Nim Compiler User Guide nimversion

Andreas Rumpf
July 26, 2019

Contents

[I__Introductionl

2 Compiler Usage|
2.1 Command line switchesl
2.2 List of warnings|.
23 listof hintsl o o e
2.4 Verbosity levels|
2.5 Compile time symbols| L
2.6 Configuration files| L
2.7 Search path handling|.
2.8 Generated C code directory]

N

OO OO OO R NN

13 Compiler Selection|

4 Cross compilation|

[5 Cross compilation for Windows|

6 Cross compilation for Nintendo Switch|

7 DLL generation|

I8 Additional compilation switches|

0 Additional F |

9.1 LineDir option] o
9.2 Stack'Trace option|o
9.3 Linelrace option| L
9.4 Hot code reloading) Lo

110 DynlibOverride|

111 Backend language options|

T2 Nmd : B

113 Nim idetools integration|

114 Nim for embedded systems|

L5 Nim for realtime systems|

[16 Signal handling in Nim|

117 Optimizing for Nim)|

[17.1 Optimizing string handlingl

J

J

11

11

11

11

11

11

11

"Look at you, hacker. A pathetic creature of meat and bone, panting and sweating as you
run through my corridors. How can you challenge a perfect, immortal machine?"

1 Introduction

This document describes the usage of the Nim compiler on the different supported platforms. It is not a
definition of the Nim programming language (therefore is the manual).
Nim is free software; it is licensed under the MIT License.

2 Compiler Usage

2.1 Command line switches

Basic command line switches are:
Usage:

nim command [options] [projectfile] [arguments]

Command: compile, ¢ compile project with default code generator (C)

doc generate the documentation for inputfile
Arguments: arguments are passed to the program being run (if —run option is selected)

Options: -p, —path:PATH add path to search paths

-d, —define:SYMBOL(:VAL) define a conditional symbol (Optionally: Define the value for that
symbol, see: "compile time define pragmas")

-u, —undef:SYMBOL undefine a conditional symbol

-f, —forceBuild force rebuilding of all modules

—stackTrace:on|off turn stack tracing on|off

—lineTrace:on|off turn line tracing on|off

—threads:on|off turn support for multi-threading on|off

-x, —checks:on|off turn all runtime checks on|off

—objChecks:on|off turn obj conversion checks on|off

—fieldChecks:on|off turn case variant field checks on|off
—rangeChecks:on|off turn range checks on|off

—boundChecks:on|off turn bound checks on|off

—overflowChecks:on|off turn int over-/underflow checks on|off

-a, —assertions:on|off turn assertions on|off

—floatChecks:on|off turn all floating point (NaN /Inf) checks on|off
—nanChecks:on|off turn NaN checks on|off

—infChecks:on|off turn Inf checks on|off

—nilChecks:on|off turn nil checks on|off

—opt:none|speed|size optimize not at all or for speed|size Note: use -d:release for a release build!
—debugger:native|endb use native debugger (gdb) | ENDB (experimental)
—app:console|gui|lib|staticlib generate a console app|GUI app|DLL|static library
-r, —run run the compiled program with given arguments

—fullhelp show all command line switches

-h, —help show this help

manual.html
http://www.opensource.org/licenses/mit-license.php

Note, single letter options that take an argument require a colon. E.g. -p:PATH.
Advanced command line switches are:

Advanced commands: compileToC, cc compile project with C code generator
compileToCpp, cpp compile project to C++ code
compileToOC, objc compile project to Objective C code
Jjs compile project to Javascript
e run a Nimscript file
rst2html convert a reStructuredText file to HTML
rst2tex convert a reStructuredText file to TeX
jsondoc extract the documentation to a json file
ctags create a tags file
buildIndex build an index for the whole documentation
run run the project (with Tiny C backend; buggy!)
genDepend generate a DOT file containing the module dependency graph
dump dump all defined conditionals and search paths

check checks the project for syntax and semantic

Advanced options: -0:FILE, —out:FILE set the output filename
—stdout output to stdout
—colors:on|off turn compiler messages coloring on|off
—listFullPaths list full paths in messages
-w:on|off|list, —warnings:on|off|list turn all warnings on|off or list all available
—warning[X]:on|off turn specific warning X on|off
—hints:on|off|list turn all hints on|off or list all available
—hint[X]:on|off turn specific hint X on|off
—lib:PATH set the system library path
—import:PATH add an automatically imported module
—include:PATH add an automatically included module
—nimcache:PATH set the path used for generated files
—header:FILE the compiler should produce a .h file (FILE is optional)
-c, —compileOnly compile Nim files only; do not assemble or link
—noLinking compile Nim and generated files but do not link
—noMain do not generate a main procedure

