure/os, "lib/pure/times"

Note that the module name is still strutils and not lib/pure/strutils and so one cannot
do:

87

import lib/pure/strutils
echo lib/pure/strutils.toUpperAscii("abc")

Likewise the following does not make sense as the name is strutils already:

import lib/pure/strutils as strutils

25.0.4 Collective imports from a directory

The syntax import dir / [moduleA, moduleB] can be used to import multiple modules from the
same directory.

Path names are syntactically either Nim identifiers or string literals. If the path name is not a valid
Nim identifier it needs to be a string literal:

import "gfx/3d/somemodule" # in quotes because ’3d’ is not a valid Nim identifier

25.0.5 Pseudo import/include paths

A directory can also be a so called "pseudo directory". They can be used to avoid ambiguity when there
are multiple modules with the same path.

There are two pseudo directories:
1. std: The std pseudo directory is the abstract location of Nim’s standard library. For example, the

syntax import std / strutils is used to unambiguously refer to the standard library’s strutils
module.

2. pkg: The pkg pseudo directory is used to unambiguously refer to a Nimble package. However, for
technical details that lie outside of the scope of this document its semantics are: Use the search path to
look for module name but ignore the standard library locations. In other words, it is the opposite of std.

25.0.6 From import statement

After the from statement a module name follows followed by an import to list the symbols one likes to
use without explicit full qualification:

from strutils import ‘%‘

echo "$1" % "abc"
always possible: full qualification:
echo strutils.replace("abc", "a", "z")

It’s also possible to use from module import nil if one wants to import the module but wants
to enforce fully qualified access to every symbol in module.

25.0.7 Export statement

An export statement can be used for symbol forwarding so that client modules don’t need to import a
module’s dependencies:

module B
type MyObject* = object

module A
import B
export B.MyObject

proc ‘$‘*(x: MyObject): string = "my object"

module C
import A

B.MyObject has been imported implicitly here:
var x: MyObject
echo $x

When the exported symbol is another module, all of its definitions will be forwarded. You can use an
except list to exclude some of the symbols.

88

25.1 Scope rules
Identifiers are valid from the point of their declaration until the end of the block in which the declaration
occurred. The range where the identifier is known is the scope of the identifier. The exact scope of an
identifier depends on the way it was declared.

25.1.1 Block scope

The scope of a variable declared in the declaration part of a block is valid from the point of declaration
until the end of the block. If a block contains a second block, in which the identifier is redeclared, then
inside this block, the second declaration will be valid. Upon leaving the inner block, the first declaration
is valid again. An identifier cannot be redefined in the same block, except if valid for procedure or iterator
overloading purposes.

25.1.2 Tuple or object scope

The field identifiers inside a tuple or object definition are valid in the following places:

• To the end of the tuple/object definition.

• Field designators of a variable of the given tuple/object type.

• In all descendant types of the object type.

25.1.3 Module scope

All identifiers of a module are valid from the point of declaration until the end of the module. Identifiers
from indirectly dependent modules are not available. The system module is automatically imported in
every module.

If a module imports an identifier by two different modules, each occurrence of the identifier has to be
qualified, unless it is an overloaded procedure or iterator in which case the overloading resolution takes
place:
Module A
var x*: string

Module B
var x*: int

Module C
import A, B
write(stdout, x) # error: x is ambiguous
write(stdout, A.x) # no error: qualifier used

var x = 4
write(stdout, x) # not ambiguous: uses the module C’s x

25.1.4 Code reordering

Note: Code reordering is experimental and must be enabled via the {.experimental.} pragma.
The code reordering feature can implicitly rearrange procedure, template, and macro definitions along

with variable declarations and initializations at the top level scope so that, to a large extent, a programmer
should not have to worry about ordering definitions correctly or be forced to use forward declarations to
preface definitions inside a module.

Example:
{.experimental: "codeReordering".}

proc foo(x: int) =
bar(x)

proc bar(x: int) =
echo(x)

foo(10)

89

Variables can also be reordered as well. Variables that are initialized (i.e. variables that have their
declaration and assignment combined in a single statement) can have their entire initialization statement
reordered. Be wary of what code is executed at the top level:

{.experimental: "codeReordering".}

proc a() =
echo(foo)

var foo = 5

a() # outputs: "5"

It is important to note that reordering only works for symbols at top level scope. Therefore, the
following will fail to compile:

{.experimental: "codeReordering".}

proc a() =
b()
proc b() =
echo("Hello!")

a()

26 Compiler Messages
The Nim compiler emits different kinds of messages: hint, warning, and error messages. An error message
is emitted if the compiler encounters any static error.

27 Pragmas
Pragmas are Nim’s method to give the compiler additional information / commands without introducing
a massive number of new keywords. Pragmas are processed on the fly during semantic checking. Pragmas
are enclosed in the special {. and .} curly brackets. Pragmas are also often used as a first implementation
to play with a language feature before a nicer syntax to access the feature becomes available.

27.1 deprecated pragma
The deprecated pragma is used to mark a symbol as deprecated:

proc p() {.deprecated.}
var x {.deprecated.}: char

This pragma can also take in an optional warning string to relay to developers.

proc thing(x: bool) {.deprecated: "use thong instead".}

27.2 noSideEffect pragma
The noSideEffect pragma is used to mark a proc/iterator to have no side effects. This means that
the proc/iterator only changes locations that are reachable from its parameters and the return value only
depends on the arguments. If none of its parameters have the type var T or ref T or ptr T this
means no locations are modified. It is a static error to mark a proc/iterator to have no side effect if the
compiler cannot verify this.

As a special semantic rule, the built-in debugEcho pretends to be free of side effects, so that it can
be used for debugging routines marked as noSideEffect.

func is syntactic sugar for a proc with no side effects:

func ‘+‘ (x, y: int): int

90

system.html#debugEcho

27.3 compileTime pragma
The compileTime pragma is used to mark a proc or variable to be used at compile time only. No
code will be generated for it. Compile time procs are useful as helpers for macros. Since version 0.12.0
of the language, a proc that uses system.NimNode within its parameter types is implicitly declared
compileTime:

proc astHelper(n: NimNode): NimNode =
result = n

Is the same as:

proc astHelper(n: NimNode): NimNode {.compileTime.} =
result = n

27.4 noReturn pragma
The noreturn pragma is used to mark a proc that never returns.

27.5 acyclic pragma
The acyclic pragma can be used for object types to mark them as acyclic even though they seem to
be cyclic. This is an optimization for the garbage collector to not consider objects of this type as part
of a cycle:

type
Node = ref NodeObj
NodeObj {.acyclic.} = object

left, right: Node
data: string

Or if we directly use a ref object:

type
Node = ref object {.acyclic.}
left, right: Node
data: string

In the example a tree structure is declared with the Node type. Note that the type definition is
recursive and the GC has to assume that objects of this type may form a cyclic graph. The acyclic
pragma passes the information that this cannot happen to the GC. If the programmer uses the acyclic
pragma for data types that are in reality cyclic, the GC may leak memory, but nothing worse happens.

