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Example: bloodflow simulations

In colaboration with V. Eck and L. Hellevik
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Modelling require uncertainty quantification

STochastic ARterial Flow Simulations
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Introducing a testcase as a working example

du(x)

) —goulx) u(0) = @

u The quantity of interest
x Spatio-temporal locations

g Parameters containing uncertainties with probability density
function f(q)

Closed form solution:

u(x; q) = qre” "
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Monte Carlo integration is an indirect sampling
scheme
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Convergence of Monte Carlo is very slow!
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Teaser: Convergence using polynomial chaos

expansion is much faster

Error
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Assumption: mapping from input g to output u is
smooth
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Using polynomial approximation to create a
surrogate model

M Polynomial order
N 4+ 1 Number of polynomial terms
cn Coefficients

P, Polynomials
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Polynomial chaos expansions are polynomial
approximation that fitted using orthogonal
polynomial basis

(u, V>Q =E(u-v) HUHQ =/ (u, U>Q
= / f(q)u(x, q)v(x, q)dq
where Q is a random vector, i.e. (a,/).
Orthogonality:

2
1Pollg n=m

Py Prmiq = {0 n#m
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Chaos expansions have optimality criterion linked to
minimal variance

(co,...,cn) = argmin [ju — lAJMHé
€0;--,CN

= argmin E((u — im)?)
C0y---,CN

= argmin Var(u — iiy)
C0y---sCN

(o) - a part of Simula Research Laboratory



The only numerically stable method for calculating
orthogonal polynomials is through the three-term
discretized Stiltjes recursion

Three terms recursion relation:

n+1 (X—A)P—BPnl P_1:0 :D():].7

where
1Pall3
A — M B, = { 1Pl " >0
[|Pnllg IPally  n=0
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Using the theory on multiple dimensions

P, = P,(,l), . P,EDD) n<«— (n1,...,np)
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Mapping from multiple indices to single index to
simplify notation

Multi-index Single-index
Poo Py
PlO POl P, Py
Pxo P11 Po P; P; Ps
_ (M+D
v=("u")
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Orthogonality for multivariate polynomials

o Prlg = E(PD PO P P2)
—E(PR - PE)) - E(PD) - PD)
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Three terms recursion in Chaospy software

import chaospy as cp

dist_a = cp.Normal ()

P = cp.orth_ttr(3, dist_a)
print P

[1.0, g0, q0~2-1.0, q0°3-3.0q0]

dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)

P = cp.orth_ttr(1, dist)
print P
[1.0, gq1-9.0, q0-0.05]

P = cp.orth_ttr (3, dist)
print cp.E(P[1]1*P[2],dist)
0.0

print cp.E(P[3]*P[3],dist)
0.0888888888903
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Coefficients are determined by least squares
minimization

: a2
i, 10~ Burle

N N
<Z cnPn, Pk> = ca(PnPi)g = ck (P, Pi)g k=0,...,N
n=0 Q

n=0

<U, 'Dk>Q

3 Fourier coefficients
IPillo

Ck =
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The computational essence of polynomial chaos

) — (u, Pn>Q B E(UP,,)
Cn( )— ||P Hé - E(P2)

)f(q)dq ~

PN

n(x) = n(qr)u(x; qr) f(qr)wk

=0

The numerical integral approximation is named pseudo-spectral
method.
gk quadrature nodes, wy quadrature weights
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Generating multivariate integration rules in Chaospy

# joint multivariate dist

dist = cp.J(cp.Uniform(), cp.Uniform())

nodes, weights = cp.generate_quadrature ((1,2), \
dist, rule="G")

print nodes
[[0.211324 0.211324 0.211324 0.788675 0.788675 0.788675]
[0.112701 0.5 0.887298 0.112701 0.5 0.88729811]

print weights
[0.138888 0.222222 0.138889 0.138889 0.222222 0.138889]
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Returning to the simplified model

u(x; q) = qre”

Uncertain model parameters:

qgo ~ Uniform(0, 0.1) g1 = Uniform(8, 10)

10

10
&?E:/O |E(u) — E(@)| dx E\/ar:/o |Var(u) — Var(@1)| dx
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A full implementation of pseudo-spectral projection
in Chaospy

dist_a = cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(a,I)

P = cp.orth_ttr(2, dist)

nodes, weights = cp.generate_quadrature (3, dist)

x = np.linspace (0, 10, 100)
samples_u = [u(x, *node) for node in nodes.T]

u_hat = cp.fit_quadrature (P, nodes, weights, samples_u)

mean, var = cp.E(u_hat, dist), cp.Var(u_hat, dist)
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Convergence of the two-dimensional problem

Error
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The point collocation method is alternative to the
pseudo-spectral method

1. Psuedo-spectral method:

1.1 Determine polynomial approximation of model by least squares
minimization in a space weighted with the probability
distribution

1.2 Approximate integrals in ¢, by quadrature rules

2. Point collocation method:

2.1 Determine polynomial approximation of model by least squares
minimization in a vector space as in regression (or
overdetermined matrix systems)

2.2 Need to choose a set of nodes (regression points)
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The point collocation method: estimate ¢, using
linear regression

co(x) Po(qo) -+ Pn(qo0) u(x; qo)

CN.(X) PO(IQK) -~ Pun(ak) U(X;qK)

¢ = argmin ||Pc — u3
C

=(P"P)'PTu
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Collocation nodes should be placed where
probability is high

4 6 8 10 12 14 16
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Code for least square minimization

def u(x, a, I):
return I*np.exp(-a*x)

dist_a cp.Uniform(0, 0.1)
dist_I = cp.Uniform(8, 10)
dist = cp.J(dist_a, dist_I)

x = np.linspace(0, 10, 100)
P = cp.orth_ttr (3, dist)
nodes = dist.sample (2*len(P))

samples_u = [u(x, *node) for node in nodes.T]
u_hat = cp.fit.regression(P, nodes, samples_u)
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Convergence using point collocation method
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What is best of pseudo-spectral and point
collocation method? It’s problem dependent!
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Which method to choose for your problem

Pseudo-spectral  Point collocation  Monte Carlo

Efficiency | Highest Very high Very low
Stability | Low Medium Very high
Dimension-independence | Lowest Low Highest
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Thank you for your attention

Software page:

https://github.com/hplgit/chaospy
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https://github.com/hplgit/chaospy

Gibb’s Phenomena: discontinuities give oscillations
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Example: 1-dimensional diffusion problem
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All random variables can with aid of the Rosenblatt
transformations be transformed to/from the uniform
distribution

Uniform
F=! |
Q IFQ
K— '- ‘\
Fo ~ F5' .

Fo'l |\ F
o T o % Q
Gamma L y @

Lognormal
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Transformations can be used to reparameterize the
model solver

N
o (x; q) = 0m(x; T(r)) = D cnlx)Pa(r)

n=0
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If discontinuity can be tracked, a transformations
can aften be created to mimic the discontinuety in

probability space

Pressure u
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Convergence can often be restored!
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Thank you for your attention (again)

Software page:

https://github.com/hplgit/chaospy

- a part of Simula Research Laboratory


https://github.com/hplgit/chaospy