—genScript generate a compile script (in the ’nimcache’ subdirectory named ’com-
pile_ $$project$$scriptext’), implies —compileOnly

—genDeps generate a deps’ file containing the dependencies

—0s:SYMBOL set the target operating system (cross-compilation)

—cpuw:SYMBOL set the target processor (cross-compilation)

—debuginfo enables debug information

-t, -passC:OPTION pass an option to the C compiler

-1, —passL:OPTION pass an option to the linker

—cincludes:DIR modify the C compiler header search path

—clibdir:DIR modify the linker library search path

—clib:LIBNAME link an additional C library (you should omit platform-specific extensions)

—genMapping generate a mapping file containing (Nim, mangled) identifier pairs
—project document the whole project (doc2)

—docSeeSrcUrl:url activate ’see source’ for doc and doc2 commands (see doc.item.seesrc in con-
fig/nimdoc.cfg)

—lineDir:on|off generation of #line directive on|off

—embedsrc embeds the original source code as comments in the generated output
—threadanalysis:on|off turn thread analysis on|off
—tlsEmulation:on|off turn thread local storage emulation on|off
—taintMode:on|off turn taint mode on|off

—implicitStatic:on|off turn implicit compile time evaluation on|off
—patterns:on|off turn pattern matching on|off

—memTracker:on|off turn memory tracker on|off
—hotCodeReloading:on|off turn support for hot code reloading on|off
—excessiveStackTrace:on|off stack traces use full file paths
—oldNewlines:on|off turn on|off the old behaviour of "n'

—laxStrings:on|off when turned on, accessing the zero terminator in strings is allowed; only for
backwards compatibility

—nilseqgs:on|off allow 'nil’ for strings/seqs for backwards compatibility
—skipCfg do not read the general configuration file

—skipUserCfg do not read the user’s configuration file
—skipParentCfg do not read the parent dirs’ configuration files
—skipProjCfg do not read the project’s configuration file
—gc:refc|v2|markAndSweep|boehm|go|none|regions select the GC to use; default is 'refc’
—index:on|off turn index file generation on|off

—putenv:key=value set an environment variable
—NimblePath:PATH add a path for Nimble support
—noNimblePath deactivate the Nimble path

—noCppExceptions use default exception handling with C++ backend

—cppCompileToNamespace:namespace use the provided namespace for the generated C++
code, if no namespace is provided "Nim" will be used

—excludePath:PATH exclude a path from the list of search paths

—dynlibOverride:SYMBOL marks SYMBOL so that dynlib:SYMBOL has no effect and can be
statically linked instead; symbol matching is fuzzy so that —dynlibOverride:lua matches dynlib:
"liblua.so.3"

—dynlibOverrideAll makes the dynlib pragma have no effect

—listCmd list the commands used to execute external programs

—parallelBuild:0|1|... perform a parallel build value = number of processors (0 for auto-detect)
—verbosity:0|1|2|3 set Nim’s verbosity level (1 is default)

—experimental:$1 enable experimental language feature

-v, —version show detailed version information

2.2 List of warnings

Each warning can be activated individually with —-warning [NAME] :on|off or in a push pragma.

Name Description

CannotOpenFile Some file not essential for the compiler’s working
could not be opened.

OctalEscape The code contains an unsupported octal sequence.

Deprecated The code uses a deprecated symbol.

ConfigDeprecated The project makes use of a deprecated config file.

SmallLishouldNotBeUsed The letter 'I’ should not be used as an identifier.

EachIdentIsTuple The code contains a confusing var declaration.

Shadowldent A local variable shadows another local variable of
an outer scope.

User Some user defined warning.

Name Description

CC Shows when the C compiler is called.

CodeBegin

CodeEnd

CondTrue

Conf A config file was loaded.