Future directions: The acyclic pragma may become a property of a ref type:

type
Node = acyclic ref NodeObj
NodeObj = object

left, right: Node
data: string

27.6 final pragma
The final pragma can be used for an object type to specify that it cannot be inherited from. Note
that inheritance is only available for objects that inherit from an existing object (via the object of
SuperType syntax) or that have been marked as inheritable.

27.7 shallow pragma
The shallow pragma affects the semantics of a type: The compiler is allowed to make a shallow copy.
This can cause serious semantic issues and break memory safety! However, it can speed up assignments
considerably, because the semantics of Nim require deep copying of sequences and strings. This can be
expensive, especially if sequences are used to build a tree structure:

91

type
NodeKind = enum nkLeaf, nkInner
Node {.shallow.} = object
case kind: NodeKind
of nkLeaf:

strVal: string
of nkInner:

children: seq[Node]

27.8 pure pragma
An object type can be marked with the pure pragma so that its type field which is used for runtime
type identification is omitted. This used to be necessary for binary compatibility with other compiled
languages.

An enum type can be marked as pure. Then access of its fields always requires full qualification.

27.9 asmNoStackFrame pragma
A proc can be marked with the asmNoStackFrame pragma to tell the compiler it should not generate
a stack frame for the proc. There are also no exit statements like return result; generated and the
generated C function is declared as __declspec(naked) or __attribute__((naked)) (depending
on the used C compiler).

Note: This pragma should only be used by procs which consist solely of assembler statements.

27.10 error pragma
The error pragma is used to make the compiler output an error message with the given content.
Compilation does not necessarily abort after an error though.

The error pragma can also be used to annotate a symbol (like an iterator or proc). The usage of
the symbol then triggers a compile-time error. This is especially useful to rule out that some operation
is valid due to overloading and type conversions:

check that underlying int values are compared and not the pointers:
proc ‘==‘(x, y: ptr int): bool {.error.}

27.11 fatal pragma
The fatal pragma is used to make the compiler output an error message with the given content. In
contrast to the error pragma, compilation is guaranteed to be aborted by this pragma. Example:

when not defined(objc):
{.fatal: "Compile this program with the objc command!".}

27.12 warning pragma
The warning pragma is used to make the compiler output a warning message with the given content.
Compilation continues after the warning.

27.13 hint pragma
The hint pragma is used to make the compiler output a hint message with the given content. Compilation
continues after the hint.

27.14 line pragma
The line pragma can be used to affect line information of the annotated statement as seen in stack
backtraces:

92

template myassert*(cond: untyped, msg = "") =
if not cond:
change run-time line information of the ’raise’ statement:
{.line: InstantiationInfo().}:

raise newException(EAssertionFailed, msg)

If the line pragma is used with a parameter, the parameter needs be a tuple[filename:
string, line: int]. If it is used without a parameter, system.InstantiationInfo() is used.

27.15 linearScanEnd pragma
The linearScanEnd pragma can be used to tell the compiler how to compile a Nim case statement.
Syntactically it has to be used as a statement:

case myInt
of 0:
echo "most common case"

of 1:
{.linearScanEnd.}
echo "second most common case"

of 2: echo "unlikely: use branch table"
else: echo "unlikely too: use branch table for ", myInt

In the example, the case branches 0 and 1 are much more common than the other cases. Therefore
the generated assembler code should test for these values first, so that the CPU’s branch predictor has a
good chance to succeed (avoiding an expensive CPU pipeline stall). The other cases might be put into a
jump table for O(1) overhead, but at the cost of a (very likely) pipeline stall.

The linearScanEnd pragma should be put into the last branch that should be tested against via
linear scanning. If put into the last branch of the whole case statement, the whole case statement uses
linear scanning.

27.16 computedGoto pragma
The computedGoto pragma can be used to tell the compiler how to compile a Nim case in a while
true statement. Syntactically it has to be used as a statement inside the loop:

type
MyEnum = enum

enumA, enumB, enumC, enumD, enumE

proc vm() =
var instructions: array[0..100, MyEnum]
instructions[2] = enumC
instructions[3] = enumD
instructions[4] = enumA
instructions[5] = enumD
instructions[6] = enumC
instructions[7] = enumA
instructions[8] = enumB

instructions[12] = enumE
var pc = 0
while true:

{.computedGoto.}
let instr = instructions[pc]
case instr
of enumA:

echo "yeah A"
of enumC, enumD:

echo "yeah CD"
of enumB:

echo "yeah B"
of enumE:

break
inc(pc)

vm()

93

pragma allowed values description
checks on|off Turns the code generation for all

runtime checks on or off.
boundChecks on|off Turns the code generation for

array bound checks on or off.
overflowChecks on|off Turns the code generation for

over- or underflow checks on or
off.

nilChecks on|off Turns the code generation for nil
pointer checks on or off.

assertions on|off Turns the code generation for
assertions on or off.

warnings on|off Turns the warning messages of
the compiler on or off.

hints on|off Turns the hint messages of the
compiler on or off.

optimization none|speed|size Optimize the code for speed or
size, or disable optimization.

patterns on|off Turns the term rewriting tem-
plates/macros on or off.

callconv cdecl|... Specifies the default calling con-
vention for all procedures (and
procedure types) that follow.

As the example shows computedGoto is mostly useful for interpreters. If the underlying backend
(C compiler) does not support the computed goto extension the pragma is simply ignored.

27.17 unroll pragma
The unroll pragma can be used to tell the compiler that it should unroll a for or while loop for runtime
efficiency:

proc searchChar(s: string, c: char): int =
for i in 0 .. s.high:

{.unroll: 4.}
if s[i] == c: return i

result = -1

In the above example, the search loop is unrolled by a factor 4. The unroll factor can be left out too;
the compiler then chooses an appropriate unroll factor.

Note: Currently the compiler recognizes but ignores this pragma.

27.18 immediate pragma
The immediate pragma is obsolete. See Typed vs untyped parameters??.

27.19 compilation option pragmas
The listed pragmas here can be used to override the code generation options for a proc/method/converter.

The implementation currently provides the following possible options (various others may be added
later).

Example:

{.checks: off, optimization: speed.}
compile without runtime checks and optimize for speed

94

27.20 push and pop pragmas
The push/pop pragmas are very similar to the option directive, but are used to override the settings
temporarily. Example:

{.push checks: off.}
compile this section without runtime checks as it is
speed critical
... some code ...
{.pop.} # restore old settings

27.21 register pragma
The register pragma is for variables only. It declares the variable as register, giving the compiler
a hint that the variable should be placed in a hardware register for faster access. C compilers usually
ignore this though and for good reasons: Often they do a better job without it anyway.

In highly specific cases (a dispatch loop of a bytecode interpreter for example) it may provide benefits,
though.

