Mini-HOWTO : visualizing 3D data using Octave,
VRML and FreeWRL*

Abstract
This document shows how to visualize sets of 3D points, 3D curves, sur-
faces etc using the numerical language Octave, in conjunction with the VRML
browser FreeWRL. The basic functionalities and principles are presented here
with examples, while the detailed synopsis can be obtained from the online
help system.

Prerequisites: |t is assumed that you have installed Octave 2.1.35 (http://wwu.

octave.org) or more, FreeWRL (http://www.crc.ca/FreeWRL) 0.34 or more
(versions between 0.27 and 0.31 may work too) and the Octave-Forge (http://
octave.sourceforge.net) package. Each one is available from the indicated
URL. Rudimentary knowledge of Octave is also assumed.

1 Basics

This document describes some 3D visualization functions from the Octave-Forge
package. First, examples are given on how to visualize a surface with the vmesh ()
function and how to visualize a set of 3D points and select a subset with the
mouse. The basic usage of FreeWRL, the program that does the 3D visualization
are introduced at the same time.

The second section explains more in detail how the VRML package works,
presents other functions and shows how to assemble various 3D objects. Finally, a
brief summary and plans for the future are given in Section 3.

1.1 Viewing a surface from the Octave prompt

Consider the following Octave commands :

*Author : Etienne Grossmann <etienne@isr.ist.utl.pt> (soon replaced by “Octave-Forge
developers”?). This document is free documentation; you can redistribute it and/or modify it
under the terms of the GNU Free Documentation License as published by the Free Software
Foundation.

This is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE.

x = linspace (-1,1,31);
[xx,uyl = meshgrid (x,x);
2z 2 xX."Z 4 yg.2;
wvmesh (zz)

Figure 1: FreeWRL window and octave running in a terminal. The red and
green vectors of the frame represent the “X” and “Y” axes. Left: Displaying
the surface of a 2-variable function. Right: Viewing a set of 3D points and
selecting a subset.

Listing 1

x = linspace (-1,1,31);
[xx,yy] = meshgrid (x,x);
ZZ = XX.72 + yy."2;
vmesh (zz);

The first three lines define a 31 x 31 matrix zz containing values of z2 + 32 for
values of z and y regularly sampled in the interval [—1,1]. The fourth line visualizes
in a separate window a surface representing zz'. By click and dragging the mouse
in that new window, you should be able to rotate the object and obtain something
as in Figure 1.

The variant :

vmesh (zz,'"checker",[5,-2],"col",[1 0 0;0.7 0.7 0.717);

displays (Figure 2, left) a checkered surface with 5 squares along the X direction
squares that are two facets wide along the Y direction. This listing can be run with
the command vrml_demo_tutorial_1. Subsequent in this document listings can
be called in a similar fashion.

1.2 Basic 3D visualization with FreeWRL

What happened when this last command was executed is that the program FreeWRL
was launched and asked to visualize some data that represents the 3D surface.
Interaction with FreeWRL is done through the mouse and keyboard :

1If nothing happened when you executed the vmesh() command, or if an error message
was issued, this indicates a problem. Make sure that you are running under X11 and that
FreeWRL is installed and functions properly.

When in “examine mode” (the default), dragging with the left button rotates
the object, while dragging up and down with the left button zooms out and zooms
in.

When the *w’ key is hit, FreeWRL switches to “walk mode” , in which left-
dragging up or downwards will move the viewpoint forward or backward. Left-or-
right-dragging to the left or right directions will move the viewpoint left or right,
respectively. Finally, right-dragging up or down moves the viewpoint up and down.
You may switch back to the “examine” mode by hitting the ’e’ key.

Hitting 's’ saves a snapshot freewrl.snap.0001.ppmin the current directory;
subsequent snapshots will be numbered 0002, etc. Each time FreeWRL is launched,
the count is restarted so beware that previous snapshots may be overwritten.

Last but important, the ’q’ key will exit FreeWRL.

