
Mini-HOWTO on using O
tave for Un
onstrainedNonlinear Optimization∗
Nonlinear optimization problems are very 
ommon and when a solution 
annotbe found analyti
ally, one usually tries to �nd it numeri
ally. This do
ument showshow to perform un
onstrained nonlinear minimization using the O
tave languagefor numeri
al 
omputation. We assume to be so lu
ky as to have an initial guessfrom whi
h to start an iterative method, and so impatient as to avoid as mu
has possible going into the details of the algorithm. In the following examples, we
onsider multivariable problems, but the single variable 
ase is solved in exa
tly thesame way.All the algorithms used below return numeri
al approximations of lo
al minimaof the optimized fun
tion. In the following examples, we minimize a fun
tion witha single minimum (Figure 1), whi
h is relatively easily found. In pra
ti
e, su

essof optimization algorithms greatly depend on the optimized fun
tion and on thestarting point.A simple exampleWe will use a 
all of the type[x_best, best_value, niter℄ = minimize (fun
, x_init)to �nd the minimum of

f : (x1, .x2, x3) ∈ R
3

−→ (x1 − 1)
2
/9 + (x3 − 1)

2
/9 + (x3 − 1)

2
/9

− cos (x1 − 1) − cos (x2 − 1) − cos (x3 − 1) .The following 
ommands should �nd a lo
al minimum of f(), using the Nelder-Mead (aka �downhill simplex�) algorithm and starting from a randomly 
hosen pointx0 :
∗Author : Etienne Grossmann <etienne�isr.ist.utl.pt> (soon repla
ed by �O
tave-Forgedevelopers�?). This do
ument is free do
umentation; you 
an redistribute it and/or modify itunder the terms of the GNU Free Do
umentation Li
ense as published by the Free SoftwareFoundation.. This is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-ULAR PURPOSE. 1



Figure 1: 2D and 1D sli
es of the fun
tion that is minimized throughout thistutorial. Although not obvious at �rst sight, it has a unique minimum.fun
tion 
ost = foo (xx)xx--;
ost = sum (-
os(xx)+xx.^2/9);endfun
tionx0 = [-1, 3, -2℄;[x,v,n℄ = minimize ("foo", x0)The output should look like :x =1.00000 1.00000 1.00000v = -3.0000n = 248This means that a minimum has been found in (1, 1, 1) and that the value at thatpoint is −3. This is 
orre
t, sin
e all the points of the form x1 = 1 + 2iπ, x2 =
1+2jπ, x3 = 1+2kπ, for some i, j, k ∈ N, minimize f(). The number of fun
tionevaluations, 248, is also returned. Note that this number depends on the startingpoint. You will most likely obtain di�erent numbers if you 
hange x0.The Nelder-Mead algorithm is quite robust, but unfortunately it is not verye�
ient. For high-dimensional problems, its exe
ution time may be
ome prohibitive.Using the �rst di�erentialFortunately, when a fun
tion, like f() above, is di�erentiable, more e�
ient opti-mization algorithms 
an be used. If minimize() is given the di�erential of theoptimized fun
tion, using the "df" option, it will use a 
onjugate gradient method.## Fun
tion returning partial derivativesfun
tion d
 = diffoo (x)x = x(:)' - 1;d
 = sin (x) + 2*x/9; 2



endfun
tion[x, v, n℄ = minimize ("foo", x0, "df", "diffoo")This produ
es the output :x =1.00000 1.00000 1.00000v = -3n =108 6The same minimum has been found, but only 108 fun
tion evaluations were needed,together with 6 evaluations of the di�erential. Here, diffoo() takes the sameargument as foo() and returns the partial derivatives of f() with respe
t to the
orresponding variables. It doesn't matter if it returns a row or 
olumn ve
tor ora matrix, as long as the ith element of diffoo(x) is the partial derivative of f()with respe
t to xi .Using numeri
al approximations of the �rst di�er-entialSometimes, the minimized fun
tion is di�erentiable, but a
tually writing down itsdi�erential is more work than one would like. Numeri
al di�erentiation o�ers asolution whi
h is less e�
ient in terms of 
omputation 
ost, but easy to implement.The "ndiff" option of minimize() uses numeri
al di�erentiation to exe
ute ex-a
tly the same algorithm as in the previous example. However, be
ause numeri
alapproximation of the di�erentia is used, the outpud may di�er slightly :[x, v, n℄ = minimize ("foo", x0, "ndiff")wi
h yields :x =1.00000 1.00000 1.00000v = -3n =78 6Note that ea
h time the di�erential is numeri
ally approximated, foo() is 
alled 6times (twi
e per input element), so that foo() is evaluated a total of (78+6*6=)114 times in this example.Using the �rst and se
ond di�erentialsWhen the fun
tion is twi
e di�erentiable and one knows how to 
ompute its �rstand se
ond di�erentials, still more e�
ient algorithms 
an be used (in our 
ase, a3



variant of Levenberg-Marquardt). The option "d2f" allows to spe
ify a fun
tionthat returns the value of the fun
tion, the �rst and se
ond di�erentials of theminimized fun
tion. Entering the 
ommands :fun
tion [
, d
, d2
℄ = d2foo (x)
 = foo(x);d
 = diffoo(x);d2
 = diag (
os (x(:)-1) + 2/9);end[x,v,n℄ = minimize ("foo", x0, "d2f", "d2foo")produ
es the output :x =1.0000 1.0000 1.0000v = -3n =34 5This time, 34 fun
tion evaluations, and 5 evaluations of d2foo() were needed.SummaryWe have just seen the most basi
 ways of solving nonlinear un
onstrained opti-mization problems. The online help system of O
tave (try e.g. �help minimize�)will yield information on other issues, su
h as passing extra arguments to the min-imized fun
tion, 
ontroling the termination of the optimization pro
ess, 
hoosingthe algorithm et
.

4


