
Uncertainty quantification using polynomial
chaos expansion

Jonathan Feinberg

Kalkulo AS

March 4, 2015

About me

Example: bloodflow simulations

In colaboration with V. Eck and L. Hellevik

Modelling require uncertainty quantification

Introducing a testcase as a working example

du(x)

dx
= −q0u(x) u(0) = q1

u The quantity of interest

x Spatio-temporal locations

q Parameters containing uncertainties with probability density
function f (q)

Closed form solution:

u(x ; q) = q1e
−q0x

Monte Carlo integration is an indirect sampling
scheme

Convergence of Monte Carlo is very slow!

εE =

∫ 10

0
|E(u)− E(û) | dx εVar =

∫ 10

0
|Var(u)− Var(û) | dx

Teaser: Convergence using polynomial chaos
expansion is much faster

Assumption: mapping from input q to output u is
smooth

Using polynomial approximation to create a
surrogate model

u(x ; a) ≈ ûM(x ; a) =
N∑

n=0

cn(x) Pn(a)

M Polynomial order

N + 1 Number of polynomial terms

cn Coefficients

Pn Polynomials

Polynomial chaos expansions are polynomial
approximation that fitted using orthogonal
polynomial basis

〈u, v〉Q = E(u · v) ‖u‖Q =
√
〈u, u〉Q

=

∫
f (q)u(x , q)v(x , q)dq

where Q is a random vector, i.e. (a, I).

Orthogonality:

〈Pn,Pm〉Q =

{
‖Pn‖2

Q n = m

0 n 6= m

Chaos expansions have optimality criterion linked to
minimal variance

(c0, . . . , cN) = argmin
c0,...,cN

‖u − ûM‖2
Q

= argmin
c0,...,cN

E
(
(u − ûM)2

)
= argmin

c0,...,cN

Var(u − ûM)

The only numerically stable method for calculating
orthogonal polynomials is through the three-term
discretized Stiltjes recursion

Three terms recursion relation:

Pn+1 = (x − An)Pn − BnPn−1 P−1 = 0 P0 = 1,

where

An =
〈qPn,Pn〉Q
‖Pn‖2

Q

Bn =


‖Pn‖2

Q

‖Pn−1‖2
Q

n > 0

‖Pn‖2
Q n = 0

Using the theory on multiple dimensions

Pn = P
(1)
n , ...,P

(D)
nD n←→ (n1, ..., nD)

Mapping from multiple indices to single index to
simplify notation

Multi-index

P00

P10 P01

P20 P11 P02

P30 P21 P12 ...

Single-index

P0

P1 P2

P3 P4 P5

P6 P7 P8 ...

N =

(
M + D

M

)

Orthogonality for multivariate polynomials

〈Pn,Pm〉Q = E
(
P

(1)
n1 · · ·P

(D)
nD · P

(1)
m1 · · ·P

(D)
mD

)

= E
(
P

(1)
n1 · P

(1)
m1

)
· · ·E

(
P

(D)
nD · P

(D)
mD

)

=
〈
P

(1)
n1 ,P

(1)
m1

〉
Q
· · ·
〈
P

(D)
nD ,P

(D)
mD

〉
Q

=
∥∥∥P(1)

n1

∥∥∥
Q
δn1m1 · · ·

∥∥∥P(D)
nD

∥∥∥
Q
δnDmD

〈Pn,Pm〉Q = ‖Pn‖Q δnm

Three terms recursion in Chaospy software

import chaospy as cp

dist_a = cp.Normal ()

P = cp.orth_ttr(3, dist_a)

print P

[1.0, q0, q0^2-1.0, q0^3 -3.0q0]

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(dist_a , dist_I)

P = cp.orth_ttr(1, dist)

print P

[1.0, q1 -9.0, q0 -0.05]

P = cp.orth_ttr(3, dist)

print cp.E(P[1]*P[2],dist)

0.0

print cp.E(P[3]*P[3],dist)

0.0888888888903

Coefficients are determined by least squares
minimization

min
c0,...,cN

||u − ûM ||2Q
...〈

N∑
n=0

cnPn,Pk

〉
Q

=
N∑

n=0

cn 〈Pn,Pk〉Q = ck 〈Pk ,Pk〉Q k = 0, . . . ,N

ck =
〈u,Pk〉Q
‖Pk‖2

Q

Fourier coefficients

The computational essence of polynomial chaos

cn(x) =
〈u,Pn〉Q
‖Pn‖2

Q

=
E(uPn)

