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Abstract

The paper documents MINTOOLKIT for GNU Octave. MINTOOLKIT
provides functions for minimization and numeric differentiation. The
main algorithms are BFGS, LBFGS, and simulated annealing. Examples
are given.

1 Introduction

Unconstrained optimization is a basic tool in many disciplines, and there is no
need to discuss its importance. This paper discusses how unconstrained opti-
mization may be done using GNU Octave (Eaton, www.octave.org) using the
package MINTOOLKIT (Creel, http:/ /pareto.uab.es/mcreel/MINTOOLKIT).
If you would just like to see some examples of how to use the algorithms, skip
to section 4. Otherwise, here’s some introductory information that explains
how algorithms we selected for inclusion into MINTOOLKIT.

1.1 Types of problems

We first briefly discuss types of optimization problems, in order to identify the
cases where GNU Octave will be a good platform for analysis, and which of
the algorithms in MINTOOLKIT will likely work well for given cases.

1.1.1 Large/small

What is the number of parameters to be minimized? Let k be the number of

parameters. Memory usage of an algorithm will be some function f (k). If this
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function is growing rapidly for a certain algorithm, that algorithm will cease
to be useful for “large” problems, since memory will be exhausted. Of course,
"large” is a relative term that increases over time as memory becomes cheaper.
For ”small” problems, the speed of convergence of the algorithm will be of

primary importance, since memory resources will not be a bottleneck.

1.1.2 Continuous/discontinuous

Gradient-based methods such as Newton’s algorithm or quasi-Newton meth-
ods rely on the function being differentiable. This will not hold if the function

is not continuous. Search-type algorithms will be appropriate here.

1.1.3 Convex/nonconvex

A convex objective function will have a single global minimizer, whereas non-
convex functions may have additional local minima. Quasi-Newton methods
only use local information in their updates, so they may well converge to a
non-global minimum, depending upon starting values. A possible solution is
to try a number of starting values. This is likely to work well if the nonconvex-
ity problem is not too severe. When there are many local minima, a search-type
algorithm may become more efficient, since the problem of local minima is
dealt with automatically and doesn’t require the analysts” intervention. After

all, who's time is more important, yours, or your computer’s?

1.1.4 Costly/cheap

Can the objective function be evaluated quickly, or is it time-consuming? Oc-
tave is an interpreted language, and is in general slower than FORTRAN, C,
or similar. So expensive objective functions are best not implemented in pure
Octave. One might go to a different environment for analysis, but in fact it
is relatively easy to convert objective functions written in Octave to C++, and
call them dynamically from Octave scripts. In this way, the expensive calcula-
tions are done using a fast language, while the user deals with the convenient,
friendly Octave environment. In fact, C++ functions may make use of the Oc-
tave classes, so converting an Octave function to C++ is not very difficult. The
algorithms in MINTOOLKIT serve as examples of how this may be done.



2 Algorithms

The algorithms in MINTOOLKIT were chosen based upon many sources of
information, two of which are Nocedal (1992), for continuous, convex prob-
lems, and Mittelmann for global minimization. The goal of MINTOOLKIT is
to be able to solve well-posed problems quickly and robustly, using the small-
est set of algorithms possible. “Well-posed” is an important adjective here -
MINTOOLKIT is not meant to be able to solve poorly conditioned problems
or problems that can easily fall into numeric precision traps. Please pay atten-
tion to how your data is scaled, try to "bullet-proof” your objective function
to avoid divisions by zero, etc. Nevertheless, if you find bugs, or have sugges-

tions or comments, please contact the author.

2.1 BFGSMIN

The BFGS algorithm is probably the most widely-used quasi-Newton method
for moderately-sized continuous problems that are not extremely nonconvex.
It is more robust than other quasi-Newton methods such as DFP (Nocedal,
1992), and it is faster than Newton’s method, since the Hessian matrix need
not be calculated. One could easily create a Newton algorithm using the source
code for bf gsmi n.

2.2 LBFGSMIN

For large problems, the BFGS algorithm may not be feasible, since it requires
storing a k X k matrix. The LBFGS ("L” is for “limited memory”) method is
able to store all information for updates in vectors, which substantially re-
duced memory requirements. It may also be faster than the BFGS algorithm
in some circumstances, since it may use fewer floating point operations per
iteration, depending upon the size of the problem. While it will usually re-
quire more iterations that BFGS, it may be faster if each iteration is faster.

Liu and Nocecal 1989 is a reference.

2.3 SAMIN

When problems are mildly nonconvex, the quasi-Newton methods above, com-
bined with a number of trial start values, may be the fastest way to find the
global minimum. This solution is implemented in bat t ery. m But when the
problem becomes less smooth, with many local minima, this solution may fail.

