Package | Description |
---|---|
weka.attributeSelection | |
weka.classifiers.meta | |
weka.filters.supervised.attribute |
Modifier and Type | Class and Description |
---|---|
class |
AttributeSetEvaluator
Abstract attribute set evaluator.
|
class |
CfsSubsetEval
CfsSubsetEval :
Evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them. Subsets of features that are highly correlated with the class while having low intercorrelation are preferred. For more information see: M. |
class |
ChiSquaredAttributeEval
ChiSquaredAttributeEval :
Evaluates the worth of an attribute by computing the value of the chi-squared statistic with respect to the class. Valid options are: |
class |
ClassifierSubsetEval
Classifier subset evaluator:
Evaluates attribute subsets on training data or a seperate hold out testing set. |
class |
ConsistencySubsetEval
ConsistencySubsetEval :
Evaluates the worth of a subset of attributes by the level of consistency in the class values when the training instances are projected onto the subset of attributes. |
class |
CostSensitiveASEvaluation
Abstract base class for cost-sensitive subset and attribute evaluators.
|
class |
CostSensitiveAttributeEval
A meta subset evaluator that makes its base subset evaluator cost-sensitive.
|
class |
CostSensitiveSubsetEval
A meta subset evaluator that makes its base subset evaluator cost-sensitive.
|
class |
FilteredAttributeEval
Class for running an arbitrary attribute evaluator on data that has been passed through an
arbitrary filter (note: filters that alter the order or number of attributes are not allowed).
|
class |
FilteredSubsetEval
Class for running an arbitrary subset evaluator on data that has been passed through an arbitrary
filter (note: filters that alter the order or number of attributes are not allowed).
|
class |
GainRatioAttributeEval
GainRatioAttributeEval :
Evaluates the worth of an attribute by measuring the gain ratio with respect to the class. GainR(Class, Attribute) = (H(Class) - H(Class | Attribute)) / H(Attribute). Valid options are: |
class |
HoldOutSubsetEvaluator
Abstract attribute subset evaluator capable of evaluating subsets with
respect to a data set that is distinct from that used to initialize/
train the subset evaluator.
|
class |
InfoGainAttributeEval
InfoGainAttributeEval :
Evaluates the worth of an attribute by measuring the information gain with respect to the class. InfoGain(Class,Attribute) = H(Class) - H(Class | Attribute). Valid options are: |
class |
LatentSemanticAnalysis
Performs latent semantic analysis and transformation of the data.
|
class |
OneRAttributeEval
OneRAttributeEval :
Evaluates the worth of an attribute by using the OneR classifier. Valid options are: |
class |
PrincipalComponents
Performs a principal components analysis and transformation of the data.
|
class |
ReliefFAttributeEval
ReliefFAttributeEval :
Evaluates the worth of an attribute by repeatedly sampling an instance and considering the value of the given attribute for the nearest instance of the same and different class. |
class |
SVMAttributeEval
SVMAttributeEval :
Evaluates the worth of an attribute by using an SVM classifier. |
class |
SymmetricalUncertAttributeEval
SymmetricalUncertAttributeEval :
Evaluates the worth of an attribute by measuring the symmetrical uncertainty with respect to the class. |
class |
UnsupervisedAttributeEvaluator
Abstract unsupervised attribute evaluator.
|
class |
UnsupervisedSubsetEvaluator
Abstract unsupervised attribute subset evaluator.
|
class |
WrapperSubsetEval
WrapperSubsetEval:
Evaluates attribute sets by using a learning scheme. |
Modifier and Type | Method and Description |
---|---|
static ASEvaluation |
ASEvaluation.forName(String evaluatorName,
String[] options)
Creates a new instance of an attribute/subset evaluator
given it's class name and
(optional) arguments to pass to it's setOptions method.
|
ASEvaluation |
RaceSearch.getAttributeEvaluator()
Get the attribute evaluator used to generate the ranking.
|
ASEvaluation |
RankSearch.getAttributeEvaluator()
Get the attribute evaluator used to generate the ranking.
|
ASEvaluation |
FilteredAttributeEval.getAttributeEvaluator()
Get the attribute evaluator to use
|
ASEvaluation |
CheckAttributeSelection.getEvaluator()
Get the current evaluator
|
ASEvaluation |
CostSensitiveASEvaluation.getEvaluator()
Get the evaluator used as the base evaluator.
|
ASEvaluation |
FilteredSubsetEval.getSubsetEvaluator()
Get the subset evaluator to use
|
ASEvaluation |
SubsetSizeForwardSelection.getSubsetSizeEvaluator()
Get the subset evaluator used for subset size determination.
