FPFHEstimation estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals.
More...
#include <pcl/features/fpfh.h>
List of all members.
Public Types |
typedef Feature< PointInT,
PointOutT >::PointCloudOut | PointCloudOut |
typedef pcl::PointCloud< PointNT > | PointCloudN |
typedef PointCloudN::Ptr | PointCloudNPtr |
typedef PointCloudN::ConstPtr | PointCloudNConstPtr |
typedef boost::shared_ptr
< FeatureFromNormals< PointInT,
PointNT, PointOutT > > | Ptr |
typedef boost::shared_ptr
< const FeatureFromNormals
< PointInT, PointNT, PointOutT > > | ConstPtr |
Public Member Functions |
| FPFHEstimation () |
| Empty constructor.
|
bool | computePairFeatures (const pcl::PointCloud< PointInT > &cloud, const pcl::PointCloud< PointNT > &normals, int p_idx, int q_idx, float &f1, float &f2, float &f3, float &f4) |
| Compute the 4-tuple representation containing the three angles and one distance between two points represented by Cartesian coordinates and normals.
|
void | computePointSPFHSignature (const pcl::PointCloud< PointInT > &cloud, const pcl::PointCloud< PointNT > &normals, int p_idx, int row, const std::vector< int > &indices, Eigen::MatrixXf &hist_f1, Eigen::MatrixXf &hist_f2, Eigen::MatrixXf &hist_f3) |
| Estimate the SPFH (Simple Point Feature Histograms) individual signatures of the three angular (f1, f2, f3) features for a given point based on its spatial neighborhood of 3D points with normals.
|
void | weightPointSPFHSignature (const Eigen::MatrixXf &hist_f1, const Eigen::MatrixXf &hist_f2, const Eigen::MatrixXf &hist_f3, const std::vector< int > &indices, const std::vector< float > &dists, Eigen::VectorXf &fpfh_histogram) |
| Weight the SPFH (Simple Point Feature Histograms) individual histograms to create the final FPFH (Fast Point Feature Histogram) for a given point based on its 3D spatial neighborhood.
|
void | setNrSubdivisions (int nr_bins_f1, int nr_bins_f2, int nr_bins_f3) |
| Set the number of subdivisions for each angular feature interval.
|
void | getNrSubdivisions (int &nr_bins_f1, int &nr_bins_f2, int &nr_bins_f3) |
| Get the number of subdivisions for each angular feature interval.
|
void | setInputNormals (const PointCloudNConstPtr &normals) |
| Provide a pointer to the input dataset that contains the point normals of the XYZ dataset.
|
PointCloudNConstPtr | getInputNormals () |
| Get a pointer to the normals of the input XYZ point cloud dataset.
|
Detailed Description
FPFHEstimation estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals.
- Note:
- If you use this code in any academic work, please cite:
-
R.B. Rusu, N. Blodow, M. Beetz. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12-17 2009.
-
R.B. Rusu, A. Holzbach, N. Blodow, M. Beetz. Fast Geometric Point Labeling using Conditional Random Fields. In Proceedings of the 22nd IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA, October 11-15 2009.
- Note:
- The code is stateful as we do not expect this class to be multicore parallelized. Please look at FPFHEstimationOMP for examples on parallel implementations of the FPFH (Fast Point Feature Histogram).
- Author:
- Radu Bogdan Rusu
Member Typedef Documentation
Constructor & Destructor Documentation
pcl::FPFHEstimation::FPFHEstimation |
( |
| ) |
[inline] |
Empty constructor.
Definition at line 86 of file fpfh.h.
Member Function Documentation
bool pcl::FPFHEstimation::computePairFeatures |
( |
const pcl::PointCloud< PointInT > & |
cloud, |
|
|
const pcl::PointCloud< PointNT > & |
normals, |
|
|
int |
p_idx, |
|
|
int |
q_idx, |
|
|
float & |
f1, |
|
|
float & |
f2, |
|
|
float & |
f3, |
|
|
float & |
f4 |
|
) |
| |
Compute the 4-tuple representation containing the three angles and one distance between two points represented by Cartesian coordinates and normals.
- Note:
- For explanations about the features, please see the literature mentioned above (the order of the features might be different).
