
Fixed Point Toolbox for Octave
Version 0.7.4
January 2004

David Bateman
Laurent Mazet

Copyright c© 2004 Motorola Inc

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

i

Table of Contents

1 The Basics of the Fixed Point Types 1

1.1 The License used with this Package . 1
1.2 Fixed Point Representation . 1
1.3 Creating Fixed Point Numbers . 2
1.4 Overflow Behavior of Fixed Point Numbers . 4
1.5 Fixed Point Built-in Variables . 5
1.6 Accessing Internal Fields . 6
1.7 Function Overloading . 7
1.8 Putting it all Together . 8
1.9 Problems of Precision in Calculations . 8
1.10 Lookup Tables . 9
1.11 Known Problems . 9

2 Using the fixed-point type in C++ and oct-files
. 12

2.1 The FixedPoint Base Class . 12
2.1.1 FixedPoint Constructors . 12
2.1.2 FixedPoint Specific Methods . 13
2.1.3 FixedPoint Operators . 14
2.1.4 FixedPoint Functions . 16

2.2 The FixedPointComplex Base Class . 17
2.2.1 FixedPointComplex Constructors . 17
2.2.2 FixedPointComplex Specific Methods 20
2.2.3 FixedPointComplex Operators . 21
2.2.4 FixedPointComplex Functions . 22

2.3 The Derived Classes using the Octave Template Classes 24
2.3.1 FixedMatrix class . 24
2.3.2 FixedRowVector class . 27
2.3.3 FixedColumnVector class . 29
2.3.4 FixedComplexMatrix class . 32
2.3.5 FixedComplexRowVector class . 36
2.3.6 FixedComplexColumnVector class . 40

2.4 The Upper Level Octave Classes . 44
2.5 Writing Oct-files with the Fixed Point Type 45

2.5.1 Using C++ Templates in Oct-files. 45
2.5.2 Specific Problems of Oct-files using Fixed Point 46
2.5.3 Specific points to note when using Oct-files and Cygwin . . 46
2.5.4 A Simple Example of an Oct-file . 47

3 Fixed Point Type Applied to Real Signal
Processing Example . 49

ii

4 Function Reference . 52

4.1 Functions by Category . 52
4.1.1 Fixed Point Operators . 52
4.1.2 Fixed Point Variables . 52
4.1.3 Fixed Point Utility Functions . 52
4.1.4 Fixed Point Functions . 53
4.1.5 Examples . 54

4.2 Functions Alphabetically . 54
4.2.1 concat . 54
4.2.2 create lookup table . 54
4.2.3 display fixed operations . 54
4.2.4 fabs . 54
4.2.5 fangle . 55
4.2.6 farg . 55
4.2.7 fatan2 . 55
4.2.8 fceil . 55
4.2.9 fconj . 55
4.2.10 fcos . 55
4.2.11 fcosh . 55
4.2.12 fcumprod . 55
4.2.13 fcumsum . 56
4.2.14 fdiag . 56
4.2.15 fexp . 56
4.2.16 ffft . 56
4.2.17 ffloor . 57
4.2.18 fifft . 57
4.2.19 fimag . 57
4.2.20 fixed . 57
4.2.21 fixed inc . 58
4.2.22 fixed point count operations . 58
4.2.23 fixed point debug. 58
4.2.24 fixed point library version . 58
4.2.25 fixed point version . 58
4.2.26 fixed point warn overflow . 58
4.2.27 fixedpoint . 58
4.2.28 float . 59
4.2.29 flog . 59
4.2.30 flog10 . 59
4.2.31 fprod . 59
4.2.32 freal . 60
4.2.33 freshape . 60
4.2.34 fround . 60
4.2.35 fsin . 60
4.2.36 fsinh . 60
4.2.37 fsort . 61
4.2.38 fsqrt . 61
4.2.39 fsum . 61
4.2.40 fsumsq . 61

iii

4.2.41 ftan . 61
4.2.42 ftanh . 62
4.2.43 isfixed . 62
4.2.44 lookup table . 62
4.2.45 reset fixed operations . 62

Chapter 1: The Basics of the Fixed Point Types 1

1 The Basics of the Fixed Point Types

When implementing algorithms in hardware, it is common to reduce the accuracy of the
representation of numbers to a smaller number of bits. This allows much lower complexity in
the hardware, at the cost of accuracy and potential overflow problems. Such representations
are known as fixed point.

This toolbox supplies a fixed point type that allows Octave to model the effects of such
a reduction in accuracy of the representation of numbers. The major advantage of this
toolbox is that with correctly written Octave scripts, the same code can be used to test
both fixed and floating point representations of numbers.

The authors have tried to take all care to ensure the correct functionality of this package.
However, as this code is relatively recent we expect that there will be a certain number of
problems. We welcome all reports of bugs, etc or even success stories. The authors can be
contacted at the e-mail address David.Bateman@motorola.com.

1.1 The License used with this Package

The license used with this package is the GNU General Public License, a copy of which
is distributed with this package in the file ‘COPYING’. Some commercial users have seemed
quite concerned about the use of software licensed under the GPL in their development. To
ease these concerns, the authors state in clear English the terms of the GPL allow that

1. Any algorithm developed with this package remains the sole property of the party
developing the algorithm.

2. Changes can be made to the fixed point package, with the constraint that if you supply
a version of the fixed point package to another party it must equally be covered by the
terms of the GPL.

We believe that there is little reason to make proprietary changes to the fixed point
package itself. So this clear distinction between the fixed point code itself and algorithms
developed with it means that there should be little concern for a use of this package in the
development of a proprietary algorithms.

Proprietary changes to the fixed point package itself are possible. The GPL only comes
into play in if you distribute the fixed point package with these changes. The algorithms
developed on these modified versions of the fixed point package remain proprietary in all
cases.

1.2 Fixed Point Representation

Fixed point numbers can be represented digitally in several manners, including
sign-magnitude, ones-complement and twos-complement. The most commonly used
technique is twos-complement due to the easier implementation of certain operations in
this representation. As such this toolbox uses the twos-complement representation of
numbers

All fixed point objects in this toolbox are represented by an int that is used in the
following manner

Chapter 1: The Basics of the Fixed Point Types 2

1 bit representing the sign,
is bits representing the integer part of the number, and
ds bits representing the decimal part of the number.

The numbers that can then be represented are then given by

−2is ≤ x ≤ 2is − 2−ds

and the distance between two values of x that are not represented by the same fixed
point value is

2−ds

.

The number of bits that can be used in the representation of the fixed point objects
is determined by the number of bits in an int on the platform. Valid values include 32-
and 64-bits. To avoid issues with overflows in additions, one of these bits can not be used.
Therefore valid values of is and ds are given by

0 < (is + ds) ≤ n − 2

where n is either 32 or 64, depending on the number of bits in an int. It should be
noted that given the above criteria it is possible to create a fixed point representation that
lacks a representation of the number 1. This makes the implementation of certain operators
difficult, and so the valid representations are further limited to

0 < (is, ds, is + ds) ≤ n − 2

This does not mean that other numbers can not be represented by this toolbox, but
rather that the numbers must be scaled prior to their being represented.

This toolbox allows both fixed point real and complex scalars to be represented, as well
as fixed point real and complex matrices. The real and imaginary parts of the fixed point
number and each element of a fixed point matrix has its own fixed point representation.

1.3 Creating Fixed Point Numbers

Before using a fixed point type, some variables must be created that use this type. This is
done with the function fixed. The function fixed can be used in several manners, depending
on the number and type of the arguments that are given. It can be used to create scalar,
complex, matrix and complex matrix values of the fixed type.

The generic call to fixed is fixed(is,ds,f), where the variables are

is The number of bits to use in the representation of the integer part of the fixed
point value. This can be either a real or complex value, and can be either a
scalar or a matrix. As the fixed point representation of complex values uses
separate representations for the real and imaginary parts, a complex value of
is gives the representation of the real and imaginary parts separately. is must
contain only integer or complex integer values greater than zero, and less than
30 or 62 as discussed in the previous section.

Chapter 1: The Basics of the Fixed Point Types 3

ds Similarly to is, ds represents the number of bits in the decimal part of the fixed
point representation. The same conditions as for is apply to ds

f This variable can be either a scalar, complex, matrix or complex matrix of
values that will be converted to a fixed point representation. It can equally
be another fixed point value, in which case fixed has the effect of changing the
representation of f to another representation given by is and ds.

If matrices are used for is, ds, or f, then the dimensions of all of the matrices must match.
However, it is valid to have is or ds as scalar values, which will be expanded to the same
dimension as the other matrices, before use in the conversion to a fixed point value. The
variable f however, must be a matrix if either is or ds is a matrix.

The most basic use of the function fixed can be seen in the example

octave:1> a = fixed(7,2,1)

ans = 1

octave:2> isfixed(a)

ans = 1

octave:3> whos a

*** local user variables:

prot type rows cols name

==== ==== ==== ==== ====

rwd fixed scalar 1 1 a

which demonstrates the creation of a real scalar fixed point value with 7 bits of precision
in the integer part, 2 bits in the decimal part and the value 1. The function isfixed can
be used to identify whether a variable is of the fixed point type or not. Equally, using the
whos function allows the variable to be identified as "fixed scalar".

Other examples of valid uses of fixed are

octave:1> a = fixed(7, 2, 1);

octave:2> b = fixed(7, 2+1i, 1+1i);

octave:3> c = fixed(7, 2, 255*rand(10,10) - 128);

octave:4> is = 3*ones(10,10) + 4*eye(10);

octave:5> d = fixed(is, 1, eye(10));

octave:6> e = fixed(7, 2, 255*rand(10,10)-128 +

> 1i*(255*rand(10,10)-128));

octave:7> whos

*** local user variables:

prot type rows cols name

==== ==== ==== ==== ====

rwd fixed scalar 1 1 a

rwd fixed complex 1 1 b

rwd fixed matrix 10 10 c

rwd fixed matrix 10 10 d

rwd fixed complex matrix 10 10 e

Chapter 1: The Basics of the Fixed Point Types 4

With two arguments given to fixed, it is assumed that f is zero or a matrix of zeros, and
so fixed called with two arguments is equivalent to calling with three arguments with the
third arguments being zero. For example

octave:1> a = fixed([7,7], [2,2], zeros(1,2));

octave:2> b = fixed([7,7], [2,2]);

octave:3> assert(a == b);

Called with a single argument fixed, and a fixed point argument, b = fixed(a) is equiv-
alent to b = a. If a is not itself fixed point, then the integer part of a is used to create a
fixed point value, with the minimum number of bits needed to represent it. For example

octave:1> b = fixed(1:4);

creates a fixed point row vector with 4 values. Each of these values has the minimum
number of bits needed to represent it. That is b(1) uses 1 bit to represent the integer part,
b(2:3) use 2 bits and b(4) uses 3 bits. The single argument used with fixed can equally be a
complex value, in which case the real and imaginary parts are treated separately to create
a composite fixed point value.

1.4 Overflow Behavior of Fixed Point Numbers

When converting a floating point number to a fixed point number the overflow behavior
of the fixed point type is such that it implements clipping of the data to the maximum or
minimum value that is representable in the fixed point type. This effectively simulates the
behavior of an analog to digital conversion. For example

octave:1> a = fixed(7,2,200)

a = 127.75

octave:2> a = fixed(7,2,-200)

a = -128

However, the overflow behavior of the fixed point type is distinctly different if the overflow
occurs within a fixed point operation itself. In this case the excess bits generated by the
overflow are dropped. For example

octave:1> a = fixed(7,2,127) + fixed(7,2,2)

a = -127

octave:2> a = fixed(7,2,-127) + fixed(7,2,-2)

a = 127

The case where the representation of the fixed point object changes is different again.
In this case the sign is maintained, while the most-significant bits of the representation are
dropped. For example

octave:1> a = fixed(6, 2, fixed(7, 2, -127.25))

a = -63.25

octave:2> a = fixed(6, 2, fixed(7, 2, 127.25))

a = 63.25

octave:3> a = fixed(7, 1, fixed(7, 2, -127.25))

a = -127.5

octave:4> a = fixed(7, 1, fixed(7, 2, 127.25))

a = 127

Chapter 1: The Basics of the Fixed Point Types 5

In addition to the overflow issue discussed above, it is important to take into account
what happens when an operator is used on two fixed point values with different represen-
tations. For example

octave:1> a = fixed(7,2,1);

octave:2> b = fixed(6,3,1);

octave:3> c = a + b;

octave:4> fprintf("%d integer, and %d decimal bits\n", c.int, c.dec);

7 integer, and 3 decimal bits

as can be seen the fixed point value is promoted to have an output fixed point repre-
sentation such that c.int = max(a.int,b.int) and c.dec = max(a.dec,b.dec). If this
promotion causes the maximum number of bits in a fixed point representation to be ex-
ceeded, then an error will occur.

1.5 Fixed Point Built-in Variables

After the fixed point type is first used, four variables are initialized. These are

fixed point version
The version number of the fixed point code

fixed point warn overflow
If non-zero warn of fixed point overflows. The default is 0.

fixed point count operations
If non-zero count number of fixed point operations, for later complexity analysis

fixed point debug
If non-zero keep a copy of fixed point value to allow easier debugging with gdb

and they can be accessed as normal Octave built-in variables. The variable fixed_

point_version can be used to create tests in the users code, to work-around any eventual
problems in the fixed point type. For example

if (strcmp(fixed_point_version, "0.6.0"))

a = fixed([a.int, b.int], [a.dec, b.dec],

[a.x, b.x]);

else

a = concat(a, b);

endif

although this is not a real example, since both versions of the above code work with the
released version of the fixed point type.

When optimizing the number of bits in a fixed point type, it is normal to expect overflows
to occur, causing errors in the calculations which due to the implementation have little effect
on the end result of the system. However, it is sometimes useful to know exactly where
overflows are happening or not. A non-zero value of variable fixed_point_warn_overflow

permits the errors conditions in fixed point operations to cause a warning message to be
printed by octave. The default behavior is to have fixed_point_warn_overflow be 0.

The octave fixed point type can keep track of all of the fixed point operations and their
type. This is very useful for a simple complexity analysis of the algorithms. To allow the
fixed point type to track operations the variable fixed_point_count_operations must be

Chapter 1: The Basics of the Fixed Point Types 6

non-zero. The count of operations can then be reset with the reset fixed operations, and
the number of operations since the last reset can be given by the display fixed operations

function.

The final in-built variable of the fixed point type is fixed_point_debug. In normal
operation this variable is of no use. However setting it to a non-zero value causes a copy of
the floating point representation of a fixed point value to be stored internally. This makes
debugging code using the fixed point type significantly easier using gdb.

