| v

ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 6.3
February 19, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

February 19, 2016

1.1 Installing the Binary Release

1 Installation Guide

How to install Erlang/OTP on UNIX or Windows.

1.1 Installing the Binary Release

1.1.1 Windows

Introduction
The system is delivered as a Windows Installer executable. Get it from our download page.
Installation

Theinstallation procedure isis automated. Double-click the . exe fileicon and follow the instructions.

Verification
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.
Expect a command line window to pop up with an output looking something like this:

Erlang/0TP 17 [erts-6.0] [64-bit] [smp:2:2]

Eshell V6.0 (abort with ~G)
1>

« Exit by entering the command hal t () ,

2> halt().

which will close the Erlang/OTP shell.

1.2 Building and Installing Erlang/OTP

1.2.1 Introduction

This document describes how to build and install Erlang/OTP-17. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://lwww.erlang.org
« https://github.com/erlang/otp

1.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

href
href
href

1.2 Building and Installing Erlang/OTP

Warning:

Please have alook at the Known platform issues chapter before you start.

Unpacking
* GNU unzip, or amodern uncompress.
e A TAR program that understands the GNU TAR format for long filenames.

Building

« GNU make

e Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, ¢l ang.
e Pelb

« GNU m -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

e ncurses,terncap,orternlib -- Thedevelopment headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

* sed -- Stream Editor for basic text transformation.

Building in Git

* GNU aut oconf of at least version 2.59. Note that aut oconf isnot needed when building an unmodified
version of the released source.

Buildingon OS X
e Xcode-- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing
« Aninstall program that can take multiple file names.

1.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. Y ou will also find the utilities needed for building the documentation.

Building

e OpenSSL -- The opensourcetoolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require aworking crypto application and will also be skipped if
OpenSSL is missing. The publ i c_key application will available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

* Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface andpartsof i c andor ber . Atleast version 1.5.0 of the JDK isrequired.
Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.5.0.

e X Windows -- Development headers and libraries are needed to build the Erlang/OTP application gs on Unix/
Linux.

« fl ex -- Headersand libraries are needed to build the flex scanner for the megaco application on Unix/Linux.

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

1.2 Building and Installing Erlang/OTP

* wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projects/wxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets'wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.
Building Documentation
e Xxsl tproc -- A commandline XSLT processor.

A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSL T/
xdtproc2.html.

« fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.

1.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released sour ce tar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking
Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.

$ tar -zxf otp src 17.4.tar.gz # Assuming bash/sh

Now change directory into the base directory and set the SERL_TOP variable.

$ cd otp src 17.4
$ export ERL TOP="pwd" # Assuming bash/sh

Configuring

Run the following commands to configure the build:

$./configure [options]

Note:

If you are building Erlang/OTP from git you will need to run . / ot p_bui | d aut oconf to generate the
configure scripts.

By default, Erlang/OTP release will beinstalledin/ usr/ |1 ocal / { bi n, I i b/ er | ang} . If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example, to
install in/ opt/ erl ang/ 17. 4/ {bin, i b/ erl ang}, usethe- - prefi x=/opt/erl ang/ 17. 4 option.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

href
href
href
href
href
href
href
href

1.2 Building and Installing Erlang/OTP

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuming bash/sh

Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
is asubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release tests

This creates an additional folder in $ERL_TOP/ r el ease calledt est s. Now, it'stime to start the smoke test.

$ cd release/tests/test server
$ $ERL TOP/bin/erl -s ts install -s ts smoke test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ t est s/ test _server/i ndex. htm
in your web browser and make sure that there are zero failed test cases.

Note:

Onbuildswithout cr ypt 0, ssl andssh thereisafailed test case for undefined functions. Verify that thefailed
test case log only shows calls to skipped applications.

Installing
You are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation

Make sure you're in the top directory in the source tree.

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

$ cd $ERL_TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need a full Erlang/OTP-17.4 system in the $PATH.

$ export PATH=$ERL TOP/bin:$PATH # Assuming bash/sh

Build the documentation.

$ make docs

Build Issues

We have sometimes experienced problemswith Oracl€'s| ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at

e http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.

How to Install the Documentation
The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

e If you have instaled Erlang/OTP using the i nst al | target, install the documentation using the i nst al | -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing meke install.

$ make install-docs

e Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE ROOT aswhen invoking neke r el ease.

$ make release docs RELEASE ROOT=<release dir>

Accessing the Documentation
After installation you can access the documentation by

* Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er| . Try viewing at the man page for Mnesia

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href

1.2 Building and Installing Erlang/OTP

$ erl -man mnesia

« Browsing the html pagesby loadingthepage/ usr /1 ocal / 1'i b/ er| ang/ doc/ erl ang/ i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

How to Install the Pre-formatted Documentation

Pre-formatted html documentation and man pages can be downloaded from
* http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp html 17.4.tar.gz

Forerl -man <page> towork the Unix manual pages haveto beinstalled in the same way, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp_man_17.4.tar.gz

Where<Rel easeDir > is

e <PrefixDr>/1ib/erlangifyouhaveinstaled Erlang/OTP usingmake i nstall .

* $DESTDI R<PrefixDir>/1ib/erl ang if you haveinstaled Erlang/OTP using meke i nstal |
DESTDI R=<Tnpl nstal | Di r >.

e RELEASE ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

1.2.5 Advanced configuration and build of Erlang/OTP

If youwant totailor your Erlang/OTP build and installation, please read on for detailed information about theindividual
steps.

make and $ERL_TOP

All the makefiles in the entire directory tree use the environment variable ERL_ TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it
will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> make

where <Di r > would be what you find ERL_TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_ TOP/
configure and nmake directly. Building using ot p_bui | d is easier since it involves fewer steps, but the

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

1.2 Building and Installing Erlang/OTP

ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui | d.

Configuring

The configure script is created by the GNU autoconf utility, which checks for system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type ./ configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for al
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
/usr/local/{bin,lib/erlang}.Tokeepthe same structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are;
o --prefix=PATH- Specify installation prefix.
e --{enabl e, di sabl e} -t hreads - Thread support. Thisis enabled by default if possible.

e --{enabl e, di sabl e} - snp- support - SMP support (enabled by default if ausable POSIX thread library
or native Windows threads is found)

e --{enabl e, di sabl e}-kernel - pol | -Kernel poll support (enabled by default if possible)
e --{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

« --{enabl e, di sabl e}-f p- excepti ons - Floating point exceptions (an optimization for floating point
operations). The default differs depending on operating system and hardware platform. Note that by enabling this
you might get a seemingly working system that sometimes fail on floating point operations.

e --enabl e-darw n-uni ver sal - Build universal binaries on darwin i386.
e --enabl e-darw n-64bit - Build 64-bit binaries on darwin

e --enabl e- n64- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc
e --enabl e- nB2- bui | d - Build 32-bit binariesusing the - n82 flagto (g) cc

e --wth-assuned-cache-1ine-si ze=S| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use thisvalue in order to try to
avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false sharing.

e --{with,w thout}-terntap -termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Java compiler to use

e --{with,without}-javac - Java compiler (without implies that the j i nt er f ace application won't be
built)

e --{enabl e, di sabl e} -dynani c-ssl -1i b - Dynamic OpenSSL libraries

e --{enabl e, disabl e}-builtin-zlib -Usethebuilt-in source for zlib.

e --wth-ssl =PATH- Specify location of OpenSSL include and lib

e --{with,wthout}-ssl -OpenSSL (without impliesthat thecr ypt o, ssh, and ssl won't be built)

e ~--with-libatom c_ops=PATH - Use the | i bat om c_ops library for atomic memory accesses. If

conf i gur e should inform you about no native atomic implementation available, you typically want to try using
thel i bat omi c_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops.

e ~--disable-snp-require-native-atom cs - By default confi gur e will fal if an SMP runtime
systemisabout to be built, and no implementation for native atomic memory accesses can befound. If thishappens,
you are encouraged to find a native atomic implementation that can be used, e.g., using | i bat o ¢_ops, but
by passing - - di sabl e- snp-requi re-nati ve-atomn cs you can build using afallback implementation
based on mutexes or spinlocks. Performance of the SMP runtime system will however suffer immensely without
an implementation for native atomic memory accesses.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

href

1.2 Building and Installing Erlang/OTP

e --enable-static-{nifs,drivers} - To alow usage of nifs and drivers on OSs that do not support
dynamic linking of libraries it is possible to statically link nifs and drivers with the main Erlang VM binary.
Thisis done by passing a comma separated list to the archives that you want to staticaly link. e.g. - - enabl e-
static-nifs=/hone/ $USER/ my_ni f. a. The path has to be absolute and the name of the archive has to
bethe sameasthemodule, i.e. my_ni f inthe example above. Thisisalso truefor drivers, but then it isthe driver
name that has to be the same as the filename. You also have to define STATI C_ERLANG { NI F, DRI VER}
when compiling the .o files for the nif/driver. If your nif/driver depends on some other dynamic library, you now
have to link that to the Erlang VM binary. Thisis easily achived by passing LI BS=-1 | i bname to configure.

e --w thout-$app - By default al applicationsin Erlang/OTP will beincluded in arelease. If thisis not wanted
it ispossibleto specify that Erlang/OTP should be compiled without one or more applications, i.e. - - wi t hout -
wx. There is no automatic dependency handling between applications. If you disable an application that another
application depends on, you also have to disable the dependant application.

e ~--enabl e-dirty-schedul ers - Enable the experimental dirty schedulers functionality. Note that the
dirty schedulers functionality is experimental, and not supported. This functionality will be subject to backward
incompatible changes. Note that you should not enable the dirty scheduler functionality on production systems.
It isonly provided for testing.

If you or your system has special regquirements please read the Makef i | e for additiona configuration information.
Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with agcc compatible compiler on 32-bit and 64-bit x86, 32-bit and 64-bit SPARC V9, and 32-bit PowerPC. When
compiling with agcc compatible compiler on other architectures, the VM may be able to make use of native atomic
operations using the __sync_* primitives, but this should only be used as a last resort since this wont give you
optimal performance. When compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory
operations are provided by Windows APIs.

You are recommended to use the native atomic implementation provided by Erlang/OTP, or the APl provided
by Windows. If these do not provide native atomics on your platform, you are recommended to build and
install libatomic_ops before building Erlang/OTP. The |l i bat oni ¢_ops library provides native atomic memory
operations for a variety of platforms and compilers. When building Erlang/OTP you need to inform the build system
of wherethel i bat omi c_ops library isinstalled using the- - wi t h- 1 i bat om ¢_ops=PATH configure switch.

Building

Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num j obs> option.

$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing amake cl ean.

Within Git
When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system, because you need to generate the conf i gur e scripts before you can start building.

Theconfi gur e scripts are generated by invoking . / ot p_bui I d aut oconf inthe $ERL_TOP directory. The
conf i gur e scripts aso have to be regenerated whenaconf i gure. i noracl ocal . n% file has been modified.

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.2 Building and Installing Erlang/OTP

Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you have to run conf i gur e and build again.

Note:

Running. / ot p_bui | d aut oconf isnot needed when building an unmodified version of the released source.

Other useful information can be found at our GitHub wiki:
* http://wiki.github.com/erlang/otp
OSX (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et c/
host conf i g). Otherwise you might experience problems when running distributed systems.

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
fl at _namespace -undefined suppress. Youalsoinclude-f no- common in CFLAGS when compiling.
Use. so asthelibrary suffix.

If you have Xcode 4.3, or later, you will also need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

If you want to build thewx application, you will need to get wxWidgets-3.0 (WxW dget s- 3. 0. 0. tar. bz2 from
http://sour cefor ge.net/pr oj ects'wxwindows/files/3.0.0/) or get it from github with bug fixes:

$ git clone --branch WX 3 0 branch git@github.com:wxWidgets/wxWidgets.git

Be aware that the wxWidgets-3.0 is a new release of wxWidgets, it is not as mature as the old releases and the OS
X port still lags behind the other ports.

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --with-cocoa --prefix=/usr/local

or without support for old versions and with static libs

$./configure --with-cocoa --prefix=/usr/local --with-macosx-version-min=10.9 --disable-shared
$ make

$ sudo make install

$ export PATH=/usr/local/bin:$PATH

Check that you got the correct wx-config

$ which wx-config && wx-config --version-full

Build Erlang/OTP

$ export PATH=/usr/local/bin:$PATH
$ cd $ERL TOP
$./configure

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

href
href

1.2 Building and Installing Erlang/OTP

$ make
$ sudo make install

Pre-built Sour ce Release

Thesourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_bui l d renove_prebuilt fil es fromthe $ERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Warning:

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping
the build.