Simulated annealing is one of the algorithms that works well in this case. The
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implementation by Goffe has been used widely, and is the basis for the version
included in MINTOOLKIT. An additional reference is Goffe (1996).

sam n differs from the Goffe code in two important ways:

1. The “temperature” is determined automatically. In a first stage, the tem-
perature is increased until the active search region covers the entire pa-
rameter space defined as the k-dimensional rectangle x ;-‘:1 (Ibj, ub;) where
Ibj and ub; are the jth elements of the LB and UB vectors that are the
lower and upper bounds for the parameters (these are user-specified ar-
guments to samin. Once this is achieved, the temperature decreases as

usual.

2. Convergence is defined as two conditions holding simultaneously.

(a) The last NEPS best function values cannot differ by more than FUNC-
TOL. This is as in Goffe’s code.

(b) The width of the search interval must be less than PARAMTOL for

each parameter. This allows to avoid accepting points on a flat

plateau.

3 Obtaining the code

e MINTOOLKIT is available directly from the author, at http:/ /pareto.uab.es/mcreel /MINTOOLK
If you get it this way, uncompress the file where you like, change to the
MINTOOLKIT directory, and compile by typing “make all” (this sup-
poses that you have Octave installed already). Make sure that Octave
knows where the MINTOOLKIT directory is. This option guarantees

that you have the most recent version.

e Otherwise, you can obtain MINTOOLKIT as part of the octave-forge
package.

e If you happen to be running Debian Linux, you can install a pre-compiled
version of octave-forge and all required files by typing ”apt-get install
octave-forge”. This is the easiest (and recommended) option.

4 Examples

MINTOOLKIT contains some functions for use by users, and some other func-

tions that users can ignore. The functions for users are
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Function Purpose

bfgsmin Ordinary BFGS algorithm
battery Calls bfgsmin with a set of starting values
Ibfgsmin Limited-memory BFGS, for large problems
samin Simulated annealing, for global minimization
numgradient | numeric first derivative of vector-valued function
numhessian numeric second derivative matrix

This section gives some very simple examples of the use of the algorithms
and functions in MINTOOLKIT. The first examples are intended to clearly il-
lustrate how to use the algorithms. Realism is not important. Then some more
difficult problems are considered.

The functions in MINTOOLKIT allow minimization or differentiation with
respect to any of the arguments of a function, holding the other arguments
fixed. The other arguments can include data or fixed parameters of the func-
tion, for example. The argument with respect to which minimization or differ-
entiation is done is denoted by minarg, which by default is equal to 1. Any
function to be minimized or differentiated by algorithms in MINTOOLKIT
must follow one of the forms

value = f(arg:, argo, ..., argp)

[value, returny, ..., return,| = f(arg:, arga, ..., argp)

Special case: If the second form is used and return; is a k x 1 vector, where k is
the dimension of minarg, then is assumed to be the gradient of f with respect
to minarg, if the algorithm called uses the gradient. Otherwise, it (and any
other returns from f) are ignored by MINTOOLKIT.

4.1 Minimization

411 bfgsmn

bf gsni nis called as
[theta, value, convergence| = bfgsmin(” f”, {args}, {control})

The first argument ” f” is a string variable that holds the name of the function
to be minimized. The second argument, args, is a cell array that hold the argu-
ments of f. The third argument control is an optional cell array of 4 elements.
The elements of control are described in Table 1. The outputs of bf gsmi n are



Table 1: Controls for bf gsni n

Element | Purpose ‘ Default Value ‘ Other possible values
1 maxiters -1 (infinity) any positive integer
2 verbosity 0 1: summary every iteration; 2: only final summary
3 criterion | 1: strict convergence (f, g, Ap) 2: weak convergence (only f)
4 minarg 1: first argument int: 1 < minarg <k, k = #args

obvious, except the code values that convergence can take on. These are -1 for
no convergence, maxiters exceeded; 1: convergence according to the specified
strong or weak criterion; 2: no convergence due to failure of the algorithm (e.g.,
the gradient calculation fails, or a stepsize cannot be found).

Consider a simple example - minimizing a quadratic function. The pro-

gram bfgsmin-example.m follows:

e The first example uses numeric derivatives, and minimizes with respect
to x, the first argument of the objective function. The second argument,

y, is treated as fixed.

e The second example uses analytic derivatives, since it calls objective2,
and minimizes with respect to x, the first argument of the objective func-

tion. The second argument, v, is treated as fixed.

e The third example uses numeric derivatives, and minimizes with respect
to y, the second argument of the objective function, since the 4th element
of control ,m narg,is 2. The first argument, x, is treated as fixed.