1.6 Accessing Internal Fields

Once a variable has been defined as a fixed point object, the parameters of the field of this
structure can be obtained by adding a suffix to the variable. Valid suffixes are ’.x’, ’.i’,
’.sign’, ’.int’ and ’.dec’, which return

.x The floating point representation of the fixed point number

.i The internal integer representation of the fixed point number

.sign The sign of the fixed point number

.int The number of bits representing the integer part of the fixed point number

.dec The number of bits representing the decimal part of the fixed point number

As each fixed point value in a matrix can have a different number of bits in its represen-
tation, these suffixes return objects of the same size as the original fixed point object. For
example

octave:1> a = [-3:3];

octave:2> b = fixed(7,2,a);

octave:3> b.sign

ans =

-1 -1 -1 0 1 1 1

octave:4> b.int

ans =

7 7 7 7 7 7 7

octave:5> b.dec

ans =

2 2 2 2 2 2 2

octave:5> c = b.x;

octave:6> whos

*** local user variables:

prot type rows cols name

==== ==== ==== ==== ====

rwd matrix 1 7 a

rwd fixed matrix 1 7 b

Chapter 1: The Basics of the Fixed Point Types 7

rwd matrix 1 7 c

The suffixes ’.int’ and ’.dec’ can also be used to change the internal representation of a
fixed point value. This can result in a loss of precision in the representation of the fixed
point value, which models the same process as occurs in hardware. For example

octave:1> b = fixed(7,2,[3.25, 3.25]);

octave:2> b(1).dec = [0, 2];

b =

3 3.25

However, the value itself should not be changed using the suffix ’.x’. For instance

octave:3> b.x = [3, 3];

error: can not directly change the value of a fixed structure

error: assignment failed, or no method for ‘fixed matrix = matrix’

error: evaluating assignment expression near line 3, column 6

1.7 Function Overloading

An important consideration in the use of the fixed point toolbox is that many of the internal
functions of Octave, such as diag, can not accept fixed point objects as an input. This
package therefore uses the dispatch function of Octave-Forge to overload the internal Octave
functions with equivalent functions that work with fixed point objects, so that the standard
function names can be used. However, at any time the fixed point specific version of the
function can be used by explicitly calling its function name. The correspondence between
the internal function names and the fixed point versions is as follows

Normal Specific Normal Specific Normal Specific

abs fabs atan2 fatan2 ceil fceil

conj fconj cos fcos cosh fcosh

cumprod fcumprod cumsum fcumsum diag fdiag

exp fexp floor ffloor imag fimag

log10 flog10 log flog prod fprod

real freal reshape freshape round fround

sin fsin sinh fsinh sqrt fsqrt

sum fsum sumsq fsumsq tan ftan

tanh ftanh

The version of the function that is chosen is determined by the first argument of the
function. So, considering the atan2 function, if the first argument is a Matrix, then the
normal version of the function is called regardless of whether the other argument of the
function is a fixed point objects or not.

Many other Octave functions work correctly with fixed point objects and so overloaded
versions are not necessary. This includes such functions as size and any.

It is also useful to use the ’.x’ option discussed in the previous section, to extract a
floating point representation of the fixed point object for use with some functions.

Chapter 1: The Basics of the Fixed Point Types 8

1.8 Putting it all Together

Now that the basic functioning of the fixed point type has been discussed, it is time to
consider how to put all of it together. For the list of functions and operators available for
the fixed point type see Chapter 4 [Function Reference], page 52

The main advantage of this fixed point type over an implementation of specific fixed
point code, is the ability to define a function once and use as either fixed or floating point.
Consider the example

function [b, bf] = testfixed(is,ds,n)

a = randn(n,n);

af = fixed(is,ds,a);

b = myfunc(a,a);

bf = myfunc(af,af);

endfunction

function y = myfunc(a,b)

y = a + b;

endfunction

In this case b and bf will be returned from the function testfixed as floating and fixed
point types respectively, while the underlying function myfunc does not explicitly define
that it uses a fixed point type. This is a major advantage, as it is critical to understand the
loss of precision in an algorithm when converting from floating to fixed point types for an
optimal hardware implementation. This mixing of functions that treat both floating and
fixed point types can even apply to Oct-files (see Section 2.5 [Oct-files], page 45).

The main limitation to the above is the use of the concatenation operator, such as [a,b],
that is hard-coded in versions of Octave prior to 2.1.58 and is thus not aware of the fixed-
point type. Therefore, such code should be avoided in earlier versions of Octave and the
function concat supplied with this package used instead.

1.9 Problems of Precision in Calculations

When dimensioning the fixed point variables, care must be taken so that all intermediate
operations don’t cause a loss in the precision. This can occur with any operator or function
that takes a large argument and gives a small result. Minor variations in the initial argument
can result in large changes in the final result.

For instance, consider the log operator, in the example

octave:1> a = fixed(7,2,5.25);

octave:2> b = exp(log(a))

b = 4.25

The logarithm log(a) is 1.65, which is rounded to 1.5. The exponential exp(log(a))
is then 4.48 which is rounded to 4.25.

A particular case in point is the power operator for complex number, which is imple-
mented by the standard C++ class as

xy = exp(y log(x))

Chapter 1: The Basics of the Fixed Point Types 9

Unless a large decimal precision is specified for this operator, the results will be wildly
different than expected. For example

octave:1> fixed(7,2,4*1i) ^ fixed(7,2,1)

ans = 0.000 + 2.250i

octave:2> fixed(7,5,4*1i) ^ fixed(7,5,1)

ans = 0.000000 + 3.812500i

If the user chooses to use certain functions and operators, it is their responsibility to
understand the implementation of the these operators, as used by their compilers to ensure
the desired behavior. Alternatively, the user is recommended to implement certain opera-
tions as lookup tables, rather than use the built-in operator or function. This is how such
general functions are implemented in hardware and so this is not a significant problem.

1.10 Lookup Tables

It is common to implement complex functions in hardware by an equivalent lookup table.
This has the advantage of speed, saving on the complexity of a full implementation of
certain functions, and avoiding rounding errors if the complex function is implemented as
a combination of sub-functions. The disadvantage is that the lookup requires the use of
a read-only memory in hardware. Due to size limitations on this memory it might not be
possible to represent all possible values of a function.

This section discusses the use of lookup tables with the fixed point type. It is assumed
that the function lookup of Octave-forge is installed. The easiest way to explain the use
of a fixed point lookup table is to discuss an example. Consider a fixed point value in the
range -pi:pi, and we wish to represent the sine function in this range. The creation of the
lookup table can then be performed as follows.

octave:1> is = 2; ds = 6;

octave:2> x = [-3.125:0.125:3.125]; % 3.125 ~ pi

octave:3> y = sin(x);

octave:4> table_float = create_lookup_table(x, y);

octave:5> table_fixed = create_lookup_table(fixed(is,ds,x),

> fixed(is,ds,y));

A real implementation of this function in hardware might use to the symmetry of the
sine function to only require the lookup table for [0:pi/2] to be stored. However, for
simulation there is little reason to introduce this complication.

To evaluate the value of the function use the lookup table created by create lookup table,
the function lookup table is then used. This function can either be used to give the closest
evalued value below the desired value, or it can be used to interpolate the table as might
be done in hardware. For example

octave:6> x0 = [-pi:0.01:pi];

octave:7> y0 = sin(x);

octave:8> y1 = lookup_table(table_float, x0, "linear");

octave:9> y2 = lookup_table(table_fixed, fixed(is,ds,x0), "linear");

1.11 Known Problems

Before reporting a bug compare it to this list of known problems

Chapter 1: The Basics of the Fixed Point Types 10

Concatenation
For versions of Octave prior to 2.1.58, the concatenation of fixed point objects
returns a Matrix type. That is [fixed(7,2,[1, 2]), fixed(7,2,3)] returns
a matrix when it should return another fixed point matrix. This problem is due
to the implementation of matrix concatenation in earlier versions of Octave
being hard-coded for the basic types it knows rather than being expandable.

The workaround is to explicitly convert the returned value back to the correct
fixed point object. For instance

octave:1> a = fixed(7,2,[1,2]);

octave:2> b = fixed(7,2,3);

octave:3> c = fixed([a.int, b.int], [a.dec, b.dec],

> [a.x, b.x]);

Alternatively, use the supplied function concat that explicitly performs the
above above, but can also be used for normal matrices.

Since Octave version 2.1.58, [fixed(7,2,[1,2]),fixed(7,2,3)] returns an-
other fixed point object as expected.

Saving fixed point objects
Saving of fixed point variables is only implemented in versions of Octave later
than 2.1.53. If you are using a recent version of Octave then saving a fixed
point variable is as simple as

octave:2> save a.mat a

where a is a fixed point variable. To reload the variable within octave, the fixed
point types must be installed prior to a call to load. That is

octave:1> dummy = fixed(1,1);

octave:2> load a.mat

With versions of octave later than 2.1.53, fixed point variables can be saved
in the octave binary and ascii formats, as well as the HDF5 format. If you
are using an earlier version of octave, you can not directly save a fixed point
variable. You can however save the information it contains and reconstruct the
data afterwards by doing something like

octave:2> x = a.x; is = a.int; ds = a.dec;

octave:3> save a.mat x is ds;

where a is a fixed point object.

Some functions and operators return very poor results
Please read the previous section. Also if the problem manifests when using
complex arguments, try to understand your compilers constructor of com-
plex operators and functions from the base fixed point operators and func-
tions. The relevant file for the gcc 3.x versions of the compiler can be found in
‘/usr/include/g++-v3/bits/std_complex.h’.

Function foo returns fixed point types while bar

does not? If the existing functions, written as m-files, respect the use (or
rather non-use) of the concatentaion operator, then these functions will operate
correctly. However, many functions don’t and thus will return a floating type

Chapter 1: The Basics of the Fixed Point Types 11

for a fixed point input, when run on versions of Octave earlier than 2.1.58. All
functions should be checked by the user for their correct operation before using
them.

Additionally, existing oct-files will not operate correctly with fixed point inputs,
as they are not aware of the fixed point type and will just extract the floating
point value to operate on.

A third class of function are the inbuilt functions like any, size, etc. As the
fixed point type includes the underlying functions for these to work correctly,
they give the correct result even though there is no corresponding fixed point
specific version of these functions.

Why is my code so slow when using fixed point
This is due to several reasons, firstly the normal functions in octave use opti-
mized libraries to accelerate their operation. This is not possible when using
fixed point.

Also there is no fixed point type native to the machines Octave runs on. This
naturally makes the fixed point type slow, due to the fact that the fixed point
operators check for overflows, etc at all steps in the operation and act accord-
ingly. This is particularly true in the case of matrix multiplication where each
multiplication and addition can be subject to overflows. Thus

octave:1> x = randn(100,100);

octave:2> y0 = fixed(7,6,x*x);

octave:3> y1 = fixed(7,6,x)*fixed(7,6,x);

does not give equivalent operations for y0 and y1. With all this additionally
checking, you can not expect your code to run as fast when using the fixed
point type.

When running under cygwin I get a dlopen error.
The build under cygwin is slightly different, in that most of the fixed point
functions are compiled as a shared library that is linked to the main oct-file.
This is to allow other oct-files to use the fixed-point type which is not possi-
ble under cygwin otherwise, since compilation under cygwin requires that all
symbols are resolved at compile time.

If the shared libraries are not installed somewhere that can be found when
running octave, then you will get an error like

octave:1> a = fixed(7,2,1)

error: dlopen: Win32 error 126

error: ‘fixed’ undefined near line 1 column 5

error: evaluating assignment expression near line 1, column 3

There are two files ‘liboctave_fixed.dll’ and ‘liboctave_fixed.dll.a’ that must
be installed. Typically, these should be installed in the same directory that you can
‘liboctave.dll’ and ‘liboctave.dll.a’ respectively. If you use the same --prefix option
to configure both octave and octave-forge then this should happen automatically.

Chapter 2: Using the fixed-point type in C++ and oct-files 12

2 Using the fixed-point type in C++ and oct-files

Octave supplies a matrix template library to create matrix and vector objects from basic
types. All of the properties of these Octave classes will not be described here. However the
base classes and the particularly of the classes created using the Octave matrix templates
will be discussed.

There are two basic fixed point types: FixedPoint and FixedPointComplex represent-
ing the fixed point representation of real and complex numbers respectively. The Oc-
tave matrix templates are used to created the classes FixedMatrix, FixedRowVector and
FixedColumnVector from the base class FixedPoint. Similar the complex fixed point
types FixedComplexMatrix, FixedComplexRowVector and FixedComplexColumnVectors

are constructed from the base class FixedPointComplex

This section discusses the definitions of the base classes, their extension with the Octave
matrix templates, the upper level Octave classes and the use of all of these when writing
oct-files.

2.1 The FixedPoint Base Class

2.1.1 FixedPoint Constructors

FixedPoint::FixedPoint ()

Create a fixed point object with only a sign bit

FixedPoint::FixedPoint (unsigned int is, unsigned int ds)

Create a fixed point object with is bits for the integer part and ds bits for the
decimal part. The fixed point object will be initialized to be zero

FixedPoint::FixedPoint (unsigned int is, unsigned int ds, FixedPoint &x)

Create a fixed point object with is bits for the integer part and ds bits for the
decimal part, loaded with the fixed point value x. If is + ds is greater than
sizeof(int)*8 - 2, the error handler is called.

FixedPoint::FixedPoint (unsigned int is, unsigned int ds, const double x)

Create a fixed point object with is bits for the integer part and ds bits for the
decimal part, loaded with the value x. If is + ds is greater than sizeof(int)*8

- 2, the error handler is called.

FixedPoint::FixedPoint (unsigned int is, unsigned int ds, unsigned int i,

unsigned int d)

Create a fixed point object with is bits for the integer part and ds bits for the
decimal part, loading the integer part with i and the decimal part with d. It
should be noted that i and d are both unsigned and are the strict representation
of the bits of the fixed point value.

FixedPoint::FixedPoint (const int x)

Create a fixed point object with the minimum number of bits for the integer
part is needed to represent x. If is is greater than sizeof(int)*8 - 2, the
error handler is called.

Chapter 2: Using the fixed-point type in C++ and oct-files 13

FixedPoint::FixedPoint (const double x)

Create a fixed point object with the minimum number of bits for the integer part
is needed to represent the integer part of x. If is is greater than sizeof(int)*8

- 2, the error handler is called.

FixedPoint::FixedPoint (const FixedPoint &x)

Create a copy of the fixed point object x

2.1.2 FixedPoint Specific Methods

double FixedPoint::fixedpoint()

Method to create a double from the current fixed point object

double fixedpoint (const FixedPoint &x)

Create a double from the fixed point object x

int FixedPoint::sign ()

Return -1 for negative numbers, 1 for positive and 0 if the current fixed point
object is zero.

int sign (FixedPoint &x)

Return -1 for negative numbers, 1 for positive and 0 if the fixed point object x
is zero.

char FixedPoint::signbit ()

Return the sign bit of the current fixed point number (0 for positive number, 1
for negative number).

char signbit (FixedPoint &x)

Return the sign bit of the fixed point number x (0 for positive number, 1 for
negative number).

int FixedPoint::getintsize ()

Return the number of bit is used to represent the integer part of the current
fixed point object.

int getintsize (FixedPoint &x)

Return the number of bit is used to represent the integer part of the fixed
point object x.

int FixedPoint::getdecsize ()

Return the number of bit ds used to represent the decimal part of the current
fixed point object.

int getdecsize (FixedPoint &x)

Return the number of bit ds used to represent the decimal part of the fixed
point object x.

unsigned int FixedPoint::getnumber ()

Return the integer representation of the fixed point value of the current fixed
point object.

unsigned int getnumber (FixedPoint &x)

Return the integer representation of the fixed point value of the fixed point
object x.