Doing . / ot p_bui | d save_boot st r ap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing nake cl ean../otp_build save_boot st rap will
be invoked automatically when make is invoked from $ERL_ TOP with either the cl ean target, or the default
target. It is also automatically invoked if . / ot p_bui | d renove_prebuilt _fil es isinvoked.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to $ERL_TOP/ er t s/ emul at or .

In this directory execute:

$ make debug FLAVOR=$FLAVOR

where $FLAVOR is either pl ai n or snp. The flavor options will produce a beam.debug and beam.smp.debug
executable respectively. Thefiles are installed along side with the normal (opt) versionsbeam snp and beam

To start the debug enabled runtime system execute:

$ $ERL TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.

$ make $TYPE FLAVOR=$FLAVOR
where $TYPE is opt , gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

Installing

e Staged install using DESTDIR. You can perform the install phase in atemporary directory and later move the
installation into its correct location by use of the DESTDI R variable:

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.2 Building and Installing Erlang/OTP

$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL_PREFI X has been set, DESTDI Rwill be set to | NSTALL_PREFI X. Note that | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

$./configure --prefix=/opt/local
make
make DESTDIR=/tmp/erlang-build install
cd /tmp/erlang-build/opt/local

gnu-tar is used in this example
tar -zcf /home/me/my-erlang-build.tgz *
su -
Password: **x**
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

A A A A

Install using ther el ease target. Instead of doing make i nstal | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangifyoudotheinstall using make i nstal | .All instalation paths provided in the
confi gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want linksfrom a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

$./configure

$ make

$ make RELEASE ROOT=/home/me/0TP release
$ cd /home/me/0TP

$./Install -minimal /home/me/O0TP

$ mkdir -p /home/me/bin

$ cd /home/me/bin

$ In -s /home/me/0TP/bin/erl erl

$ In -s /home/me/0TP/bin/erlc erlc

$ ln -s /home/me/0TP/bin/escript escript

Thel nst al | script should currently be invoked as follows in the directory where it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

e« -mni nal Createsan instalation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.
e -sasl Createsan installation that also starts up the sas| application.

e -cross For cross compilation. Informsthe install script that it is run on the build machine.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

1.2 Building and Installing Erlang/OTP

e <ERL_ROQOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sas! is passed as argument you will be prompted.

* Testinstall using EXTRA_PREFI X. The content of the EXTRA_PREFI Xvariablewill prefix al installation paths
when doing make i nst al | . Notethat EXTRA_PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA _PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Symbolic Linksin --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ 1 ocal / bi ntoal public Erlang/OTP executablesin/ usr /1 ocal /1i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- pref i x defaultsto - - prefi x. --prefix,
--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconf i gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYML_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.

Running
Using HiPE
HiPE supports the following system configurations:
» Xx86: All 32-bit and 64-bit mode processors should work.
* Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.
NPTL glibcis strongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating

stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

e Solaris: Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requiresaversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

e FreeBSD: FreeBSD 6.1 and 6.2 in 32-bit and 64-bit modes should work.
* OS X/Darwin: Darwin 9.8.0 in 32-bit mode should work.
e PowerPC: All 32-hit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.
e Linux (Yellow Dog) and OS X 10.4 are supported.
e SPARC: All UltraSPARC processors running 32-bit user code should work.
e Solaris9is supported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.
e Linux (Aurora) is supported.
e ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linuxissupported.
HiPE is automatically enabled on the following systems:

e X86 in 32-bit mode: Linux, Solaris, FreeBSD
e X86in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, Mac OSX

e SPARC: Linux

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

ARM: Linux

On other supported systems, see Advanced Configure on how to enable HiPE.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Module, native).

or

1> c(Module, [native|OtherOptions]).

Using the erlc program, write like this

$ erlc +native Module.erl

The native code will be placed into the beam file and automatically loaded when the beam file is |oaded.

To add hipe options, write like this from the Erlang shell:

1> c(Module, [native,{hipe,HipeOptions}|MoreOptions]).

Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hipe:help options().

Running with GS
The gs application requires the GUI toolkit Tcl/Tk to run. At least version 8.4 is required.

1.2.6 Known platform issues

Suselinux 9.1 isshipped with apatched GCC version 3.3.3, havingtherpmnamedgcc- 3. 3. 3- 41. That version
has a serious optimization bug that makes it unusable for building the Erlang emulator. Please upgrade GCC to a
newer version before building on Suse 9.1. Suse Linux Enterprise edition 9 (SLES9) hasgcc- 3. 3. 3-43 and
is not affected.

gcc- 4. 3. 0 has a serious optimizer bug. It produces an Erlang emulator that will crash immediately. The bug
issupposed to befixedingcc- 4. 3. 1.

FreeBSD had abug which caused kqueue/pol | /sel ect tofail to detect thatawri t ev() onapipe hasbeen
made. This bug should have been fixed in FreeBSD 6.3 and FreeBSD 7.0. NetBSD and DragonFlyBSD probably
have or have had the same bug. More information can be found at:

« http://www.freebsd.org/cgi/cvsweb.cgi/sr c/sys/kern/sys pipe.c
e http://lists.freebsd.or g/piper mail/fr eebsd-ar ch/2007-September /006790.html

get cwd() on Solaris9 can cause an emulator crash. If you have async-threads enabled you can increase the stack
size of the async-threads as a temporary workaround. See the +a command-line argument in the documentation
of er | (1) . Without async-threads the emulator is not as vulnerable to this bug, but if you hit it without async-

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

href
href

1.2 Building and Installing Erlang/OTP

threads the only workaround available isto enable async-threads and increase the stack size of the async-threads.
Oracle has however released patches that fixes the issue:

Problem Description: 6448300 large mnttab can cause stack overrun during Solaris 9 getcwd
More information can be found at:

e https://getupdates.or acle.com/readme/112874-40
* https://getupdates.or acle.com/readme/114432-29

» sed on Solaris seem to have some problems. For example on Solaris 8, the BSD sed and XPG4 sed should be
avoided. Make sure/ bi n/ sed or/ usr/ bi n/ sed isused on the Solaris platform.

1.2.7 Daily Build and Test

e Solaris8,9
e Sparc32
e Sparctd
e Solaris10
e Sparc32
e Sparctd
e Xx86
e SuSE Linux/GNU 9.4, 10.1
e x86
e SUSE Linux/GNU 10.0, 10.1, 11.0
e x86
* x86_64

e openSuSE 11.4 (Celadon)
* x86_64 (vagrind)

 Fedora7
 PowerPC
e Fedoral6
* Xx86 64
e Gentoo Linux/GNU 1.12.11.1
e x86
e Ubuntu Linux/GNU 7.04, 10.04, 10.10, 11.04, 12.04
e X86 64
 MontaVistaLinux/GNU 4.0.1
PowerPC
 FreeBSD 10.0
e Xx86
e OpenBSD 5.4
 x86 64
e 0OSX 10.5.8 (Leopard), 10.7.5 (Lion), 10.9.1 (Mavericks)
e x86
e Windows XP SP3, 2003, Vista, 7
e x86
Windows7

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.3 Cross Compiling Erlang/OTP

*+ x86 64

We aso have the following "Daily Cross Builds":

SUSE Linux/GNU 10.1 x86 -> SuSE Linux/GNU 10.1 x86_64
SUSE Linux/GNU 10.1 x86_64 -> Linux/GNU TILEPro64

and the following "Daily Cross Build Tests':

SUSE Linux/GNU 10.1 x86_64

1.2.8 Authors

Authors are mostly listed in the application's AUTHORS files, that is $ERL_TOP/ | i b/ */ AUTHORS and
$ERL_TOP/ ert s/ AUTHORS, not in the individual sourcefiles.

1.2.9 Copyright and License
Copyright Ericsson AB 1998-2014. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseis distributed on an"ASIS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

1.3 Cross Compiling Erlang/OTP

Table of Contents

Introduction
e otp_build Versus configure/make
e Cross Configuration
* What can be Cross Compiled?
e Compatibility
e Patches
Build and Install Procedure
e Building With configure/make Directly
e Building a Bootstrap System
e CrossBuilding the System
* Installing
e Installing Using Paths Determined by configure
* Installing Manually
e Building With the otp_build Script
Building and Installing the Documentation
Testing the cross compiled system
Currently Used Configuration Variables
* Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Dynamic Erlang Driver Linking
e LargeFile Support

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 15

1.3 Cross Compiling Erlang/OTP

e Other Tools
e Cross System Root Locations
e Optional Feature, and Bug Tests
e Copyright and License

1.3.1 Introduction

This document describes how to cross compile Erlang/OTP-17. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TOP is the
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the SERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
configure and nmake directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d
conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c-ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c-ssl -1 i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui | d. Thedefaultsused by ot p_bui | d confi gur e may change at any time without prior notice.

Cross Configuration

The SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are also listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. 0-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64- saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset al of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except thewx application can be cross compiled. Thebuild of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks example fileis highly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

$ERL_TOP/ xconp/ er | - xconp. conf . t enpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

+ S$ERL_TOP/ xconp/ erl - xconmp-vars. sh
e $ERL TOP/erl-build-tool-vars. sh
e $ERL _TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e S$ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

1.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/HOWTO/INSTALL.md before
proceeding.

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly

D
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL_TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
@

$./configure --enable-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
nmake boot st rap; otherwise, the whole system will be built.

Cross Building the System
(©)

$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

href
href

1.3 Cross Compiling Erlang/OTP

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- CS triplet, but can
be. The full CPU- VENDOR- GS triplet will be created by executing $ERL_TOP/ ert s/ aut oconf/ confi g. sub
<HOST>. If confi g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- OS triplet of the system that you build on. If you execute $SERL_TOP/
ert s/ aut oconf/ confi g. guess, it will in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Note:

You can not pass a configuration file using the - - xconp- conf argument when you invoke conf i gur e
directly. The - - xconp- conf argument can only be passedtoot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. make
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Warning:

Invoking make ERL_XCOMP_FORCE DI FFERENT OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Installing
Y ou can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Deter mined by configure

(4)

$ make install DESTDIR=<TEMPORARY PREFIX>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - -exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /1 ocal . You typically do not want to install your cross build under / usr/

I ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine asit should be executed from on the target machine.

When meke i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that the installation will only beworking on the target machine at the [ocation determined
by confi gure.

Installing Manually
®)

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.3 Cross Compiling Erlang/OTP

$ make release RELEASE ROOT=<RELEASE DIR>

make rel ease will copy what you have built for the target machine to <RELEASE_DI R>. Thel nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /1i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

 -m ni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

* -sasl Createsan installation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.

* <ERL_ROQOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sas! is passed as argument you will be prompted.
Y ou can now either do:

(6)

» Decide where the installation should be located on the target machine, run the | nst al | script on the build
machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DIR>
$./Install -cross [-minimal]|-sasl] <ABSOLUTE INSTALL DIR ON_ TARGET>

or:

()
» Packagetheinstallation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nst al | script on your target machine:

$ cd <ABSOLUTE INSTALL DIR ON_TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE INSTALL DIR ON TARGET>

Building With the otp_build Script
®

$ cd $ERL_TOP

(©)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

1.3 Cross Compiling Erlang/OTP

$./otp build configure --xcomp-conf=<FILE> [Other Config Args]

alternatively:

$./otp build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er| _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUl LD> command line arguments.

ot p_bui I d confi gur e will configureboth for the boostrap system on the build machine and the crosshost system.
(10)

$./otp build boot -a

ot p_buil d boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)
$./otp build release -a <RELEASE DIR>

otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

1.3.3 Building and Installing the Documentation

After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the SERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

1.3.4 Testing the cross compiled system

$ make release tests

or

$./otp build tests

The tests will be released into $ERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto. / ot p_bui | d in (9).

$ cd $ERL TOP/release/tests/test server/

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

$ $ERL _TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}]1)' -s ts compile testcases -s init stop

You should get alot of printouts as the testcases are compiled. Once done you should copy the entire $ERL_TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _server and issue the following command.

$ erl -s ts install -s ts run all tests -s init stop

The configure should be skipped and all tests should hopefully pass. For more details about how to use ts run er |
-s ts help -s init stop

1.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

Note:

These variables currently have no effect if you configure using the conf i gur e script directly.

e erl _xconp_buil d-Thebuild system used. Thisvalue will be passed as- - bui | d=$er| _xconp_bui Il d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_buil d. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/confi g. guess.

e erl_xconmp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconmp_host.

« erl_xconp_configure_ fl ags - Extraconfigure flagsto passto theconf i gur e script.

Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where <HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variablesin this section can also be used when native compiling.
e CC- Ccompiler.

* CFLAGS - C compiler flags.

e STATI C_CFLAGS - Static C compiler flags.

e CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 21

1.3 Cross Compiling Erlang/OTP

CPP - C pre-processor.

CPPFLAGS - C pre-processor flags.
CXX - C++ compiler.

CXXFLAGS - C++ compiler flags.
LD- Linker.

LDFLAGS - Linker flags.

LI BS- Libraries.

Dynamic Erlang Driver Linking

Note:
Either set all or none of the DED_LD* variables.

DED_LD- Linker for Dynamically loaded Erlang Drivers.
DED_LDFLAGS - Linker flags to use with DED_LD.

DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

Large File Support

Note:
Either set all or none of the LFS_* variables.

LFS_CFLAGS - Large file support C compiler flags.
LFS_LDFLAGS - Large file support linker flags.
LFS LI BS- Largefile support libraries.

Other Tools

RANLI B -r anl i b archiveindex tool.
AR - ar archiving tool.

CGETCONF - get conf system configuration inspection tool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

erl _xconp_sysr oot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

erl _xconp_i sysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $er | _xconmp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set these variabl es.

22 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
confi gur e issurethat it cannot figure the result out.

The conf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

 erl_xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

e« erl_xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figure this out automatically.

e erl_xconp_doubl e_niddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian” format. If no, it has"regular" endianness.

e erl_xconmp_clock_gettime_cpu_tine-yes| no. Defaultstono. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

e erl_xconp_getaddrinfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both IPv4 and IPv6.

e erl_xconp_gethrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | ().

« erl_xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
working dl syn{ RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack thermal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

e« erl_xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have aworking kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect (). If no and the
target system has not got epol | () or/ dev/ pol | , the kernel-poll feature will be disabled.

e erl_xcomp_linux_clock _gettine_correction -yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C, _) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

 erl_xconp_linux_nptl -yes|no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

« erl_xconmp_linux_usabl e_sigal t st ack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

« erl_xconp_linux_usabl e_sigusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 23

1.4 How to Build Erlang/OTP on Windows

erl _xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system
must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | () .

erl _xconp_put env_copy - yes| no. Defaultsto no. If yes, the target system must have a put env()
implementation that stores a copy of the key/value pair.

erl _xconp_reliable_fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

erl _xconp_posi x_menal i gn - yes| no. Defaults to yes if posi x_nemal i gn system cal exists;
otherwise no. If yes, thetarget system must haveaposi x_nenal i gn implementation that acceptslarger than
page size alignment.

erl _xconp_ose_| df | ags_pass1 - Linker flags for the OSE module (pass 1)

erl _xconp_ose_| df | ags_pass2 - Linker flags for the OSE module (pass 2)

erl _xconp_ose_ OSEROOT - OSE installation root directory

erl _xconp_ose_STRI P - Strip utility shipped with the OSE distribution

erl _xconp_ose_ LM POST_LI NK- OSE postlink tool

erl _xconp_ose_ LM SET_CONF - Setsthe configuration for an OSE load module

erl _xconp_ose_LM ELF_SI ZE - Prints the section size information for an OSE |oad module
erl _xconp_ose_ LM LCF - OSE load module linker configuration file

erl _xconp_ose_BEAM LM CONF - Beam OSE load module configuration file

erl _xconp_ose EPMD LM CONF - EPMD OSE load module configuration file

erl _xconp_ose_RUN ERL_LM CONF - runerllm OSE load module configuration file

1.3.6 Copyright and License
Copyright Ericsson AB 2009-2014. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseis distributed on an "ASIS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

1.4 How to Build Erlang/OTP on Windows

Table of Contents

Introduction

Frequently Asked Questions

Tools you Need and Their Environment
The Shell Environment

Building and Installing

Devel opment

Using GIT

Final Words

Copyright and License

24 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

1.4.1 Introduction

This file describes how to build the Erlang emulator and the OTP libraries on Windows. The instructions apply to
versions of Windows supporting the Cygwin emul ated gnuish environment for Windows or the Msys ditto. We've built
on the following platforms. Windows 2003 server, Windows XP Home/Professional, Windows Vista and Windows
7 (32 and 64 hit). You can probably build on Windows 2000, but you will not be able to install the latest Microsoft
SDK, so you have to go back to some earlier compiler. Any Windows95'ish platform will surely get you into trouble,
what I'm not sure of, but it certainly will...

The procedure described uses either Cygwin or Msys as a build environment, you run the bash shell in Cygwin/Msys
and use gnu make/configure/autoconf etc to do the build. The emulator C-source code is, however, mostly compiled
with Microsoft Visual C++™, producing a native Windows binary. Thisis the same procedure as we use to build the
pre-built binaries. The fact that we use V C++ and not gcc is explained further in the FAQ section.

| describe the build procedure to make it possible for open source customers to build the emulator, given that they
have the needed tools. The binary Windows releases is still a preferred aternative if one does not have Microsoft's
development tools and/or don't want to install Cygwin or Msys.

To use Cygwin/Msys, one needs basic experience from a Unix environment, if one does not know how to set
environment variables, run programs etc in a Unix environment, one will be quite lost in the Cygwin os Msys ditto.
I can unfortunately not teach all the world how to use Cygwin and bash, neither how to install Cygwin nor perform
basic tasks on a computer. Please refer to other documentation on the net for help, or use the binary release instead
if you have problems using the tools.

However, if you feel comfortable with the environment and build system, and have all the necessary tools, you have
a great opportunity to make the Erlang/OTP distribution for Windows better. Please submit any suggestions and
patches to the appropriate mailing lists to let them find their way into the next version of Erlang. If making changes
to the build system (like makefiles etc) please bear in mind that the same makefiles are used on Unix/VxWorks,
so that your changes don't break other platforms. That of course goes for C-code too, system specific code resides
inthe$ERL_TOP/ ert s/ enul at or/ sys/w n32 and $ERL_TOP/ er t s/ et ¢/ wi n32 directoriesmostly. The
$ERL_TOP/ ert s/ enmul at or / beamdirectory isfor common code.

Before the RIC release of Erlang/OTP, the Windows rel ease was built partly on a Unix (Solaris) box and partly on a
Windows box, using Perl hacks to communicate and sync between the two machines. ROC was the first release ever
built solely on Windows, where no Unix machine is needed at all. Now we've used this build procedure for a couple
of releases, and it has worked fine for us. Still, there might be al sorts of troubles on different machines and with
different setups. I'll try to give hintswherever I've encountered difficulties, but please share your experiences by using
the erlang-questions mailing list. | cannot of course help everyone with all their problems, please try to solve the
problems and submit solutions/workarounds. Remember, it's al about sharing, not about demanding...

Starting with R15B, our build system runs both on Cygwin and Msys (MinGW's fork of an early cygwin version).
Msysis asmaller package to install and may on some machines run dightly faster. If Cygwin gives you trouble, try
Msysinstead, and v.v. Beginning with R15B there is also anative 64bit version of Erlang for 64bit Windows 7 (only).
These instructions apply to both the 32bit VM and the 64bit ditto.

Note that even if you build a 64bit VM, most of the directories and files involved are still named win32. You can
view the name win32 as meaning any windows version not beeing 16bit. A few occurences of the name Win64 are
however present in the system, for example the installation file for a 64 bit windows version of Erlang is by default
named ot p_wi n64_<ver si on>. exe.

Letsgo then, I'll start with alittle FAQ, based on in house questions and misunderstandings.

1.4.2 Frequently Asked Questions
e Q: So, now | can build Erlang using GCC on Windows?

A: No, unfortunately not. You'll need Microsoft's Visual C++ still, a Bourne-shell script (cc.sh) wraps the Visual
C++ compiler and runs it from within the Cygwin environment. All other tools needed to build Erlang are free-

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 25

href
href

1.4 How to Build Erlang/OTP on Windows

ware/open source, but not the C compiler. The Windows SDK is however enough to build Erlang, you do not
need to buy Visua C++, just download the SDK (SDK version 7.1 == Visual studio 2010).

e Q: Why haven't you got rid of VC++ then, you ******?

A: Weéll, partly becauseit's agood compiler - really! Actualy it's been possiblein late R11-rel eases to build using
mingw instead of visual C++ (you might see the remnants of that in some scripts and directories). Unfortunately
the development of the SMP version for Windows broke the mingw build and we chose to focus on the VC++
build as the performance has been much better in the VC++ versions. The mingw build will possibly be back, but
aslong as VC++ gives better performance, the commercial build will be aVC++ one.

* Q:OK,you need VC++, but now you've started to demand avery recent (and expensive) version of Visual studio,
not the old and stable VC++ 6.0 that was used in earlier versions. Why?

A: Wdll, it's not expensive, it's free (as in free beer). Just download and install the latest Windows SDK from
Microsoft and all the tools you need are there. The included debugger (WinDbg) is also quite usable, it's what
| used when porting Erlang to 64bit Windows. Another reason to use the latest Microsoft compilers is DLL
compatibility. DLL'susing anew version of the standard library might not load if the VM is compiled with an old
V C++ version, why we should aim to use the latest freely available SDK and compiler.

e Q: Can/will I build a Cygwin binary with the procedure you describe?

A: No, the result will be a pure Windows binary, and as far as| know, it's not possible to make a Cygwin binary
yet. That is of course something desirable, but there are still some problems with the dynamic linking (dynamic
Erlang driver loading) as well as the TCP/IP emulation in Cygwin, which, I'm sure of, will improve, but still has
some problems. Fixing those problems might be easy or might be hard. | suggest you try yourself and share your
experience. No one would be happier if asimple ./ confi gure && nake would produce a fully fledged
Cygwin binary. Ericsson does however not pay me to do a Cygwin port, so such a port would have to happen in
spare time, which is alimited resource...

e Q: Hah, I saw you, you used GCC even though you said you didn't!

A: OK, | admit, one of the files is compiled using Cygwin's or MinGW's GCC and the resulting object
code is then converted to MS VC++ compatible coff using a small C hack. It's because that particular file,
beam emu. ¢ benefits immensely from being able to use the GCC labels-as-values extension, which boosts
emulator performance by up to 50%. That does unfortunately not (yet) mean that all of OTP could be compiled
using GCC, that particular source code does not do anything system specific and actually is adopted to the fact
that GCC is used to compile it on Windows.

e Q: Sonow there'saMS VC++ project file somewhere and | can build OTP using the nifty VC++ GUI?

A: No, never. The hassle of keeping the project files up to date and do all the steps that constitute an OTP build
from within the VC++ GUI is simply not worth it, maybe even impossible. A VC++ project file for Erlang/OTP
will never happen, at least | will never make one. Clicking around in super-multi-tab'd dialogs to add afile or
compiler option when it's so much easier in amakefile is simply not my style.

e Q: Sohow doesit all work then?

A: Cygwin or Msysisthe environment, which closely resembles the environments found on any Unix machine.
It'salmost like you had avirtual Unix machine inside Windows. Configure, given certain parameters, then creates
makefiles that are used by the Cygwin/Msys gnu-make to built the system. Most of the actual compilers etc
are not, however, Cygwin/Msys tools, so I've written a couple of wrappers (Bourne-shell scripts), which reside
in $ERL_TOP/ et ¢/ wi n32/ cygwi n_t ool s and $ERL_TOP/ et ¢/ Wi n32/ msys_t ool s. They al do
conversion of parameters and switches common in the Unix environment to fit the native Windows tools. Most
notable is of course the paths, which in Cygwin/Msys are Unix-like paths with "forward slashes' (/) and no
drive letters, the Cygwin specific command cygpat h is used for most of the path conversions in a Cygwin
environment, other tools are used (when needed) in the corresponding M sys environment. Luckily most compilers
accept forward slashes instead of backslashes as path separators, but one still have to get the drive letters etc right,
though. The wrapper scripts are not general in the sense that, for example, cc.sh would understand and translates
every possible gec option and passes correct optionsto cl.exe. The principleisthat the scripts are powerful enough

26 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

to alow building of Erlang/OTP, no more, no less. They might need extensions to cope with changes during the
development of Erlang, that's one of the reasons | made them into shell-scripts and not Perl-scripts, | believe they
are easier to understand and change that way. | might be wrong though, cause another reason | didn't write them
in Perl is because I've never liked Perl and my Perl codeis no pleasant reading...

INSERL_TOP, thereisascriptcaledot p_bui | d. That script handlesthe hassle of giving al theright parameters
toconfi gur e/make and aso helpsyou set up the correct environment variablesto work with the Erlang source

under Cygwin.
Q: You use and need Cygwin, but then you haven't taken the time to port Erlang to the Cygwin environment but
instead focus on your commercial release, isthat redly ethical?