- Parameters:
-
cloud | the dataset containing the XYZ Cartesian coordinates of the two points |
normals | the dataset containing the surface normals (assuming normalized vectors) at each point in cloud |
p_idx | the index of the first point (source) |
q_idx | the index of the second point (target) |
f1 | the first angular feature (angle between the projection of nq_idx and u) |
f2 | the second angular feature (angle between nq_idx and v) |
f3 | the third angular feature (angle between np_idx and |p_idx - q_idx|) |
f4 | the distance feature (p_idx - q_idx) |
Definition at line 46 of file fpfh.hpp.
void pcl::FPFHEstimation::computePointSPFHSignature |
( |
const pcl::PointCloud< PointInT > & |
cloud, |
|
|
const pcl::PointCloud< PointNT > & |
normals, |
|
|
int |
p_idx, |
|
|
int |
row, |
|
|
const std::vector< int > & |
indices, |
|
|
Eigen::MatrixXf & |
hist_f1, |
|
|
Eigen::MatrixXf & |
hist_f2, |
|
|
Eigen::MatrixXf & |
hist_f3 |
|
) |
| |
Estimate the SPFH (Simple Point Feature Histograms) individual signatures of the three angular (f1, f2, f3) features for a given point based on its spatial neighborhood of 3D points with normals.
- Parameters:
-
cloud | the dataset containing the XYZ Cartesian coordinates of the two points |
normals | the dataset containing the surface normals at each point in cloud |
p_idx | the index of the query point (source) |
row | the index row in feature histogramms |
indices | the k-neighborhood point indices in the dataset |
hist_f1 | the resultant SPFH histogram for feature f1 |
hist_f2 | the resultant SPFH histogram for feature f2 |
hist_f3 | the resultant SPFH histogram for feature f3 |
Definition at line 59 of file fpfh.hpp.
Get a pointer to the normals of the input XYZ point cloud dataset.
Definition at line 312 of file feature.h.
void pcl::FPFHEstimation::getNrSubdivisions |
( |
int & |
nr_bins_f1, |
|
|
int & |
nr_bins_f2, |
|
|
int & |
nr_bins_f3 |
|
) |
| [inline] |
Get the number of subdivisions for each angular feature interval.
Definition at line 157 of file fpfh.h.
void pcl::FeatureFromNormals::setInputNormals |
( |
const PointCloudNConstPtr & |
normals | ) |
[inline, inherited] |
Provide a pointer to the input dataset that contains the point normals of the XYZ dataset.
In case of search surface is set to be different from the input cloud, normals should correspond to the search surface, not the input cloud!
- Parameters:
-
normals | the const boost shared pointer to a PointCloud of normals. By convention, L2 norm of each normal should be 1. |
Definition at line 308 of file feature.h.
void pcl::FPFHEstimation::setNrSubdivisions |
( |
int |
nr_bins_f1, |
|
|
int |
nr_bins_f2, |
|
|
int |
nr_bins_f3 |
|
) |
| [inline] |
Set the number of subdivisions for each angular feature interval.
- Parameters:
-
nr_bins_f1 | number of subdivisions for the first angular feature |
nr_bins_f2 | number of subdivisions for the second angular feature |
nr_bins_f3 | number of subdivisions for the third angular feature |
Definition at line 148 of file fpfh.h.
void pcl::FPFHEstimation::weightPointSPFHSignature |
( |
const Eigen::MatrixXf & |
hist_f1, |
|
|
const Eigen::MatrixXf & |
hist_f2, |
|
|
const Eigen::MatrixXf & |
hist_f3, |
|
|
const std::vector< int > & |
indices, |
|
|
const std::vector< float > & |
dists, |
|
|
Eigen::VectorXf & |
fpfh_histogram |
|
) |
| |
Weight the SPFH (Simple Point Feature Histograms) individual histograms to create the final FPFH (Fast Point Feature Histogram) for a given point based on its 3D spatial neighborhood.
- Parameters:
-
hist_f1 | the histogram feature vector of f1 values over the given patch |
hist_f2 | the histogram feature vector of f2 values over the given patch |
hist_f3 | the histogram feature vector of f3 values over the given patch |
indices | the point indices of p_idx's k-neighborhood in the point cloud |
dists | the distances from p_idx to all its k-neighbors |
fpfh_histogram | the resultant FPFH histogram representing the feature at the query point |
Definition at line 103 of file fpfh.hpp.
The documentation for this class was generated from the following files:
- /builddir/build/BUILD/PCL-1.3.1-Source/features/include/pcl/features/fpfh.h
- /builddir/build/BUILD/PCL-1.3.1-Source/features/include/pcl/features/impl/fpfh.hpp