Chapter 2: Using the fixed-point type in C++ and oct-files 14

FixedPoint FixedPoint::chintsize (const int n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is changed to n. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

FixedPoint FixedPoint::chdecsize (const int n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds changed to n. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

FixedPoint FixedPoint::incintsize (const int n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by n. If n is
negative, then is is decreased. If the result of this operation causes is + ds to
be greater than sizeof(int)*8 - 2, the error handler is called.

FixedPoint FixedPoint::incintsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

FixedPoint FixedPoint::incdecsize (const int n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by n. If n
is negative, then ds is decreased. If the result of this operation causes is + ds

to be greater than sizeof(int)*8 - 2, the error handler is called.

FixedPoint FixedPoint::incdecsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

2.1.3 FixedPoint Operators

FixedPoint operator +

Unary + of a fixed point object

FixedPoint operator -

Unary - of a fixed point object

FixedPoint operator !

Unary ! operator of the fixedpoint object, with the the sign bit. This is not
the same operator as - and is not the same operator as the octave ! operator.

FixedPoint operator ++

Unary increment operator (pre and postfix). Uses the smallest representable
value to increment (ie 2−ds)

Chapter 2: Using the fixed-point type in C++ and oct-files 15

FixedPoint operator --

Unary decrement operator (pre and postfix). Uses the smallest representable
value to decrement (ie 2−ds)

FixedPoint operator = (const FixedPoint &x)

Assignment operators. Copies fixed point object x

FixedPoint operator += (const FixedPoint &x)

FixedPoint operator -= (const FixedPoint &x)

FixedPoint operator *= (const FixedPoint &x)

FixedPoint operator /= (const FixedPoint &x)

Assignment operators, working on both the input and output objects. The
output object’s fixed point representation is promoted such that the largest
values of is and ds are taken from the input and output objects. If the result
of this operation causes is + ds to be greater than sizeof(int)*8 - 2, the
error handler is called.

FixedPoint operator <<= (const int s)

FixedPoint operator << (const FixedPoint &x, const int s)

Perform a left-shift of a fixed point object. This is equivalent to a multiplication
by a power of 2. The sign-bit is preserved. This differs from the rshift function
discussed below in the is and ds are unchanged.

FixedPoint operator >>= (const int s)

FixedPoint operator >> (const FixedPoint &x, const int s)

Perform a right-shift of the fixed point object. This is equivalent to a division
by a power of 2. Note that the sign-bit is preserved. This differs from the
rshift function discussed below in the is and ds are unchanged.

FixedPoint operator + (const FixedPoint &x, const FixedPoint &y)

FixedPoint operator - (const FixedPoint &x, const FixedPoint &y)

FixedPoint operator * (const FixedPoint &x, const FixedPoint &y)

FixedPoint operator / (const FixedPoint &x, const FixedPoint &y)

Two argument operators. The output objects fixed point representation is
promoted such that the largest values of is and ds are taken from the two
arguments. If the result of this operation causes is + ds to be greater than
sizeof(int)*8 - 2, the error handler is called.

bool operator == (const FixedPoint &x, const FixedPoint &y)

bool operator != (const FixedPoint &x, const FixedPoint &y)

bool operator < (const FixedPoint &x, const FixedPoint &y)

bool operator <= (const FixedPoint &x, const FixedPoint &y)

bool operator > (const FixedPoint &x, const FixedPoint &y)

bool operator >= (const FixedPoint &x, const FixedPoint &y)

Fixed point comparison operators. The fixed point object x and y can have
different representations (values of is and ds).

std::istream &operator >> (std::istream &s, FixedPoint &x)

Read a fixed point object from s stream and store it into x keeping the fixed
point representation in x. If the value read is not a fixed point object, the error
handler is invoked.

Chapter 2: Using the fixed-point type in C++ and oct-files 16

std::ostream &operator << (std::ostream &s, const FixedPoint &x)

Send into the stream s, a formatted fixed point value x

2.1.4 FixedPoint Functions

FixedPoint rshift (const FixedPoint &x, int s)

Do a right shift of s bits of a fixed precision number (equivalent to a division
by a power of 2). The representation of the fixed point object is adjusted to
suit the new fixed point object (i.e. ds++ and is = is == 0 ? 0 : is-1)

FixedPoint lshift (const FixedPoint &x, int s)

Do a left shift of s bits of a fixed precision number (equivalent to a multiplication
by a power of 2). The representation of the fixed point object is adjusted to
suit the new fixed point object (i.e. is++ and ds = ds == 0 ? 0 : ds-1)

FixedPoint abs (const FixedPoint &x)

Returns the modulus of x

FixedPoint cos (const FixedPoint &x)

Returns the cosine of x

FixedPoint cosh (const FixedPoint &x)

Returns the hyperbolic cosine of x

FixedPoint sin (const FixedPoint &x)

Returns the sine of x

FixedPoint sinh (const FixedPoint &x)

Returns the hyperbolic sine of x

FixedPoint tan (const FixedPoint &x)

Returns the tangent of x

FixedPoint tanh (const FixedPoint &x)

Returns the hyperbolic tangent of x

FixedPoint sqrt (const FixedPoint &x)

Returns the square root of x

FixedPoint pow (const FixedPoint &x, int y)

FixedPoint pow (const FixedPoint &x, double y)

FixedPoint pow (const FixedPoint &x, const FixedPoint &y)

Returns the x raised to the power y

FixedPoint exp (const FixedPoint &x)

Returns the exponential of x

FixedPoint log (const FixedPoint &x)

Returns the logarithm of x

FixedPoint log10 (const FixedPoint &x)

Returns the base 10 logarithm of x

FixedPoint atan2 (const FixedPoint &y, const FixedPoint &x)

Returns the arc tangent of x and y

Chapter 2: Using the fixed-point type in C++ and oct-files 17

FixedPoint floor (const FixedPoint &x)

Returns the rounded value of x downwards to the nearest integer

FixedPoint ceil (const FixedPoint &x)

Returns the rounded value of x upwards to the nearest integer

FixedPoint rint (const FixedPoint &x)

Returns the rounded value of x to the nearest integer

FixedPoint round (const FixedPoint &x)

Returns the rounded value of x to the nearest integer. The difference with rint

is that 0.5 is rounded to 1 and not 0. This conforms to the behavior of the
octave round function.

std::string getbitstring (const FixedPoint &x)

Return a string containing the bits of x

2.2 The FixedPointComplex Base Class

The FixedPointComplex class is derived using the C++ compilers inbuilt complex class and
is instantiated as std::complex<FixedPoint>. Therefore the exact behavior of the complex
fixed point type is determined by the complex class used by the C++ compiler. The user is
advised to understand their C++ compilers implementation of the complex functions that
they use, and particularly the effects that they will have on the precision of fixed point
operations.

2.2.1 FixedPointComplex Constructors

FixedPointComplex::FixedPointComplex ()

Create a complex fixed point object with only a sign bit

FixedPointComplex::FixedPointComplex (unsigned int is, unsigned int ds)

Create a complex fixed point object with is bits for the integer part and ds

bits for the decimal part. The fixed point object will be initialized to zero.

FixedPointComplex::FixedPointComplex (unsigned int is, unsigned int ds,

FixedPoint &x)

Create a complex fixed point object with is bits for the integer part and ds

bits for the decimal part of both real and imaginary parts, loaded with the fixed
point value x in the real part and zero in the imaginary. If is + ds is greater
than sizeof(int)*8 - 2, the error handler is called.

FixedPointComplex::FixedPointComplex (unsigned int is, unsigned int ds,

FixedPoint &r, FixedPoint &i)

Create a complex fixed point object with is bits for the integer part and ds

bits for the decimal part of both real and imaginary parts, loaded with the fixed
point value r in the real part and i the imaginary part. If is + ds is greater
than sizeof(int)*8 - 2, the error handler is called.

FixedPointComplex::FixedPointComplex (unsigned int is, unsigned int ds,

FixedPointComplex &x)

Create a complex fixed point object with is bits for the integer part and ds bits
for the decimal part of both real and imaginary parts, loaded with the complex

Chapter 2: Using the fixed-point type in C++ and oct-files 18

fixed point value x. If is + ds is greater than sizeof(int)*8 - 2, the error
handler is called.

FixedPointComplex::FixedPointComplex (unsigned int is, unsigned int ds, const

double x)

Create a complex fixed point object with is bits for the integer part and ds

bits for the decimal part of both real and imaginary parts, loaded with the fixed
point value x in the real part and zero in the imaginary. If is + ds is greater
than sizeof(int)*8 - 2, the error handler is called.

FixedPointComplex::FixedPointComplex (unsigned int is, unsigned int ds, const

double r, const double i)

Create a complex fixed point object with is bits for the integer part and ds

bits for the decimal part of both real and imaginary parts, loaded with the fixed
point value r in the real part and i in the imaginary part. If is + ds is greater
than sizeof(int)*8 - 2, the error handler is called.

FixedPointComplex::FixedPointComplex (unsigned int is, unsigned int ds, const

Complex c)

Create a complex fixed point object with is bits for the integer part and ds

bits for the decimal part of both real and imaginary parts, loaded with the
fixed point value c in the real and imaginary parts. If is + ds is greater than
sizeof(int)*8 - 2, the error handler is called.

FixedPointComplex::FixedPointComplex (unsigned int is, unsigned int ds, const

Complex a, const Complex b)

Create a complex fixed point object with is bits for the integer part and ds

bits for the decimal part of both real and imaginary parts, loaded with the
fixed point value a in the integer parts of the of the value and b in the decimal
part. It should be noted that a and b are both unsigned and are the strict
representation of the bits of the fixed point value and considered as integers. If
is + ds is greater than sizeof(int)*8 - 2, the error handler is called.

FixedPointComplex::FixedPointComplex (const Complex& is, const Complex& ds)

Create a complex fixed point object with is bits for the integer part and ds

bits for the decimal part of both real and imaginary parts, loaded with zero in
the real and imaginary parts. The real part of is is used for the real part of
the complex fixed point object, while the imaginary part of is is used for the
imaginary part. If either the sum of the real or imaginary parts of is + ds is
greater than sizeof(int)*8 - 2, the error handler is called.

FixedPointComplex::FixedPointComplex (const Complex& is, const Complex& ds,

const Complex& c)

Create a complex fixed point object with is bits for the integer part and ds bits
for the decimal part of both real and imaginary parts, loaded with the complex
fixed point value c in the real and imaginary parts. The real part of is is used
for the real part of the complex fixed point object, while the imaginary part of
is is used for the imaginary part. If either the sum of the real or imaginary
parts of is + ds is greater than sizeof(int)*8 - 2, the error handler is called.

Chapter 2: Using the fixed-point type in C++ and oct-files 19

FixedPointComplex::FixedPointComplex (const Complex& is, const Complex& ds,

const FixedPointComplex& c)

Create a complex fixed point object with is bits for the integer part and ds bits
for the decimal part of both real and imaginary parts, loaded with the complex
fixed point value c in the real and imaginary parts. The real part of is is used
for the real part of the complex fixed point object, while the imaginary part of
is is used for the imaginary part. If either the sum of the real or imaginary
parts of is + ds is greater than sizeof(int)*8 - 2, the error handler is called.

FixedPointComplex::FixedPointComplex (const Complex& is, const Complex& ds,

const Complex& a, const Complex& b)

Create a complex fixed point object with is bits for the integer part and ds

bits for the decimal part of both real and imaginary parts, loaded with the fixed
point value a in the integer parts of the of the value and b in the decimal part. It
should be noted that a and b are both unsigned and are the strict representation
of the bits of the fixed point value and considered as integers. If either the sum
of the real or imaginary parts of is + ds is greater than sizeof(int)*8 - 2,
the error handler is called.

FixedPointComplex::FixedPointComplex (const std::complex<FixedPoint> &c)

Create a complex fixed point object with the minimum number of bits for the
integer part is needed to represent the real and imaginary integer parts of x.
If is is greater than sizeof(int)*8 - 2, the error handler is called. The real
and imaginary parts are treated separately.

FixedPointComplex::FixedPointComplex (const FixedPointComplex &x)

Create a copy of the complex fixed point object x

FixedPointComplex::FixedPointComplex (const FixedPoint &x)

Create a copy of the fixed point object x, into a complex fixed point object
leaving the imaginary part at zero.

FixedPointComplex::FixedPointComplex (const FixedPoint &r, const FixedPoint

&i)

Create a copy of the fixed point objects r and i, into a the real and imaginary
parts of a complex fixed point object respectively

FixedPointComplex::FixedPointComplex (const int x)

Create a fixed point object with the minimum number of bits for the integer
part is needed to represent x. If is is greater than sizeof(int)*8 - 2, the
error handler is called.

FixedPointComplex::FixedPointComplex (const double x)

Create a fixed point object with the minimum number of bits for the integer part
is needed to represent the integer part of x. If is is greater than sizeof(int)*8

- 2, the error handler is called.

FixedPointComplex (const Complex& is, const Complex& ds, const double& d)

Create a complex fixed point object with is bits for the integer part and ds bits
for the decimal part of both real and imaginary parts, loaded with the double
value d in the real and zero in the imaginary parts. The real part of is is used

Chapter 2: Using the fixed-point type in C++ and oct-files 20

for the real part of the complex fixed point object, while the imaginary part of
is is used for the imaginary part. If either the sum of the real or imaginary
parts of is + ds is greater than sizeof(int)*8 - 2, the error handler is called.

2.2.2 FixedPointComplex Specific Methods

Complex FixedPointComplex::fixedpoint()

Method to create a Complex from the current fixed point object

Complex fixedpoint (const FixedPointComplex &x)

Create a Complex from the fixed point object x

Complex FixedPointComplex::sign ()

Return -1 for negative numbers, 1 for positive and 0 if the current fixed point
object is zero. Real and imaginary parts treated separately and returned in the
real and imaginary parts of the return object.

Complex sign (FixedPointComplex &x)

Return -1 for negative numbers, 1 for positive and 0 if the fixed point object
x is zero. Real and imaginary parts treated separately and returned in the real
and imaginary parts of the return object.

Complex FixedPointComplex::getintsize ()

Return the number of bit is used to represent the integer part of the current
fixed point object. Real and imaginary parts treated separately and returned
in the real and imaginary parts of the return object.

Complex getintsize (FixedPointComplex &x)

Return the number of bit is used to represent the integer part of the fixed point
object x. Real and imaginary parts treated separately and returned in the real
and imaginary parts of the return object.

Complex FixedPointComplex::getdecsize ()

Return the number of bit ds used to represent the decimal part of the current
fixed point object. Real and imaginary parts treated separately and returned
in the real and imaginary parts of the return object.