E(P2
n)

=
1

E(P2
n)

∫
u(x ; q)Pn(q)f (q)dq ≈

ĉn(x) =
1

E(P2
n)

K∑
k=0

Pn(qk)u(x ; qk)f (qk)ωk

The numerical integral approximation is named pseudo-spectral
method.
qk quadrature nodes, ωk quadrature weights

Generating multivariate integration rules in Chaospy

joint multivariate dist

dist = cp.J(cp.Uniform(), cp.Uniform ())

nodes , weights = cp.generate_quadrature ((1,2), \

dist , rule="G")

print nodes

[[0.211324 0.211324 0.211324 0.788675 0.788675 0.788675]

[0.112701 0.5 0.887298 0.112701 0.5 0.887298]]

print weights

[0.138888 0.222222 0.138889 0.138889 0.222222 0.138889]

Returning to the simplified model

u(x ; q) = q1e
−q0x

Uncertain model parameters:

q0 ∼ Uniform(0, 0.1) q1 = Uniform(8, 10)

εE =

∫ 10

0
|E (u)− E (û)| dx εVar =

∫ 10

0
|Var(u)− Var(û)| dx

A full implementation of pseudo-spectral projection
in Chaospy

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(a,I)

P = cp.orth_ttr(2, dist)

nodes , weights = cp.generate_quadrature (3, dist)

x = np.linspace(0, 10, 100)

samples_u = [u(x, *node) for node in nodes.T]

u_hat = cp.fit_quadrature(P, nodes , weights , samples_u)

mean , var = cp.E(u_hat , dist), cp.Var(u_hat , dist)

Convergence of the two-dimensional problem

The point collocation method is alternative to the
pseudo-spectral method

1. Psuedo-spectral method:

1.1 Determine polynomial approximation of model by least squares
minimization in a space weighted with the probability
distribution

1.2 Approximate integrals in cn by quadrature rules

2. Point collocation method:

2.1 Determine polynomial approximation of model by least squares
minimization in a vector space as in regression (or
overdetermined matrix systems)

2.2 Need to choose a set of nodes (regression points)

The point collocation method: estimate cn using
linear regression

c =

c0(x)
...

cN(x)

 P =

P0(q0) · · · PN(q0)
...

...
P0(qK) · · · PN(qK)

 u =

u(x ; q0)
...

u(x , qK)



ĉ = argmin
c
‖Pc− u‖2

2

= (PTP)−1PTu

Collocation nodes should be placed where
probability is high

4 6 8 10 12 14 16

6

4

2

0

2

4

6

Code for least square minimization

def u(x, a, I):

return I*np.exp(-a*x)

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(dist_a , dist_I)

x = np.linspace(0, 10, 100)

P = cp.orth_ttr(3, dist)

nodes = dist.sample (2*len(P))

samples_u = [u(x, *node) for node in nodes.T]

u_hat = cp.fit_regression(P, nodes , samples_u)

Convergence using point collocation method

What is best of pseudo-spectral and point
collocation method? It’s problem dependent!

Which method to choose for your problem

Pseudo-spectral Point collocation Monte Carlo

Efficiency Highest Very high Very low

Stability Low Medium Very high

Dimension-independence Lowest Low Highest

Thank you for your attention

Software page:
https://github.com/hplgit/chaospy

https://github.com/hplgit/chaospy

Gibb’s Phenomena: discontinuities give oscillations

Example: 1-dimensional diffusion problem

All random variables can with aid of the Rosenblatt
transformations be transformed to/from the uniform
distribution

Transformations can be used to reparameterize the
model solver

ûM(x ; q) = ûM(x ;T (r)) =
N∑

n=0

cn(x)Pn(r)

If discontinuity can be tracked, a transformations
can aften be created to mimic the discontinuety in
probability space

0.0 0.2 0.4 0.6 0.8 1.0
Depth x

0

1

2

3

4

5

6

7

Pr
es

su
re

 u

u(x;q)∫ x

0

a(s,q) ds

Convergence can often be restored!

0 20 40 60 80 100 120 140
Number of collocation points

10−6

10−5

10−4

10−3

10−2

A
bs

lu
te

er
ro

r

Mean

MC
PS
PC
N1
N2
N3
N4

0 20 40 60 80 100 120 140
Number of collocation points

10−6

10−5

10−4

10−3

10−2
Variance

Thank you for your attention (again)

Software page:
https://github.com/hplgit/chaospy

https://github.com/hplgit/chaospy