1.3 Viewing a set of 3D points

Going back to Octave, let's create a set of 3D points :

Listing 2

N = 30;
x = [randn (3,N) .* ([1,3,6]’*ones(1,N)), [5 5;-1 1;0 01]1;
select_3D_points (x)

The first two commands create a variable xx that holds 32 3D points, 30 of which

are randomly distributed and two, with coordinates [5, 1, 0], which are “outliers”

. The last command launches FreeWRL in such a way that it is not only possible to

examine the 3D points, represented by boxes, but also select a subset of them, by

clicking on them : a selected box is bright green instead of blue. On the snapshot

in Figure 1 (right), the two outliers have been selected.

Having selected these points, let's go back to the Octave window, where select_3D_points()

has produced the output :

Menu: (R)estart browser. Other key : done

select_3D_points() is now waiting for a key to be hit, either 'r' , in which case
FreeWRL will be restarted, or any other key, in which case select_3D_points()
finishes and returns the indices of the 3D points that have been output, in the form
of a 0-1 matrix :

ans =0000000000000000000000000000001 1.

2 More in detail

VRML is a language that allows to describe a 3D setup by specifying shapes, colors,
positions etc. Given a VRML document, a VRML browser -FreeWRL in our case-
will render it and allow a user to navigate in it. Examining 3D objects is just one
of the possibilities of VRML, the only one we use in this document.

Communication between Octave and FreeWRL Octave communicates with
FreeWRL by writing VRML code to a temporary file

/tmp/octave_vrml_output.wrl

and sending a signal so that FreeWRL reads the file and raises its window. The
Octave function that takes care of this is

vrml_browse (str),

which takes as argument a single string that contains the VRML code. Another
function unfortunately is useful :

vrml_kill ().
This kills the current browser. Unfortunately, the browser sometimes hangs and it

is on that occasion that this function is useful.

Functions for building objects from scratch We now describe some functions
that create VRML objects, starting by those used in the first example, Figure 1
(left). The displayed scene consists of four elements :

1. A surface, obtained with the vrml_surf () command, which is the object of
interest.

2. A reference frame, obtained with the vrml_frame () command, which indi-
cates the orientation in which the data considered.

3. Some lights , obtained with the vrml_PointLight () command, in order to
light the scene.

4. A background, obtained with the vrm1l_Background () command, to specify
the grayish-blue color, rather than the browser’s default black.

We now describe each function in turn :
s = vrml_surf (z,...) or

vrml_surf (x,y,z,...) returns a VRML representation of a surface com-
posed of triangular facets whose vertices. The arguments are

0]
1]

z Matrix of dimension R x C' representing the height of the
vertices.
X Matrix with dimensions R x C' or vector of length C', con-

taining the abscissa of the vertices. If omitted, the value
linspace (-1,1,C) is assumed.

y Matrix with dimensions R x C' or vector of length R, con-
taining the ordinate of the vertices. If omitted, the value
linspace (-1,1,R) is assumed.

extra options can be passed as a key-value pair :

"tran", tran Transparency of the surface : tran should be a number
between 0 and 1.

"col", col Color of the surface. The effect of this option depends
on the size of col :

3x1 The RGB color of the surface is uniform and
specified by col.

3x RC The RGB color of vertex (i,j) of the surface
is specified by col(:,i+R*j) and the color
changes smoothly from vertex to vertex.

3x (R—-1)(C —1) The RGB color of face (i,j) (1 <
1< R-—1,1<j < C—1) is specified by
col(:,i+(R-1)*j) and the color change be-
tween faces is crisp.

"checker", sz Colors the surface as a checker. If sz is positive, it is
the number of and columns of the checker. If negative, it
is the opposite of the number of facets per square of the
checker. Moreover, sz may have length two, in which case
the number of rows and columns are defined separately.
If the "col" option is used, the first 6 elements (or 2) are
the RGB (greylevel) components of the color of the squares.
Figure 2, left. Shows the effect of this option.

The options "col" and "checker" can be passed to the vmesh func-
tion too. Other options are documented by doing help vrml_surf.
For building more 3D surfaces consisting of facets, see the function
vrml_faces ().

s = vrml_frame (pos, rot, ...) returns a VRML representation of a XYZ
frame.

pos 3x1is the position of the frame. If not provided, [000] is assumed
and a NaN is ignored.

rot 3 x 1 orientation of the frame. Default is [000] and a NaN is
ignored.