ConvToBaseNotNeeded

ConvFromXtoltselfNotNeeded

Dependency

Exec Program is executed.

ExprAlwaysX

ExtendedContext

GCStats Dumps statistics about the Garbage Collector.

GlobalVar Shows global variables declarations.

LineTooLong Line exceeds the maximum length.

Link Linking phase.

Name

Path Search paths modifications.

Pattern

Performance

Processing Artifact being compiled.

QuitCalled

Source The source line that triggered a diagnostic mes-
sage.

StackTrace

Success, SuccessX Successful compilation of a library or a binary.

User

UserRaw

XDeclaredButNot Used Unused symbols in the code.

Level Description

0 Minimal output level for the compiler.

1 Displays compilation of all the compiled files,
including those imported by other modules or
through the This is the default
level.

2 Displays compilation statistics, enumerates the
dynamic libraries that will be loaded by the final
binary and dumps to standard output the result
of applying la filter to the source code if any filter
was used during compilation.

3 In addition to the previous levels dumps a debug

stack trace for compiler developers.

filters.html

2.3 List of hints

Each hint can be activated individually with —hint [NAME] :on|off or in a push pragma.

2.4 Verbosity levels
2.5 Compile time symbols

Through the -d: x or —define : x switch you can define compile time symbols for conditional compilation.
The defined switches can be checked in source code with the when statement| and |defined proc. The
typical use of this switch is to enable builds in release mode (-d: release) where certain safety checks
are omitted for better performance. Another common use is the —d: ss1 switch to activate SSL sockets.

Additionally, you may pass a value along with the symbol: —d: x=y which may be used in conjunction
with the compile time define pragmas| to override symbols during build time.

Compile time symbols are completely case insensitive and underscores are ignored too.
-define:F00 and —define: foo are identical.

2.6 Configuration files

Note: The project file name is the name of the .nim file that is passed as a command line argument to
the compiler.

The nim executable processes configuration files in the following directories (in this order; later files
overwrite previous settings):

1. $nim/config/nim.cfqg, /etc/nim/nim.cfg (UNIX) or <Nim’s installation
director>\config\nim.cfg (Windows). This file can be skipped with the -skipCfg
command line option.

2. If environment variable XDG_CONFIG_HOME is defined, $XDG_CONFIG_HOME/nim/nim.cfg or
~/.config/nim/nim.cfg (POSIX) or $APPDATA%/nim/nim.cfg (Windows). This file can
be skipped with the —skipUserCfg command line option.

3. SparentDir/nim.cfg where SparentDir stands for any parent directory of the project file’s
path. These files can be skipped with the —skipParentCfg command line option.

4. SprojectDir/nim.cfg where SprojectDir stands for the project file’s path. This file can be
skipped with the —skipProjCfg command line option.

5. A project can also have a project specific configuration file named $Sproject .nim.cfg that resides
in the same directory as $project.nim. This file can be skipped with the —skipPro’jCfg
command line option.

Command line settings have priority over configuration file settings.
The default build of a project is a debug build. To compile a release build define the release symbol:

nim ¢ -d:release myproject.nim

2.7 Search path handling

Nim has the concept of a global search path (PATH) that is queried to determine where to find imported
modules or include files. If multiple files are found an ambiguity error is produced.

nim dump shows the contents of the PATH.

However before the PATH is used the current directory is checked for the file’s existence. So if PATH
contains $1ib and $1ib/bar and the directory structure looks like this:

$1lib/x.nim
Slib/bar/x.nim
foo/x.nim
foo/main.nim
other.nim

manual.html#when-statement
system.html#defined
manual.html#implementation-specific-pragmas-compile-time-define-pragmas

And main imports x, foo/x is imported. If other imports x then both $lib/x.nim and
$lib/bar/x.nim match and so the compiler should reject it. Currently however this check is not
implemented and instead the first matching file is used.

2.8 Generated C code directory

The generated files that Nim produces all go into a subdirectory called nimcache. Its full path is

e SXDG_CACHE_HOME/nim/S$projectname (_r|_d) or ~/.cache/nim/$projectname (_r|_d)
on Posix

e SHOME/nimcache/$projectname (_r|_d) on Windows.

The _r suffix is used for release builds, _d is for debug builds.

