Point Cloud Library (PCL)
1.3.1
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2009-2010, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of Willow Garage, Inc. nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 * 00034 * $Id: sac_model_normal_plane.hpp 2328 2011-08-31 08:11:00Z rusu $ 00035 * 00036 */ 00037 00038 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_NORMAL_PLANE_H_ 00039 #define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_NORMAL_PLANE_H_ 00040 00041 #include "pcl/sample_consensus/sac_model_normal_plane.h" 00042 00044 template <typename PointT, typename PointNT> void 00045 pcl::SampleConsensusModelNormalPlane<PointT, PointNT>::selectWithinDistance ( 00046 const Eigen::VectorXf &model_coefficients, const double threshold, std::vector<int> &inliers) 00047 { 00048 if (!normals_) 00049 { 00050 PCL_ERROR ("[pcl::SampleConsensusModelNormalPlane::selectWithinDistance] No input dataset containing normals was given!\n"); 00051 inliers.clear (); 00052 return; 00053 } 00054 00055 // Check if the model is valid given the user constraints 00056 if (!isModelValid (model_coefficients)) 00057 { 00058 inliers.clear (); 00059 return; 00060 } 00061 00062 // Obtain the plane normal 00063 Eigen::Vector4f coeff = model_coefficients; 00064 coeff[3] = 0; 00065 00066 int nr_p = 0; 00067 inliers.resize (indices_->size ()); 00068 // Iterate through the 3d points and calculate the distances from them to the plane 00069 for (size_t i = 0; i < indices_->size (); ++i) 00070 { 00071 // Calculate the distance from the point to the plane normal as the dot product 00072 // D = (P-A).N/|N| 00073 Eigen::Vector4f p (input_->points[(*indices_)[i]].x, input_->points[(*indices_)[i]].y, input_->points[(*indices_)[i]].z, 0); 00074 Eigen::Vector4f n (normals_->points[(*indices_)[i]].normal[0], normals_->points[(*indices_)[i]].normal[1], normals_->points[(*indices_)[i]].normal[2], 0); 00075 double d_euclid = fabs (coeff.dot (p) + model_coefficients[3]); 00076 00077 // Calculate the angular distance between the point normal and the plane normal 00078 double d_normal = fabs (getAngle3D (n, coeff)); 00079 d_normal = (std::min) (d_normal, M_PI - d_normal); 00080 00081 if (fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * d_euclid) < threshold) 00082 { 00083 // Returns the indices of the points whose distances are smaller than the threshold 00084 inliers[nr_p] = (*indices_)[i]; 00085 nr_p++; 00086 } 00087 } 00088 inliers.resize (nr_p); 00089 } 00090 00092 template <typename PointT, typename PointNT> int 00093 pcl::SampleConsensusModelNormalPlane<PointT, PointNT>::countWithinDistance ( 00094 const Eigen::VectorXf &model_coefficients, const double threshold) 00095 { 00096 if (!normals_) 00097 { 00098 PCL_ERROR ("[pcl::SampleConsensusModelNormalPlane::countWithinDistance] No input dataset containing normals was given!\n"); 00099 return (0); 00100 } 00101 00102 // Check if the model is valid given the user constraints 00103 if (!isModelValid (model_coefficients)) 00104 return (0); 00105 00106 // Obtain the plane normal 00107 Eigen::Vector4f coeff = model_coefficients; 00108 coeff[3] = 0; 00109 00110 int nr_p = 0; 00111 00112 // Iterate through the 3d points and calculate the distances from them to the plane 00113 for (size_t i = 0; i < indices_->size (); ++i) 00114 { 00115 // Calculate the distance from the point to the plane normal as the dot product 00116 // D = (P-A).N/|N| 00117 Eigen::Vector4f p (input_->points[(*indices_)[i]].x, input_->points[(*indices_)[i]].y, input_->points[(*indices_)[i]].z, 0); 00118 Eigen::Vector4f n (normals_->points[(*indices_)[i]].normal[0], normals_->points[(*indices_)[i]].normal[1], normals_->points[(*indices_)[i]].normal[2], 0); 00119 double d_euclid = fabs (coeff.dot (p) + model_coefficients[3]); 00120 00121 // Calculate the angular distance between the point normal and the plane normal 00122 double d_normal = fabs (getAngle3D (n, coeff)); 00123 d_normal = (std::min) (d_normal, M_PI - d_normal); 00124 00125 if (fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * d_euclid) < threshold) 00126 nr_p++; 00127 } 00128 return (nr_p); 00129 } 00130 00132 template <typename PointT, typename PointNT> void 00133 pcl::SampleConsensusModelNormalPlane<PointT, PointNT>::getDistancesToModel ( 00134 const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) 00135 { 00136 if (!normals_) 00137 { 00138 PCL_ERROR ("[pcl::SampleConsensusModelNormalPlane::getDistancesToModel] No input dataset containing normals was given!\n"); 00139 return; 00140 } 00141 00142 // Check if the model is valid given the user constraints 00143 if (!isModelValid (model_coefficients)) 00144 { 00145 distances.clear (); 00146 return; 00147 } 00148 00149 // Obtain the plane normal 00150 Eigen::Vector4f coeff = model_coefficients; 00151 coeff[3] = 0; 00152 00153 distances.resize (indices_->size ()); 00154 00155 // Iterate through the 3d points and calculate the distances from them to the plane 00156 for (size_t i = 0; i < indices_->size (); ++i) 00157 { 00158 // Calculate the distance from the point to the plane normal as the dot product 00159 // D = (P-A).N/|N| 00160 Eigen::Vector4f p (input_->points[(*indices_)[i]].x, input_->points[(*indices_)[i]].y, input_->points[(*indices_)[i]].z, 0); 00161 Eigen::Vector4f n (normals_->points[(*indices_)[i]].normal[0], normals_->points[(*indices_)[i]].normal[1], normals_->points[(*indices_)[i]].normal[2], 0); 00162 double d_euclid = fabs (coeff.dot (p) + model_coefficients[3]); 00163 00164 // Calculate the angular distance between the point normal and the plane normal 00165 double d_normal = fabs (getAngle3D (n, coeff)); 00166 d_normal = (std::min) (d_normal, M_PI - d_normal); 00167 00168 distances[i] = fabs (normal_distance_weight_ * d_normal + (1 - normal_distance_weight_) * d_euclid); 00169 } 00170 } 00171 00173 template <typename PointT, typename PointNT> bool 00174 pcl::SampleConsensusModelNormalPlane<PointT, PointNT>::isModelValid (const Eigen::VectorXf &model_coefficients) 00175 { 00176 // Needs a valid model coefficients 00177 if (model_coefficients.size () != 4) 00178 { 00179 PCL_ERROR ("[pcl::SampleConsensusModelNormalPlane::selectWithinDistance] Invalid number of model coefficients given (%lu)!\n", (unsigned long)model_coefficients.size ()); 00180 return (false); 00181 } 00182 00183 return (true); 00184 } 00185 00186 #define PCL_INSTANTIATE_SampleConsensusModelNormalPlane(PointT, PointNT) template class PCL_EXPORTS pcl::SampleConsensusModelNormalPlane<PointT, PointNT>; 00187 00188 #endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_NORMAL_PLANE_H_ 00189