27.22 global pragma
The global pragma can be applied to a variable within a proc to instruct the compiler to store it in a
global location and initialize it once at program startup.

proc isHexNumber(s: string): bool =
var pattern {.global.} = re"[0-9a-fA-F]+"
result = s.match(pattern)

When used within a generic proc, a separate unique global variable will be created for each instantia-
tion of the proc. The order of initialization of the created global variables within a module is not defined,
but all of them will be initialized after any top-level variables in their originating module and before any
variable in a module that imports it.

27.23 pragma pragma
The pragma pragma can be used to declare user defined pragmas. This is useful because Nim’s templates
and macros do not affect pragmas. User defined pragmas are in a different module-wide scope than all
other symbols. They cannot be imported from a module.

Example:

when appType == "lib":
{.pragma: rtl, exportc, dynlib, cdecl.}

else:
{.pragma: rtl, importc, dynlib: "client.dll", cdecl.}

proc p*(a, b: int): int {.rtl.} =
result = a+b

In the example a new pragma named rtl is introduced that either imports a symbol from a dynamic
library or exports the symbol for dynamic library generation.

27.24 Disabling certain messages
Nim generates some warnings and hints ("line too long") that may annoy the user. A mechanism for
disabling certain messages is provided: Each hint and warning message contains a symbol in brackets.
This is the message’s identifier that can be used to enable or disable it:

{.hint[LineTooLong]: off.} # turn off the hint about too long lines

This is often better than disabling all warnings at once.

95

27.25 used pragma
Nim produces a warning for symbols that are not exported and not used either. The used pragma can be
attached to a symbol to suppress this warning. This is particularly useful when the symbol was generated
by a macro:

template implementArithOps(T) =
proc echoAdd(a, b: T) {.used.} =
echo a + b

proc echoSub(a, b: T) {.used.} =
echo a - b

no warning produced for the unused ’echoSub’
implementArithOps(int)
echoAdd 3, 5

27.26 experimental pragma
The experimental pragma enables experimental language features. Depending on the concrete feature
this means that the feature is either considered too unstable for an otherwise stable release or that the
future of the feature is uncertain (it may be removed any time).

Example:

{.experimental: "parallel".}

proc useParallel() =
parallel:

for i in 0..4:
echo "echo in parallel"

As a top level statement, the experimental pragma enables a feature for the rest of the module it’s
enabled in. This is problematic for macro and generic instantiations that cross a module scope. Currently
these usages have to be put into a .push/pop environment:

client.nim
proc useParallel*[T](unused: T) =
use a generic T here to show the problem.
{.push experimental: "parallel".}
parallel:

for i in 0..4:
echo "echo in parallel"

{.pop.}

import client
useParallel(1)

28 Implementation Specific Pragmas
This section describes additional pragmas that the current Nim implementation supports but which
should not be seen as part of the language specification.

28.1 Bitsize pragma
The bitsize pragma is for object field members. It declares the field as a bitfield in C/C++.

type
mybitfield = object

flag {.bitsize:1.}: cuint

generates:

struct mybitfield {
unsigned int flag:1;

};

96

28.2 Volatile pragma
The volatile pragma is for variables only. It declares the variable as volatile, whatever that means
in C/C++ (its semantics are not well defined in C/C++).

Note: This pragma will not exist for the LLVM backend.

28.3 NoDecl pragma
The noDecl pragma can be applied to almost any symbol (variable, proc, type, etc.) and is sometimes
useful for interoperability with C: It tells Nim that it should not generate a declaration for the symbol
in the C code. For example:

var
EACCES {.importc, noDecl.}: cint # pretend EACCES was a variable, as

Nim does not know its value

However, the header pragma is often the better alternative.
Note: This will not work for the LLVM backend.

28.4 Header pragma
The header pragma is very similar to the noDecl pragma: It can be applied to almost any symbol and
specifies that it should not be declared and instead the generated code should contain an #include:

type
PFile {.importc: "FILE*", header: "<stdio.h>".} = distinct pointer
import C’s FILE* type; Nim will treat it as a new pointer type

The header pragma always expects a string constant. The string contant contains the header file:
As usual for C, a system header file is enclosed in angle brackets: <>. If no angle brackets are given, Nim
encloses the header file in "" in the generated C code.

Note: This will not work for the LLVM backend.

28.5 IncompleteStruct pragma
The incompleteStruct pragma tells the compiler to not use the underlying C struct in a sizeof
expression:

type
DIR* {.importc: "DIR", header: "<dirent.h>",

pure, incompleteStruct.} = object

28.6 Compile pragma
The compile pragma can be used to compile and link a C/C++ source file with the project:

{.compile: "myfile.cpp".}

Note: Nim computes a SHA1 checksum and only recompiles the file if it has changed. You can use
the -f command line option to force recompilation of the file.

28.7 Link pragma
The link pragma can be used to link an additional file with the project:

{.link: "myfile.o".}

97

28.8 PassC pragma
The passC pragma can be used to pass additional parameters to the C compiler like you would using
the commandline switch -passC:

{.passC: "-Wall -Werror".}

Note that you can use gorge from the system module to embed parameters from an external command
at compile time:

{.passC: gorge("pkg-config --cflags sdl").}

28.9 PassL pragma
The passL pragma can be used to pass additional parameters to the linker like you would using the
commandline switch -passL:

{.passL: "-lSDLmain -lSDL".}

Note that you can use gorge from the system module to embed parameters from an external command
at compile time:

{.passL: gorge("pkg-config --libs sdl").}

28.10 Emit pragma
The emit pragma can be used to directly affect the output of the compiler’s code generator. So it makes
your code unportable to other code generators/backends. Its usage is highly discouraged! However, it
can be extremely useful for interfacing with C++ or Objective C code.

Example:

{.emit: """static int cvariable = 420;""".}

{.push stackTrace:off.}
proc embedsC() =

var nimVar = 89
access Nim symbols within an emit section outside of string literals:
{.emit: ["""fprintf(stdout, "%d\n", cvariable + (int)""", nimVar, ");"].}

{.pop.}

embedsC()

For backwards compatibility, if the argument to the emit statement is a single string literal, Nim
symbols can be referred to via backticks. This usage is however deprecated.

For a toplevel emit statement the section where in the generated C/C++ file the code should
be emitted can be influenced via the prefixes /*TYPESECTION*/ or /*VARSECTION*/ or
/*INCLUDESECTION*/:

{.emit: """/*TYPESECTION*/struct Vector3 {public: Vector3(): x(5) {} Vector3(float x_): x(x_) {} float x;};""".}

type Vector3 {.importcpp: "Vector3", nodecl} = object
x: cfloat

proc constructVector3(a: cfloat): Vector3 {.importcpp: "Vector3(@)", nodecl}

28.11 ImportCpp pragma
Note: c2nim can parse a large subset of C++ and knows about the importcpp pragma pattern language.
It is not necessary to know all the details described here.