Translations -or positions- will always be represented by a vector of 3 elements.
Orientations -or rotations- are also represented by a 3-element vector whose
direction defines the axis of the rotation and whose norm (as returned by
norm(rot)) defines the angle, in radians.

Extra options can be passed as a key-value pair :

"col", col 1 x 3or3 x 3 : RGB color of the frame, or of each branch
(stacked vertically). Default is [0.30.40.9].

Figure 2: Left: A checkered surface obtained by the variant of Listing 1.
Middle: An XYZ frame with axes colored red, blue and green, obtained by
running Listing 3.

Right: A set of points connected by black and white cylinders and the same
set of points, scaled down by half along the Y and Z axes (Listing 4).

"hcol", col 1x3o0r3x3 : RGB color of the heads of the arrows that com-
pose the frame, or of each branch (stacked vertically). Default is
[0.30.40.9].

"scale", scl 1 x lorl x 3 : Length of the branches of the frame, or of
each branch individually. Default is 1.

s = vrml_PointLight (...) and

vrml_Background (...) are low level functions that return simple VRML
objects (“nodes”, in VRML lingo). All the VRML characteristics (“fields”) can
be set by using key-value pairs. We describe some of the options that can
be passed to vrml_Background(); the others are displayed by doing help
vrml_Background().

0
1]

"skyColor", RGB 3 x 1 and

"groundColor", RGB 3 x 1 specify the RGB color of the sky and ground,
respectively.

The following listing and Figure 2, middle, show an example of the usage of
vrml_frame(), vrml_Background(), and vrml_browse().

Listing 3

s1

vrml_frame ("scale",[1 2 3],"col",eye (3), "hcol",0.5%[1 1 1]);

s2 = vrml_Background ("skyColor",[3 3 9]/10,"groundColor",[3 8 3]/10);

vrml_browse ([s1,s2]);

We now describe the function

s = vrml_cyl (x,...) that returns VRML code representing 3D line segments
(in fact, cylinders) whose extremities are [x(:,i) ,x(:,i+1)], foriin{1,.., N}
(x is a a 3 x N matrix). Amongst other things, the radius, color and trans-
parency can be set. Also, spheres centered at each x(:,i) can be added,
and an arrow can be used to indicate the last segment. The corresponding
options are :

"rad", rad The radius of the cylinders linking each pair of consecutive
points.

"col", col 3 x 1or3x N The RGB color(s) of the cylinders.
"tran", col The transparency of the cylinders.
"balls" Add a spheres around each x(:,1).

"arrow" Represent the last segment as an arrow.

Positioning, orienting and scaling objects Finally, we present a function that
allows to translate, rotate and scale an arbitrary VRML object and is useful for
composing 3D setups consisting of many object.

s = vrml_transfo (str,pos,rot,scale) translates, rotates and scales the ob-
ject defined in the string str. The arguments pos and rot represent a
translation and rotation respectively, just as in the vrml_frame () function.
If scale is a scalar, the object str will be scaled by that amount, while if
scale is a 3 x 1 vector, it represents the scaling of the X, Y and Z axes
independently.

Listing 4 below and Figure 2 (right) illustrate how the two functions introduced
above can be used.

Listing 4

x = linspace (0,4%pi,50);
Points on a helix

xx1 = [x/6; sin (x); cos (x)];

Linked by segments
vrml_cyl (xx1, "col",kron (omnes (3,25),[0.7 0.3]1));

Scaled and represented by spheres
s2 = vrml_points (xx1,"balls");
s2 = vrml_transfo (s2,nan,[pi/2,0,0],[1 0.5 0.5]);
s3 = vrml_Background ("skyColor",[0 O 1]);
vrml_browse ([s1, s2, s3]);

s1

3 Summary and future plans

We have just passed in review the most important aspects of the VRML toolbox.
Its main utility is to examine surfaces and moderately sized sets of points, but it
can also be used to build and assemble more general 3D objects.

The presented functionality is adapted to my personal needs; if you think of
some improvements, please send your suggestions (and perhaps patches) to the
mailing list octave-dev@lists.sourceforge.net. In the future, | will focus on
making more concise VRML code and articulating better the library around that
language.

