Point Cloud Library (PCL)
1.3.1
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2010, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of Willow Garage, Inc. nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR a PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 * 00034 */ 00035 00036 #include <pcl/pcl_macros.h> 00037 #include <pcl/win32_macros.h> 00038 00039 void pcl::getTransFromUnitVectorsZY(const Eigen::Vector3f& z_axis, const Eigen::Vector3f& y_direction, Eigen::Affine3f& transformation) 00040 { 00041 Eigen::Vector3f tmp0 = (y_direction.cross(z_axis)).normalized(); 00042 Eigen::Vector3f tmp1 = (z_axis.cross(tmp0)).normalized(); 00043 Eigen::Vector3f tmp2 = z_axis.normalized(); 00044 00045 transformation(0,0)=tmp0[0]; transformation(0,1)=tmp0[1]; transformation(0,2)=tmp0[2]; transformation(0,3)=0.0f; 00046 transformation(1,0)=tmp1[0]; transformation(1,1)=tmp1[1]; transformation(1,2)=tmp1[2]; transformation(1,3)=0.0f; 00047 transformation(2,0)=tmp2[0]; transformation(2,1)=tmp2[1]; transformation(2,2)=tmp2[2]; transformation(2,3)=0.0f; 00048 transformation(3,0)=0.0f; transformation(3,1)=0.0f; transformation(3,2)=0.0f; transformation(3,3)=1.0f; 00049 } 00050 00051 Eigen::Affine3f pcl::getTransFromUnitVectorsZY(const Eigen::Vector3f& z_axis, const Eigen::Vector3f& y_direction) 00052 { 00053 Eigen::Affine3f transformation; 00054 getTransFromUnitVectorsZY(z_axis, y_direction, transformation); 00055 return transformation; 00056 } 00057 00058 void pcl::getTransFromUnitVectorsXY(const Eigen::Vector3f& x_axis, const Eigen::Vector3f& y_direction, Eigen::Affine3f& transformation) 00059 { 00060 Eigen::Vector3f tmp2 = (x_axis.cross(y_direction)).normalized(); 00061 Eigen::Vector3f tmp1 = (tmp2.cross(x_axis)).normalized(); 00062 Eigen::Vector3f tmp0 = x_axis.normalized(); 00063 00064 transformation(0,0)=tmp0[0]; transformation(0,1)=tmp0[1]; transformation(0,2)=tmp0[2]; transformation(0,3)=0.0f; 00065 transformation(1,0)=tmp1[0]; transformation(1,1)=tmp1[1]; transformation(1,2)=tmp1[2]; transformation(1,3)=0.0f; 00066 transformation(2,0)=tmp2[0]; transformation(2,1)=tmp2[1]; transformation(2,2)=tmp2[2]; transformation(2,3)=0.0f; 00067 transformation(3,0)=0.0f; transformation(3,1)=0.0f; transformation(3,2)=0.0f; transformation(3,3)=1.0f; 00068 } 00069 00070 Eigen::Affine3f pcl::getTransFromUnitVectorsXY(const Eigen::Vector3f& x_axis, const Eigen::Vector3f& y_direction) 00071 { 00072 Eigen::Affine3f transformation; 00073 getTransFromUnitVectorsXY(x_axis, y_direction, transformation); 00074 return transformation; 00075 } 00076 00077 void pcl::getTransformationFromTwoUnitVectors(const Eigen::Vector3f& y_direction, const Eigen::Vector3f& z_axis, Eigen::Affine3f& transformation) 00078 { 00079 getTransFromUnitVectorsZY(z_axis, y_direction, transformation); 00080 } 00081 00082 Eigen::Affine3f pcl::getTransformationFromTwoUnitVectors(const Eigen::Vector3f& y_direction, const