This makes it easy to delete all generated files. Files generated in this directory follow a naming logic
which you can read about in the Nim Backend Integration documentl.

The -nimcache [compiler switch can be used to to change the nimcache directory.

However, the generated C code is not platform independent. C code generated for Linux does not
compile on Windows, for instance. The comment on top of the C file lists the OS, CPU and CC the file
has been compiled for.

3 Compiler Selection

To change the compiler from the default compiler (at the command line):

nim ¢ --cc:1llvm_gcc —--compile_only myfile.nim

This uses the configuration defined in config\nim.cfg for 1vm_gcc.

If nimcache already contains compiled code from a different compiler for the same project, add the
—f flag to force all files to be recompiled.

The default compiler is defined at the top of config\nim.cfg. Changing this setting affects the
compiler used by koch to (re)build Nim.

4 Cross compilation

To cross compile, use for example:

nim ¢ —--cpu:i386 --os:linux —--compileOnly —--genScript myproject.nim

Then move the C code and the compile script compile_myproject.sh to your Linux i386 machine
and run the script.
Another way is to make Nim invoke a cross compiler toolchain:

nim ¢ --cpu:arm --os:linux myproject.nim

For cross compilation, the compiler invokes a C compiler named like $cpu. $os.$cc (for example
arm.linux.gcc) and the configuration system is used to provide meaningful defaults. For example for ARM
your configuration file should contain something like:

arm.linux.gcc.path = "/usr/bin"
arm.linux.gcc.exe = "arm-linux-gcc"
arm.linux.gcc.linkerexe = "arm-linux-gcc"

backends.html#nimcache-naming-logic
nimc.html#command-line-switches

5 Cross compilation for Windows

To cross compile for Windows from Linux or OSX using the MinGW-w64 toolchain:

nim ¢ -d:mingw myproject.nim
Use —cpu:1386 or —cpu:amd64 to switch the cpu arch.
The MinGW-w64 toolchain can be installed as follows:

Ubuntu: apt install mingw-w64
CentOS: yum install mingw32-gcc | mingw64-gcc - requires EPEL
OSX: brew install mingw-w64

6 Cross compilation for Nintendo Switch

Simply add —os:nintendoswitch to your usual nim ¢ or nim cpp command and set the passC and
passL command line switches to something like:

nim ¢ ... --passC="-ISDEVKITPRO/libnx/include" ...
——passL="-specs=$DEVKITPRO/libnx/switch.specs —-LSDEVKITPRO/libnx/lib —-1nx"

or setup a nim.cfg file like so:
#nim.cfg

—-passC="-IS$DEVKITPRO/libnx/include"
——passL="-specs=$DEVKITPRO/libnx/switch.specs —-LSDEVKITPRO/libnx/lib —-1nx"

The DevkitPro setup must be the same as the default with their new installer here for Mac/Linux| or
here for Windows.
For example, with the above mentioned config:

nim ¢ --os:nintendoswitch switchhomebrew.nim

This will generate a file called switchhomebrew.elf which can then be turned into an nro file with
the elf2nro tool in the DevkitPro release. Examples can be found at the nim-libnx github repo.

There are a few things that don’t work because the DevkitPro libraries don’t support them. They
are:

1. Waiting for a subprocess to finish. A subprocess can be started, but right now it can’t be waited
on, which sort of makes subprocesses a bit hard to use

2. Dynamic calls. DevkitPro libraries have no dlopen/dlclose functions.

3. Command line parameters. It doesn’t make sense to have these for a console anyways, so no big
deal here.

4. mqueue. Sadly there are no mqueue headers.
5. ucontext. No headers for these either. No coroutines for now :(

6. nl_types. No headers for this.