Similar to the importc pragma for C, the importcpp pragma can be used to import C++ meth-
ods or C++ symbols in general. The generated code then uses the C++ method calling syntax:
obj->method(arg). In combination with the header and emit pragmas this allows sloppy inter-
facing with libraries written in C++:

98

system.html
system.html
https://nim-lang.org/docs/c2nim.html

Horrible example of how to interface with a C++ engine ... ;-)

{.link: "/usr/lib/libIrrlicht.so".}

{.emit: """using namespace irr;using namespace core;using namespace scene;using namespace video;using namespace io;using namespace gui;""".}

const
irr = "<irrlicht/irrlicht.h>"

type
IrrlichtDeviceObj {.header: irr,

importcpp: "IrrlichtDevice".} = object
IrrlichtDevice = ptr IrrlichtDeviceObj

proc createDevice(): IrrlichtDevice {.
header: irr, importcpp: "createDevice(@)".}

proc run(device: IrrlichtDevice): bool {.
header: irr, importcpp: "#.run(@)".}

The compiler needs to be told to generate C++ (command cpp) for this to work. The conditional
symbol cpp is defined when the compiler emits C++ code.

28.11.1 Namespaces

The sloppy interfacing example uses .emit to produce using namespace declarations. It is usually
much better to instead refer to the imported name via the namespace::identifier notation:

type
IrrlichtDeviceObj {.header: irr,

importcpp: "irr::IrrlichtDevice".} = object

28.11.2 Importcpp for enums

When importcpp is applied to an enum type the numerical enum values are annotated with the C++
enum type, like in this example: ((TheCppEnum)(3)). (This turned out to be the simplest way to
implement it.)

28.11.3 Importcpp for procs

Note that the importcpp variant for procs uses a somewhat cryptic pattern language for maximum
flexibility:

• A hash # symbol is replaced by the first or next argument.

• A dot following the hash #. indicates that the call should use C++’s dot or arrow notation.

• An at symbol @ is replaced by the remaining arguments, separated by commas.

For example:

proc cppMethod(this: CppObj, a, b, c: cint) {.importcpp: "#.CppMethod(@)".}
var x: ptr CppObj
cppMethod(x[], 1, 2, 3)

Produces:

x->CppMethod(1, 2, 3)

As a special rule to keep backwards compatibility with older versions of the importcpp pragma, if
there is no special pattern character (any of # ’ @) at all, C++’s dot or arrow notation is assumed, so
the above example can also be written as:

proc cppMethod(this: CppObj, a, b, c: cint) {.importcpp: "CppMethod".}

Note that the pattern language naturally also covers C++’s operator overloading capabilities:

99

proc vectorAddition(a, b: Vec3): Vec3 {.importcpp: "# + #".}
proc dictLookup(a: Dict, k: Key): Value {.importcpp: "#[#]".}

• An apostrophe ’ followed by an integer i in the range 0..9 is replaced by the i’th parameter type.
The 0th position is the result type. This can be used to pass types to C++ function templates.
Between the ’ and the digit an asterisk can be used to get to the base type of the type. (So it
"takes away a star" from the type; T* becomes T.) Two stars can be used to get to the element type
of the element type etc.

For example:

type Input {.importcpp: "System::Input".} = object
proc getSubsystem*[T](): ptr T {.importcpp: "SystemManager::getSubsystem<’*0>()", nodecl.}

let x: ptr Input = getSubsystem[Input]()

Produces:

x = SystemManager::getSubsystem<System::Input>()

• #@ is a special case to support a cnew operation. It is required so that the call expression is
inlined directly, without going through a temporary location. This is only required to circumvent
a limitation of the current code generator.

For example C++’s new operator can be "imported" like this:

proc cnew*[T](x: T): ptr T {.importcpp: "(new ’*0#@)", nodecl.}

constructor of ’Foo’:
proc constructFoo(a, b: cint): Foo {.importcpp: "Foo(@)".}

let x = cnew constructFoo(3, 4)

Produces:

x = new Foo(3, 4)

However, depending on the use case new Foo can also be wrapped like this instead:

proc newFoo(a, b: cint): ptr Foo {.importcpp: "new Foo(@)".}

let x = newFoo(3, 4)

28.11.4 Wrapping constructors

Sometimes a C++ class has a private copy constructor and so code like Class c = Class(1,2);
must not be generated but instead Class c(1,2);. For this purpose the Nim proc that wraps a C++
constructor needs to be annotated with the constructor pragma. This pragma also helps to generate
faster C++ code since construction then doesn’t invoke the copy constructor:

a better constructor of ’Foo’:
proc constructFoo(a, b: cint): Foo {.importcpp: "Foo(@)", constructor.}

28.11.5 Wrapping destructors

Since Nim generates C++ directly, any destructor is called implicitly by the C++ compiler at the scope
exits. This means that often one can get away with not wrapping the destructor at all! However when it
needs to be invoked explicitly, it needs to be wrapped. The pattern language provides everything that is
required:

proc destroyFoo(this: var Foo) {.importcpp: "#.~Foo()".}

100

28.11.6 Importcpp for objects

Generic importcpp’ed objects are mapped to C++ templates. This means that you can import C++’s
templates rather easily without the need for a pattern language for object types:

type
StdMap {.importcpp: "std::map", header: "<map>".} [K, V] = object

proc ‘[]=‘[K, V](this: var StdMap[K, V]; key: K; val: V) {.
importcpp: "#[#] = #", header: "<map>".}

var x: StdMap[cint, cdouble]
x[6] = 91.4

Produces:

std::map<int, double> x;
x[6] = 91.4;

• If more precise control is needed, the apostrophe ’ can be used in the supplied pattern to denote
the concrete type parameters of the generic type. See the usage of the apostrophe operator in proc
patterns for more details.

type
VectorIterator {.importcpp: "std::vector<’0>::iterator".} [T] = object

var x: VectorIterator[cint]

Produces:

std::vector<int>::iterator x;

28.12 ImportObjC pragma
Similar to the importc pragma for C, the importobjc pragma can be used to import Objective C meth-
ods. The generated code then uses the Objective C method calling syntax: [obj method param1:
arg]. In addition with the header and emit pragmas this allows sloppy interfacing with libraries
written in Objective C:

horrible example of how to interface with GNUStep ...

{.passL: "-lobjc".}
{.emit: """#include <objc/Object.h>@interface Greeter:Object{}- (void)greet:(long)x y:(long)dummy;@end#include <stdio.h>@implementation Greeter- (void)greet:(long)x y:(long)dummy{ printf("Hello, World!\n");}@end#include <stdlib.h>""".}

type
Id {.importc: "id", header: "<objc/Object.h>", final.} = distinct int

proc newGreeter: Id {.importobjc: "Greeter new", nodecl.}
proc greet(self: Id, x, y: int) {.importobjc: "greet", nodecl.}
proc free(self: Id) {.importobjc: "free", nodecl.}

var g = newGreeter()
g.greet(12, 34)
g.free()

The compiler needs to be told to generate Objective C (command objc) for this to work. The
conditional symbol objc is defined when the compiler emits Objective C code.