A: No, not really, but seethisasastepin theright direction. I'm aiming at GCC compiled emulatorsand a Cygwin
version, but | really need to do other things aswell... In time, but don't hold your breath...
Q: Can | build something that looks exactly as the commercial release?

A: Yes, we use the exactly same build procedure.

Q: Which version of Cygwin/Msys and other tools do you use then?

A: For Cygwin and Msys alike, we try to use the |latest rel eases available when building. What versions you use
shouldn't really matter, | try to include workarounds for the bugs I've found in different Cygwin/Msys rel eases,
please help me add workarounds for new Cygwin/Msys-related bugs as soon as you encounter them. Also please
do submit bug reports to the appropriate Cygwin and/or Msys developers. The GCC we used for 17 was version
4.7.0 (MinGW 64bit) and 4.3.4 (Cygwin 32bit). Weused VC++ 10.0 (i.e. Visual studio 2010), Sun'sJDK 1.5.0 17
(32hit) and Sun's JIDK 1.7.0_1 (64bit), NSIS 2.46, and Win32 OpenSSL 0.9.8r. Please read the next section for
details on what you need.

Q: Canyou help me setup X in Cygwin?

A: No, unfortunately | haven't got time to help with Cygwin related user problems, please read Cygwin related
web sites, newsgroups and mailing lists.

Q: Why istheinstruction so long? Isit really that complicated?

A Partly it'slong because | babbletoo much, partly because I've described asmuch as| could about theinstallation
of the needed tools. Once the tools are installed, building is quite easy. | also have tried to make this instruction
understandable for people with limited Unix experience. Cygwin/Msys is a whole new environment to some
Windows users, why careful explanation of environment variables etc seemed to bein place. The short story, for
the experienced and impatient is:

e Get andinstal complete Cygwin (latest) or complete MinGW with msys

e Instal Microsofts Windows SDK 7.1 (and .Net 4)

e Getandinstal Sun'sJDK 1.5.0 or higher

e Getandinstall NSIS 2.01 or higher (up to 2.46 tried and working)

e Get, build and install OpenSSL 0.9.8r or higher (up to 1.0.0atried & working) with static libs.

* Get the Erlang source distribution (from http://www.er lang.or g/download.html) and unpack with Cygwin's
tar.

e Set ERL_TOP to where you unpacked the source distribution
* $ cd $ERL_TOP

e Get (from http://www.erlang.or g/download/tcltk85 win32_bin.tar.gz) and unpack the prebuilt TCL/TK
binaries for windows with cygwin tar, standing in $ERL_TOP

* Modify PATH and other environment variables so that all these tools are runnable from a bash shell. Still
standing in $ERL_ TOP, issue the following commands:

$ eval "./otp build env win32"

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 27

href
href

1.4 How to Build Erlang/OTP on Windows

$./otp build autoconf

$./otp build configure

$./otp build boot -a

$./otp build release -a

$./otp build installer_win32

$ release/win32/otp_win32_17 /S

Voilal St art->Prograns->Erl ang OTP 17- >Er| ang starts the Erlang Windows shell.

1.4.3 Tools you Need and Their Environment

Y ou need some tools to be able to build Erlang/OTP on Windows. Most notably you'll need Cygwin or Msys and
Microsofts Windows SDK, but you also might want a Java compiler, the NSIS install system and OpenSSL. Well'
here'sthe list:

Cygwin, thevery latest isusually best. Get all the devel opment toolsand of courseal the basic ditto. Infact getting
the complete package might be a good idea, as you'll start to love Cygwin after a while if you're accustomed to
Unix. Make sureto get jar and also make sure not to install a Cygwin'ish Java... The Cygwin jar command is used
but Sun's Java compiler and virtual machine...

If you are going to build a 64bit Windows version, you should make sure to get MinGW's 64bit gcc installed with
cygwin. It'sin one of the development packages.

URL: http://www.cygwin.com

Get the installer from the web site and use that to install Cygwin. Be sure to have fair privileges. If you're on a
NT domain you should consider running nkpasswd - d and mkgr oup - d after the installation to get the user
databases correct. See their respective manual pages.

When you start you first bash shell, you will get an awful prompt. You might also have a PATH environment
variable that contains backslashes and such. Edit $SHOVE/ . pr of i | e and $HOVE/ . bashr ¢ to set fair prompts
and setacorrect PATH. Alsodoaexport SHELL in. profi | e.For somenon-obviousreason the environment
variable $SHELL is not exported in bash. Also note that . prof i | e isrun at login time and . bashr ¢ when
sub shells are created. You'll need to explicitly source . bashr ¢ from . pr of i | e if you want the commands
thereto berun at login time (like setting up aliases, shell functions and the like). | personally usually do like this
attheendof . profil e:

ENV=$HOME/ . bashrc
export ENV
. $ENV

Y ou might also, if you're ahard core type of person at least, want to setup X-windows (XFree86), that might be
as easy as running startx from the command prompt and it might be much harder. Use Google to find help...

If you don't use X-windows, you might want to setup the Windows console window by selecting properties in
the console system menu (upper left corner of the window, the Cygwin icon in the title bar). Especialy setting
alarger screen buffer size (lines) is useful asit gets you a scrollbar so you can see whatever error messages that
might appear...

If you want to use (t)csh instead of bash you're on your own, | haven't tried and know of no one that has. | expect
that you use bash in all shell examples.

Alternatively you download MinGW and Msys. You'll find the latest installer at:
URL: http://sour cefor ge.net/pr oj ects/mingwi/files/I nstaller /mingw-get-inst/

Make sureto install everything they've got.

To be able to build the 64bit VM, you will also need the 64bit MinGW compiler from:

28 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.4 How to Build Erlang/OTP on Windows

URL: http://sour cefor ge.net/pr oj ects/mingw-w64/files/T ool chains% 20tar getting% 20Win64/Automated
% 20Builds/

The latest version should do it. Make sure you download the m ngw w64-bin_i 686-
m ngw_<sormet hi ng>. zi p, not alinux version. Y ou unzip the package on top of your MinGW installation
(c:\' M nGW and that'sit.

Setting up your environment in Msysis similar to setting it up in Cygwin.

Microsofts Windows SDK version 7.1 (corresponding to VC++ 10.0 and Visua Studio 2010). You'll find it here:
URL: http://www.micr osoft.com/download/en/detail s.aspx?id=8279

but before you install that, you need to have .Net 4 installed, you'll find that here:

URL: http://www.micr osoft.com/download/en/details.aspx?id=17851

Use the web installer for the SDK, at least when | tried downloading the whole package as an image, | got SDK
7.0 instead, which is not what you want...

There will be a Windows command file in %°ROGRAMFI LES% M r osoft SDKs\ W ndows\ v7. 1\ Bi n
\ Set Env. cnd that set's the appropriate environment for a Windows command prompt. Thisis not appropriate
for bash, so you'll need to convert it to bash-style environments by editing your . bash_pr ofi | e. Inmy case,
where the SDK is installed in the default directory and %°ROGRAMFI LES%is C:. \ Program Fi | es, the
commands for setting up a 32bit build environment (on a 64bit or 32bit machine) look like this (in cygwin):

Some common paths
C DRV=/cygdrive/c
PRG_FLS=$C DRV/Program\ Files

nsis

NSIS BIN=$PRG FLS/NSIS

java

JAVA BIN=$PRG FLS/Java/jdkl.6.0 16/bin

##
MS SDK
##

CYGWIN=nowinsymlinks

MVS10="$PRG_FILES/Microsoft Visual Studio 10.0"

WIN MVS10="C:\\Program Files\\Microsoft Visual Studio 10.0"
SDK10="$PRG_FILES/Microsoft SDKs/Windows/v7.1"

WIN SDK10="C:\\Program Files\\Microsoft SDKs\\Windows\\v7.1"

PATH="$NSIS BIN:\
$MVS10/Common7/IDE:\
$MVS10/Common7/Tools:\
$MVS10/VC/Bin:\
$MVS10/VC/Bin/VCPackages:\
$SDK10/Bin/NETFX 4.0 Tools:\
$SDK10/Bin:\
/usr/local/bin:/usr/bin:/bin:\
/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS:\
/cygdrive/c/WINDOWS/system32/Wbem:\
$JAVA BIN"

LIBPATH="$WIN MVS10\\VC\\LIB"
LIB="$WIN MVS1O\\VC\\LIB;$WIN SDK1O\\LIB"

INCLUDE="$WIN MVS10\\VC\\INCLUDE;$WIN SDK10\\INCLUDE;$WIN SDK10\\INCLUDE\\gl"

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 29

href
href
href
href

1.4 How to Build Erlang/OTP on Windows

export CYGWIN PATH LIBPATH LIB INCLUDE

If you're using Msysinstead, the only thing you need to change isthe C_DRV setting, which would read:

C_DRV=/c

And of course you might need to change C: \ Progr am Fi | es etc if you're using a non-english version of
Windows (XP). Notethat in later versions of Windows, the national adoptions of the program files directories etc
are not on the file system but only in the explorer, so even if explorer says that your programs reside in e.g. C:
\ Pr ogr am they might still residein C: \ Pr ogr am Fi | es inredlity...

If you are building a 64 bit version of Erlang, you should set up PATHs etc alittle differently. | use the following
script to make things work in both Cygwin and Msys:

make winpath()

{
P=$1
if ["$IN CYGWIN" = "true"]; then
cygpath -d "$P"
else
(cd "$P" && /bin/cmd //C "for %i in (".") do @echo %~fsi")
fi
}
make upath()
{
P=$1
if ["$IN CYGWIN" = "true"]; then
cygpath "$P"
else
echo "$P" | /bin/sed 's,”\([a-zA-Z]\):\\,/\L\1/,;s,\\,/,q"
fi
}

Some common paths
if [-x /usr/bin/msysinfo]; then
Without this the path conversion won't work
COMSPEC="C:\Windows\SysWOwW64\cmd.exe'
MSYSTEM=MINGW32
export MSYSTEM COMSPEC
IN CYGWIN=false
else
CYGWIN=nowinsymlinks
export CYGWIN
IN CYGWIN=true
fi

if ["$IN CYGWIN" = "true"]; then
PATH=/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:\
/cygdrive/c/windows/system32:/cygdrive/c/windows:/cygdrive/c/windows/system32/Wbem
else
PATH=/usr/local/bin:/mingw/bin:/bin:/c/Windows/system32:/c/Windows:\
/c/Windows/System32/Wbem
fi

if ["$IN CYGWIN" = "true"]; then
C DRV=/cygdrive/c

else
C DRV=/c

30 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

fi

PRG_FLS64=$C DRV/Program\ Files

PRG_FLS32=$C DRV/Program\ Files\ \(x86\)

VISUAL STUDIO RO0T32=$PRG_FLS32/Microsoft\ Visual\ Studio\ 10.0
MS_SDK RO0T64=$PRG_FLS64/Microsoft\ SDKs/Windows/v7.1

Okay, now mangle the paths and get rid of spaces by using short names
WIN VCROOT32="make winpath "$VISUAL STUDIO ROOT32"

VCROOT32="make upath $WIN VCROOT32"

WIN SDKROOT64="make winpath "$MS SDK RO0T64"

SDKROOT64="make upath $WIN SDKROOT64"

WIN PROGRAMFILES32="make winpath "$PRG_FLS32""
PROGRAMFILES32="make upath $WIN PROGRAMFILES32"

WIN PROGRAMFILES64="make winpath "$PRG_FLS64""
PROGRAMFILES64="make upath $WIN PROGRAMFILES64"

nsis

NSIS BIN=$PROGRAMFILES32/NSIS

java

JAVA BIN=$PROGRAMFILES64/Java/jdkl.7.0 01/bin

The PATH variable should be Unix'ish
VCPATH=$VCRO0T32/Common7/IDE:$VCRO0OT32/VC/BIN/amd64:$VCRO0T32/Common7/Tools:\
$VCROOT32/VC/VCPackages: $SDKRO0T64/bin/NETFX4~1.0T0/x64 : $SDKRO0T64/bin/x64:\
$SDKR0O0T64/bin

Microsoft SDK libs

LIBPATH=$WIN VCROOT32\\VC\\LIB\\amd64

LIB=$WIN VCROOT32\\VC\\LIB\\amd64\;$WIN SDKROOT64\\LIB\\X64
INCLUDE=$WIN VCROOT32\\VC\\INCLUDE\;$WIN SDKROOT64\\include\;\
$WIN SDKROOT64\\include\\gl

Put nsis, c compiler and java in path
PATH=$NSIS BIN:$VCPATH:$PATH:$JAVA BIN

Make sure LIB and INCLUDE is available for others
export PATH LIBPATH LIB INCLUDE

All thisis derived from the SetEnv.cmmd command file mentioned earlier. The bottom line is to set the PATH so
that NSIS and Microsoft SDK is found before the Msys/Cygwin tools and that Javaislast in the PATH.