7 DLL generation

Nim supports the generation of DLLs. However, there must be only one instance of the GC per pro-
cess/address space. This instance is contained in nimrtl.d11l. This means that every generated Nim
DLL depends on nimrtl1.d11. To generate the "nimrtl.dll" file, use the command:

nim ¢ -d:release lib/nimrtl.nim

https://github.com/devkitPro/pacman/releases
https://github.com/devkitPro/installer/releases
https://github.com/jyapayne/nim-libnx.git

Define Effect

release Turns off runtime checks and turns on the opti-
mizer.
useWinAnsi Modules like os and osproc use the Ansi ver-

sions of the Windows API. The default build uses
the Unicode version.

useFork Makes osproc use fork instead of
posix_spawn.

useNimRt1 Compile and link against nimrt1.d11.

useMalloc Makes Nim use C’s malloc instead of Nim’s own

memory manager, ableit prefixing each allocation
with its size to support clearing memory on real-
location. This only works with gc:none.

useRealtimeGC Enables support of Nim’s GC for soft realtime sys-
tems. See the documentation of the gc for further
information.

nodejs The JS target is actually node. js.

ssl Enables OpenSSL support for the sockets module.

memProfiler Enables memory profiling for the native GC.

uClibc Use uClibc instead of libc. (Relevant for Unix-like
OSes)

checkAbi When using types from C headers, add checks

that compare what’s in the Nim file with what’s
in the C header (requires a C compiler with
_ Static_ assert support, like any C11 compiler)
tempDir This symbol takes a string as its value,
like -define:tempDir:/some/temp/path to
override the temporary directory returned by
os.getTempDir (). The value should end with
a directory separator character. (Relevant for the
Android platform)

useShPath This symbol takes a string as its value,
like —-define:useShPath:/opt/sh/bin/sh
to override the path for the sh binary, in cases
where it is not located in the default location
/bin/sh.

noSignalHandler Disable the crash handler from system.nim.

To link against nimrt1.d11 use the command:

nim ¢ -d:useNimRtl myprog.nim

Note: Currently the creation of nimrtl.d11 with thread support has never been tested and is
unlikely to work!

8 Additional compilation switches

The standard library supports a growing number of useX conditional defines affecting how some features
are implemented. This section tries to give a complete list.

9 Additional Features

This section describes Nim’s additional features that are not listed in the Nim manual. Some of the
features here only make sense for the C code generator and are subject to change.

gc.html

9.1 LineDir option

The 1lineDir option can be turned on or off. If turned on the generated C code contains #line
directives. This may be helpful for debugging with GDB.

9.2 StackTrace option

If the stackTrace option is turned on, the generated C contains code to ensure that proper stack traces
are given if the program crashes or an uncaught exception is raised.

9.3 LineTrace option

The 1ineTrace option implies the stackTrace option. If turned on, the generated C contains code
to ensure that proper stack traces with line number information are given if the program crashes or an
uncaught exception is raised.

9.4 Hot code reloading

Note: At the moment hot code reloading is supported only in JavaScript projects.

The hotCodeReloading option enables special compilation mode where changes in the code can be
applied automatically to a running program. The code reloading happens at the granularity of an
individual module. When a module is reloaded, Nim will preserve the state of all global variables which
are initialized with a standard variable declaration in the code. All other top level code will be executed
repeatedly on each reload. If you want to prevent this behavior, you can guard a block of code with the
once construct:

var settings = initTable[string, string] ()

once:
myInit ()

for k, v in loadSettings() :
settings[k] = v

If you want to reset the state of a global variable on each reload, just re-assign a value anywhere
within the top-level code:

var lastReload: Time

lastReload = now ()
resetProgramState ()

Known limitations: In the JavaScript target, global variables using the codegenDec1 pragma will
be re-initialized on each reload. Please guard the initialization with a once block to work-around this.

Usage in JavaScript projects:

Once your code is compiled for hot reloading, you can use a framework such as LiveReload
<http://livereload.com/> or BrowserSync <hittps://browsersync.io/> to implement the actual reload-
ing behavior in your project.

10 DynlibOverride

By default Nim’s dynlib pragma causes the compiler to generate GetProcAddress (or their Unix
counterparts) calls to bind to a DLL. With the dynlibOverride command line switch this can be
prevented and then via —passL the static library can be linked against. For instance, to link statically
against Lua this command might work on Linux:

nim ¢ --dynlibOverride:lua --passL:liblua.lib program.nim

10

11 Backend language options

The typical compiler usage involves using the compile or ¢ command to transform a .nim file into one
or more .c files which are then compiled with the platform’s C compiler into a static binary. However
there are other commands to compile to C++, Objective-C or Javascript. More details can be read in
the Nim Backend Integration document|

12 Nim documentation tools

Nim provides the doc and doc2 commands to generate HTML documentation from .nim source files.
Only exported symbols will appear in the output. For more details see the docgen documentation.