Eigen::Vector3f& z_axis) 00083 { 00084 Eigen::Affine3f transformation; 00085 getTransformationFromTwoUnitVectors(y_direction, z_axis, transformation); 00086 return transformation; 00087 } 00088 00089 void pcl::getTransformationFromTwoUnitVectorsAndOrigin(const Eigen::Vector3f& y_direction, const Eigen::Vector3f& z_axis, 00090 const Eigen::Vector3f& origin, Eigen::Affine3f& transformation) 00091 { 00092 getTransformationFromTwoUnitVectors(y_direction, z_axis, transformation); 00093 Eigen::Vector3f translation = transformation*origin; 00094 transformation(0,3)=-translation[0]; transformation(1,3)=-translation[1]; transformation(2,3)=-translation[2]; 00095 } 00096 00097 void pcl::getTranslationAndEulerAngles(const Eigen::Affine3f& t, float& x, float& y, float& z, float& roll, float& pitch, float& yaw) 00098 { 00099 x = t(0,3); 00100 y = t(1,3); 00101 z = t(2,3); 00102 roll = atan2f(t(2,1), t(2,2)); 00103 pitch = asinf(-t(2,0)); 00104 yaw = atan2f(t(1,0), t(0,0)); 00105 } 00106 00107 void pcl::getTransformation(float x, float y, float z, float roll, float pitch, float yaw, Eigen::Affine3f& t) 00108 { 00109 float A=cosf(yaw), B=sinf(yaw), C=cosf(pitch), D=sinf(pitch), 00110 E=cosf(roll), F=sinf(roll), DE=D*E, DF=D*F; 00111 t(0,0) = A*C; t(0,1) = A*DF - B*E; t(0,2) = B*F + A*DE; t(0,3) = x; 00112 t(1,0) = B*C; t(1,1) = A*E + B*DF; t(1,2) = B*DE - A*F; t(1,3) = y; 00113 t(2,0) = -D; t(2,1) = C*F; t(2,2) = C*E; t(2,3) = z; 00114 t(3,0) = 0; t(3,1) = 0; t(3,2) = 0; t(3,3) = 1; 00115 } 00116 00117 Eigen::Affine3f pcl::getTransformation(float x, float y, float z, float roll, float pitch, float yaw) 00118 { 00119 Eigen::Affine3f t; 00120 getTransformation(x, y, z, roll, pitch, yaw, t); 00121 return t; 00122 } 00123 00124 template <typename Derived> 00125 void pcl::saveBinary(const Eigen::MatrixBase<Derived>& matrix, std::ostream& file) 00126 { 00127 uint32_t rows=matrix.rows(), cols=matrix.cols(); 00128 file.write((char*) &rows, sizeof(rows)); 00129 file.write((char*) &cols, sizeof(cols)); 00130 for (uint32_t i=0; i<rows; ++i) 00131 for (uint32_t j=0; j<cols; ++j) 00132 { 00133 typename Derived::Scalar tmp = matrix(i,j); 00134 file.write((char*) &tmp, sizeof(tmp)); 00135 } 00136 } 00137 00138 template <typename Derived> 00139 void pcl::loadBinary(Eigen::MatrixBase<Derived>& matrix, std::istream& file) 00140 { 00141 uint32_t rows, cols; 00142 file.read((char*) &rows, sizeof(rows)); 00143 file.read((char*) &cols, sizeof(cols)); 00144 //std::cout << rows <<" rows and "<<cols<<" cols.\n"; 00145 if (matrix.rows()!=(int)rows || matrix.cols()!=(int)cols) 00146 { 00147 //std::cerr << __PRETTY_FUNCTION__ << ": matrix size does not fit!\n"; 00148 matrix.resize(rows, cols); 00149 } 00150 00151 for (uint32_t i=0; i<rows; ++i) 00152 for (uint32_t j=0; j<cols; ++j) 00153 { 00154 typename Derived::Scalar tmp; 00155 file.read((char*) &tmp, sizeof(tmp)); 00156 matrix(i,j) = tmp; 00157 } 00158 }