28.13 CodegenDecl pragma
The codegenDecl pragma can be used to directly influence Nim’s code generator. It receives a format
string that determines how the variable or proc is declared in the generated code.

For variables $1 in the format string represents the type of the variable and $2 is the name of the
variable.

The following Nim code:

101

pragma description
intdefine Reads in a build-time define as an integer
strdefine Reads in a build-time define as a string

var
a {.codegenDecl: "$# progmem $#".}: int

will generate this C code:

int progmem a

For procedures $1 is the return type of the procedure, $2 is the name of the procedure and $3 is the
parameter list.

The following nim code:

proc myinterrupt() {.codegenDecl: "__interrupt $# $#$#".} =
echo "realistic interrupt handler"

will generate this code:

__interrupt void myinterrupt()

28.14 InjectStmt pragma
The injectStmt pragma can be used to inject a statement before every other statement in the current
module. It is only supposed to be used for debugging:

{.injectStmt: gcInvariants().}

... complex code here that produces crashes ...

28.15 compile time define pragmas
The pragmas listed here can be used to optionally accept values from the -d/–define option at compile
time.

The implementation currently provides the following possible options (various others may be added
later).

const FooBar {.intdefine.}: int = 5
echo FooBar

nim c -d:FooBar=42 foobar.c

In the above example, providing the -d flag causes the symbol FooBar to be overwritten at compile
time, printing out 42. If the -d:FooBar=42 were to be omitted, the default value of 5 would be used.

28.16 Custom annotations
It is possible to define custom typed pragmas. Custom pragmas do not effect code generation directly,
but their presence can be detected by macros. Custom pragmas are defined using templates annotated
with pragma pragma:

template dbTable(name: string, table_space: string = "") {.pragma.}
template dbKey(name: string = "", primary_key: bool = false) {.pragma.}
template dbForeignKey(t: type) {.pragma.}
template dbIgnore {.pragma.}

Consider stylized example of possible Object Relation Mapping (ORM) implementation:

102

const tblspace {.strdefine.} = "dev" # switch for dev, test and prod environments

type
User {.dbTable("users", tblspace).} = object
id {.dbKey(primary_key = true).}: int
name {.dbKey"full_name".}: string
is_cached {.dbIgnore.}: bool
age: int

UserProfile {.dbTable("profiles", tblspace).} = object
id {.dbKey(primary_key = true).}: int
user_id {.dbForeignKey: User.}: int
read_access: bool
write_access: bool
admin_acess: bool

In this example custom pragmas are used to describe how Nim objects are mapped to the schema of
the relational database. Custom pragmas can have zero or more arguments. In order to pass multiple
arguments use one of template call syntaxes. All arguments are typed and follow standard overload
resolution rules for templates. Therefore, it is possible to have default values for arguments, pass by
name, varargs, etc.

Custom pragmas can be used in all locations where ordinary pragmas can be specified. It is possible
to annotate procs, templates, type and variable definitions, statements, etc.

Macros module includes helpers which can be used to simplify custom pragma access hasCustom-
Pragma, getCustomPragmaVal. Please consult macros module documentation for details. These macros
are no magic, they don’t do anything you cannot do yourself by walking AST object representation.

More examples with custom pragmas:

• Better serialization/deserialization control:

type MyObj = object
a {.dontSerialize.}: int
b {.defaultDeserialize: 5.}: int
c {.serializationKey: "_c".}: string

• Adopting type for gui inspector in a game engine:

type MyComponent = object
position {.editable, animatable.}: Vector3
alpha {.editRange: [0.0..1.0], animatable.}: float32

29 Foreign function interface
Nim’s FFI (foreign function interface) is extensive and only the parts that scale to other future backends
(like the LLVM/JavaScript backends) are documented here.

29.1 Importc pragma
The importc pragma provides a means to import a proc or a variable from C. The optional argument is
a string containing the C identifier. If the argument is missing, the C name is the Nim identifier exactly
as spelled:

proc printf(formatstr: cstring) {.header: "<stdio.h>", importc: "printf", varargs.}

Note that this pragma is somewhat of a misnomer: Other backends do provide the same feature
under the same name. Also, if one is interfacing with C++ the ImportCpp pragma and interfacing with
Objective-C the ImportObjC pragma can be used.

The string literal passed to importc can be a format string:

proc p(s: cstring) {.importc: "prefix$1".}

In the example the external name of p is set to prefixp. Only $1 is available and a literal dollar
sign must be written as $$.

103

manual.html#implementation-specific-pragmas-importcpp-pragma
manual.html#implementation-specific-pragmas-importobjc-pragma

29.2 Exportc pragma
The exportc pragma provides a means to export a type, a variable, or a procedure to C. Enums
and constants can’t be exported. The optional argument is a string containing the C identifier. If the
argument is missing, the C name is the Nim identifier exactly as spelled:

proc callme(formatstr: cstring) {.exportc: "callMe", varargs.}

Note that this pragma is somewhat of a misnomer: Other backends do provide the same feature under
the same name.

The string literal passed to exportc can be a format string:

proc p(s: string) {.exportc: "prefix$1".} =
echo s

In the example the external name of p is set to prefixp. Only $1 is available and a literal dollar
sign must be written as $$.

29.3 Extern pragma
Like exportc or importc, the extern pragma affects name mangling. The string literal passed to
extern can be a format string:

proc p(s: string) {.extern: "prefix$1".} =
echo s

In the example the external name of p is set to prefixp. Only $1 is available and a literal dollar
sign must be written as $$.

29.4 Bycopy pragma
The bycopy pragma can be applied to an object or tuple type and instructs the compiler to pass the
type by value to procs:

type
Vector {.bycopy.} = object

x, y, z: float

29.5 Byref pragma
The byref pragma can be applied to an object or tuple type and instructs the compiler to pass the type
by reference (hidden pointer) to procs.

29.6 Varargs pragma
The varargs pragma can be applied to procedures only (and procedure types). It tells Nim that the
proc can take a variable number of parameters after the last specified parameter. Nim string values will
be converted to C strings automatically:

proc printf(formatstr: cstring) {.nodecl, varargs.}

printf("hallo %s", "world") # "world" will be passed as C string

29.7 Union pragma
The union pragma can be applied to any object type. It means all of the object’s fields are overlaid
in memory. This produces a union instead of a struct in the generated C/C++ code. The object
declaration then must not use inheritance or any GC’ed memory but this is currently not checked.

Future directions: GC’ed memory should be allowed in unions and the GC should scan unions
conservatively.

104

29.8 Packed pragma
The packed pragma can be applied to any object type. It ensures that the fields of an object are
packed back-to-back in memory. It is useful to store packets or messages from/to network or hardware
drivers, and for interoperability with C. Combining packed pragma with inheritance is not defined, and
it should not be used with GC’ed memory (ref’s).

Future directions: Using GC’ed memory in packed pragma will result in compile-time error. Usage
with inheritance should be defined and documented.

