
Chaospy:

A modular implementation of Polynomial
Chaos expansions and Monte Carlo methods

Simen Tennøe

Supervisors:

Jonathan Feinberg
Hans Petter Langtangen
Gaute Einevoll
Geir Halnes

University of Oslo, CINPLA



Chaospy is a Python toolbox for forward model UQ

Properties of Chaospy

Monte Carlo methods

Polynomial Chaos



What is new in Chaospy

Chaospy is modular and
therefore very flexible

Chaospy has support for
dependent variables

Chaospy has a large collection
of methods and distributions

It is easy to compare different
methods on given a problem



Comparing Chaospy with Turns and Dakota

Feature Dakota Turns Chaospy

Distributions 11 26 64

Copulas 1 7 6

Sampling schemes 4 7.5 7

Orthogonal polynomial schemes 4 3 5

Numerical integration strategies 7 0 7

Regression methods 5 4 8

Analytical metrics 6 6 7



Chaospy has support for many different methods

I Monte Carlo with variance reduction techniques

I Intrusive and non-intrusive polynomial chaos

I Pseudo-spectral method

I Point collocation/regression



All Chaospy needs is a Python wrapper around the
forward model

def solver (*node):

# node: tuple of the uncertain stochastic parameters

model.set_parameters(node)

model.run()

results = model.post_processing ()

return results



Chaospy is a completly generic software; for
simplicity we use a very simple example problem

du(x)

dx
= −au(x), u(0) = I .

u The quantity of interest.

x Spatial location.

a, I Parameters containing uncertainties.

a ∼ Uniform(0, 0.1) I ∼ Uniform(8, 10)

We want to compute E(u) and Var(u).



Monte Carlo integration can be used for any model



Monte Carlo with Chaospy

import chaospy as cp

import numpy as np

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

# Joint distribution

dist = cp.J(dist_a , dist_I)

samples = dist.sample(size =1000)

# solver returns u(x), where x is fixed

# samples_u: list of all u(x) for each set of a and I

samples_u = [solver(a, I) for a, I in samples]

E = np.mean(samples_u , 0)

Var = np.var(samples_u , 0)



Convergence of Monte Carlo is slow

εE =

∫
|E(u)− E(û) | dx εVar =

∫
|Var(u)− Var(û) | dx



Chaospy has several variance reduction techniques
for sampling a distribution

Hammersley sampling:
nodes = dist.sample(100, "M")

Halton sampling
nodes = dist.sample(100, "H")

Latin Hypercube sampling:
nodes = dist.sample(100, "L")

Sobol sampling
nodes = dist.sample(100, "S")



The different sampling schemes available in Chaospy
compared to Turns and Dakota

Dakota Turns Chaospy

Quasi-Monte Carlo scheme

Faure sequence No Yes No

Halton sequence Yes Yes Yes

Hammersley sequence Yes Yes Yes

Haselgrove sequence No Yes No

Korobov latice No No Yes

Niederreiter sequence No Yes No

Sobol sequence No Yes Yes

Other methods

Antithetic variables No No Yes

Importance sampling Yes Yes Yes

Latin Hypercube sampling Yes Limited Yes



Quasi-Monte Carlo with Latin Hypercube sampling

import chaospy as cp

import numpy as np

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(dist_a , dist_I)

samples = dist.sample(size =1000, rule="L")

samples_u = [solver(a, I) for a, I in samples]

E = np.mean(samples_u , 0)

Var = np.var(samples_u , 0)



Convergence of quasi-Monte Carlo is better than
Monte Carlo, but still slow



Mapping in probability space; the idea behind
Polynomial Chaos (PC) theory is to approximate our
forward model with a polynomial

u(x ; q) ≈ ûM(x ; q) =
N∑

n=0

cn(x) Pn(q)

Coefficient Polynomial

ûM(x ; q) is the mapping from the uncertain variables q to the
response variable u, x is a fixed variable.

Mean and variance are calculated from ûM(x ; q).



Pn are orthogonal polynomials and are generaly
calculated through the three-term discretized
Stiltjes recursion

dist = cp.Normal ()

P = cp.orth_ttr(3, dist)

print P

[1.0, q0, q0^2-1.0, q0^3 -3.0q0]



Methods for generating expansions of orthogonal
polynomials

Orthogonalization Method Dakota Turns Chaospy

Askey–Wilson scheme Yes Yes Yes

Bertran recursion No No Yes

Cholesky decomposition No No Yes

Discretized Stieltjes Yes No Yes

Modified Chebyshev Yes Yes No

Modified Gram–Schmidt Yes Yes Yes



The pseudo-spectral method, used to calculate cn,
needs numerical integration, which demands
generating quadrature nodes and weights

dist = cp.Normal ()

nodes , weights = cp.generate_quadrature (2, dist , rule="G")

print nodes

[[ -1.73205081 0. 1.73205081]]

print weights

[ 0.16666667 0.66666667 0.16666667]



Numerical integration strategies implemented in the
three software toolboxes

Node and weight generators Dakota Turns Chaospy

Clenshaw-Curtis quadrature Yes No Yes

Cubature rules Yes No No

Gauss-Legendre quadrature Yes No Yes

Gauss-Patterson quadrature Yes No Yes

Genz-Keister quadrature Yes No Yes

Leja quadrature No No Yes

Monte Carlo integration Yes No Yes

Optimal Gaussian quadrature Yes No Yes



One slide is enough for the full implementation with
the pseudo-spectral method in Chaospy

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(dist_a ,dist_I)

P = cp.orth_ttr(2, dist)

nodes , weights = cp.generate_quadrature (3, dist)

samples_u = [solver (*node) for node in nodes.T]

u_hat = cp.fit_quadrature(P, nodes , weights , samples_u

rule="Gaussian")

mean = cp.E(u_hat , dist)

var = cp.Var(u_hat , dist)



Convergence of polynomial chaos is much faster
than the Monte Carlo methods



Chaospy is an ideal tool for research in UQ for the
statistics expert

With a few lines of Python code it is easy to customize:

I distributions

I polynomials

I integration schemes

I sampling schemes

I statistical analysis of the result

Custom polynomials:

q0, q1 = cp.variable (2)

phi = cp.Poly([1, q0 , q1 , q0**2 - 1, q0*q1])

print phi

[1, q0 , q1 , q0^2-1, q0q1]



Chaospy handles Polynomial Chaos expansions with
stochastically dependent variables

Diffusion in layered media with uncertain boundary, l , and
uncertain diffusion constants, D0, D1.

Uncertain l slows down convergence, but introduction of auxiliary
dependent variables restores convergence.



Summary: Chaospy is a Python toolbox for forward
model UQ with advanced Monte Carlo methods and
Polynomial Chaos expansions

Chaospy is modular, flexible,
with syntax that resembles

the mathematics

A vast collection of methods,
ideal for method comparisons



Summary: Chaospy is a Python toolbox for forward
model UQ with advanced Monte Carlo methods and
Polynomial Chaos expansions

Installation instructions:
https://github.com/hplgit/chaospy

Reference:
Feinberg, J., & Langtangen, H. P. (2015). Chaospy: An open source tool for designing
methods of uncertainty quantification. Journal Of Computational Science, 11, 46-57

http://hplgit.github.io/chaospy/doc/pub/chaospy-4screen.pdf

Questions?

https://github.com/hplgit/chaospy
http://hplgit.github.io/chaospy/doc/pub/chaospy-4screen.pdf

