Package | Description |
---|---|
weka.classifiers.functions.pace | |
weka.core.matrix |
Modifier and Type | Method and Description |
---|---|
void |
PaceMatrix.backward(PaceMatrix b,
IntVector pvt,
int ks,
int k0)
Backward ordering of columns in terms of response explanation.
|
double |
PaceMatrix.columnResponseExplanation(PaceMatrix b,
IntVector pvt,
int j,
int ks)
Returns the squared ks-th response value if the j-th column becomes
the ks-th after orthogonal transformation.
|
void |
PaceMatrix.forward(PaceMatrix b,
IntVector pvt,
int k0)
Forward ordering of columns in terms of response explanation.
|
int |
PaceMatrix.leastExplainingColumn(PaceMatrix b,
IntVector pvt,
int ks,
int k0)
Returns the index of the column that has the smallest (squared)
response, when the column is moved to become the (ks-1)-th
column.
|
void |
PaceMatrix.lsqr(PaceMatrix b,
IntVector pvt,
int k0)
QR transformation for a least squares problem
A x = b implicitly both A and b are transformed. |
void |
PaceMatrix.lsqrSelection(PaceMatrix b,
IntVector pvt,
int k0)
QR transformation for a least squares problem
A x = b implicitly both A and b are transformed. |
int |
PaceMatrix.mostExplainingColumn(PaceMatrix b,
IntVector pvt,
int ks)
Returns the index of the column that has the largest (squared)
response, when each of columns pvt[ks:] is moved to become the
ks-th column.
|
DoubleVector |
PaceMatrix.nnls(PaceMatrix b,
IntVector pvt)
Solves the nonnegative linear squares problem.
|
DoubleVector |
PaceMatrix.nnlse(PaceMatrix b,
PaceMatrix c,
PaceMatrix d,
IntVector pvt)
Solves the nonnegative least squares problem with equality
constraint.
|
DoubleVector |
PaceMatrix.nnlse1(PaceMatrix b,
IntVector pvt)
Solves the nonnegative least squares problem with equality
constraint.
|
void |
PaceMatrix.positiveDiagonal(PaceMatrix Y,
IntVector pvt)
Sets all diagonal elements to be positive (or nonnegative) without
changing the least squares solution
|
void |
PaceMatrix.rsolve(PaceMatrix b,
IntVector pvt,
int kp)
Solves upper-triangular equation
R x = b On output, the solution is stored in b |
void |
PaceMatrix.steplsqr(PaceMatrix b,
IntVector pvt,
int ks,
int j,
boolean adjoin)
Stepwise least squares QR-decomposition of the problem
A x = b
|
Modifier and Type | Method and Description |
---|---|
IntVector |
IntVector.copy()
Makes a deep copy of the vector
|
static IntVector |
IntVector.seq(int i0,
int i1)
Generates an IntVector that stores all integers inclusively between
two integers.
|
IntVector |
DoubleVector.sortWithIndex()
Sorts the array in place with index returned
|
IntVector |
IntVector.subvector(int i0,
int i1)
Returns a subvector.
|
IntVector |
IntVector.subvector(IntVector index)
Returns a subvector as indexed by an IntVector.
|
Modifier and Type | Method and Description |
---|---|
void |
IntVector.set(int i0,
int i1,
IntVector v,
int j0)
Sets the values of elements from another IntVector.
|
void |
IntVector.set(IntVector v)
Sets the values of elements from another IntVector.
|
void |
DoubleVector.sortWithIndex(int xi,
int xj,
IntVector index)
Sorts the array in place with index changed
|
IntVector |
IntVector.subvector(IntVector index)
Returns a subvector as indexed by an IntVector.
|
DoubleVector |
DoubleVector.subvector(IntVector index)
Returns a subvector.
|
DoubleVector |
DoubleVector.unpivoting(IntVector index,
int length)
Returns a vector from the pivoting indices.
|
Copyright © 2019 University of Waikato, Hamilton, NZ. All rights reserved.