The output of running this example is
Notice that analytic gradients lead to faster convergence that do numeric
gradients. Also note in the third example, where m nar g=2, that minimiza-

tion can be with respect to any of the arguments of the objective function.

41.2 | bfgsmn

When the problem is very large, a limited-memory bfgs algorithm may be
needed, if bf gsm n is not feasible due to memory limitations. | bf gsmi n is

called as
[theta, value, convergence| = Ibfgsmin(”f", {args}, {control})

The first argument ”f” is a string variable that holds the name of the func-

tion to be minimized. The second argument, args, is a cell array that hold the
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Table 2: Controls for | bf gsmi n

Element | Purpose ‘ Default Value ‘ Other possible values
1 maxiters -1 (infinity) any positive integer
2 verbosity 0 1: summary every iteration; 2: only final summary
3 criterion | 1: strict convergence (f, g, Ap) 2: weak convergence (only f)
4 minarg 1: first argument int: 1 < minarg <k, k = #args
5 memory 5 any positive integer

arguments of f. The third argument control is an optional cell array of 5 ele-
ments. The elements of control are the same as for bf gsm n, except that there
is one more element that controls how many iterations are used to form the
quasi-Hessian matrix (this is the memory of the method). The control vector is
fully described in Table 3. You can easily modify the above example to use the
| bf gsmi n method.

It is possible that | bf gsmi n can outperform bf gsni n even when mem-
ory is not an issue. Remember that both of these algorithms are approximating
the Hessian matrix using previous gradient evaluations. If the true Hessian is
changing rapidly, then a limited memory approximation may be better than
a long memory approximation. The Rosenbrock function is such a case. The
program Ibfgsmin-example.m minimizes a 200-dimensional Rosenbrock func-
tion using both algorithms. The outputshows that the limited memory algo-
rithm uses significantly more iterations that the ordinary BFGS algorithm, but
it is almost 4 times as fast. In general, though, the ordinary BFGS algorithm is

recommended when memory limitations are not a problem.

4.1.3 samn

For discontinuous and/or seriously nonconvex problems, the quasi-Newton

methods are not likely to work well. sami n is called as
[theta, value, convergence] = samin(” f”,args, control)

The controls for sani n are summarized in Table

The example program sa-example.m is listed here:The objective function is
the sum of k exponentiated cosine waves, each shifted down so the minimum
is zero, with some curvature added in to create a global minimum of f(x) =0
atx = (0,0, ...,0). The (edited to shorten) output of the example is here:

You can see that the minimum was found correctly.
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Table 3: Controls for sam n

‘ Element ‘ Name Purpose ‘ Description
1 Ib lower bounds vector of lower bounds for parameters
2 ub upper bounds vector of upper bounds for parameters
3 nt control looping loops per temp. reduction, e.g., nt=20
4 ns control looping loops per stepsize adjustment, e.g., ns=5
5 rt reduce temp. 0O<rt<1, eg.,rt=0.75
6 maxevals | limit evaluations | usually, a large number, unless just exploratory, e.g., 1e10
7 neps convergence positive integer. Higher is stricter criterion, e.g., neps=5
8 functol convergence last neps function values must be this close to eachother
9 paramtol convergence width of search interval must be less than this value
10 verbosity output 0: no outout; 1: intermediate; 2: only final
11 minarg arg. for min. which arg to min. w.r.t.,, usually = 1

414 A more difficult problem

The Moré-Garbow-Hillstrom test suite contains some relatively difficult mini-

mization problems. bf gsm n by itself can solve some of these problems, but

not all of them, since some have multiple local minima, or completely flat re-

gions where a gradient-based method will not be able to find a decreasing

direction of search. The “Biggs EXP6” problem #18 is one for which bf gsmi n

fails to find the global minimum. This program shows how the global min-

imum may be found by combining an initial search that uses sam n to find

good starting values with refinement using bf gsmi n to sharpen up the final

results. The sam n results from running this program, which use a fast tem-

perature reduction and a fairly low limit on function evaluations are:

NO CONVERGENCE: MAXEVALS exceeded
Stage 2, decreasing tenperature

bj .

fn.

val ue 0. 000006

paranet er search wi dth
9. 844228 0.000000
4.294696 0. 000000
-5.231675 0. 000000
-3.114330 0. 000000
1.076916 0. 000000
1.118343 0. 000000

Then come the BFGS iterations to sharpen up the results. The final BFGS

results are:

BFGSM N internedi ate results: Iteration 33
St epsi ze 0. 0000000
Usi ng anal yti c gradi ent
bj ective function val ue 0.0000000000
Function conv 1 Paramconv 1 Gadient conv 1
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parans gradi ent change
10. 0000 0. 0000 0. 0000
4. 0000 -0.0000 -0.0000
-5. 0000 0.0000 0.0000
- 3.0000 -0.0000 0.0000
1. 0000 -0.0000 0.0000
1. 0000 0. 0000 0. 0000

e The minimum is found, but note that the solution values are in a differ-
ent order than those given on the SolvOpt web page, with some negative
signs. This problem suffers from a lack of identification - there are mul-

tiple values that give exactly the same value of zero.