Make a simple hello world (maybe one that prints out si zeof (voi d *)) and try to compile it with the cl
command from within bash. If that does not work, your environment needs fixing. Also remember to fix up the
PATH environment, especially old Erlang installations might have inserted quoted paths that Cygwin/Msys does
not understand. Remove or correct such paths. There should be no backslashesin your path environment variable
in Cygwin bash, but LIB and INCLUDE should contain Windows style paths with semicolon, drive letters and
backslashes.

Sun's Java JDK 1.5.0 or higher. Our Java code (jinterface, ic) is written for JDK 1.5.0. Get it for Windows and
install it, the JRE is not enough. If you don't care about Java, you can skip this step, theresult will be that jinterface
isnot built.

URL: http://java.sun.com
Add javac LAST to your path environment in bash, in my case this means:

"PATH="$PATH: /cygdrive/c/Program Files/Java/jdk1.5.0 17/bin""

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 31

href

1.4 How to Build Erlang/OTP on Windows

No CLASSPATH or anything is needed. Type j avac at the bash prompt and you should get alist of available
Javaoptions. Make sure by typingt ype j ava that you use the Javayou installed. Note however that Cygwin's
j ar . exe isused, that's why the JDK bin-directory should be added last in the PATH.

e Nullsoft NSISinstaller system. Y ou need this to build the self installing package. It's a free open source installer
that's much nicer to use than the commercial Wise and Install shield installers. This is the installer we use for
commercia releases as well from R9C an on.

URL: http://www.nullsoft.com/free/nsis

Install the lot, especialy the modern user interface components, asit's definitely needed. Put makensi s inyour
path, in my case:

PATH=/cygdrive/c/Program\ Files/NSIS:$PATH

type makensis at the bash prompt and you should get alist of options if everything is OK.

e OpenSSL. Thisisif you want the SSL and crypto applications to compile (and run). There are prebuilt binaries
available, but | strongly recommend building this yourself. It's quite easy.

First get the source from

URL.: http://openssl.or g/sour ce/

I would recommend using 0.9.8r.

Download the tar file and unpack it (using your bash prompt) into a directory of your choise.
Y ou will need a Windowish Perl for the build. ActiveState has one:

URL: http://www.activestate.com/activeper|/downloads

Download and install that. Disable options to associate it with the .pl suffix and/or adding things to PATH, they
are not needed.

Now fire up the Microsoft Windows SDK command prompt in REL EA SE mode for the architecture you are going
to build. The easiest is to copy the shortcut from the SDKs start menu item and edit the command line in the
shortcut (Right click->Properties) to end with / Rel ease. Make sure the banner when you double click your
shortcut (thetext intheresulting command window) saysTar get i ng W ndows XP x64 Rel ease if youare
going to do a64 bit build and Tar geti ng W ndows XP x86 Rel ease if you arebuilding a32 hit version.

Now cd to where you unpacked the OpenSSL source using your Release Windows command prompt (it should
be on the same drive as where you are going to install it if everything isto work smothly).

C:\> cd <some dir>

Add ActiveState (or some other windows perl, not cygwins) to your PATH:

C:\...\> set PATH=C:\Perl\bin;%PATH%

Or if you installed the 64bit perl:

C:\...\> set PATH=C:\Perl64\bin;%PATH%

32| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href

1.4 How to Build Erlang/OTP on Windows

Configure OpenSSL for 32 bit:

C:\...\> perl Configure VC-WIN32 --prefix=/0penSSL

Or for 64 hit:

C:\...\> perl Configure VC-WIN64A --prefix=/0penSSL-Win64

Do some setup (for 32 hit):

C:\...\> ms\do ms

The same for 64 bit:

C:\...\> ms\do win64a

Then build static libraries and install:

.\> nmake -f ms\nt.mak

C:\..
C:\...\> nmake -f ms\nt.mak install

That's it - you now have your perfectly consistent static build of opensd. If you want to get rid of any possibly
patented algorithmsin the lib, just read up on the OpenSSL FAQ and follow the instructions.

Theinstallation locations chosen are where configure will ook for OpenSSL, so try to keep them asiis.

Building with wxWidgets. Download wxWidgets-2.8.9 or higher patch release (2.9.* isadeveloper release which
currently does not work with wxErlang).

Install or unpack it to DRI VE: / PATH cygwi n/ opt /| ocal / pgm

edit: C.\cygwi n\opt\l ocal \ pgm wxMSW 2. 8. 11\ i ncl ude\ wx\ nswW\ set up. h enable
wx USE_GLCANVAS, wx USE_PQOSTSCRI PT and wx USE_GRAPHI CS_CONTEXT

build: From a command prompt with the VC tools available (See the instructions for OpenSSL build above for
help on starting the proper command prompt in REL EASE mode):

...\> cd C:\cygwin\opt\local\pgm\wxMSW-2.8.11\build\msw

...\> nmake BUILD=release SHARED=0 UNICODE=1 USE OPENGL=1 USE GDIPLUS=1 DIR SUFFIX CPU= -f makefile.v
...\> cd C:\cygwin\opt\local\pgm\wxMSW-2.8.11\contrib\build\stc

..\> nmake BUILD=release SHARED=0 UNICODE=1 USE OPENGL=1 USE GDIPLUS=1 DIR SUFFIX CPU= -f makefile.v

o000
PP

Or - if building a 64bit version:

C:\...\> cd C:\cygwin\opt\local\pgm\wxMSW-2.8.11\build\msw
C:\...\> nmake TARGET CPU=amd64 BUILD=release SHARED=0 UNICODE=1 USE OPENGL=1 USE GDIPLUS=1 DIR SUFFIX C
C:\...\> cd C:\cygwin\opt\local\pgm\wxMSW-2.8.11\contrib\build\stc

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 33

1.4 How to Build Erlang/OTP on Windows

C:\...\> nmake TARGET CPU=amd64 BUILD=release SHARED=0 UNICODE=1 USE OPENGL=1 USE_GDIPLUS=1 DIR SUFFIX CPU=

» The Erlang source distribution (from http://www.erlang.or g/download.html). The same as for Unix platforms.
Preferably use tar from within Cygwin to unpack the sourcetar.gz (t ar zxf otp_src_17.tar. gz).

set the environment ERL_ TOP to point to theroot directory of the source distribution. Let'ssay | stood in SHOVE/
src and unpacked ot p_src_17. tar. gz, | then add thefollowingto. profil e:

ERL TOP=$HOME/src/otp src 17
export $ERL_TOP

 TheTCL/TK binaries. You could compile Tcl/Tk for windows yourself, but you can get a stripped down version
from our website which is suitable to include in the final binary package. If you want to supply tcl/tk yourself,
read the instructions about how the tcl/tk tar file used in the build is constructed under $ERL_TOP/ | i b/ gs/
t cl . The easy way is to download http://www.erlang.or g/download/tcltk85 win32_bin.tar.gz and unpack it
standing inthe $ERL_ TOP directory. Thiswill createthefilewi n32. tar. gz in$ERL_TOP/ i b/ gs/tcl/
bi nari es.

One last dternativeisto create afile named SKI Pinthe $ERL_TOP/ | i b/ gs/ after configureis run, but that
will give you an erlang system without gs (which might be okay as you probably will use wx anyway).

Notethat thereisno special 64bit version of TCL/TK needed, you can use the 32bit program even for a64bit build.

1.4.4 The Shell Environment

So, if you have followed the instructions above, when you start a bash shell, you should have an INCLUDE
environment with a Windows style path, a LIB environment variable also in Windows style, and finally aPATH that
let's you reach cl, makensis, javac etc from the command prompt (usewhi ch cl etc to verify from bash).

Y ou should also have an ERL_TOP environment variable that is Cygwin style, and points to a directory containing,
among other files, the script ot p_bui | d.

A final massage of the environment is needed, and that is done by the script SERL_TOP/ ot p_bui | d. Start bash
and do the following, note the "back-ticks" (*), can be quite hard to get on some keyboards, but pressing the back-
tick key followed by the space bar might doit...

$ cd $ERL_TOP
$ eval "./otp build env win32°

If you're unable to produce back-ticks on your keyboard, you can use the ksh variant:

$ cd $ERL_TOP
$ eval $(./otp build env_win32)

If you are building a 64 bit version, you supply ot p_bui | d with an architecture parameter:

$ cd $ERL TOP
$ eval "./otp build env win32 x64°

Thisshould do thefinal touch to the environment and building should be easy after this. Youcouldrun. / ot p_bui | d
env_wi n32 without eval just to see what it does, and to see that the environment it sets seems OK. The path
is cleaned of spaces if possible (using DOS style short names instead), the variables OVERRI DE_TARGET, CC,

34 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.4 How to Build Erlang/OTP on Windows

CXX, AR and RANLI B are set to their respective wrappers and the directories SERL_TOP/ er t s/ et ¢/ wi n32/
cygwi n_tool s/vc andSERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool areadded firstinthe PATH.

Try now atype erl c. That should result in the erlc wrapper script (which does not have the .sh extension, for
reasons best kept untold...). It should residein SERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s or $ERL_TOP/
erts/etc/w n32/ msys_t ool s. Youcouldasotry whi ch cc. sh,whichar. sh etc.

Now you're ready to build...

1.4.5 Building and Installing

Now it's assumed that you have executed eval ~./otp_build env_win32" or eval "./otp_build
env_wi n32 x64° forthisparticular shell...

Building is easiest using the ot p_bui | d script. That script takes care of running configure, bootstrapping etc on
Windowsinasimpleway. Theot p_bui | d script is the utility we use ourselves to build on different platforms and
it therefore contains code for all sorts of platforms. The principle is, however, that for non-Unix platforms, one uses
./lotp_build env_<target > to set up environment and then the script knows how to build on the platform "by
itself". You've aready run. /ot p_bui | d env_wi n32 inthe step above, so now it's mostly like we build on any
platform. OK, here are then steps; Assuming you will want to build afull installation executable with NSIS, you can
omit<i nstal |l ati on di rect or y>andthereleasewill becopiedto $ERL_TOP/ r el ease/ wi n32: and there
iswhere the packed self installing executable will reside too.

./otp build autoconf # Ignore the warning blob about versions of autoconf
./otp build configure <optional configure options>

./otp build boot -a

./otp build release -a <installation directory>

./otp build installer win32 <installation directory> # optional

A A S

Now you will have a file called ot p_wi n32_R12B. exe in the <installation directory>, i.e
$ERL_TOP/ r el ease/ wi n32.