Complex getdecsize (FixedPointComplex &x)

Return the number of bit ds used to represent the decimal part of the fixed
point object x. Real and imaginary parts treated separately and returned in
the real and imaginary parts of the return object.

Complex FixedPointComplex::getnumber ()

Return the integer representation of the fixed point value of the current fixed
point object. Real and imaginary parts treated separately and returned in the
real and imaginary parts of the return object.

Complex getnumber (FixedPointComplex &x)

Return the integer representation of the fixed point value of the fixed point
object x. Real and imaginary parts treated separately and returned in the real
and imaginary parts of the return object.

Chapter 2: Using the fixed-point type in C++ and oct-files 21

FixedPointComplex FixedPointComplex::chintsize (const Complex n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is changed to n. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called. Real and imaginary parts treated separately and
returned in the real and imaginary parts of the return object.

FixedPointComplex FixedPointComplex::chdecsize (const Complex n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds changed to n. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called. Real and imaginary parts treated separately and
returned in the real and imaginary parts of the return object.

FixedPointComplex FixedPointComplex::incintsize (const Complex n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by n. If n
is negative, then is is decreased. If the result of this operation causes is + ds

to be greater than sizeof(int)*8 - 2, the error handler is called. Real and
imaginary parts treated separately and returned in the real and imaginary parts
of the return object.

FixedPointComplex FixedPointComplex::incintsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called. Real and imaginary parts treated separately and
returned in the real and imaginary parts of the return object.

FixedPointComplex FixedPointComplex::incdecsize (const Complex n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by n. If
n is negative, then ds is decreased. If the result of this operation causes is

+ ds to be greater than sizeof(int)*8 - 2, the error handler is called. Real
and imaginary parts treated separately and returned in the real and imaginary
parts of the return object.

FixedPointComplex FixedPointComplex::incdecsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called. Real and imaginary parts treated separately and
returned in the real and imaginary parts of the return object.

2.2.3 FixedPointComplex Operators

FixedPointComplex operator +

Unary + of a complex fixed point object

FixedPointComplex operator -

Unary - of a complex fixed point object

Chapter 2: Using the fixed-point type in C++ and oct-files 22

FixedPointComplex operator = (const FixedPointComplex &x)

Assignment operators. Copies complex fixed point object x

FixedPointComplex operator += (const FixedPointComplex &x)

FixedPointComplex operator -= (const FixedPointComplex &x)

FixedPointComplex operator *= (const FixedPointComplex &x)

FixedPointComplex operator /= (const FixedPointComplex &x)

Assignment operators, working on both the input and output objects. The
output object’s fixed point representation is promoted such that the largest
values of is and ds are taken from the input and output objects. If the result
of this operation causes is + ds to be greater than sizeof(int)*8 - 2, the
error handler is called.

FixedPointComplex operator + (const FixedPointComplex &x, const

FixedPointComplex &y)

FixedPointComplex operator - (const FixedPointComplex &x, const

FixedPointComplex &y)

FixedPointComplex operator * (const FixedPointComplex &x, const

FixedPointComplex &y)

FixedPointComplex operator / (const FixedPointComplex &x, const

FixedPointComplex &y)

Two argument operators. The output objects complex fixed point representa-
tion is promoted such that the largest values of is and ds are taken from the
two arguments. If the result of this operation causes is + ds to be greater than
sizeof(int)*8 - 2, the error handler is called.

bool operator == (const FixedPointComplex &x, const FixedPointComplex &y)

bool operator != (const FixedPointComplex &x, const FixedPointComplex &y)

Complex fixed point comparison operators. The complex fixed point object x

and y can have different representations (values of is and ds).

std::istream &operator >> (std::istream &s, FixedPointComplex &x)

Read a fixed point object from s stream and store it into x keeping the fixed
point representation in x. If the value read is not a fixed point object, the error
handler is invoked.

std::ostream &operator << (std::ostream &s, const FixedPointComplex &x)

Send into the stream s, a formatted fixed point value x

2.2.4 FixedPointComplex Functions

FixedPoint abs (const FixedPointComplex &x)

Returns the modulus of x

FixedPoint norm (const FixedPointComplex &x)

Returns the squared magnitude of x

FixedPoint arg (const FixedPointComplex &x)

Returns the arc-tangent of x

FixedPointComplex std::polar (const FixedPoint &r, const FixedPoint &p)

Convert from polar fixed point to a complex fixed point object

Chapter 2: Using the fixed-point type in C++ and oct-files 23

FixedPoint real (const FixedPointComplex &x)

Returns the real part of x

FixedPoint imag (const FixedPointComplex &x)

Returns the imaginary part of x

FixedPointComplex conj (const FixedPointComplex &x)

Returns the conjugate of x

FixedPointComplex cos (const FixedPointComplex &x)

Returns the transcendental cosine of x

FixedPointComplex cosh (const FixedPointComplex &x)

Returns the transcendental hyperbolic cosine of x

FixedPointComplex sin (const FixedPointComplex &x)

Returns the transcendental sine of x

FixedPointComplex sinh (const FixedPointComplex &x)

Returns the transcendental hyperbolic sine of x

FixedPointComplex tan (const FixedPointComplex &x)

Returns the transcendental tangent of x

FixedPointComplex tanh (const FixedPointComplex &x)

Returns the transcendental hyperbolic tangent of x

FixedPointComplex sqrt (const FixedPointComplex &x)

Returns the square root of x

FixedPointComplex pow (const FixedPointComplex &x, int y)

FixedPointComplex pow (const FixedPointComplex &x, const FixedPoint &y)

FixedPointComplex pow (const FixedPointComplex &x, const FixedPointComplex

&y)

FixedPointComplex pow (const FixedPoint &x, const FixedPointComplex &y)

Returns the x raised to the power y. Be careful of precision errors associated
with the implementation of this function as a complex type

FixedPointComplex exp (const FixedPointComplex &x)

Returns the exponential of x. Be careful of precision errors associated with the
implementation of this function as a complex type

FixedPointComplex log (const FixedPointComplex &x)

Returns the transcendental logarithm of x. Be careful of precision errors asso-
ciated with the implementation of this function as a complex type

FixedPointComplex log10 (const FixedPointComplex &x)

Returns the transcendental base 10 logarithm of x. Be careful of precision errors
associated with the implementation of this function as a complex type

FixedPointComplex floor (const FixedPointComplex &x)

Returns the rounded value of x downwards to the nearest integer, treating the
real and imaginary parts separately

Chapter 2: Using the fixed-point type in C++ and oct-files 24

FixedPointComplex ceil (const FixedPointComplex &x)

Returns the rounded value of x upwards to the nearest integer, treating the real
and imaginary parts separately

FixedPointComplex rint (const FixedPointComplex &x)

Returns the rounded value of x to the nearest integer, treating the real and
imaginary parts separately

FixedPointComplex round (const FixedPointComplex &x)

Returns the rounded value of x to the nearest integer. The difference with rint

is that 0.5 is rounded to 1 and not 0. This conforms to the behavior of the
octave round function. Treats the real and imaginary parts separately

2.3 The Derived Classes using the Octave Template Classes

It is not the purpose of this section to discuss the use of the Octave template classes, but
rather only the additions to the fixed point classes that are based on these. For instance
the basic constructors and operations that are available in the normal floating point Octave
classes are available within the fixed point classes.

The notable exceptions are operations involving matrix decompositions, including in-
version, left division, etc. The reason for this is that the precision of these operators and
functions will be highly implementation dependent. As additional these operators and
functions are used rarely with a fixed point type, there is no point in implementing these
operators and function within the fixed point classes.

In addition the the functions and operators previously described for the FixedPoint and
the FixedPointComplex types are all available, in the same from as previously. So these
functions are not documented below. Only the constructors and methods that vary from
the previously described versions are described.

To fully understand these classes, the user is advised to examine the header files
‘fixedMatrix.h’, ‘fixedRowVector.h’ and ‘fixedColVector.h’ for the real fixed point
objects and ‘fixedCMatrix.h’, ‘fixedCRowVector.h’ and ‘fixedCColVector.h’ for the
complex fixed point objects. In addition the files ‘MArray.h’ and ‘MArray2.h’ from Octave
should also be examined.

2.3.1 FixedMatrix class

FixedMatrix::FixedMatrix (const MArray2<int> &is, const MArray2<int> &ds)

FixedMatrix::FixedMatrix (const Matrix &is, const Matrix &ds)

Create a fixed point matrix with the number of bits in the integer part of each
element represented by is and the number in the decimal part by ds. The fixed
point elements themselves will be initialized to zero.

Chapter 2: Using the fixed-point type in C++ and oct-files 25

FixedMatrix::FixedMatrix (unsigned int is, unsigned int ds, const FixedMatrix&

a)

FixedMatrix::FixedMatrix (const MArray2<int> &is, const MArray2<int> &ds,

const FixedMatrix& a)

FixedMatrix::FixedMatrix (const Matrix &is, const Matrix &ds, const

FixedMatrix& a)

Create a fixed point matrix with the number of bits in the integer part of each
element represented by is and the number in the decimal part by ds. The fixed
point elements themselves will be initialized to the fixed point matrix a

FixedMatrix::FixedMatrix (unsigned int is, unsigned int ds, const Matrix& a)

FixedMatrix::FixedMatrix (const MArray2<int> &is, const MArray2<int> &ds,

const Matrix& a)

FixedMatrix::FixedMatrix (const Matrix &is, const Matrix &ds, const Matrix& a)

Create a fixed point matrix with the number of bits in the integer part of each
element represented by is and the number in the decimal part by ds. The fixed
point elements themselves will be initialized to the matrix a

FixedMatrix::FixedMatrix (unsigned int is, unsigned int ds, const Matrix& a,

const Matrix& b)

FixedMatrix::FixedMatrix (const MArray2<int> &is, const MArray2<int> &ds,

const Matrix& a, const Matrix& b)

FixedMatrix::FixedMatrix (const Matrix &is, const Matrix &ds, const Matrix& a,

const Matrix& b)

Create a fixed point matrix with the number of bits in the integer part of each
element represented by is and the number in the decimal part by ds. The fixed
point elements themselves will have the integer parts loaded by the matrix a

and the decimal part by the matrix b. It should be noted that a and b are both
considered as unsigned integers and are the strict representation of the bits of
the fixed point value.

Matrix FixedMatrix::fixedpoint ()

Method to create a Matrix from a fixed point matrix x

Matrix fixedpoint (const FixedMatrix &x)

Create a Matrix from a fixed point matrix x

Matrix FixedMatrix::sign ()

Return -1 for negative numbers, 1 for positive and 0 if the fixed point element
is zero, for every element of the current fixed point object.

Matrix sign (const FixedMatrix &x)

Return -1 for negative numbers, 1 for positive and 0 if zero, for every element
of the fixed point object x.

Matrix FixedMatrix::signbit ()

Return the sign bit for every element of the current fixed point matrix (0 for
positive number, 1 for negative number).

Matrix signbit (const FixedMatrix &x)

Return the sign bit for every element of the fixed point matrix x (0 for positive
number, 1 for negative number).

Chapter 2: Using the fixed-point type in C++ and oct-files 26

Matrix FixedMatrix::getintsize ()

Return the number of bit is used to represent the integer part of each element
of the current fixed point object.

Matrix getintsize (const FixedMatrix &x)

Return the number of bit is used to represent the integer part of each element
of the fixed point object x.

Matrix FixedMatrix::getdecsize ()

Return the number of bit ds used to represent the decimal part of each element
of the current fixed point object.

Matrix getdecsize (const FixedMatrix &x)

Return the number of bit ds used to represent the decimal part of each element
of the fixed point object x.

Matrix FixedMatrix::getnumber ()

Return the integer representation of the fixed point value of the each eleement
of the current fixed point object.

Matrix getnumber (const FixedMatrix &x)

Return the integer representation of the fixed point value of the each eleement
of the fixed point object x.

FixedMatrix FixedMatrix::chintsize (const Matrix &n)

FixedMatrix FixedMatrix::chintsize (const double n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the integer part is of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedMatrix FixedMatrix::chdecsize (const double n)

FixedMatrix FixedMatrix::chdecsize (const Matrix &n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the decimal part ds of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedMatrix FixedMatrix::incintsize (const double n)

FixedMatrix FixedMatrix::incintsize (const Matrix &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by n. If n is
negative, then is is decreased. If the result of this operation causes is + ds to
be greater than sizeof(int)*8 - 2, the error handler is called.

FixedMatrix FixedMatrix::incintsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

Chapter 2: Using the fixed-point type in C++ and oct-files 27

FixedMatrix FixedMatrix::incdecsize (const double n)

FixedMatrix FixedMatrix::incdecsize (const Matrix &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by n. If n
is negative, then ds is decreased. If the result of this operation causes is + ds

to be greater than sizeof(int)*8 - 2, the error handler is called.

FixedMatrix FixedMatrix::incdecsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

2.3.2 FixedRowVector class

FixedRowVector::FixedRowVector (const MArray<int> &is, const MArray<int> &ds)

FixedRowVector::FixedRowVector (const RowVector &is, const RowVector &ds)

Create a fixed point row vector with the number of bits in the integer part of
each element represented by is and the number in the decimal part by ds. The
fixed point elements themselves will be initialized to zero.

FixedRowVector::FixedRowVector (unsigned int is, unsigned int ds, const

FixedRowVector& a)

FixedRowVector::FixedRowVector (const MArray<int> &is, const MArray<int> &ds,

const FixedRowVector& a)

FixedRowVector::FixedRowVector (const RowVector &is, const RowVector &ds,

const FixedRowVector& a)

Create a fixed point row vector with the number of bits in the integer part of
each element represented by is and the number in the decimal part by ds. The
fixed point elements themselves will be initialized to the fixed point row rector
a

FixedRowVector::FixedRowVector (unsigned int is, unsigned int ds, const

RowVector& a)

FixedRowVector::FixedRowVector (const MArray<int> &is, const MArray<int> &ds,

const RowVector& a)

FixedRowVector::FixedRowVector (const RowVector &is, const RowVector &ds,

const RowVector& a)

Create a fixed point row vector with the number of bits in the integer part of
each element represented by is and the number in the decimal part by ds. The
fixed point elements themselves will be initialized to the row vector a

FixedRowVector::FixedRowVector (unsigned int is, unsigned int ds, const

RowVector& a, const RowVector& b)

FixedRowVector::FixedRowVector (const MArray<int> &is, const MArray<int> &ds,

const RowVector& a, const RowVector& b)

FixedRowVector::FixedRowVector (const RowVector &is, const RowVector &ds,

const RowVector& a, const RowVector& b)

Create a fixed point row vector with the number of bits in the integer part of
each element represented by is and the number in the decimal part by ds. The

Chapter 2: Using the fixed-point type in C++ and oct-files 28

fixed point elements themselves will have the integer parts loaded by the row
vector a and the decimal part by the row vector b. It should be noted that a

and b are both considered as unsigned integers and are the strict representation
of the bits of the fixed point value.