An alternative which will often be faster, but is less sure to find the global
minimum, is to call bf gsm n with many random starting values and a limited
number of iterations. This is implemented in battery. m You can see an
example in This program. This leads to the results

BFGSM N i nternediate results: Iteration 130
St epsi ze 0. 0000000

Usi ng anal yti c gradient

(bj ective function val ue 0. 0000000000
Function conv 1 Paramconv 1 Gadient conv 1
parans gradi ent change

4. 0000 -0.0000 0.0000

10. 0000 0. 0000 -0. 0000

3. 0000 0. 0000 0.0000

5. 0000 -0.0000 0. 0000

1. 0000 -0. 0000 0.0000

1. 0000 0. 0000 0. 0000

The minimum is found correctly, and you can see that the problem is not

identified.

4.1.5 Tips for successful minimization

Scaling Scaling the data and other constant parameters of the objective func-
tion so that the elements of the gradient are of approximately the same order
of magnitude will help improve accuracy of the Hessian approximation. This
can help a lot in obtaining convergence, and the results will have higher accu-
racy. This program illustrates. The output is You can see that the scaled data

gives a more accurate solution, using less than half the iterations.
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Bullet-proofing Writing your objective function so that it cannot return NaN
or otherwise crash can save a lot of grief. Insert something likei f ( ( (abs(obj _val ue)

== Inf)) || (isnan(obj_value)))
obj val ue = real nmax;
endi f

at the end of the objective function, and then return obj _val ue. This way,
parameter values that lead to crashes are penalized, and will be avoided auto-

matically.

4.2 Numeric differentiation

nungr adi ent and numhessi an can be used for numeric differentiation. nungr adi ent
returns the derivative of an n x 1 vector-valued function with respecttoak x 1
vector in a n X k matrix. numhessi an returns the derivative of a real-valued
function with respect to a k x 1 vector in a k x k matrix. Both functions are
quite accurate. numderivatives.m, which follows, shows how it can be done.
The results are:

5 Testing the code

The program mgh-test.m allows testing the algorithms using the Moré-Garbow-
Hillstrom test suite, obtained from the SolvOpt source code. You can compare
the output with these results, if you like. Note that simply applying BEGS with
a single start value will sometimes lead to a failure of convergence, or conver-
gence to a non-global minimum. This is expected, considering the nature of
the problems. See section 4.1.4 for an appropriate means of proceeding with
these problems.

If you find any bugs in the code, please contact me.

References

[1] Eaton, J.W., ht t p: / / www. oct ave. or g/

[2] Liuand Nocedal, ht t p: / / www. ece. nort hwest er n. edu/ ~nocedal / PDFfil es/limted-m
[3] Mittelmann, htt p://pl at 0. asu. edu/ t opi cs/ probl ens/ gl obal . ht

[4] Nocedal (1992), ht t p: / / www. ece. nort hwest er n. edu/ ~nocedal / PDFf i | es/ act a. pdf

[5] Goffe, http://ww. netlib.no/netlib/opt/simnn.f

10


http://pareto.uab.es/mcreel/MINTOOLKIT/numderivatives.m
http://pareto.uab.es/mcreel/MINTOOLKIT/mgh-test.m
http://www.uni-graz.at/imawww/kuntsevich/solvopt/
http://www.uni-graz.at/imawww/kuntsevich/solvopt/results/table1.html
http://www.octave.org/
http://www.ece.northwestern.edu/~nocedal/PDFfiles/limited-memory.pdf
http://plato.asu.edu/topics/problems/global.html
http://www.ece.northwestern.edu/~nocedal/PDFfiles/acta.pdf
http://www.netlib.no/netlib/opt/simann.f

[6] Goffe, "SIMANN: A Global Optimization Algorithm using Simulated An-
nealing " Studies in Nonlinear Dynamics & Econometrics, Oct96, Vol. 1
Issue 3.

11



	Introduction
	Types of problems
	Large/small
	Continuous/discontinuous
	Convex/nonconvex
	Costly/cheap


	Algorithms
	BFGSMIN
	LBFGSMIN
	SAMIN

	Obtaining the code
	Examples
	Minimization
	bfgsmin
	lbfgsmin
	samin
	A more difficult problem
	Tips for successful minimization

	Numeric differentiation

	Testing the code