L ets get into more detail:

e« $./otp_ build autoconf - This step rebuilds the configure scripts to work correctly in the cygwin
environment. In anideal world, thiswould not be needed, but alas, we have encountered several incompatibilities
between our distributed configure scripts (generated on a Linux platform) and the cygwin environment over the
years. Running autoconf on cygwin ensures that the configure scripts are generated in a cygwin-compatible way
and that they will work well in the next step.

e $./otp_build configure-Thisrunsthenewly generated configure scriptswith options making configure
behave nicely. Thetarget machinetypeisplainly wi n32, so alot of the configure-scripts recognize this awkward
target name and behave accordingly. The CC variable also makes the compiler becc. sh, which wraps MSVC+
+, so al configure tests regarding the C compiler getsto run the right compiler. A lot of thetests are not needed on
Windows, but | thought it best to run the whole configure anyway. The only configure option you might want to
supply is- - wi t h- ssl , which might be needed if you have built your own OpenSSL distribution. The Shining
Lights distribution should be found automatically by conf i gur e, if that fails, add a- - wi t h- ssl =<di r >
that specifiesthe root directory of your OpenSSL installation.

e« $./otp_build boot -a - This uses the bootstrap directory (shipped with the source, $ERL_TOP/
boot st r ap) to build a complete OTP system. It first builds an emulator and sets up a minimal OTP system
under $ERL_TOP/ boot st r ap, then starts to compile the different OTP compilers to make the $SERL_TOP/
boot st rap system potent enough to be able to compile al Erlang code in OTP. Then, al Erlang and C
code under $ERL_TOP/ | i b is built using the bootstrap system, giving a complete OTP system (although not
installed). When this is done, one can run Erlang from within the source tree, just type $ERL_TOP/ bi n/ er |

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 35

1.4 How to Build Erlang/OTP on Windows

and you should have a prompt. If you omit the -a flag, you'll get a smaller system, that might be useful during
development. Now exit from Erlang and start making arelease of the thing:

* $./otp_build release -a - Buildsacommercia release tree from the source tree, default is to put
itin SERL_TOP/ r el ease/ wi n32, you can give any directory as parameter (Cygwin style), but it doesn't
really matter if you're going to build a self extracting installer too. Y ou could of course build release to the final
directory andthenrun. /I nst al | . exe standing in the directory where the release was put, that will create a
fully functional OTP installation. But let's make the nifty installer:

« $./otp_build installer_w n32 - Create the self extracting installer executable. The executable
ot p_wi n32_17. exe will be placed inthetop directory of the release created in the previous step. If no release
directory is specified, the release is expected to have been built to $ERL_TOP/ r el ease/ wi n32, which aso
will bethe place where the installer executable will be placed. If you specified some other directory for therelease
(i.e../otp_build release -a /tnp/erl _rel ease), you'reexpected to give the same parameter here,
(i.e../otp_build installer_wi n32 /tnp/erl_rel ease). Youneedtohaveafull NSISinstallation
and makensi s. exe inyour path for thisto work of course. Once you have created the installer, you can run it
toinstall Erlang/OTP in the regular way, just run the executable and follow the stepsin theinstallation wizard. To
get all default settingsin the installation without any questions asked, you run the executable with the parameter
/'S (capita §) likein:

cd $ERL_TOP
release/win32/otp win32 17 /S

- A

or

$ cd $ERL _TOP
$ release/win32/otp win64 17 /S

and after awhile Erlang/OTP-17 will have been installed in C: \ Progr am Fi | es\ er | 6. 3\, with shortcuts
in the menu etc.

The necessary setup of an Erlang installation is actually done by the program | nst al | . exe, which residesin
thereleasetop. That program creates. i ni -filesand copiesthe correct boot scripts. If one hasthe correct directory
tree(likeaftera. /ot p_bui I d rel ease -a),onlytherunningof | nst al | . exe isnecessary to get afully
functional OTP. What the self extracting installer addsis (of course) the possibility to distribute the binary easily,
together with adding shortcuts to the Windows start menu. There is also some adding of entries in the registry,
to associate . er | and . beamfiles with Erlang and get nifty icons, but that's not something you'll really need
to run Erlang. The registry is also used to store uninstall information, but if one has not used the self extracting
installer, one cannot (need not) do any uninstall, one just scratches the release directory and everything is gone.
Erlang/OTP does not need to put anything in the Windows registry at al, and does not if you don't use the self
extracting installer. In other words the installer is pure cosmetics.

Note:

Beginning with R9C, the Windows installer does not add Erlang to the system wide path. If one wants to have
Erlang in the path, one hasto add it by hand.

36 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

1.4.6 Development

Once the system is built, you might want to change it. Having a test release in some nice directory might be useful,
but you also can run Erlang from within the sourcetree. Thetarget | ocal _set up, makesthe program SERL_TOP/
bi n/ erl . exe usableand it also usesal the OTP librariesin the source tree.

If you hack the emulator, you can then build the emulator executable by standing in SERL_TOP/ er t s/ enul at or
and doasimple

$ make opt

Note that you need to haverun (cd $ERL_TOP && eval ~./otp_build env_wi n32") intheparticular
shell before building anything on Windows. After doing a make opt you can test your result by running SERL_ TOP/
bi n/ erl . If you want to copy the result to a release directory (say / t np/ er| _r el ease), you do this (still in
$ERL_TOP/ ert s/ enul at or)

$ make TESTROOT=/tmp/erl release release

That will copy the emulator executables.

To make a debug build of the emulator, you need to recompile both beam dl | (the actual runtime system) and
erl exec. dl | . Dolikethis

cd $ERL_TOP

rm bin/win32/erlexec.dll
cd erts/emulator

make debug

cd ../etc

make debug

A A A A

and sometimes

$ cd $ERL TOP
$ make local setup

So now when you run $ERL_TOP/ er | . exe, you should have a debug compiled emulator, which you will see if
youdo a

1> erlang:system info(system version).
in the erlang shell. If the returned string contains [debug] , you got a debug compiled emulator.

To hack the erlang libraries, you simply do anake opt inthe specific "applications” directory, like:

$ cd $ERL TOP/lib/stdlib
$ make opt

or even in the source directory...

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 37

1.4 How to Build Erlang/OTP on Windows

$ cd $ERL_TOP/lib/stdlib/src
$ make opt

Note that you're expected o have a fresh Erlang in your path when doing this, preferably the plain 17 you have built
in the previous steps. You could also add $ERL_TOP/ boot st r ap/ bi n to your PATH before rebuilding specific
libraries, that would give you a good enough Erlang system to compile any OTP erlang code. Setting up the path
correctly is a little bit tricky, you still need to have $ERL_TOP/ ert s/ et ¢/ wi n32/ cygwi n_t ool s/ vc and
$ERL_TOP/ ert s/ et c/wi n32/ cygwi n_t ool s before the actual emulator in the path. A typical setting of the
path for using the bootstrap compiler would be:

$ export PATH=$ERL TOP/erts/etc/win32/cygwin_tools/vc\
:$ERL_TOP/erts/etc/win32/cygwin_tools:$ERL TOP/bootstrap/bin:$PATH

That should make it possible to rebuild any library without hassle...

If you want to copy alibrary (an application) newly built, to arelease area, you do like with the emul ator:

$ cd $ERL_TOP/lib/stdlib
$ make TESTROOT=/tmp/erlang release release

Remember that:

e Windows specific C-code goes in the $SERL_TOP/ ert s/ enul at or/ sys/wi n32, $ERL_TOP/ ert s/
emul ator/drivers/w n32or$ERL_TOP/ ert s/ et c/ w n32.

« Windows specific erlang code should be used conditionally and the host OS tested in runtime, the exactly same
beam files should be distributed for every platform! So write code like:

case os:type() of
{win32, } ->
do_windows specific();
Other ->
do fallback or exit()
end,

That's basically all you need to get going.

1.4.7 Using GIT

Y ou might want to check out versions of the source code from GitHUB. That is possible directly in cygwin, but not
in Msys. Thereisaproject MsysGIT:

URL:http://code.google.com/p/msysgit/

that makes a nice Git port. The msys prompt you get from MsysGIT is however not compatible with the full version
from MinGW, so you will need to check out files using MsysGIT's command prompt and then switch to a common
Msys command prompt for building. Also all test suites cannot be built as MsysGIT/Msys does not handle symbolic
links. To build test suites on Windows, you will need Cygwin for now. Hopefully all symbolic links will disappear
from our repository soon and this issue will disappear.

38| Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.4 How to Build Erlang/OTP on Windows

1.4.8 Final Words

The first build system for Erlang using Cygwin on Windows was created by Per Bergkvist. | haven't used his build
system, but it's rumored to be good. The ideato do this came from his work, so credit is well deserved.

Of course this would have been completely impossible without the excellent Cygwin. The guys at Cygnus solutions
and Redhat deserve ahuge THANKS! aswell asal the other people in the free software community who have hel ped
in creating the magnificent software that constitutes Cygwin.

Also the people devel oping the alternative command prompt M sysand the MinGW compiler areworth huge THANK S!
The 64bit port would have been impossible without the 64bit MinGW compiler.

Good luck and Happy Hacking, Patrik, OTP

1.4.9 Copyright and License
Copyright Ericsson AB 2003-2014. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this
file except in compliance with the License. Y ou should have received a copy of the Erlang Public License along with
this software. If not, it can be retrieved online at http://www.erlang.org/.

Software distributed under the Licenseisdistributed on an "ASIS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. Seethe License for the specific language governing rights and limitations under the License.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 39

2.1 System Principles

2 System Principles

2.1 System Principles
2.1.1 Starting the System

An Erlang runtime system is started with the command er | :

% erl
Erlang/0TP 17 [erts-6.0] [hipe] [smp:8:8]

Eshell V6.0 (abort with ~G)
1>

er | understands a number of command line arguments, seeer | (1) . A number of them are also described in this
chapter.

Application programs can access the values of the command line arguments by caling one of the functions
init:get_argunment(Key),orinit:get _argunments().Seeinit(3).

2.1.2 Restarting and Stopping the System

The runtime system can be halted by calling hal t/ 0, 1. Seeer | ang(3) .

Themodulei ni t contains function for restarting, rebooting and stopping the runtime system. Seei ni t (3) .

init:restart()
init:reboot()
init:stop()

Also, the runtime system will terminate if the Erlang shell is terminated.

2.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to load and
which processes and applicationsto start.

A boot script file has the extension . scri pt . The runtime system uses a binary version of the script. This binary
boot script file has the extension . boot .

Which boot script to use is specified by the command line flag - boot . The extension . boot should be omitted.
Example, using the boot script st art _al | . boot :

% erl -boot start all

If no boot script is specified, it defaultsto ROOT/ bi n/ st art , see Default Boot Scripts below.

40 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.1 System Principles

The command line flag - i ni t _debug makesthei ni t process write some debug information while interpreting
the boot script:

% erl -init debug
{progress,preloaded}
{progress,kernel load completed}
{progress,modules loaded}
{start,heart}

{start,error _logger}

Seescri pt (4) for adetailed description of the syntax and contents of the boot script.

Default Boot Scripts
Erlang/OTP comes with two boot scripts:
start _cl ean. boot

Loads the code for and starts the applications Kernel and STDLIB.
start _sasl . boot

L oads the code for and starts the applications Kernel, STDLIB and SASL.
no_dot _erl ang. boot

Loads the code for and starts the applications Kernel and STDLIB, skips loading the . er | ang file. Useful for
scripts and other tools that should be behave the same irregardless of user preferences.

Which of start_cl ean and st art _sasl| to use as default is decided by the user when installing Erlang/OTP
usingl nst al | . The user isasked "Do you want to use aminimal system startup instead of the SASL startup”. If the
answer isyes, then st art _cl ean isused, otherwise st art _sas!| isused. A copy of the selected boot script is
made, named st art . boot and placed in the ROOT/ bi n directory.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. Thisis true especially when running Erlang
in embedded mode, see Code Loading Strategy.

It is possible to write a boot script manually. The recommended way to create a boot script, however, isto generate
the boot script from arelease resource file Narre. r el , using the function syst ool s: make_scri pt/ 1, 2. This
requires that the source code is structured as applications according to the OTP design principles. (The program does
not have to be started in terms of OTP applications but can be plain Erlang).

Read more about . r el filesin OTP Design Principlesandr el (4) .

The binary boot script file Name. boot is generated from the boot script file Nanme. scri pt using the function
systool s: scri pt 2boot (Fil e).

2.1.4 Code Loading Strategy

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command
lineflag - node.

% erl -mode embedded

Default modeisi nt er acti ve.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 41

2.2 Error Logging

* Inembedded mode, all code isloaded during system start-up according to the boot script. (Code can aso be
loaded later by explicitly ordering the code server to do so).

e Ininteractive mode, code is dynamically loaded when first referenced. When a call to afunction in amodule
is made, and the module is not loaded, the code server searches the code path and |oads the module into the
system.

Initialy, the code path consists of the current working directory and all object code directories under ROOT/ | i b,
where ROOT istheinstallation directory of Erlang/OTP. Directories can be named Name[- Vsn] and the code server,
by default, chooses the directory with the highest version number among those which have the same Nane. The -
Vsn suffix is optional. If an ebi n directory exists under the Nane[- Vsn] directory, it is this directory which is
added to the code path.

The code path can be extended by using the command line flags-pa Directories and-pz Directories.
Thesewill add Di r ect or i es to the head or end of the code path, respectively. Example

% erl -pa /home/arne/mycode

The code server module code contains a number of functions for modifying and checking the search path, see
code(3).

2.1.5 File Types
The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

module .erl Erlang Reference Manual
includefile . hrl Erlang Reference Manual
release resource file .rel rel (4)

application resource file . app app(4)

boot script .script script(4)

binary boot script . boot -

configuration file .config config(4)

application upgrade file . appup appup(4)

release upgrade file relup relup(4)

Table 1.1: File Types

2.2 Error Logging

2.2.1 Error Information From the Runtime System

Error information from the runtime system, that is, information about a process terminating due to an uncaught error
exception, is by default written to terminal (tty):

42 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.2 Error Logging

=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,31},[{m,f,1},{shell,eval loop,2}1}

The error information is handled by the error logger, a system process registered aser r or _| ogger . This process
receivesall error messages from the Erlang runtime system and al so from the standard behaviours and different Erlang/
OTP applications.