29.9 Unchecked pragma
The unchecked pragma can be used to mark a named array as unchecked meaning its bounds are not
checked. This is often useful to implement customized flexibly sized arrays. Additionally an unchecked
array is translated into a C array of undetermined size:

type
ArrayPart{.unchecked.} = array[0, int]
MySeq = object
len, cap: int
data: ArrayPart

Produces roughly this C code:

typedef struct {
NI len;
NI cap;
NI data[];

} MySeq;

The base type of the unchecked array may not contain any GC’ed memory but this is currently not
checked.

Future directions: GC’ed memory should be allowed in unchecked arrays and there should be an
explicit annotation of how the GC is to determine the runtime size of the array.

29.10 Dynlib pragma for import
With the dynlib pragma a procedure or a variable can be imported from a dynamic library (.dll files
for Windows, lib*.so files for UNIX). The non-optional argument has to be the name of the dynamic
library:

proc gtk_image_new(): PGtkWidget
{.cdecl, dynlib: "libgtk-x11-2.0.so", importc.}

In general, importing a dynamic library does not require any special linker options or linking with
import libraries. This also implies that no devel packages need to be installed.

The dynlib import mechanism supports a versioning scheme:

proc Tcl_Eval(interp: pTcl_Interp, script: cstring): int {.cdecl,
importc, dynlib: "libtcl(|8.5|8.4|8.3).so.(1|0)".}

At runtime the dynamic library is searched for (in this order):

libtcl.so.1
libtcl.so.0
libtcl8.5.so.1
libtcl8.5.so.0
libtcl8.4.so.1
libtcl8.4.so.0
libtcl8.3.so.1
libtcl8.3.so.0

The dynlib pragma supports not only constant strings as argument but also string expressions in
general:

105

import os

proc getDllName: string =
result = "mylib.dll"
if existsFile(result): return
result = "mylib2.dll"
if existsFile(result): return
quit("could not load dynamic library")

proc myImport(s: cstring) {.cdecl, importc, dynlib: getDllName().}

Note: Patterns like libtcl(|8.5|8.4).so are only supported in constant strings, because they
are precompiled.

Note: Passing variables to the dynlib pragma will fail at runtime because of order of initialization
problems.

Note: A dynlib import can be overridden with the -dynlibOverride:name command line
option. The Compiler User Guide contains further information.

29.11 Dynlib pragma for export
With the dynlib pragma a procedure can also be exported to a dynamic library. The pragma then has
no argument and has to be used in conjunction with the exportc pragma:

proc exportme(): int {.cdecl, exportc, dynlib.}

This is only useful if the program is compiled as a dynamic library via the -app:lib command line
option. This pragma only has an effect for the code generation on the Windows target, so when this
pragma is forgotten and the dynamic library is only tested on Mac and/or Linux, there won’t be an error.
On Windows this pragma adds __declspec(dllexport) to the function declaration.

30 Threads
To enable thread support the -threads:on command line switch needs to be used. The systemmodule
then contains several threading primitives. See the threads and channels modules for the low level thread
API. There are also high level parallelism constructs available. See spawn for further details.

Nim’s memory model for threads is quite different than that of other common programming languages
(C, Pascal, Java): Each thread has its own (garbage collected) heap and sharing of memory is restricted
to global variables. This helps to prevent race conditions. GC efficiency is improved quite a lot, because
the GC never has to stop other threads and see what they reference. Memory allocation requires no lock
at all! This design easily scales to massive multicore processors that are becoming the norm.

30.1 Thread pragma
A proc that is executed as a new thread of execution should be marked by the thread pragma for reasons
of readability. The compiler checks for violations of the no heap sharing restriction: This restriction
implies that it is invalid to construct a data structure that consists of memory allocated from different
(thread local) heaps.

A thread proc is passed to createThread or spawn and invoked indirectly; so the thread pragma
implies procvar.

30.2 GC safety
We call a proc pGC safe when it doesn’t access any global variable that contains GC’ed memory (string,
seq, ref or a closure) either directly or indirectly through a call to a GC unsafe proc.

The gcsafe annotation can be used to mark a proc to be gcsafe, otherwise this property is inferred by
the compiler. Note that noSideEffect implies gcsafe. The only way to create a thread is via spawn
or createThread. spawn is usually the preferable method. Either way the invoked proc must not use
var parameters nor must any of its parameters contain a ref or closure type. This enforces the no
heap sharing restriction.

106

threads.html
channels.html

Routines that are imported from C are always assumed to be gcsafe. To disable the GC-safety check-
ing the -threadAnalysis:off command line switch can be used. This is a temporary workaround to
ease the porting effort from old code to the new threading model.

To override the compiler’s gcsafety analysis a {.gcsafe.} pragma block can be used:
var

someGlobal: string = "some string here"
perThread {.threadvar.}: string

proc setPerThread() =
{.gcsafe.}:

deepCopy(perThread, someGlobal)

Future directions:

• A shared GC’ed heap might be provided.

30.3 Threadvar pragma
A variable can be marked with the threadvar pragma, which makes it a thread-local variable; Addi-
tionally, this implies all the effects of the global pragma.
var checkpoints* {.threadvar.}: seq[string]

Due to implementation restrictions thread local variables cannot be initialized within the var section.
(Every thread local variable needs to be replicated at thread creation.)

30.4 Threads and exceptions
The interaction between threads and exceptions is simple: A handled exception in one thread cannot
affect any other thread. However, an unhandled exception in one thread terminates the whole process!

31 Parallel & Spawn
Nim has two flavors of parallelism:

1. Structured parallelism via the parallel statement.

2. Unstructured parallelism via the standalone spawn statement.

Nim has a builtin thread pool that can be used for CPU intensive tasks. For IO intensive tasks the async
and await features should be used instead. Both parallel and spawn need the threadpool module to
work.

Somewhat confusingly, spawn is also used in the parallel statement with slightly different seman-
tics. spawn always takes a call expression of the form f(a, ...). Let T be f’s return type. If T is
void then spawn’s return type is also void otherwise it is FlowVar[T].

Within a parallel section sometimes the FlowVar[T] is eliminated to T. This happens when T
does not contain any GC’ed memory. The compiler can ensure the location in location = spawn
f(...) is not read prematurely within a parallel section and so there is no need for the overhead of
an indirection via FlowVar[T] to ensure correctness.

Note: Currently exceptions are not propagated between spawn’ed tasks!

31.1 Spawn statement
spawn can be used to pass a task to the thread pool:
import threadpool

proc processLine(line: string) =
discard "do some heavy lifting here"

for x in lines("myinput.txt"):
spawn processLine(x)

sync()

107

threadpool.html

For reasons of type safety and implementation simplicity the expression that spawn takes is restricted:

• It must be a call expression f(a, ...).

• f must be gcsafe.

• f must not have the calling convention closure.

• f’s parameters may not be of type var. This means one has to use raw ptr’s for data passing
reminding the programmer to be careful.

