a list, given d-th Macaulay representation of a = binomial(b_d,d) + ... + binomial(b_i,i), returns binomial(b_d - 1,d) + ... + binomial(b_i - 1,i)
Description
Given positive integers a and d, yields a_<d>, the operation from Green's proof of Macaulay's Theorem. See Bruns and Herzog, Cohen-Macaulay Rings, page 161.
i1 : macaulayLowerOperator(3,1)
o1 = 2
i2 : macaulayLowerOperator(15,5)
o2 = 3
See also
macaulayRep -- the Macaulay representation of an integer
macaulayBound -- the bound on the growth of a Hilbert function from Macaulay's Theorem