The exit reasons (such as badar g above) used by the runtime system are described in Errors and Error Handling
in the Erlang Reference Manual.

The process err or _| ogger and its user interface (with the same name) are described in error_logger(3). It is
possible to configure the system so that error information is written to file instead/as well as tty. Also, it is possible
for user defined applications to send and format error information using er r or _| ogger .

2.2.2 SASL Error Logging

The standard behaviors (supervi sor, gen_server, etc) sends progress and error information to
error _| ogger .If the SASL applicationisstarted, thisinformation iswritten to tty aswell. See SASL Error Logging
in the SASL User's Guide for further information.

% erl -boot start sasl
Erlang (BEAM) emulator version 5.4.13 [hipe] [threads:0] [kernel-poll]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
supervisor: {local,sasl safe sup}
started: [{pid,<0.33.0>},

{name,alarm handler},
{mfa,{alarm_handler,start link,[]}},
{restart type,permanent},
{shutdown, 2000},
{child type,worker}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
supervisor: {local,sasl safe sup}
started: [{pid,<0.34.0>},

{name, overload},
{mfa, {overload,start link, []}},
{restart type,permanent},
{shutdown, 2000},
{child type,worker}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
supervisor: {local,sasl sup}
started: [{pid,<0.32.0>},
{name,sasl safe sup},
{mfa, {supervisor,
start link,
[{local,sasl safe sup},sasl,safe]}},
{restart type,permanent},
{shutdown,infinity},
{child type,supervisor}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
supervisor: {local,sasl sup}
started: [{pid,<0.35.0>},
{name, release handler},
{mfa,{release handler,start link,[]}},
{restart type,permanent},
{shutdown, 2000},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 43

2.3 Creating and Upgrading a Target System

{child type,worker}]

=PROGRESS REPORT==== 31-Mar-2006::12:45:58 ===
application: sasl
started at: nonode@nohost
Eshell V5.4.13 (abort with ~G)
1>

2.3 Creating and Upgrading a Target System

2.3.1 Introduction

When creating a system using Erlang/OTP, the most simple way is to install Erlang/OTP somewhere, install the
application specific code somewhere el se, and then start the Erlang runtime system, making sure the code path includes
the application specific code.

Often it is not desirable to use an Erlang/OTP system as is. A developer may create new Erlang/OTP compliant
applications for a particular purpose, and several original Erlang/OTP applications may be irrelevant for the purpose
in question. Thus, there is a need to be able to create a new system based on a given Erlang/OTP system, where
dispensable applications are removed, and a set of new applications are included. Documentation and source code is
irrelevant and is therefore not included in the new system.

This chapter is about creating such a system, which we call atarget system.
In the following sections we consider creating target systems with different requirements of functionality:

* abasictarget systemthat can be started by calling the ordinary er | script,
» asimpletarget system where also code replacement in run-time can be performed, and

« an embedded target system where thereis also support for logging output from the system to file for later
inspection, and where the system can be started automatically at boot time.

We only consider the case when Erlang/OTP is running on a UNIX system.

In the sasl| application there is an example Erlang module t ar get _syst em er | that contains functions for
creating and installing atarget system. This module is used in the examples below, and the source code of the module
islisted at the end of this chapter.

2.3.2 Creating a Target System
It is assumed that you have aworking Erlang/OTP system structured according to the OTP Design Principles.

Sep 1. First create a. r el file (seerel(4)) that specifies the er t s version and lists all applications that should be
included in the new basic target system. An example isthe following mysystem r el file:

%% mysystem.rel
{release,
{"MYSYSTEM", "FIRST"},
{erts, "5.10.4"},
[{kernel, "2.16.4"},
{stdlib, "1.19.4"},
{sasl, "2.3.4"},
{pea, "1.0"}1}.

Thelisted applications are not only original Erlang/OTP applications but possibly also new applicationsthat you have
written yourself (here exemplified by the application pea).

Sep 2. From the directory wherethenmysyst em r el filereside, start the Erlang/OTP system:

44 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

os> erl -pa /home/user/target system/myapps/pea-1.0/ebin

where also the path to the pea- 1. 0 ebin directory is provided.

Sep 3. Now create the target system:

1> target system:create("mysystem").

Thet arget _system creat e/ 1 function does the following:

Readsthemmysyst em r el file and createsanew filepl ai n. r el whichisidentical to former, except that it
only liststhe ker nel and st dl i b applications.

Fromthemysyst em rel andpl ai n. rel filescreatesthefilesmysyst em scri pt, mysyst em boot,
pl ai n. script,andpl ai n. boot throughacall tosyst ool s: make_scri pt/ 2.

Creates the file nysystem tar. gz by acall to syst ool s: make_t ar/ 2. That file has the following
contents:

erts-5.10.4/bin/
releases/FIRST/start.boot
releases/FIRST/mysystem.rel
releases/mysystem.rel
lib/kernel-2.16.4/
lib/stdlib-1.19.4/
lib/sasl-2.3.4/
lib/pea-1.0/

Thefiler el eases/ FI RST/ st art . boot isacopy of our nysyst em boot

The release resource file nysyst em r el is duplicated in the tar file. Originally, this file was only stored in
ther el eases directory in order to makeit possible for ther el ease_handl er to extract thisfile separately.
After unpacking the tar file, r el ease_handl er would automatically copy the fileto r el eases/ FI RST.
However, sometimes the tar file is unpacked without involving ther el ease_handl er (e.g. when unpacking
the first target system) and therefore the file is now instead duplicated in the tar file so no manua copying is
necessary.

Creates the temporary directory t nmp and extractsthe tar filemysyst em t ar . gz into that directory.
Deletestheer| andst art filesfromt np/ erts-5. 10. 4/ bi n. Thesefileswill be created again from
source when installing the rel ease.

Creates the directory t np/ bi n.

Copiesthe previously created filepl ai n. boot tot np/ bi n/ start. boot.

Copiesthefilesepnd, run_erl ,andt o_er| fromthedirectoryt np/ erts-5. 10. 4/ bi n to the directory
t np/ bi n.

Createsthe directory t np/ | og, which will be used if the system is started as embedded with the bi n/ st art
script.

Createsthefilet np/ r el eases/ start _erl . dat a with the contents"5.10.4 FIRST". Thisfileisto be
passed as datafiletothest art _er| script.

Recreatesthefilenysyst em t ar. gz from the directoriesin the directory t np, and removest np.

2.3.3 Installing a Target System
Sep 4. Install the created target system in a suitable directory.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 45

2.3 Creating and Upgrading a Target System

2> target system:install("mysystem", "/usr/local/erl-target").

Thefunctiont ar get _system i nst al | / 2 doesthe following:

e Extractsthetar filemysyst em t ar. gz into thetarget directory / usr/ 1 ocal / erl -t ar get .

* Inthetarget directory readsthefiler el eases/ start _er| . dat a in order to find the Erlang runtime
system version ("5.10.4").

e Substitutes %I NAL_ROOTDI R%and ¥&EMJ%for / usr/ | ocal / erl -t ar get and beam respectively, in
thefileser|.src,start.src,andstart _erl.src of thetarget ert s-5. 10. 4/ bi n directory, and
putstheresulting fileser | ,start,andrun_er| inthetarget bi n directory.

* Finaly thetarget r el eases/ RELEASES fileis created from datain ther el eases/ nysystem rel file.

2.3.4 Starting a Target System
Now we have atarget system that can be started in various ways.
We start it as a basic target system by invoking

os> /usr/local/erl-target/bin/erl

where only the ker nel and st dl i b applications are started, i.e. the system is started as an ordinary devel opment
system. There are only two files needed for all this to work: bi n/ er | file (obtained fromert s-5. 10. 4/ bi n/
erl.src)andthebi n/start. boot file(acopy of pl ai n. boot).

We can aso start a distributed system (requires bi n/ epnd).
To start all applications specified inthe origina nysyst em r el file, usethe- boot flag asfollows:

os> /usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start

We start a simple target system as above. The only difference isthat also thefiler el eases/ RELEASES is present
for code replacement in run-time to work.

To start an embedded target systemthe shell script bi n/ st art isused. That shell script callsbi n/ run_er | ,which
inturncalsbi n/ start _er!l (roughly,start _erl isanembedded variant of er |).

The shell script st ar t , which is generated from erts-5.10.4/bin/start.src during installation, is only an example. You
should edit it to suite your needs. Typically it is executed when the UNIX system boots.

run_erl isawrapper that provides logging of output from the run-time system to file. It also provides a simple
mechanism for attaching to the Erlang shell (t o_er).

start _erl requires the root directory ("/usr/local/erl-target"), the releases directory ("/ usr/
| ocal /erl-target/rel eases"),andthelocation of thest art _er| . dat afile. It readsthe run-time system
version (" 5. 10. 4") and release version (" FI RST") from thest art _er | . dat a file, starts the run-time system
of the version found, and provides - boot flag specifying the boot file of the release version found (" r el eases/
FI RST/ start. boot").

start _erl aso assumes that there is sys. confi g in release version directory ("rel eases/ Fl RST/
sys. confi g"). That isthetopic of the next section (see below).

Thestart _er| shel script should normally not be altered by the user.

46 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

2.3.5 System Configuration Parameters

As was pointed out above st art _er| requiresasys. confi g in the release version directory (" r el eases/
FI RST/ sys. confi g"). If thereisno such afile, the system start will fail. Hence such afile hasto be added aswell.

If you have system configuration data that are neither file location dependent nor site dependent, it may be
convenient to create the sys. confi g early, so that it becomes a part of the target system tar file created by
target _system create/ 1. Infact, if you create, in the current directory, not only the mysyst em r el file,
but dsoasys. confi g file, that latter file will be tacitly put in the appropriate directory.

2.3.6 Differences from the Install Script

The above i nstal | / 2 procedure differs somewhat from that of the ordinary | nst al | shell script. In fact,
cr eat e/ 1 makesthe release package as complete as possible, and leave to thei nst al | / 2 procedure to finish by
only considering location dependent files.

2.3.7 Creating the Next Version
In this example the pea application has been changed, and so areert s, ker nel ,stdl i b andsasl .
Sep 1. Createthe. rel file

%% mysystem2.rel
{release,
{"MYSYSTEM", "SECOND"},
{erts, "6.0"},
[{kernel, "3.0"},
{stdlib, "2.0"},
{sasl, "2.4"},
{pea, "2.0"}1}.

Sep 2. Create the application upgrade file (see appup(4)) for pea, for example:

%% pea.appup

{"2.0",
[{"1.0",[{load module,pea lib}]}],
[{"1.0",[{load module,pea lib}]}1}.

Sep 3. From the directory wherethe nysyst en®. r el filereside, start the Erlang/OTP system:

os> erl -pa /home/user/target system/myapps/pea-2.0/ebin

giving the path to the new version of pea.
Sep 4. Create the release upgrade file (see relup(4)):

1> systools:make relup("mysystem2",["mysystem"],["mysystem"], [{path,["/home/user/target system/myapps/pea-1.

where" nysyst emt' isthe basereleaseand " nysyst enR" isthe release to upgrade to.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 47

2.3 Creating and Upgrading a Target System

Note that the pat h option is used for pointing out the old version of all applications. (The new versions are already
in the code path - assuming of course that the erlang node on which this is executed is running the correct version
of Erlang/OTP.)

Sep 5. Create the new release:

2> target system:create("mysystem2").

Given that the r el up file generated in step 4 above is now located in the current directory, it will automatically be
included in the release package.

2.3.8 Upgrading the Target System

This part is done on the target node, and for this example we want the node to be running as an embedded system with
the- heart option, allowing automatic restart of the node. See Sarting a Target System above for more information.

Weadd - heart tobi n/start:

#!/bin/sh
ROOTDIR=/usr/local/erl-target/

if [-z "$RELDIR"]

then
RELDIR=$RO0OTDIR/releases

fi

START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl -daemon /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl $ROOTDIR $RELDIR $START ERL DATA -

And we use the simplest possiblesys. confi g, whichwestoreinr el eases/ FlI RST:
%% sys.config

[1.

Finally, in order to prepare the upgrade, we need to put the new release package in ther el eases directory of the
first target system:

0s> cp mysystem2.tar.gz /usr/local/erl-target/releases

And assuming that the node has been started like this:

0s> /usr/local/erl-target/bin/start

it can be accessed like this:

0s> /usr/local/erl-target/bin/to erl /tmp/erlang.pipe.l

48 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

Also note that logs can befoundin/ usr/ 1 ocal / erl -t arget /| og. Thisdirectory is specified as an argument
torun_er | inthe start script listed above.

