Point Cloud Library (PCL)
1.3.1
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2010, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of Willow Garage, Inc. nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 * 00034 * 00035 */ 00036 #ifndef PCL_REGISTRATION_CORRESPONDENCE_REJECTION_DISTANCE_H_ 00037 #define PCL_REGISTRATION_CORRESPONDENCE_REJECTION_DISTANCE_H_ 00038 00039 #include <pcl/registration/correspondence_rejection.h> 00040 #include <pcl/point_cloud.h> 00041 #include <pcl/kdtree/kdtree_flann.h> 00042 00043 namespace pcl 00044 { 00045 namespace registration 00046 { 00059 class CorrespondenceRejectorDistance: public CorrespondenceRejector 00060 { 00061 using CorrespondenceRejector::input_correspondences_; 00062 using CorrespondenceRejector::rejection_name_; 00063 using CorrespondenceRejector::getClassName; 00064 00065 public: 00066 00068 CorrespondenceRejectorDistance () : max_distance_(std::numeric_limits<float>::max ()), 00069 data_container_ () 00070 { 00071 rejection_name_ = "CorrespondenceRejectorDistance"; 00072 } 00073 00078 inline void 00079 getRemainingCorrespondences (const pcl::Correspondences& original_correspondences, 00080 pcl::Correspondences& remaining_correspondences); 00081 00087 virtual inline void 00088 setMaximumDistance (float distance) { max_distance_ = distance * distance; }; 00089 00091 inline float 00092 getMaximumDistance () { return std::sqrt (max_distance_); }; 00093 00098 template <typename PointT> inline void 00099 setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr &cloud) 00100 { 00101 if (!data_container_) 00102 data_container_.reset (new DataContainer<PointT>); 00103 boost::static_pointer_cast<DataContainer<PointT> > (data_container_)->setInputCloud (cloud); 00104 } 00105 00110 template <typename PointT> inline void 00111 setInputTarget (const typename pcl::PointCloud<PointT>::ConstPtr &target) 00112 { 00113 if (!data_container_) 00114 data_container_.reset (new DataContainer<PointT>); 00115 boost::static_pointer_cast<DataContainer<PointT> > (data_container_)->setInputTarget (target); 00116 } 00117 00118 protected: 00119 00120 void 00121 applyRejection (pcl::Correspondences &correspondences); 00122 00126 float max_distance_; 00127 00128 class DataContainerInterface 00129 { 00130 public: 00131 virtual double getCorrespondenceScore (int index) = 0; 00132 virtual double getCorrespondenceScore (const pcl::Correspondence &) = 0; 00133 }; 00134 00135 template <typename PointT> 00136 class DataContainer : public DataContainerInterface 00137 { 00138 typedef typename pcl::PointCloud<PointT>::ConstPtr PointCloudConstPtr; 00139 typedef typename pcl::KdTree<PointT>::Ptr KdTreePtr; 00140 00141 public: 00142 00143 DataContainer () : input_ (), target_ () 00144 { 00145 tree_.reset (new pcl::KdTreeFLANN<PointT>); 00146 } 00147 00148 inline void 00149 setInputCloud (const PointCloudConstPtr &cloud) 00150 { 00151 input_ = cloud; 00152 } 00153 00154 inline void 00155 setInputTarget (const PointCloudConstPtr &target) 00156 { 00157 target_ = target; 00158 tree_->setInputCloud (target_); 00159 } 00160 00161 inline double 00162 getCorrespondenceScore (int index) 00163 { 00164 std::vector<int> indices (1); 00165 std::vector<float> distances (1); 00166 if (tree_->nearestKSearch (input_->points[index], 1, indices, distances)) 00167 { 00168 return (distances[0]); 00169 } 00170 else 00171 return (std::numeric_limits<double>::max ()); 00172 } 00173 00174 inline double 00175 getCorrespondenceScore (const pcl::Correspondence &corr) 00176 { 00177 // Get the source and the target feature from the list 00178 const PointT &src = input_->points[corr.index_query]; 00179 const PointT &tgt = target_->points[corr.index_match]; 00180 00181 return ((src.getVector4fMap () - tgt.getVector4fMap ()).squaredNorm ()); 00182 } 00183 00184 private: 00185 PointCloudConstPtr input_, target_; 00186 KdTreePtr tree_; 00187 }; 00188 00189 typedef boost::shared_ptr<DataContainerInterface> DataContainerPtr; 00190 00191 DataContainerPtr data_container_; 00192 }; 00193 00194 } 00195 } 00196 00197 #include "pcl/registration/impl/correspondence_rejection_distance.hpp" 00198 00199 #endif /* PCL_REGISTRATION_CORRESPONDENCE_REJECTION_DISTANCE_H_ */