RowVector FixedRowVector::fixedpoint ()

Method to create a RowVector from a fixed point row vector x

RowVector fixedpoint (const FixedRowVector &x)

Create a RowVector from a fixed point row vector x

RowVector FixedRowVector::sign ()

Return -1 for negative numbers, 1 for positive and 0 if the fixed point element
is zero, for every element of the current fixed point object.

RowVector sign (const FixedRowVector &x)

Return -1 for negative numbers, 1 for positive and 0 if zero, for every element
of the fixed point object x.

RowVector FixedRowVector::signbit ()

Return the sign bit for every element of the current fixed point row vector (0
for positive number, 1 for negative number).

RowVector signbit (const FixedRowVector &x)

Return the sign bit for every element of the fixed point row vector x (0 for
positive number, 1 for negative number).

RowVector FixedRowVector::getintsize ()

Return the number of bit is used to represent the integer part of each element
of the current fixed point object.

RowVector getintsize (const FixedRowVector &x)

Return the number of bit is used to represent the integer part of each element
of the fixed point object x.

RowVector FixedRowVector::getdecsize ()

Return the number of bit ds used to represent the decimal part of each element
of the current fixed point object.

RowVector getdecsize (const FixedRowVector &x)

Return the number of bit ds used to represent the decimal part of each element
of the fixed point object x.

RowVector FixedRowVector::getnumber ()

Return the integer representation of the fixed point value of the each eleement
of the current fixed point object.

RowVector getnumber (const FixedRowVector &x)

Return the integer representation of the fixed point value of the each eleement
of the fixed point object x.

FixedRowVector FixedRowVector::chintsize (const RowVector n)

FixedRowVector FixedRowVector::chintsize (const double n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the integer part is of every element changed

Chapter 2: Using the fixed-point type in C++ and oct-files 29

to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedRowVector FixedRowVector::chdecsize (const double n)

FixedRowVector FixedRowVector::chdecsize (const RowVector n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the decimal part ds of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedRowVector FixedRowVector::incintsize (const double n)

FixedRowVector FixedRowVector::incintsize (const RowVector &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by n. If n is
negative, then is is decreased. If the result of this operation causes is + ds to
be greater than sizeof(int)*8 - 2, the error handler is called.

FixedRowVector FixedRowVector::incintsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

FixedRowVector FixedRowVector::incdecsize (const double n)

FixedRowVector FixedRowVector::incdecsize (const RowVector &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by n. If n
is negative, then ds is decreased. If the result of this operation causes is + ds

to be greater than sizeof(int)*8 - 2, the error handler is called.

FixedRowVector FixedRowVector::incdecsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

2.3.3 FixedColumnVector class

FixedColumnVector::FixedColumnVector (const MArray<int> &is, const

MArray<int> &ds)

FixedColumnVector::FixedColumnVector (const ColumnVector &is, const

ColumnVector &ds)

Create a fixed point row vector with the number of bits in the integer part of
each element represented by is and the number in the decimal part by ds. The
fixed point elements themselves will be initialized to zero.

Chapter 2: Using the fixed-point type in C++ and oct-files 30

FixedColumnVector::FixedColumnVector (unsigned int is, unsigned int ds, const

FixedColumnVector& a)

FixedColumnVector::FixedColumnVector (const MArray<int> &is, const

MArray<int> &ds, const FixedColumnVector& a)

FixedColumnVector::FixedColumnVector (const ColumnVector &is, const

ColumnVector &ds, const FixedColumnVector& a)

Create a fixed point row vector with the number of bits in the integer part of
each element represented by is and the number in the decimal part by ds. The
fixed point elements themselves will be initialized to the fixed point column
vector a

FixedColumnVector::FixedColumnVector (unsigned int is, unsigned int ds, const

ColumnVector& a)

FixedColumnVector::FixedColumnVector (const MArray<int> &is, const

MArray<int> &ds, const ColumnVector& a)

FixedColumnVector::FixedColumnVector (const ColumnVector &is, const

ColumnVector &ds, const ColumnVector& a)

Create a fixed point row vector with the number of bits in the integer part of
each element represented by is and the number in the decimal part by ds. The
fixed point elements themselves will be initialized to the column vector a

FixedColumnVector::FixedColumnVector (unsigned int is, unsigned int ds, const

ColumnVector& a, const ColumnVector& b)

FixedColumnVector::FixedColumnVector (const MArray<int> &is, const

MArray<int> &ds, const ColumnVector& a, const ColumnVector& b)

FixedColumnVector::FixedColumnVector (const ColumnVector &is, const

ColumnVector &ds, const ColumnVector& a, const ColumnVector& b)

Create a fixed point row vector with the number of bits in the integer part
of each element represented by is and the number in the decimal part by ds.
The fixed point elements themselves will have the integer parts loaded by the
column vector a and the decimal part by the column vector b. It should be
noted that a and b are both considered as unsigned integers and are the strict
representation of the bits of the fixed point value.

ColumnVector FixedColumnVector::fixedpoint ()

Method to create a ColumnVector from a fixed point column vector x

ColumnVector fixedpoint (const FixedColumnVector &x)

Create a ColumnVector from a fixed point column vector x

ColumnVector FixedColumnVector::sign ()

Return -1 for negative numbers, 1 for positive and 0 if the fixed point element
is zero, for every element of the current fixed point object.

ColumnVector sign (const FixedColumnVector &x)

Return -1 for negative numbers, 1 for positive and 0 if zero, for every element
of the fixed point object x.

ColumnVector FixedColumnVector::signbit ()

Return the sign bit for every element of the current fixed point column vector
(0 for positive number, 1 for negative number).

Chapter 2: Using the fixed-point type in C++ and oct-files 31

ColumnVector signbit (const FixedColumnVector &x)

Return the sign bit for every element of the fixed point column vector x (0 for
positive number, 1 for negative number).

ColumnVector FixedColumnVector::getintsize ()

Return the number of bit is used to represent the integer part of each element
of the current fixed point object.

ColumnVector getintsize (const FixedColumnVector &x)

Return the number of bit is used to represent the integer part of each element
of the fixed point object x.

ColumnVector FixedColumnVector::getdecsize ()

Return the number of bit ds used to represent the decimal part of each element
of the current fixed point object.

ColumnVector getdecsize (const FixedColumnVector &x)

Return the number of bit ds used to represent the decimal part of each element
of the fixed point object x.

ColumnVector FixedColumnVector::getnumber ()

Return the integer representation of the fixed point value of the each eleement
of the current fixed point object.

ColumnVector getnumber (const FixedColumnVector &x)

Return the integer representation of the fixed point value of the each eleement
of the fixed point object x.

FixedColumnVector FixedColumnVector::chintsize (const ColumnVector n)

FixedColumnVector FixedColumnVector::chintsize (const double n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the integer part is of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedColumnVector FixedColumnVector::chdecsize (const double n)

FixedColumnVector FixedColumnVector::chdecsize (const ColumnVector n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the decimal part ds of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedColumnVector FixedColumnVector::incintsize (const double n)

FixedColumnVector FixedColumnVector::incintsize (const ColumnVector &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by n. If n is
negative, then is is decreased. If the result of this operation causes is + ds to
be greater than sizeof(int)*8 - 2, the error handler is called.

FixedColumnVector FixedColumnVector::incintsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by 1. If the

Chapter 2: Using the fixed-point type in C++ and oct-files 32

result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

FixedColumnVector FixedColumnVector::incdecsize (const double n)

FixedColumnVector FixedColumnVector::incdecsize (const ColumnVector &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by n. If n
is negative, then ds is decreased. If the result of this operation causes is + ds

to be greater than sizeof(int)*8 - 2, the error handler is called.

FixedColumnVector FixedColumnVector::incdecsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

2.3.4 FixedComplexMatrix class

FixedComplexMatrix::FixedComplexMatrix (const MArray2<int> &is, const

MArray2<int> &ds)

FixedComplexMatrix::FixedComplexMatrix (const Matrix &is, const Matrix &ds)

Create a complex fixed point matrix with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to zero.

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds)

Create a complex fixed point matrix with the number of bits in the integer part
of each element represented by is and the number in the decimal part by ds.
The fixed point elements themselves will be initialized to zero.

FixedComplexMatrix::FixedComplexMatrix (unsigned int is, unsigned int ds,

const FixedComplexMatrix& a)

FixedComplexMatrix::FixedComplexMatrix (Complex is, Complex ds, const

FixedComplexMatrix& a)

FixedComplexMatrix::FixedComplexMatrix (const MArray2<int> &is, const

MArray2<int> &ds, const FixedComplexMatrix& a)

FixedComplexMatrix::FixedComplexMatrix (const Matrix &is, const Matrix &ds,

const FixedComplexMatrix& a)

Create a complex fixed point matrix with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to the complex fixed point matrix a

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds, const FixedComplexMatrix &x)

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds, const FixedMatrix &r, const FixedMatrix &i)

Create a complex fixed point matrix with the number of bits in the integer
part of each element represented by is and the number in the decimal part by

Chapter 2: Using the fixed-point type in C++ and oct-files 33

ds. The fixed point elements themselves will be initialized to the complex fixed
point matrix a, or the real part by r and the imaginary by i.

FixedComplexMatrix::FixedComplexMatrix (unsigned int is, unsigned int ds,

const FixedMatrix& a)

FixedComplexMatrix::FixedComplexMatrix (Complex is, Complex ds, const

FixedMatrix& a)

FixedComplexMatrix::FixedComplexMatrix (const MArray2<int> &is, const

MArray2<int> &ds, const FixedMatrix& a)

FixedComplexMatrix::FixedComplexMatrix (const Matrix &is, const Matrix &ds,

const FixedMatrix& a)

Create a complex fixed point matrix with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to the fixed point matrix a

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds, const FixedMatrix &x)

Create a complex fixed point matrix with the number of bits in the integer part
of each element represented by is and the number in the decimal part by ds.
The fixed point elements themselves will be initialized to the fixed point matrix
a.

FixedComplexMatrix::FixedComplexMatrix (unsigned int is, unsigned int ds,

const ComplexMatrix& a)

FixedComplexMatrix::FixedComplexMatrix (Complex is, Complex ds, const

ComplexMatrix& a)

FixedComplexMatrix::FixedComplexMatrix (const MArray2<int> &is, const

MArray2<int> &ds, const ComplexMatrix& a)

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds, const ComplexMatrix& a)

Create a complex fixed point matrix with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to the complex matrix a

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds, const ComplexMatrix &x)

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds, const Matrix &r, const Matrix &i)

Create a complex fixed point matrix with the number of bits in the integer part
of each element represented by is and the number in the decimal part by ds.
The fixed point elements themselves will be initialized to the complex matrix
a, or the real part by r and the imaginary by i.

Chapter 2: Using the fixed-point type in C++ and oct-files 34

FixedComplexMatrix::FixedComplexMatrix (unsigned int is, unsigned int ds,

const Matrix& a)

FixedComplexMatrix::FixedComplexMatrix (Complex is, Complex ds, const Matrix&

a)

FixedComplexMatrix::FixedComplexMatrix (const MArray2<int> &is, const

MArray2<int> &ds, const Matrix& a)

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds, const Matrix& a)

Create a complex fixed point matrix with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to the matrix a

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds, const Matrix &x)

Create a complex fixed point matrix with the number of bits in the integer part
of each element represented by is and the number in the decimal part by ds.
The fixed point elements themselves will be initialized to the matrix a.

FixedComplexMatrix::FixedComplexMatrix (unsigned int is, unsigned int ds,

const ComplexMatrix& a, const ComplexMatrix& b)

FixedComplexMatrix::FixedComplexMatrix (Complex is, Complex ds, const

ComplexMatrix& a, const ComplexMatrix& b)

FixedComplexMatrix::FixedComplexMatrix (const MArray2<int> &is, const

MArray2<int> &ds, const ComplexMatrix& a, const ComplexMatrix& b)

FixedComplexMatrix::FixedComplexMatrix (const Matrix &is, const Matrix &ds,

const ComplexMatrix& a, const ComplexMatrix& b)

FixedComplexMatrix::FixedComplexMatrix (const ComplexMatrix &is, const

ComplexMatrix &ds, const ComplexMatrix& a, const ComplexMatrix& b)

Create a fixed point matrix with the number of bits in the integer part of each
element represented by is and the number in the decimal part by ds.The fixed
point elements themselves will have the integer parts loaded by the complex
matrix a and the decimal part by the complex matrix b. It should be noted
that a and b are both considered as unsigned complex integers and are the strict
representation of the bits of the fixed point value.

ComplexMatrix FixedComplexMatrix::fixedpoint ()

Method to create a Matrix from a fixed point matrix x

ComplexMatrix fixedpoint (const FixedComplexMatrix &x)

Create a Matrix from a fixed point matrix x

ComplexMatrix FixedComplexMatrix::sign ()

Return -1 for negative numbers, 1 for positive and 0 if the fixed point element
is zero, for every element of the current fixed point object.

ComplexMatrix sign (const FixedComplexMatrix &x)

Return -1 for negative numbers, 1 for positive and 0 if zero, for every element
of the fixed point object x.

Chapter 2: Using the fixed-point type in C++ and oct-files 35

ComplexMatrix FixedComplexMatrix::getintsize ()

Return the number of bit is used to represent the integer part of each element
of the current fixed point object.

ComplexMatrix getintsize (const FixedComplexMatrix &x)

Return the number of bit is used to represent the integer part of each element
of the fixed point object x.

ComplexMatrix FixedComplexMatrix::getdecsize ()

Return the number of bit ds used to represent the decimal part of each element
of the current fixed point object.

ComplexMatrix getdecsize (const FixedComplexMatrix &x)

Return the number of bit ds used to represent the decimal part of each element
of the fixed point object x.

ComplexMatrix FixedComplexMatrix::getnumber ()

Return the integer representation of the fixed point value of the each eleement
of the current fixed point object.

ComplexMatrix getnumber (const FixedComplexMatrix &x)

Return the integer representation of the fixed point value of the each eleement
of the fixed point object x.

FixedComplexMatrix FixedComplexMatrix::chintsize (const ComplexMatrix &n)

FixedComplexMatrix FixedComplexMatrix::chintsize (const double n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the integer part is of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedComplexMatrix FixedComplexMatrix::chdecsize (const double n)

FixedComplexMatrix FixedComplexMatrix::chdecsize (const ComplexMatrix &n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the decimal part ds of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedComplexMatrix FixedComplexMatrix::incintsize (const double n)

FixedComplexMatrix FixedComplexMatrix::incintsize (const ComplexMatrix &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by n. If n is
negative, then is is decreased. If the result of this operation causes is + ds to
be greater than sizeof(int)*8 - 2, the error handler is called.

FixedComplexMatrix FixedComplexMatrix::incintsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

Chapter 2: Using the fixed-point type in C++ and oct-files 36

FixedComplexMatrix FixedComplexMatrix::incdecsize (const double n)

FixedComplexMatrix FixedComplexMatrix::incdecsize (const ComplexMatrix &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by n. If n
is negative, then ds is decreased. If the result of this operation causes is + ds

to be greater than sizeof(int)*8 - 2, the error handler is called.