• ref parameters are deeply copied which is a subtle semantic change and can cause performance
problems but ensures memory safety. This deep copy is performed via system.deepCopy and so
can be overridden.

• For safe data exchange between f and the caller a global TChannel needs to be used. However,
since spawn can return a result, often no further communication is required.

spawn executes the passed expression on the thread pool and returns a data flow variable FlowVar[T]
that can be read from. The reading with the ^ operator is blocking. However, one can use
blockUntilAny to wait on multiple flow variables at the same time:

import threadpool, ...

wait until 2 out of 3 servers received the update:
proc main =

var responses = newSeq[FlowVarBase](3)
for i in 0..2:

responses[i] = spawn tellServer(Update, "key", "value")
var index = blockUntilAny(responses)
assert index >= 0
responses.del(index)
discard blockUntilAny(responses)

Data flow variables ensure that no data races are possible. Due to technical limitations not every type
T is possible in a data flow variable: T has to be of the type ref, string, seq or of a type that doesn’t
contain a type that is garbage collected. This restriction is not hard to work-around in practice.

31.2 Parallel statement
Example:

Compute PI in an inefficient way
import strutils, math, threadpool
{.experimental: "parallel".}

proc term(k: float): float = 4 * math.pow(-1, k) / (2*k + 1)

proc pi(n: int): float =
var ch = newSeq[float](n+1)
parallel:

for k in 0..ch.high:
ch[k] = spawn term(float(k))

for k in 0..ch.high:
result += ch[k]

echo formatFloat(pi(5000))

The parallel statement is the preferred mechanism to introduce parallelism in a Nim program. A
subset of the Nim language is valid within a parallel section. This subset is checked to be free of
data races at compile time. A sophisticated disjoint checker ensures that no data races are possible even
though shared memory is extensively supported!

The subset is in fact the full language with the following restrictions / changes:

• spawn within a parallel section has special semantics.

108

• Every location of the form a[i] and a[i..j] and dest where dest is part of the pattern dest
= spawn f(...) has to be provably disjoint. This is called the disjoint check.

• Every other complex location loc that is used in a spawned proc (spawn f(loc)) has to be im-
mutable for the duration of the parallel section. This is called the immutability check. Currently
it is not specified what exactly "complex location" means. We need to make this an optimization!

• Every array access has to be provably within bounds. This is called the bounds check.

• Slices are optimized so that no copy is performed. This optimization is not yet performed for
ordinary slices outside of a parallel section.

32 Guards and locks
Apart from spawn and parallel Nim also provides all the common low level concurrency mechanisms
like locks, atomic intrinsics or condition variables.

Nim significantly improves on the safety of these features via additional pragmas:

1. A guard annotation is introduced to prevent data races.

2. Every access of a guarded memory location needs to happen in an appropriate locks statement.

3. Locks and routines can be annotated with lock levels to prevent deadlocks at compile time.

32.1 Guards and the locks section
32.1.1 Protecting global variables

Object fields and global variables can be annotated via a guard pragma:

var glock: TLock
var gdata {.guard: glock.}: int

The compiler then ensures that every access of gdata is within a locks section:

proc invalid =
invalid: unguarded access:
echo gdata

proc valid =
valid access:
{.locks: [glock].}:

echo gdata

Top level accesses to gdata are always allowed so that it can be initialized conveniently. It is assumed
(but not enforced) that every top level statement is executed before any concurrent action happens.

The locks section deliberately looks ugly because it has no runtime semantics and should not be
used directly! It should only be used in templates that also implement some form of locking at runtime:

template lock(a: TLock; body: untyped) =
pthread_mutex_lock(a)
{.locks: [a].}:

try:
body

finally:
pthread_mutex_unlock(a)

The guard does not need to be of any particular type. It is flexible enough to model low level lockfree
mechanisms:

109

var dummyLock {.compileTime.}: int
var atomicCounter {.guard: dummyLock.}: int

template atomicRead(x): untyped =
{.locks: [dummyLock].}:

memoryReadBarrier()
x

echo atomicRead(atomicCounter)

The locks pragma takes a list of lock expressions locks: [a, b, ...] in order to support
multi lock statements. Why these are essential is explained in the lock levels section.

32.1.2 Protecting general locations

The guard annotation can also be used to protect fields within an object. The guard then needs to be
another field within the same object or a global variable.

Since objects can reside on the heap or on the stack this greatly enhances the expressivity of the
language:

type
ProtectedCounter = object
v {.guard: L.}: int
L: TLock

proc incCounters(counters: var openArray[ProtectedCounter]) =
for i in 0..counters.high:

lock counters[i].L:
inc counters[i].v

The access to field x.v is allowed since its guard x.L is active. After template expansion, this
amounts to:

proc incCounters(counters: var openArray[ProtectedCounter]) =
for i in 0..counters.high:

pthread_mutex_lock(counters[i].L)
{.locks: [counters[i].L].}:

try:
inc counters[i].v

finally:
pthread_mutex_unlock(counters[i].L)

There is an analysis that checks that counters[i].L is the lock that corresponds to the protected
location counters[i].v. This analysis is called path analysis because it deals with paths to locations
like obj.field[i].fieldB[j].

The path analysis is currently unsound, but that doesn’t make it useless. Two paths are considered
equivalent if they are syntactically the same.

This means the following compiles (for now) even though it really should not:

{.locks: [a[i].L].}:
inc i
access a[i].v

32.2 Lock levels
Lock levels are used to enforce a global locking order in order to prevent deadlocks at compile-time. A
lock level is an constant integer in the range 0..1_000. Lock level 0 means that no lock is acquired at all.

If a section of code holds a lock of level M than it can also acquire any lock of level N < M. Another
lock of level M cannot be acquired. Locks of the same level can only be acquired at the same time within
a single locks section:

var a, b: TLock[2]
var x: TLock[1]
invalid locking order: TLock[1] cannot be acquired before TLock[2]:
{.locks: [x].}:

110

{.locks: [a].}:
...

valid locking order: TLock[2] acquired before TLock[1]:
{.locks: [a].}:

{.locks: [x].}:
...

invalid locking order: TLock[2] acquired before TLock[2]:
{.locks: [a].}:

{.locks: [b].}:
...

valid locking order, locks of the same level acquired at the same time:
{.locks: [a, b].}:

...

Here is how a typical multilock statement can be implemented in Nim. Note how the runtime check
is required to ensure a global ordering for two locks a and b of the same lock level:

template multilock(a, b: ptr TLock; body: untyped) =
if cast[ByteAddress](a) < cast[ByteAddress](b):

pthread_mutex_lock(a)
pthread_mutex_lock(b)

else:
pthread_mutex_lock(b)
pthread_mutex_lock(a)

{.locks: [a, b].}:
try:

body
finally:

pthread_mutex_unlock(a)
pthread_mutex_unlock(b)

Whole routines can also be annotated with a locks pragma that takes a lock level. This then means
that the routine may acquire locks of up to this level. This is essential so that procs can be called within
a locks section:

proc p() {.locks: 3.} = discard

var a: TLock[4]
{.locks: [a].}:

p’s locklevel (3) is strictly less than a’s (4) so the call is allowed:
p()

As usual locks is an inferred effect and there is a subtype relation: proc () {.locks: N.} is
a subtype of proc () {.locks: M.} iff (M <= N).