13 Nim idetools integration

Nim provides language integration with external IDEs through the idetools command. See the documen-
tation of lidetools for further information.

14 Nim for embedded systems

The standard library can be avoided to a point where C code generation for 16bit micro controllers is
feasible. Use the standalone target (—os:standalone) for a bare bones standard library that lacks any
OS features.

To make the compiler output code for a 16bit target use the —cpu:avr target.

For example, to generate code for an AVR processor use this command:

nim ¢ --cpu:avr --os:standalone —--genScript x.nim

For the standalone target one needs to provide a file panicoverride.nim. See
tests/manyloc/standalone/panicoverride.nim for an example implementation. Additionally,
users should specify the amount of heap space to use with the —d:StandaloneHeapSize=<size>
command line switch. Note that the total heap size will be <size> * sizeof (float64).

15 Nim for realtime systems

See the documentation of Nim’s soft realtime |GC for further information.

16 Signal handling in Nim

The Nim programming language has no concept of Posix’s signal handling mechanisms. However,
the standard library offers some rudimentary support for signal handling, in particular, segmenta-
tion faults are turned into fatal errors that produce a stack trace. This can be disabled with the
-d:noSignalHandler switch.

17 Optimizing for Nim

Nim has no separate optimizer, but the C code that is produced is very efficient. Most C compilers
have excellent optimizers, so usually it is not needed to optimize one’s code. Nim has been designed to
encourage efficient code: The most readable code in Nim is often the most efficient too.

However, sometimes one has to optimize. Do it in the following order:

1. switch off the embedded debugger (it is slow!)

2. turn on the optimizer and turn off runtime checks

11

backends.html
docgen.html
idetools.html
gc.html

3. profile your code to find where the bottlenecks are
4. try to find a better algorithm

5. do low-level optimizations

This section can only help you with the last item.

17.1 Optimizing string handling

String assignments are sometimes expensive in Nim: They are required to copy the whole string. However,
the compiler is often smart enough to not copy strings. Due to the argument passing semantics, strings
are never copied when passed to subroutines. The compiler does not copy strings that are a result from
a procedure call, because the callee returns a new string anyway. Thus it is efficient to do:

var s = procA() # assignment will not copy the string; procA allocates a new
string already

However it is not efficient to do:

var s = varA # assignment has to copy the whole string into a new buffer!
For 1et symbols a copy is not always necessary:

let s = varA # may only copy a pointer if it safe to do so

If you know what you’re doing, you can also mark single string (or sequence) objects as shallow:

var s = "abc"
shallow(s) # mark ’s’ as shallow string
var x = s # now might not copy the string!

Usage of shallow is always safe once you know the string won’t be modified anymore, similar to
Ruby’s freeze.

The compiler optimizes string case statements: A hashing scheme is used for them if several different
string constants are used. So code like this is reasonably efficient:

case normalize (k.key)

of "name": c.name = v
of "displayname": c.displayName = v
of "version": c.version = v
of "os": c.oses = split(v, {';’'})
of "cpu": c.cpus = split(v, {’;’})
of "authors": c.authors = split(v, {’';’'})
of "description": c.description = v
of "app":
case normalize (v)
of "console": c.app = appConsole

of "gui": c.app = appGUI

else: quit (errorStr(p, "expected: console or gui"))
of "license": c.license = UnixToNativePath (k.value)
else: quit (errorStr(p, "unknown variable: " & k.key))

12

	Introduction
	Compiler Usage
	Command line switches
	List of warnings
	List of hints
	Verbosity levels
	Compile time symbols
	Configuration files
	Search path handling
	Generated C code directory

	Compiler Selection
	Cross compilation
	Cross compilation for Windows
	Cross compilation for Nintendo Switch
	DLL generation
	Additional compilation switches
	Additional Features
	LineDir option
	StackTrace option
	LineTrace option
	Hot code reloading

	DynlibOverride
	Backend language options
	Nim documentation tools
	Nim idetools integration
	Nim for embedded systems
	Nim for realtime systems
	Signal handling in Nim
	Optimizing for Nim
	Optimizing string handling