FixedComplexMatrix FixedComplex::incdecsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

2.3.5 FixedComplexRowVector class

FixedComplexRowVector::FixedComplexRowVector (const MArray<int> &is, const

MArray<int> &ds)

FixedComplexRowVector::FixedComplexRowVector (const RowVector &is, const

RowVector &ds)

Create a complex fixed point row vector with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to zero.

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds)

Create a complex fixed point row vector with the number of bits in the integer
part of each element represented by is and the number in the decimal part by
ds. The fixed point elements themselves will be initialized to zero.

FixedComplexRowVector::FixedComplexRowVector (unsigned int is, unsigned int

ds, const FixedComplexRowVector& a)

FixedComplexRowVector::FixedComplexRowVector (Complex is, Complex ds, const

FixedComplexRowVector& a)

FixedComplexRowVector::FixedComplexRowVector (const MArray<int> &is, const

MArray<int> &ds, const FixedComplexRowVector& a)

FixedComplexRowVector::FixedComplexRowVector (const RowVector &is, const

RowVector &ds, const FixedComplexRowVector& a)

Create a complex fixed point row vector with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to the complex fixed point row vector a

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds, const FixedComplexRowVector &x)

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds, const FixedRowVector &r, const FixedRowVector &i)

Create a complex fixed point row vector with the number of bits in the integer
part of each element represented by is and the number in the decimal part by

Chapter 2: Using the fixed-point type in C++ and oct-files 37

ds. The fixed point elements themselves will be initialized to the complex fixed
point row vector a, or the real part by r and the imaginary by i.

FixedComplexRowVector::FixedComplexRowVector (unsigned int is, unsigned int

ds, const FixedRowVector& a)

FixedComplexRowVector::FixedComplexRowVector (Complex is, Complex ds, const

FixedRowVector& a)

FixedComplexRowVector::FixedComplexRowVector (const MArray<int> &is, const

MArray<int> &ds, const FixedRowVector& a)

FixedComplexRowVector::FixedComplexRowVector (const RowVector &is, const

RowVector &ds, const FixedRowVector& a)

Create a complex fixed point row vector with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to the fixed point row vector a

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds, const FixedRowVector &x)

Create a complex fixed point row vector with the number of bits in the integer
part of each element represented by is and the number in the decimal part by
ds. The fixed point elements themselves will be initialized to the fixed point
row vector a.

FixedComplexRowVector::FixedComplexRowVector (unsigned int is, unsigned int

ds, const ComplexRowVector& a)

FixedComplexRowVector::FixedComplexRowVector (Complex is, Complex ds, const

ComplexRowVector& a)

FixedComplexRowVector::FixedComplexRowVector (const MArray<int> &is, const

MArray<int> &ds, const ComplexRowVector& a)

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds, const ComplexRowVector& a)

Create a complex fixed point row vector with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to the complex row vector a

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds, const ComplexRowVector &x)

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds, const RowVector &r, const RowVector &i)

Create a complex fixed point row vector with the number of bits in the integer
part of each element represented by is and the number in the decimal part by
ds. The fixed point elements themselves will be initialized to the complex row
vector a, or the real part by r and the imaginary by i.

Chapter 2: Using the fixed-point type in C++ and oct-files 38

FixedComplexRowVector::FixedComplexRowVector (unsigned int is, unsigned int

ds, const RowVector& a)

FixedComplexRowVector::FixedComplexRowVector (Complex is, Complex ds, const

RowVector& a)

FixedComplexRowVector::FixedComplexRowVector (const MArray<int> &is, const

MArray<int> &ds, const RowVector& a)

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds, const RowVector& a)

Create a complex fixed point row vector with the number of bits in the integer
part of the real and imaginary part of each element represented by is and the
number in the decimal part by ds. The fixed point elements themselves will be
initialized to the row vector a

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds, const RowVector &x)

Create a complex fixed point row vector with the number of bits in the integer
part of each element represented by is and the number in the decimal part by
ds. The fixed point elements themselves will be initialized to the row vector a.

FixedComplexRowVector::FixedComplexRowVector (unsigned int is, unsigned int

ds, const ComplexRowVector& a, const ComplexRowVector& b)

FixedComplexRowVector::FixedComplexRowVector (Complex is, Complex ds, const

ComplexRowVector& a, const ComplexRowVector& b)

FixedComplexRowVector::FixedComplexRowVector (const MArray<int> &is, const

MArray<int> &ds, const ComplexRowVector& a, const ComplexRowVector& b)

FixedComplexRowVector::FixedComplexRowVector (const RowVector &is, const

RowVector &ds, const ComplexRowVector& a, const ComplexRowVector& b)

FixedComplexRowVector::FixedComplexRowVector (const ComplexRowVector &is,

const ComplexRowVector &ds, const ComplexRowVector& a, const

ComplexRowVector& b)

Create a fixed point row vector with the number of bits in the integer part
of each element represented by is and the number in the decimal part by ds.
The fixed point elements themselves will have the integer parts loaded by the
complex row vector a and the decimal part by the complex row vector b. It
should be noted that a and b are both considered as unsigned complex integers
and are the strict representation of the bits of the fixed point value.

ComplexRowVector FixedComplexRowVector::fixedpoint ()

Method to create a RowVector from a fixed point row vector x

ComplexRowVector fixedpoint (const FixedComplexRowVector &x)

Create a RowVector from a fixed point row vector x

ComplexRowVector FixedComplexRowVector::sign ()

Return -1 for negative numbers, 1 for positive and 0 if the fixed point element
is zero, for every element of the current fixed point object.

ComplexRowVector sign (const FixedComplexRowVector &x)

Return -1 for negative numbers, 1 for positive and 0 if zero, for every element
of the fixed point object x.

Chapter 2: Using the fixed-point type in C++ and oct-files 39

ComplexRowVector FixedComplexRowVector::getintsize ()

Return the number of bit is used to represent the integer part of each element
of the current fixed point object.

ComplexRowVector getintsize (const FixedComplexRowVector &x)

Return the number of bit is used to represent the integer part of each element
of the fixed point object x.

ComplexRowVector FixedComplexRowVector::getdecsize ()

Return the number of bit ds used to represent the decimal part of each element
of the current fixed point object.

ComplexRowVector getdecsize (const FixedComplexRowVector &x)

Return the number of bit ds used to represent the decimal part of each element
of the fixed point object x.

ComplexRowVector getdecsize (const FixedComplexRowVector &x)

Return the number of bit ds used to represent the decimal part of each element
of the fixed point object x.

ComplexRowVector FixedComplexRowVector::getnumber ()

Return the integer representation of the fixed point value of the each eleement
of the current fixed point object.

FixedComplexRowVector FixedComplexRowVector::chintsize (const

ComplexRowVector &n)

FixedComplexRowVector FixedComplexRowVector::chintsize (const double n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the integer part is of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedComplexRowVector FixedComplexRowVector::chdecsize (const double n)

FixedComplexRowVector FixedComplexRowVector::chdecsize (const

ComplexRowVector &n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the decimal part ds of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedComplexRowVector FixedComplexRowVector::incintsize (const Complex n)

FixedComplexRowVector FixedComplexRowVector::incintsize (const

ComplexRowVector &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by n. If n is
negative, then is is decreased. If the result of this operation causes is + ds to
be greater than sizeof(int)*8 - 2, the error handler is called.

FixedComplexRowVector FixedComplexRowVector::incintsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

Chapter 2: Using the fixed-point type in C++ and oct-files 40

FixedComplexRowVector FixedComplexRowVector::incdecsize (const Complex n)

FixedComplexRowVector FixedComplexRowVector::incdecsize (const

ComplexRowVector &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by n. If n
is negative, then ds is decreased. If the result of this operation causes is + ds

to be greater than sizeof(int)*8 - 2, the error handler is called.

FixedComplexRowVector FixedComplexRowVector::incdecsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

2.3.6 FixedComplexColumnVector class

FixedComplexColumnVector::FixedComplexColumnVector (const MArray<int> &is,

const MArray<int> &ds)

FixedComplexColumnVector::FixedComplexColumnVector (const ColumnVector &is,

const ColumnVector &ds)

Create a complex fixed point column vector with the number of bits in the
integer part of the real and imaginary part of each element represented by is

and the number in the decimal part by ds. The fixed point elements themselves
will be initialized to zero.

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds)

Create a complex fixed point column vector with the number of bits in the
integer part of each element represented by is and the number in the decimal
part by ds. The fixed point elements themselves will be initialized to zero.

FixedComplexColumnVector::FixedComplexColumnVector (unsigned int is,

unsigned int ds, const FixedComplexColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (Complex is, Complex ds,

const FixedComplexColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (const MArray<int> &is,

const MArray<int> &ds, const FixedComplexColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (const ColumnVector &is,

const ColumnVector &ds, const FixedComplexColumnVector& a)

Create a complex fixed point column vector with the number of bits in the
integer part of the real and imaginary part of each element represented by is

and the number in the decimal part by ds. The fixed point elements themselves
will be initialized to the complex fixed point column vector a

Chapter 2: Using the fixed-point type in C++ and oct-files 41

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds, const

FixedComplexColumnVector &x)

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds, const

FixedColumnVector &r, const FixedColumnVector &i)

Create a complex fixed point column vector with the number of bits in the
integer part of each element represented by is and the number in the decimal
part by ds. The fixed point elements themselves will be initialized to the
complex fixed point column vector a, or the real part by r and the imaginary
by i.

FixedComplexColumnVector::FixedComplexColumnVector (unsigned int is,

unsigned int ds, const FixedColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (Complex is, Complex ds,

const FixedColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (const MArray<int> &is,

const MArray<int> &ds, const FixedColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (const ColumnVector &is,

const ColumnVector &ds, const FixedColumnVector& a)

Create a complex fixed point column vector with the number of bits in the
integer part of the real and imaginary part of each element represented by is

and the number in the decimal part by ds. The fixed point elements themselves
will be initialized to the fixed point column vector a

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds, const

FixedColumnVector &x)

Create a complex fixed point column vector with the number of bits in the
integer part of each element represented by is and the number in the decimal
part by ds. The fixed point elements themselves will be initialized to the fixed
point column vector a.

FixedComplexColumnVector::FixedComplexColumnVector (unsigned int is,

unsigned int ds, const ComplexColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (Complex is, Complex ds,

const ComplexColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (const MArray<int> &is,

const MArray<int> &ds, const ComplexColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds, const

ComplexColumnVector& a)

Create a complex fixed point column vector with the number of bits in the
integer part of the real and imaginary part of each element represented by is

and the number in the decimal part by ds. The fixed point elements themselves
will be initialized to the complex column vector a

Chapter 2: Using the fixed-point type in C++ and oct-files 42

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds, const

ComplexColumnVector &x)

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds, const ColumnVector

&r, const ColumnVector &i)

Create a complex fixed point column vector with the number of bits in the
integer part of each element represented by is and the number in the decimal
part by ds. The fixed point elements themselves will be initialized to the
complex column vector a, or the real part by r and the imaginary by i.

FixedComplexColumnVector::FixedComplexColumnVector (unsigned int is,

unsigned int ds, const ColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (Complex is, Complex ds,

const ColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (const MArray<int> &is,

const MArray<int> &ds, const ColumnVector& a)

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds, const ColumnVector&

a)

Create a complex fixed point column vector with the number of bits in the
integer part of the real and imaginary part of each element represented by is

and the number in the decimal part by ds. The fixed point elements themselves
will be initialized to the column vector a

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds, const ColumnVector

&x)

Create a complex fixed point column vector with the number of bits in the
integer part of each element represented by is and the number in the decimal
part by ds. The fixed point elements themselves will be initialized to the column
vector a.

FixedComplexColumnVector::FixedComplexColumnVector (unsigned int is,

unsigned int ds, const ComplexColumnVector& a, const ComplexColumnVector& b)

FixedComplexColumnVector::FixedComplexColumnVector (Complex is, Complex ds,

const ComplexColumnVector& a, const ComplexColumnVector& b)

FixedComplexColumnVector::FixedComplexColumnVector (const MArray<int> &is,

const MArray<int> &ds, const ComplexColumnVector& a, const

ComplexColumnVector& b)

FixedComplexColumnVector::FixedComplexColumnVector (const ColumnVector &is,

const ColumnVector &ds, const ComplexColumnVector& a, const

ComplexColumnVector& b)

FixedComplexColumnVector::FixedComplexColumnVector (const

ComplexColumnVector &is, const ComplexColumnVector &ds, const

ComplexColumnVector& a, const ComplexColumnVector& b)

Create a fixed point column vector with the number of bits in the integer part
of each element represented by is and the number in the decimal part by ds.
The fixed point elements themselves will have the integer parts loaded by the

Chapter 2: Using the fixed-point type in C++ and oct-files 43

complex column vector a and the decimal part by the compelx column vector
b. It should be noted that a and b are both considered as unsigned compelx
integers and are the strict representation of the bits of the fixed point value.

ComplexColumnVector FixedComplexColumnVector::fixedpoint ()

Method to create a ColumnVector from a fixed point column vector x

ComplexColumnVector fixedpoint (const FixedComplexColumnVector &x)

Create a ColumnVector from a fixed point column vector x

ComplexColumnVector FixedComplexColumnVector::sign ()

Return -1 for negative numbers, 1 for positive and 0 if the fixed point element
is zero, for every element of the current fixed point object.

ComplexColumnVector sign (const FixedComplexColumnVector &x)

Return -1 for negative numbers, 1 for positive and 0 if zero, for every element
of the fixed point object x.

ComplexColumnVector FixedComplexColumnVector::getintsize ()

Return the number of bit is used to represent the integer part of each element
of the current fixed point object.

ComplexColumnVector getintsize (const FixedComplexColumnVector &x)

Return the number of bit is used to represent the integer part of each element
of the fixed point object x.

ComplexColumnVector FixedComplexColumnVector::getdecsize ()

Return the number of bit ds used to represent the decimal part of each element
of the current fixed point object.

ComplexColumnVector getdecsize (const FixedComplexColumnVector &x)

Return the number of bit ds used to represent the decimal part of each element
of the fixed point object x.

ComplexColumnVector FixedComplexColumnVector::getnumber ()

Return the integer representation of the fixed point value of the each eleement
of the current fixed point object.

ComplexColumnVector getnumber (const FixedComplexColumnVector &x)

Return the integer representation of the fixed point value of the each eleement
of the fixed point object x.

FixedComplexColumnVector FixedComplexColumnVector::chintsize (const

ComplexColumnVector &n)

FixedComplexColumnVector FixedComplexColumnVector::chintsize (const double

n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the integer part is of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

Chapter 2: Using the fixed-point type in C++ and oct-files 44

FixedComplexColumnVector FixedComplexColumnVector::chdecsize (const double

n)

FixedComplexColumnVector FixedComplexColumnVector::chdecsize (const

ComplexColumnVector &n)

Return a fixed point object equivalent to the current fixed point object but with
the number of bits representing the decimal part ds of every element changed
to n. If the result of this operation causes any element of is + ds to be greater
than sizeof(int)*8 - 2, the error handler is called.