|
static ASEvaluation[] |
ASEvaluation.makeCopies(ASEvaluation model,
int num)
Creates copies of the current evaluator.
|
Modifier and Type | Method and Description |
---|---|
static ASEvaluation[] |
ASEvaluation.makeCopies(ASEvaluation model,
int num)
Creates copies of the current evaluator.
|
int[] |
GreedyStepwise.search(ASEvaluation ASEval,
Instances data)
Searches the attribute subset space by forward selection.
|
int[] |
ExhaustiveSearch.search(ASEvaluation ASEval,
Instances data)
Searches the attribute subset space using an exhaustive search.
|
int[] |
GeneticSearch.search(ASEvaluation ASEval,
Instances data)
Searches the attribute subset space using a genetic algorithm.
|
int[] |
SubsetSizeForwardSelection.search(ASEvaluation ASEval,
Instances data)
Searches the attribute subset space by subset size forward selection
|
int[] |
LinearForwardSelection.search(ASEvaluation ASEval,
Instances data)
Searches the attribute subset space by linear forward selection
|
int[] |
ScatterSearchV1.search(ASEvaluation ASEval,
Instances data)
Searches the attribute subset space using Scatter Search.
|
int[] |
RaceSearch.search(ASEvaluation ASEval,
Instances data)
Searches the attribute subset space by racing cross validation
errors of competing subsets
|
int[] |
RandomSearch.search(ASEvaluation ASEval,
Instances data)
Searches the attribute subset space randomly.
|
int[] |
RankSearch.search(ASEvaluation ASEval,
Instances data)
Ranks attributes using the specified attribute evaluator and then
searches the ranking using the supplied subset evaluator.
|
int[] |
Ranker.search(ASEvaluation ASEval,
Instances data)
Kind of a dummy search algorithm.
|
int[] |
BestFirst.search(ASEvaluation ASEval,
Instances data)
Searches the attribute subset space by best first search
|
abstract int[] |
ASSearch.search(ASEvaluation ASEvaluator,
Instances data)
Searches the attribute subset/ranking space.
|
static String |
AttributeSelection.SelectAttributes(ASEvaluation ASEvaluator,
String[] options)
Perform attribute selection with a particular evaluator and
a set of options specifying search method and input file etc.
|
static String |
AttributeSelection.SelectAttributes(ASEvaluation ASEvaluator,
String[] options,
Instances train)
Perform attribute selection with a particular evaluator and
a set of options specifying search method and options for the
search method and evaluator.
|
void |
RaceSearch.setAttributeEvaluator(ASEvaluation newEvaluator)
Set the attribute evaluator to use for generating the ranking.
|
void |
RankSearch.setAttributeEvaluator(ASEvaluation newEvaluator)
Set the attribute evaluator to use for generating the ranking.
|
void |
FilteredAttributeEval.setAttributeEvaluator(ASEvaluation newEvaluator)
Set the attribute evaluator to use
|
void |
AttributeSelection.setEvaluator(ASEvaluation evaluator)
set the attribute/subset evaluator
|
void |
CostSensitiveSubsetEval.setEvaluator(ASEvaluation newEvaluator)
Set the base evaluator.
|
void |
CheckAttributeSelection.setEvaluator(ASEvaluation value)
Set the evaluator to test.
|
void |
CostSensitiveAttributeEval.setEvaluator(ASEvaluation newEvaluator)
Set the base evaluator.
|
void |
CostSensitiveASEvaluation.setEvaluator(ASEvaluation newEvaluator)
Set the base evaluator.
|
void |
FilteredSubsetEval.setSubsetEvaluator(ASEvaluation newEvaluator)
Set the subset evaluator to use
|
void |
SubsetSizeForwardSelection.setSubsetSizeEvaluator(ASEvaluation eval)
Set the subset evaluator to use for subset size determination.
|
Modifier and Type | Method and Description |
---|---|
ASEvaluation |
AttributeSelectedClassifier.getEvaluator()
Gets the attribute evaluator used
|
Modifier and Type | Method and Description |
---|---|
void |
AttributeSelectedClassifier.setEvaluator(ASEvaluation evaluator)
Sets the attribute evaluator
|
Modifier and Type | Method and Description |
---|---|
ASEvaluation |
AttributeSelection.getEvaluator()
Get the name of the attribute/subset evaluator
|
Modifier and Type | Method and Description |
---|---|
void |
AttributeSelection.setEvaluator(ASEvaluation evaluator)
set attribute/subset evaluator
|
Copyright © 2019 University of Waikato, Hamilton, NZ. All rights reserved.