The locks pragma can also take the special value "unknown". This is useful in the context of
dynamic method dispatching. In the following example, the compiler can infer a lock level of 0 for the
base case. However, one of the overloaded methods calls a procvar which is potentially locking. Thus,
the lock level of calling g.testMethod cannot be inferred statically, leading to compiler warnings. By
using {.locks: "unknown".}, the base method can be marked explicitly as having unknown lock
level as well:

type SomeBase* = ref object of RootObj
type SomeDerived* = ref object of SomeBase
memberProc*: proc ()

method testMethod(g: SomeBase) {.base, locks: "unknown".} = discard
method testMethod(g: SomeDerived) =
if g.memberProc != nil:

g.memberProc()

33 Taint mode
The Nim compiler and most parts of the standard library support a taint mode. Input strings are declared
with the TaintedString string type declared in the system module.

111

If the taint mode is turned on (via the -taintMode:on command line option) it is a distinct string
type which helps to detect input validation errors:

echo "your name: "
var name: TaintedString = stdin.readline
it is safe here to output the name without any input validation, so
we simply convert ‘name‘ to string to make the compiler happy:
echo "hi, ", name.string

If the taint mode is turned off, TaintedString is simply an alias for string.

112

	About this document
	Definitions
	Lexical Analysis
	Encoding
	Indentation
	Comments
	Multiline comments
	Identifiers & Keywords
	Identifier equality
	String literals
	Triple quoted string literals
	Raw string literals
	Generalized raw string literals
	Character literals
	Numerical constants
	Operators
	Other tokens

	Syntax
	Associativity
	Precedence
	Grammar

	Order of evaluation
	Types
	Ordinal types
	Pre-defined integer types
	Subrange types
	Pre-defined floating point types
	Boolean type
	Character type
	Enumeration types
	String type
	cstring type
	Structured types
	Array and sequence types
	Open arrays
	Varargs
	Tuples and object types
	Object construction
	Object variants
	Package level objects
	Set type
	Reference and pointer types
	Not nil annotation
	Procedural type
	Distinct type
	Modelling currencies
	Avoiding SQL injection attacks

	Void type
	Auto type

	Type relations
	Type equality
	Type equality modulo type distinction
	Subtype relation
	Covariance
	Convertible relation
	Assignment compatibility

	Overloading resolution
	Overloading based on 'var T'
	Automatic dereferencing
	Automatic self insertions
	Lazy type resolution for untyped
	Varargs matching

	Statements and expressions
	Statement list expression
	Discard statement
	Void context
	Var statement
	let statement
	Tuple unpacking
	Const section
	Static statement/expression
	If statement
	Case statement
	When statement
	When nimvm statement
	Return statement
	Yield statement
	Block statement
	Break statement
	While statement
	Continue statement
	Assembler statement
	Using statement
	If expression
	When expression
	Case expression
	Table constructor
	Type conversions
	Type casts
	The addr operator
	The unsafeAddr operator

	Procedures
	Export marker
	Method call syntax
	Properties
	Command invocation syntax
	Closures
	Creating closures in loops

	Anonymous Procs
	Func
	Do notation
	Nonoverloadable builtins
	Var parameters
	Var return type
	Future directions

	Overloading of the subscript operator

	Multi-methods
	Inhibit dynamic method resolution via procCall

	Iterators and the for statement
	Implict items/pairs invocations
	First class iterators

	Converters
	Type sections
	Exception handling
	Try statement
	Try expression
	Except clauses
	Defer statement
	Raise statement
	Exception hierarchy
	Imported exceptions

	Effect system
	Exception tracking
	Tag tracking
	Read/Write tracking
	Effects pragma

	Generics
	Is operator
	Type Classes
	Generic inference restrictions
	Concepts
	Concept diagnostics
	Generic concepts and type binding rules
	Concept derived values
	Concept refinement
	Symbol lookup in generics
	Open and Closed symbols

	Mixin statement
	Bind statement

	Templates
	Typed vs untyped parameters
	Passing a code block to a template
	Varargs of untyped
	Symbol binding in templates
	Identifier construction
	Lookup rules for template parameters
	Hygiene in templates
	Limitations of the method call syntax

	Macros
	Expression Macros
	BindSym
	Statement Macros
	Macros as pragmas
	For loop macros
	Case statement macros

	Special Types
	static91T93
	type91T93
	type operator

	Special Operators
	dot operators
	operator .
	operator .()
	operator .=

	Type bound operations
	operator =
	destructors
	deepCopy

	Term rewriting macros
	Parameter constraints
	Pattern operators
	The | operator
	The 123125 operator
	The 126 operator
	The * operator
	The ** operator

	Parameters
	Example: Partial evaluation
	Example: Hoisting

	AST based overloading
	Move optimization

	Modules
	Import statement
	Include statement
	Module names in imports
	Collective imports from a directory
	Pseudo import/include paths
	From import statement
	Export statement

	Scope rules
	Block scope
	Tuple or object scope
	Module scope
	Code reordering

	Compiler Messages
	Pragmas
	deprecated pragma
	noSideEffect pragma
	compileTime pragma
	noReturn pragma
	acyclic pragma
	final pragma
	shallow pragma
	pure pragma
	asmNoStackFrame pragma
	error pragma
	fatal pragma
	warning pragma
	hint pragma
	line pragma
	linearScanEnd pragma
	computedGoto pragma
	unroll pragma
	immediate pragma
	compilation option pragmas
	push and pop pragmas
	register pragma
	global pragma
	pragma pragma
	Disabling certain messages
	used pragma
	experimental pragma

	Implementation Specific Pragmas
	Bitsize pragma
	Volatile pragma
	NoDecl pragma
	Header pragma
	IncompleteStruct pragma
	Compile pragma
	Link pragma
	PassC pragma
	PassL pragma
	Emit pragma
	ImportCpp pragma
	Namespaces
	Importcpp for enums
	Importcpp for procs
	Wrapping constructors
	Wrapping destructors
	Importcpp for objects

	ImportObjC pragma
	CodegenDecl pragma
	InjectStmt pragma
	compile time define pragmas
	Custom annotations

	Foreign function interface
	Importc pragma
	Exportc pragma
	Extern pragma
	Bycopy pragma
	Byref pragma
	Varargs pragma
	Union pragma
	Packed pragma
	Unchecked pragma
	Dynlib pragma for import
	Dynlib pragma for export

	Threads
	Thread pragma
	GC safety
	Threadvar pragma
	Threads and exceptions

	Parallel & Spawn
	Spawn statement
	Parallel statement

	Guards and locks
	Guards and the locks section
	Protecting global variables
	Protecting general locations

	Lock levels

	Taint mode