FixedComplexColumnVector FixedComplexColumnVector::incintsize (const double

n)

FixedComplexColumnVector FixedComplexColumnVector::incintsize (const

ComplexColumnVector &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by n. If n is
negative, then is is decreased. If the result of this operation causes is + ds to
be greater than sizeof(int)*8 - 2, the error handler is called.

FixedComplexColumnVector FixedComplexColumnVector::incintsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the integer part is increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

FixedComplexColumnVector FixedComplexColumnVector::incdecsize (const double

n)

FixedComplexColumnVector FixedComplexColumnVector::incdecsize (const

ComplexColumnVector &n)

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by n. If n
is negative, then ds is decreased. If the result of this operation causes is + ds

to be greater than sizeof(int)*8 - 2, the error handler is called.

FixedComplexColumnVector FixedComplexColumnVector::incdecsize ()

Return a fixed point object equivalent to the current fixed point number but
with the number of bits representing the decimal part ds increased by 1. If the
result of this operation causes is + ds to be greater than sizeof(int)*8 - 2,
the error handler is called.

2.4 The Upper Level Octave Classes

There are 4 upper level classes that define the interface of the fixed point type to the octave
interpreter. These mirror similar definitions for floating values in octave and are

Fixed Point Floating Point

octave_fixed octave_scalar

octave_fixed_complex octave_complex

octave_fixed_matrix octave_matrix

octave_fixed_complex_matrix octave_complex_matrix

Chapter 2: Using the fixed-point type in C++ and oct-files 45

These fixed point classes use the same base classes as the corresponding floating classes,
and so have similar capabilities. However, one notable addition are the methods to obtain
the base fixed point objects from these classes, and also correspond to similar floating point
methods. These are

Fixed Point Floating Point

fixed_value scalar_value

fixed_complex_value complex_value

fixed_matrix_value matrix_value

fixed_complex_matrix_value complex_matrix_value

and can be used in all fixed point classes, subject to a possible reduction operations (eg.
casts a FixedComplexMatrix as a FixedPoint). In addition the methods scalar_value,
complex_value, matrix_value and complex_matrix_value can all be used.

The user should examine the files ‘ov-fixed-cx-mat.h’, ‘ov-fixed-complex.h’,
‘ov-fixed-mat.h’ and ‘ov-fixed.h’ and the base classes in the files ‘ov-base-fixed.h’,
‘ov-base-fixed-mat.h’, and file ‘ov-base.h’ within octave to see the methods that are
available for the upper level classes.

2.5 Writing Oct-files with the Fixed Point Type

It is not the purpose of this section to discuss how to write an oct-file, or discuss what they
are, but rather the specifics of using oct-files with the fixed point type. An oct-file is a means
of writing an octave function in a compilable language like C++, rather than as a script file.
This results in a significant acceleration in the code. The reader is referred to the tutorial
available at http://octave.sourceforge.net/coda/coda.html. The examples discussed
here assume that the oct-file is written entirely in C++.

2.5.1 Using C++ Templates in Oct-files

When using the fixed point toolbox, you will almost certainly want to compare an imple-
mentation in fixed-point against the corresponding implementation in floating point. This
allows the degradation due to the conversion to a fixed-point algorithm to be easily observed.
The concept of C++ templates allows easy implementation of both fixed and floating point
versions of the same code. For example consider

template <class A, class B>

A myfunc(const A &a, const B &b) {

return (a + b);

}

// Floating point instantiations

template double myfunc (const double&, const double&);

template Complex myfunc (const Complex&, const double&);

template Matrix myfunc (const Matrix&, const double&);

template ComplexMatrix myfunc (const ComplexMatrix&, const double&);

// Fixed point instantiations

template FixedPoint myfunc (const FixedPoint&, const FixedPoint&);

Chapter 2: Using the fixed-point type in C++ and oct-files 46

template FixedPointComplex myfunc (const FixedPointComplex&,

const FixedPoint&);

template FixedMatrix myfunc (const FixedMatrix&, const FixedPoint&);

template FixedComplexMatrix myfunc (const FixedComplexMatrix&,

const FixedPoint&);

Eight versions of the function myfunc are created, that allow its use with all floating and
fixed types.

2.5.2 Specific Problems of Oct-files using Fixed Point

The fact that the fixed point type is loadable, means that the symbols of this type are not
available till the first use of a fixed point variable. This means that the function fixed must
be called at least once prior to accessing fixed point values in an oct-file. If a user function
is called, that uses a fixed point type, before the type is loaded the result will be an error
message complaining of unknown symbols. For example

octave:1> fixed_inc(a)

error: /home/dbateman/octave/fixed/fixed_inc.oct: undefined symbol:

_ZN24octave_base_fixed_matrixI18FixedComplexMatrixE7subsref

ERKSsRKSt4listI17octave_value_listSaIS5_EE

error: ‘fixed_inc’ undefined near line 1 column 1

This should not in itself result in an abnormal exit from Octave.

Another problem when accessing fixed point variables within oct-files, is that the Octave
octave_value class knows nothing about this type. So you can not directly call a method
such as fixed_value() on the input arguments, but rather must cast the representation
of the octave_value as a fixed type and then call the relevant method. An example of
extracting a fixed point value from an octave_value variable arg is then

octave_value arg;

...

if (arg.type_id () == octave_fixed::static_type_id ()) {

FixedPoint f = ((const octave_fixed&) arg.get_rep()).fixed_value();

Similarly, the return value from an oct-file is itself either an octave_value or an octave_

value_list. So a special means of creating the return value must be used. For example

octave_value_list retval;

Matrix m;

FixedPoint f;

...

retval(0) = octave_value(m);

retval(1) = new octave_fixed (f);

2.5.3 Specific points to note when using Oct-files and Cygwin

When using the GNU C++ compiler under Cygwin to create a shared object, such as an oct-
file, the symbols must be resolved at compile time. This is as opposed to a Unix platform
where the resolution of the symbols can be left till runtime. For this reason the fixed
point type, when built under Cygwin is split into an oct-file and a shared library called
‘liboctave_fixed.dll’. This is as opposed to the situation under Unix, where only the
Oct-file containing all of the fixed point type is needed.

Chapter 2: Using the fixed-point type in C++ and oct-files 47

This has the implication that when you build an Oct-file under Cygwin using the fixed
point type, that they must be linked to ‘liboctave_fixed.dll’. An appropriate means to
do this is for example

% mkoctfile -loctave_fixed myfile.cc

The file ‘liboctave_fixed.dll’ and ‘liboctave_fixed.dll.a’ must be located some-
where that the compiler can find them. If these are installed in the same directory as
‘liboctave.dll’ and ‘liboctave.dll.a’ respectively, then mkoctfile will find them au-
tomatically.

2.5.4 A Simple Example of an Oct-file

An example of a simple oct-file written in C++ using the fixed point type can be seen below.
It integrates the ideas discussed previously.

#include <octave/config.h>

#include <octave/oct.h>

#include "fixed.h"

template <class A, class B>

A myfunc(const A &a, const B &b) {

return (a + b);

}

// Floating point instantiations

template double myfunc (const double&, const double&);

template Complex myfunc (const Complex&, const double&);

template Matrix myfunc (const Matrix&, const double&);

template ComplexMatrix myfunc (const ComplexMatrix&, const double&);

// Fixed point instantiations

template FixedPoint myfunc (const FixedPoint&, const FixedPoint&);

template FixedPointComplex myfunc (const FixedPointComplex&,

const FixedPoint&);

template FixedMatrix myfunc (const FixedMatrix&, const FixedPoint&);

template FixedComplexMatrix myfunc (const FixedComplexMatrix&,

const FixedPoint&);

DEFUN_DLD (fixed_inc, args, ,

"-*- texinfo -*-\n\

@deftypefn {Loadable Function} {@var{y} =} fixed_inc (@var{x})\n\

Example code of the use of the fixed point types in an oct-file.\n\

Returns @code{@var{x} + 1}\n\

@end deftypefn")

{

octave_value retval;

FixedPoint one(1,0,1,0); // Fixed Point value of 1

if (args.length() != 1)

Chapter 2: Using the fixed-point type in C++ and oct-files 48

print_usage("fixed_inc");

else

if (args(0).type_id () == octave_fixed_matrix::static_type_id ()) {

FixedMatrix f = ((const octave_fixed_matrix&) args(0).get_rep()).

fixed_matrix_value();

retval = new octave_fixed_matrix (myfunc(f,one));

} else if (args(0).type_id () == octave_fixed::static_type_id ()) {

FixedPoint f = ((const octave_fixed&) args(0).get_rep()).

fixed_value();

retval = new octave_fixed (myfunc(f,one));

} else if (args(0).type_id () ==

octave_fixed_complex::static_type_id ()) {

FixedPointComplex f = ((const octave_fixed_complex&)

args(0).get_rep()).fixed_complex_value();

retval = new octave_fixed_complex (myfunc(f,one));

} else if (args(0).type_id () ==

octave_fixed_complex_matrix::static_type_id ()) {

FixedComplexMatrix f = ((const octave_fixed_complex_matrix&)

args(0).get_rep()).fixed_complex_matrix_value();

retval = new octave_fixed_complex_matrix (myfunc(f,one));

} else {

// promote the operation to complex matrix. The narrowing op in

// octave_value will later change the type if needed. This is not

// optimal but is convenient....

ComplexMatrix f = args(0).complex_matrix_value();

retval = octave_value (myfunc(f,1.));

}

return retval;

}

Chapter 3: Fixed Point Type Applied to Real Signal Processing Example 49

3 Fixed Point Type Applied to Real Signal
Processing Example

As an example of the use of the fixed point toolbox applied to a real signal processing
example, we consider the implementation of a Radix-4 IFFT in an OFDM modulator.
Code for this IFFT has been written as a C++ template class, and integrated as an Octave
Oct-file. This allowed a single version of the code to be instantiated to perform both the
fixed and floating point implementations of the same code. The instantiations of this class
are

template Fft<double,Complex,ComplexRowVector>;

template Fft<FixedPoint,FixedPointComplex,FixedComplexRowVector>;

template Ifft<double,Complex,ComplexRowVector>;

template Ifft<FixedPoint,FixedPointComplex,FixedComplexRowVector>;

The code for this example is available as part of the release of this software package.

A particular problem of a hardware implementation of an IFFT is that each butterfly
in the radix-4 IFFT consists of the summation of four terms with a suitable phase. Thus,
an additional 2 output bits are potentially needed after each butterfly of the radix-4 IFFT.
There are several ways of addressing this issue

1. Increase the number of bits in the fixed point representation by two after each radix-4
butterfly. There are then two ways of treating these added bits:

A. Accept them and let the size of the representation of the fixed point numbers
grows. For large IFFT’s this is not acceptable

B. Cut the least significant bits of representation, either after each butterfly, or after
groups of butterflies. This reduces the number of bits in the representation, but
still trades off complexity to avoid an overflow condition

2. Keep the fixed point representation used in the IFFT fixed, but reduce the input signal
level to avoid overflows. The IFFT can then have internal overflows.

An overflow will cause a bit-error which is not necessarily critical. The last option is
therefore attractive in that it allows the minimum complexity in the hardware implemen-
tation of the IFFT. However, careful investigation of the overflow effects are needed, which
can be performed with the fixed point toolbox.

The figures 1 and 2 below shows the case of a 64QAM OFDM signal similar to that used
in the 802.11a standard. In this figure the OFDM modulator has been represented using
fixed point, while the rest of the system is assumed to be perfect. Figures 1 and 2 shows
the tradeoff between the backoff of the RMS power in the frequency domain signal relative
to the fixed point representation for several different fixed point representations.

Chapter 3: Fixed Point Type Applied to Real Signal Processing Example 50

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

5 10 15 20 25 30

B
E

R

Backoff (dB)

Rep: 8+1
Rep: 10+1
Rep: 12+1

Figure 1: Bit-error rate due to fixed point representation for various
backoffs of the RMS power in frequency domain signal. Fixed point

representation of n bits plus 1 bit for the sign

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

SN
R

 (
dB

)

Backoff (dB)

Rep: 8+1
Rep: 10+1
Rep: 12+1

Figure 2: The signal-to-noise ratio as measured by comparing a fixed
to a floating point representation for various backoffs of the RMS
power in frequency domain signal. Fixed point representation of

n bits plus 1 bit for the sign

Two regions are clearly visible in these figures. When the backoff of the RMS power is
small, the effects of the overflow in the IFFT dominate, and reduce the performance. When
the backoff is large, there are fewer bits in the fixed point representation relative to the

Chapter 3: Fixed Point Type Applied to Real Signal Processing Example 51

average signal power and therefore a slow degradation in the performance. It is clear that
somewhere between 11 and 13 bits in the representation of the fixed point numbers in the
IFFT is optimal, with a backoff of approximately 13dB.

Chapter 4: Function Reference 52

4 Function Reference

4.1 Functions by Category

4.1.1 Fixed Point Operators

+ - Addition/subtraction in a fixed point algebra.

* / \ Multiplication/division in fixed point (Division for scalars only).

.* ./ .\ Element by element multiplication/division of fixed point arrays.

** ^ Matrix exponentiation of fixed point arrays.

.** .^ Element by element matrix exponentiation of fixed point arrays.

’ .’ Matrix transpose of fixed point arrays.

== ~= != > >= < <=
Logical operators on fixed point arrays.

4.1.2 Fixed Point Variables

fixed point warn overflow
Query or set the internal variable ‘fixed point warn overflow’.

fixed point debug
Query or set the internal variable ‘fixed point debug’.

fixed point count operations
Query or set the internal variable ‘fixed point count operations’.

fixed point version
A function returning the version number of the fixed point package used.

fixed point library version
A function returning the version number of the fixed point library used.

4.1.3 Fixed Point Utility Functions

concat Concatenate two matrices regardless of their type.

create lookup table
Creates a lookup table betwen the vectors X and Y.

display fixed operations
Displays out a summary of the number of fixed point operations of each type
that have been used.

fdiag Return a diagonal matrix with fixed point vector V on diagonal K.

fixed Used the create a fixed point variable.

fixedpoint Manual and test code for the Octave Fixed Point toolbox.

float Converts a fixed point object to the equivalent floating point object.

Chapter 4: Function Reference 53

freshape Return a fixed matrix with M rows and N columns whose elements are taken
from the fixed matrix A.

fsort Return a copy of the fixed point variable X with the elements arranged in
increasing order.

isfixed Return 1 if the value of the expression EXPR is a fixed point value.

length Not implemented

lookup table
Using the lookup table created by "create lookup table", find the value Y cor-
responding to X.

reset fixed operations
Reset the count of fixed point operations to zero.

size Not implemented

all Not implemented

any Not implemented

4.1.4 Fixed Point Functions

fabs Compute the magnitude of the fixed point value X.

fangle See "farg".

farg Compute the argument of X, defined as THETA = ‘atan2 (Y, X)’ in radians.

fatan2 Compute atan (Y / X) for corresponding fixed point elements of Y and X.

fceil Return the smallest integer not less than X.

fconj Returns the conjuate of the fixed point value X.

fcosh Compute the hyperbolic cosine of the fixed point value X.

fcos Compute the cosine of the fixed point value X.

fcumprod Cumulative product of elements along dimension DIM.

fcumsum Cumulative sum of elements along dimension DIM.

fexp Compute the exponential of the fixed point value X.

ffloor Return the largest integer not greater than X.

fimag Returns the imaginary part of the fixed point value X.

flog10 Compute the base-10 logarithm of the fixed point value X.

flog Compute the natural logarithm of the fixed point value X.

fprod Product of elements along dimension DIM.

freal Returns the real part of the fixed point value X.

fround Return the rounded value to the nearest integer of X.

fsinh Compute the hyperbolic sine of the fixed point value X.

Chapter 4: Function Reference 54

fsin Compute the sine of the fixed point value X.

fsqrt Compute the square-root of the fixed point value X.

fsum Sum of elements along dimension DIM.

fsumsq Sum of squares of elements along dimension DIM.

ftanh Compute the hyperbolic tan of the fixed point value X.

ftan Compute the tan of the fixed point value X.

4.1.5 Examples

ffft Radix-4 fft in floating and fixed point for vectors of length 4^N, where N is an
integer.

fifft Radix-4 ifft in fixed point for vectors of length 4^N, where.

fixed inc Example code of the use of the fixed point types in an oct-file.

4.2 Functions Alphabetically

4.2.1 concat

[Function File]x = concat (a, b)
[Function File]x = concat (a, b, dim)

Concatenate two matrices regardless of their type. Due to the implementation of the
matrix concatenation in Octave being hard-coded for the types it knowns, user types
can not use the matrix concatenation operator. Thus for the Galois and Fixed Point

types, the in-built matrix concatenation functions will return a matrix value as their
solution

This function allows these types to be concatenated. If called with a user type that
is not known by this function, the in-built concatenate function is used

If dim is 1, then the matrices are concatenated, else if dim is 2, they are stacked

4.2.2 create lookup table

[Function File]table = create_lookup_table (x, y)
Creates a lookup table betwen the vectors x and y. If x is not in increasing order,
the vectors are sorted before being stored

4.2.3 display fixed operations

[Loadable Function]display_fixed_operations ()
Displays out a summary of the number of fixed point operations of each type that
have been used. This can be used to give a estimate of the complexity of an algorithm.

See also: fixed point count operations, reset fixed operations

4.2.4 fabs

[Loadable Function]y = fabs (x)
Compute the magnitude of the fixed point value x.

Chapter 4: Function Reference 55

4.2.5 fangle

[Loadable Function]y = fangle (x)
See farg.

4.2.6 farg

[Loadable Function]y = farg (x)
Compute the argument of x, defined as θ = atan2(y, x) in radians. For example

farg (fixed (3,5,3+4i))
⇒ 0.90625

4.2.7 fatan2

[Loadable Function]fatan2 (y, x)
Compute atan (Y / X) for corresponding fixed point elements of Y and X. The result
is in range -pi to pi.

4.2.8 fceil

[Loadable Function]y = fceil (x)
Return the smallest integer not less than x.

See also: fround, ffloor

4.2.9 fconj

[Loadable Function]y = fconj (x)
Returns the conjuate of the fixed point value x.

4.2.10 fcos

[Loadable Function]y = fcos (x)
Compute the cosine of the fixed point value x.

See also: fcosh, fsin, fsinh, ftan, ftanh

4.2.11 fcosh

[Loadable Function]y = fcosh (x)
Compute the hyperbolic cosine of the fixed point value x.

See also: fcos, fsin, fsinh, ftan, ftanh

4.2.12 fcumprod

[Loadable Function]y = fcumprod (x,dim)
Cumulative product of elements along dimension dim. If dim is omitted, it defaults
to 1 (column-wise cumulative products).

See also: fcumsum

Chapter 4: Function Reference 56

4.2.13 fcumsum

[Loadable Function]y = fcumsum (x,dim)
Cumulative sum of elements along dimension dim. If dim is omitted, it defaults to 1
(column-wise cumulative sums).

See also: fcumprod

4.2.14 fdiag

[Loadable Function]fdiag (v, k)
Return a diagonal matrix with fixed point vector v on diagonal k. The second argu-
ment is optional. If it is positive, the vector is placed on the k-th super-diagonal. If
it is negative, it is placed on the -k-th sub-diagonal. The default value of k is 0, and
the vector is placed on the main diagonal. For example,

fdiag (fixed(3,2,[1, 2, 3]), 1)

ans =

0.00 1.00 0.00 0.00

0.00 0.00 2.00 0.00

0.00 0.00 0.00 3.00

0.00 0.00 0.00 0.00

Note that if all of the elements of the original vector have the same fixed point
representation, then the zero elements in the matrix are created with the same rep-
resentation. Otherwise the zero elements are created with the equivalent of the fixed
point value fixed(0,0,0).n

See also: diag

4.2.15 fexp

[Loadable Function]y = fexp (x)
Compute the exponential of the fixed point value x.

See also: log, log10, pow

4.2.16 ffft

[Loadable Function]y = ffft (x)
Radix-4 fft in floating and fixed point for vectors of length 4^n, where n is an integer.
The variable x can be a either a row of column vector, in which case a single fft is
carried out over the vector of length 4^n. If x is a matrix, the fft is carried on each
column of x and the matrix must contain 4^n rows.

The radix-4 fft is implemented in a manner that attempts to approximate how it
will be implemented in hardware, rather than use a generic butterfly. The radix-4
algorithm is faster and more precise than the equivalent radix-2 algorithm, and thus
is preferred for hardware implementation. See also: fifft

Chapter 4: Function Reference 57

4.2.17 ffloor

[Loadable Function]y = ffloor (x)
Return the largest integer not greater than x.

See also: fround, fceil

4.2.18 fifft

[Loadable Function]y = fifft (x)
Radix-4 ifft in fixed point for vectors of length 4^n, where. n is an integer. The
variable x can be a either a row of column vector, in which case a single ifft is carried
out over the vector of length 4^n. If x is a matrix, the ifft is carried on each column
of x and the matrix must contain 4^n rows.

The radix-4 ifft is implemented in a manner that attempts to approximate how it
will be implemented in hardware, rather than use a generic butterfly. The radix-4
algorithm is faster and more precise than the equivalent radix-2 algorithm, and thus
is preferred for hardware implementation. See also: ffft

4.2.19 fimag

[Loadable Function]y = fimag (x)
Returns the imaginary part of the fixed point value x.

4.2.20 fixed

[Loadable Function]y = fixed (f)
[Loadable Function]y = fixed (is,ds)
[Loadable Function]y = fixed (is,ds,f)

Used the create a fixed point variable. Called with a single argument, if f is itself a
fixed point value, then fixed is equivalent to y = f . Otherwise the integer part of f

is used to create a fixed point variable with the minimum number of bits needed to
represent it. f can be either real of complex.

Called with two or more arguments is represents the number of bits used to represent
the integer part of the fixed point numbers, and ds the number used to represent the
decimal part. These variables must be either positive integer scalars or matrices. If
they are matrices they must be of the same dimension, and each fixed point number
in the created matrix will have the representation given by the corresponding values
of is and ds.

When creating complex fixed point values, the fixed point representation can be dif-
ferent for the real and imaginary parts. In this case is and ds are complex integers.
Additionally the maximum value of the sum of is and ds is limited by the represen-
tation of long integers to either 30 or 62.

Called with only two arguments, the fixed point variable that is created will contain
only zeros. A third argument can be used to give the values of the fixed variables
elements. This third argument f can be either a fixed point variable itself, which
results in a new fixed point variable being created with a different representation, or
a real or complex matrix.

Chapter 4: Function Reference 58

4.2.21 fixed inc

[Loadable Function]y = fixed_inc (x)
Example code of the use of the fixed point types in an oct-file. Returns x + 1

4.2.22 fixed point count operations

[Loadable Function]val = fixed_point_count_operations ()
[Loadable Function]old_val = fixed_point_count_operations (new_val)

Query or set the internal variable fixed_point_count_operations. If enabled, Oc-
tave keeps track of how many times each type of floating point operation has been used
internally. This can be used to give an approximation of the algorithms complexity.
By default, this feature is disabled. See also: display fixed operations

4.2.23 fixed point debug

[Loadable Function]val = fixed_point_debug ()
[Loadable Function]old_val = fixed_point_debug (new_val)

Query or set the internal variable fixed_point_debug. If enabled, Octave keeps a
copy of the value of fixed point variable internally. This is useful for use with a debug
to allow easy access to the variables value. By default this feature is disabled.

4.2.24 fixed point library version

[Loadable Function]fixed_point_library_version ()
A function returning the version number of the fixed point library used.

4.2.25 fixed point version

[Loadable Function]fixed_point_version ()
A function returning the version number of the fixed point package used.

4.2.26 fixed point warn overflow

[Loadable Function]val = fixed_point_warn_overflow ()
[Loadable Function]old_val = fixed_point_warn_overflow (new_val)

Query or set the internal variable fixed_point_warn_overflow. If enabled, Octave
warns of overflows in fixed point operations. By default, these warnings are disabled.

4.2.27 fixedpoint

[Function File]fixedpoint (’help’)
[Function File]fixedpoint (’info’)
[Function File]fixedpoint (’info’, mod)
[Function File]fixedpoint (’test’)
[Function File]fixedpoint (’test’, mod)

Manual and test code for the Octave Fixed Point toolbox. There are 5 possible ways
to call this function

Chapter 4: Function Reference 59

fixedpoint (’help’)

Display this help message. Called with no arguments, this function also
displays this help message

fixedpoint (’info’)

Open the Fixed Point toolbox manual

fixedpoint (’info’, mod)

Open the Fixed Point toolbox manual at the section specified by mod

fixedpoint (’test’)

Run all of the test code for the Fixed Point toolbox mod

Valid values for the varibale mod are

’basics’ The section describing the use of the fixed point toolbox within Octave

’programming’
The section descrining how to use the fixed-point type with oct-files

’example’ The section describing an in-depth example of the use of the fixed-point
type

’reference’ The refernce section of all of the specific fixed point operators and func-
tions

Please note that this function file should be used as an example of the use of this
toolbox

4.2.28 float

[Function File]y = float (x)
Converts a fixed point object to the equivalent floating point object. This is equivalent
to x.x if isfixed(x) returns true, and returns x otherwise

4.2.29 flog

[Loadable Function]y = flog (x)
Compute the natural logarithm of the fixed point value x.

See also: fexp, flog10, fpow

4.2.30 flog10

[Loadable Function]y = flog10 (x)
Compute the base-10 logarithm of the fixed point value x.

See also: fexp, flog, fpow

4.2.31 fprod

[Loadable Function]y = fprod (x,dim)
Product of elements along dimension dim. If dim is omitted, it defaults to 1 (column-
wise products).

See also: fsum, fsumsq

Chapter 4: Function Reference 60

4.2.32 freal

[Loadable Function]y = freal (x)
Returns the real part of the fixed point value x.

4.2.33 freshape

[Loadable Function]freshape (a, m, n)
Return a fixed matrix with m rows and n columns whose elements are taken from
the fixed matrix a. To decide how to order the elements, Octave pretends that the
elements of a matrix are stored in column-major order (like Fortran arrays are stored).

For example,

freshape (fixed(3, 2, [1, 2, 3, 4]), 2, 2)

ans =

1.00 3.00

2.00 4.00

If the variable do_fortran_indexing is nonzero, the freshape function is equivalent
to

retval = fixed(0,0,zeros (m, n));

retval (:) = a;

but it is somewhat less cryptic to use freshape instead of the colon operator. Note
that the total number of elements in the original matrix must match the total number
of elements in the new matrix.

See also: ‘:’ and do fortran indexing

4.2.34 fround

[Loadable Function]y = fround (x)
Return the rounded value to the nearest integer of x.

See also: ffloor, fceil

4.2.35 fsin

[Loadable Function]y = fsin (x)
Compute the sine of the fixed point value x.

See also: fcos, fcosh, fsinh, ftan, ftanh

4.2.36 fsinh

[Loadable Function]y = fsinh (x)
Compute the hyperbolic sine of the fixed point value x.

See also: fcos, fcosh, fsin, ftan, ftanh

Chapter 4: Function Reference 61

4.2.37 fsort

[Function File][s, i] = fsort (x)
Return a copy of the fixed point variable x with the elements arranged in increasing
order. For matrices, fsort orders the elements in each column

For example,

fsort (fixed(4,0,[1, 2; 2, 3; 3, 1]))
⇒ 1 1

2 2

3 3

The fsort function may also be used to produce a matrix containing the original row
indices of the elements in the sorted matrix. For example,

[s, i] = sort ([1, 2; 2, 3; 3, 1])
⇒ s = 1 1

2 2

3 3
⇒ i = 1 3

2 1

3 2

4.2.38 fsqrt

[Loadable Function]y = fsqrt (x)
Compute the square-root of the fixed point value x.

4.2.39 fsum

[Loadable Function]y = fsum (x,dim)
Sum of elements along dimension dim. If dim is omitted, it defaults to 1 (column-wise
sum).

See also: fprod, fsumsq

4.2.40 fsumsq

[Loadable Function]y = fsumsq (x,dim)
Sum of squares of elements along dimension dim. If dim is omitted, it defaults to 1
(column-wise sum of squares). This function is equivalent to computing

fsum (x .* fconj (x), dim)

but it uses less memory and avoids calling fconj if x is real.

See also: fprod, fsum

4.2.41 ftan

[Loadable Function]y = ftan (x)
Compute the tan of the fixed point value x.

See also: fcos, fcosh, fsinh, ftan, ftanh

Chapter 4: Function Reference 62

4.2.42 ftanh

[Loadable Function]y = ftanh (x)
Compute the hyperbolic tan of the fixed point value x.

See also: fcos, fcosh, fsin, fsinh, ftan

4.2.43 isfixed

[Loadable Function]isfixed (expr)
Return 1 if the value of the expression expr is a fixed point value.

4.2.44 lookup table

[Function File]y = lookup_table (table, x)
[Function File]y = lookup_table (table, x, interp, extrap)

Using the lookup table created by create lookup table, find the value y corresponding
to x. With two arguments the lookup is done to the nearest value below in the table
less than the desired value. With three arguments a simple linear interpolation is
performed. With four arguments an extrapolation is also performed. The exact
values of arguments three and four are irrelevant, as only there presence detremines
whether interpolation and/or extrapolation are used

4.2.45 reset fixed operations

[Loadable Function]reset_fixed_operations ()
Reset the count of fixed point operations to zero.

See also: fixed point count operations, display fixed operations