Sep 1. Unpack the release:

1> {ok,Vsn} = release handler:unpack release("mysystem2").

Sep 2. Instal the release:

2> release handler:install release(Vsn).
{continue after restart,"FIRST",[]}
heart: Tue Apr 1 12:15:10 2014: Erlang has closed.

heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/ne
[End]

The above return value and output after the call tor el ease_handl er: i nstal | _rel ease/ 1 means that the
r el ease_handl er hasrestarted the node by using hear t . Thiswill always be done when the upgrade involves

achangeof erts, kernel ,stdlib orsasl . SeeUpgrade when Erlang/OTP has Changed for more infomation
about this.

The node will be accessible via anew pipe:

os> /usr/local/erl-target/bin/to erl /tmp/erlang.pipe.2

L et's see which releases we have in our system:

1> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
current},

{"MYSYSTEM" , "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
permanent}]

Our new release, "SECOND", isnow the current release, but we can also seethat our "FIRST" releaseis still permanent.
This means that if the node would be restarted at this point, it would come up running the "FIRST" rel ease again.

Sep 3. Make the new release permanent:

2> release handler:make permanent("SECOND").

Now look at the releases again:

3> release handler:which releases().

[{"MYSYSTEM", "SECOND",
["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
permanent},

{"MYSYSTEM" , "FIRST",
["kernel-2.16.4","stdlib-1.19.4","sas1-2.3.4","pea-1.0"1,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 49

2.3 Creating and Upgrading a Target System

old}]
Here we see that the new release version isper manent , so it would be safe to restart the node.

2.3.9 Listing of target_system.erl
This module can also be found in the exanpl es directory of thesas| application.

-module(target system).
-export([create/1, create/2, install/2]).

Note: RelFileName below is the *stem* without trailing .rel,
.script etc.

o® o of
o® o° o°

create(RelFileName)

o of

S o o°

eate(RelFileName) ->
create(RelFileName, []).

C

create(RelFileName,SystoolsOpts) ->
RelFile = RelFileName ++ ".rel",
Dir = filename:dirname(RelFileName),
PlainRelFileName = filename:join(Dir,"plain"),
PlainRelFile = PlainRelFileName ++ ".rel",

io:fwrite("Reading file: ~tp ...~n", [RelFilel),
{ok, [RelSpec]} = file:consult(RelFile),
io:fwrite("Creating file: ~tp from ~tp ...~n",

[PlainRelFile, RelFile]),
{release,
{RelName, RelVsn},
{erts, ErtsVsn},
AppVsns} = RelSpec,
PlainRelSpec = {release,
{RelName, RelVsn},
{erts, ErtsVsn},
lists:filter(fun({kernel, }) ->
true;
({stdlib, }) ->
true;
() ->
false
end, AppVsns)

{ok, Fd} = file:open(PlainRelFile, [write]),
io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
file:close(Fd),

io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[PlainRelFileName,PlainRelFileName]),
make script(PlainRelFileName,SystoolsOpts),

io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
[RelFileName, RelFileName]),
make script(RelFileName,SystoolsOpts),

TarFileName = RelFileName ++ ".tar.gz",

io:fwrite("Creating tar file ~tp ...~n", [TarFileName]),
make tar(RelFileName,SystoolsOpts),

TmpDir = filename:join(Dir,"tmp"),

50 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
file:make dir(TmpDir),

io:fwrite("Extracting ~tp into directory ~tp ...~n", [TarFileName,TmpDir]),
extract tar(TarFileName, TmpDir),

TmpBinDir = filename:join([TmpDir, "bin"]),

ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),

io:fwrite("Deleting \"erl\" and \"start\" in directory ~tp ...~n",
[ErtsBinDir]),

file:delete(filename:join([ErtsBinDir, "erl"])),

file:delete(filename:join([ErtsBinDir, "start"])),

io:fwrite("Creating temporary directory ~tp ...~n", [TmpBinDir]),
file:make dir(TmpBinDir),

io:fwrite("Copying file \"~ts.boot\" to ~tp ...~n",
[PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),

io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
"~tp to ~tp ...~n",
[ErtsBinDir, TmpBinDir]),

copy file(filename: join([ErtsBinDir, "epmd"]),
filename:join([TmpBinDir, "epmd"]), [preserve]),

copy file(filename: 301n([ErtsBinDir, “run_erl"]),
filename:join([TmpBinDir, "run erl"]), [preservel),

copy file(filename:join([ErtsBinDir, "to erl"]),
filename:join([TmpBinDir, "to erl"]), [preserve]),

%% This is needed if 'start' script created from 'start.src' shall
%% be used as it points out this directory as log dir for 'run erl'
TmpLogDir = filename:join([TmpDir, "log"l),

io:fwrite("Creating temporary directory ~tp ...~n", [TmpLogDir]),
ok = file:make dir(TmpLogDir),

StartErlDataFile = filename:join([TmpDir, "releases", "start erl.data"]),
io:fwrite("Creating ~tp ...~n", [StartErlDataFile]),

StartErlData = io lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),

write file(StartErlDataFile, StartErlData),

io:fwrite("Recreating tar file ~tp from contents in directory ~tp ...~n",
[TarFileName, TmpDir]),

{ok, Tar} = erl tar:open(TarFileName, [write, compressed]),

%% {0k, Cwd} = file:get cwd(),

%% file:set cwd("tmp"),

ErtsDir = "erts-"++ErtsVsn,

erl tar:add(Tar, filename:join(TmpDir,"bin"), "bin", [1),

erl tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),

erl tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),

erl tar:add(Tar, filename:join(TmpDir,"lib"), "lib", [1),

erl _tar:add(Tar, filename:join(TmpDir,"log"), "log", [1),

erl_tar:close(Tar),

%% file:set cwd(Cwd),

io:fwrite("Removing directory ~tp ...~n",[TmpDir]),

remove dir tree(TmpDir),

ok.

install(RelFileName, RootDir) ->
TarFile = RelFileName ++ ".tar.gz",

io:fwrite("Extracting ~tp ...~n", [TarFilel]),
extract tar(TarFile, RootDir),
StartErlDataFile = filename:join([RootDir, "releases", "start erl.data"]),

{ok, StartErlData} = read txt file(StartErlDataFile),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 51

2.3 Creating and Upgrading a Target System

[ErlVsn, RelVsn|] = string:tokens(StartErlData, " \n"),

ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),

BinDir = filename:join([RootDir, "bin"]),

io:fwrite("Substituting in erl.src, start.src and start erl.src to "

"form erl, start and start erl ...\n"),

subst src scripts(["erl", "start", "start erl"], ErtsBinDir, BinDir,
[{"FINAL ROOTDIR", RootDir}, {"EMU", "beam"}],
[preserve]),

Workaround for pre OTP 17.0: start.src and start erl.src did

%! not have correct permissions, so the above 'preserve' option did not help
ok = file:change mode(filename:join(BinDir,"start"),8#0755),
ok = file:change mode(filename:join(BinDir,"start erl"),8#0755),

io:fwrite("Creating the RELEASES file ...\n"),
create RELEASES(RootDir, filename:join([RootDir, "releases",
filename:basename(RelFileName)])).

oP

% LOCALS

make script(RelFileName,Opts)

o of
o® of

make script(RelFileName,Opts) ->
systools:make script(RelFileName, [no_module tests,
{outdir, filename:dirname(RelFileName)}
|Opts]).

% make_ tar(RelFileName,Opts)

o of
o°

make tar(RelFileName,Opts) ->
RootDir = code:root dir(),
systools:make tar(RelFileName, [{erts, RootDir},
{outdir, filename:dirname (RelFileName)}
|Opts]).

% extract tar(TarFile, DestDir)

o of
o°

extract tar(TarFile, DestDir) ->
erl tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create RELEASES(DestDir, RelFileName) ->
release handler:create RELEASES(DestDir, RelFileName ++ ".rel").

subst src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->
subst src_script(Script, SrcDir, DestDir,
Vars, Opts)
end, Scripts).

subst src script(Script, SrcDir, DestDir, Vars, Opts) ->
subst file(filename:join([SrcDir, Script ++ ".src"l),
filename:join([DestDir, Script]),
Vars, Opts).

subst file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read txt file(Src),
NConts = subst(Conts, Vars),
write file(Dest, NConts),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

52 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.3 Creating and Upgrading a Target System

subst(Str, Vars)

Vars = [{Var, Val}]

Var = Val = string()

Substitute all occurrences of %Var% for Val in Str, using the list
of variables in Vars.

o o® o® o o o°
o® o® o° o° o° o°

subst(Str, Vars) ->
subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A
subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when $a
subst var([C| Rest], Vars, Result, []);
subst([$%, C| Rest], Vars, Result) when C == $ ->
subst var([C| Rest], Vars, Result, []);
subst([C| Rest], Vars, Result) ->
subst(Rest, Vars, [C| Resultl]);
subst([], Vars, Result) ->
lists:reverse(Result).

< C, C =< $Z ->

< C, C =< $z ->

subst var([$%| Rest], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),
case lists:keysearch(Key, 1, Vars) of
{value, {Key, Value}} ->
subst(Rest, Vars, lists:reverse(Value, Result));
false ->
subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
end;
subst var([C| Rest], Vars, Result, VarAcc) ->
subst var(Rest, Vars, Result, [C| VarAccl]);
subst var([], Vars, Result, VarAcc) ->
subst([], Vars, [VarAcc ++ [$%| Result]]).

copy_file(Src, Dest) ->
copy_file(Src, Dest, []).

copy file(Src, Dest, Opts) ->
{ok, } = file:copy(Src, Dest),
case lists:member(preserve, Opts) of
true ->
{ok, FileInfo} = file:read file info(Src),
file:write file info(Dest, FileInfo);
false ->
ok
end.

write file(FName, Conts) ->
Enc = file:native name _encoding(),
{ok, Fd} = file:open(FName, [write]),
file:write(Fd, unicode:characters to binary(Conts,Enc,Enc)),
file:close(Fd).

read txt file(File) ->
{ok, Bin} = file:read file(File),
{ok, binary to list(Bin)}.

remove dir tree(Dir) ->
remove all files(".", [Dir]).

remove all files(Dir, Files) ->
lists:foreach(fun(File) ->
FilePath = filename:join([Dir, Filel]),
case filelib:is dir(FilePath) of
true ->
{ok, DirFiles} = file:list dir(FilePath),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 53

2.4 Upgrade when Erlang/OTP has Changed

remove all files(FilePath, DirFiles),
file:del dir(FilePath);
->
file:delete(FilePath)
end
end, Files).

2.4 Upgrade when Erlang/OTP has Changed

2.4.1 Introduction

As of Erlang/OTP 17, most applications deliver a valid application upgrade (appup) file. In earlier releases,
a majority of the applications in Erlang/OTP did not support upgrade at all. Many of the applications use the
restart_applicati oninstruction. These are applicationsfor which it isnot crucial to support real soft upgrade,
for instancetoolsand library applications. Ther est art _appl i cat i on instruction ensuresthat all modulesin the
application are reloaded and thereby running the new code.

2.4.2 Upgrade of core applications

ThecoreapplicationsERTS, Kernel, STDLIB and SASL never alow real soft upgrade, but requirethe Erlang emul ator
toberestarted. Thisisindicatedtother el ease_handl er by theupgradeinstructionr est art _new_enul at or .
Thisinstruction will always bethe very first instruction executed, and it will restart the emulator with the new versions
of the above mentioned core applications and the old versions of all other applications. When the node is back up all
other upgrade instructions are executed, making sure each application isfinally running its new version.

It might seem strange to do a two-step upgrade instead of just restarting the emulator with the new version of al
applications. Thereason for thisdesign decisionisto allow code_change functionsto have side effects, for example
changing data on disk. It also makes sure that the upgrade mechanism for non-core applications does not differ
depending on whether or not core applications are changed at the same time.

If, however, the more brutal variant is preferred, it is possible to handwrite the release upgrade file using only the
singleupgradeinstructionr est art _enul at or . Thisinstruction, in contrasttor est art _new_enul at or , will
cause the emulator to restart with the new versions of all applications.

Note that if other instructions are included beforer est art _emul at or in the handwritten r el up file, they will
be executed in the old emulator. Thisis abig risk since there is no guarantee that new beam code can be loaded into
the old emulator. Adding instructions after r est art _ernul at or has no effect asther el ease_handl er will
not do any attempt at executing them.

See relup(4) for information about the release upgrade file, and appup(4) for further information about upgrade
instructions.
2.4.3 Applications that still do not allow code upgrade

A few applications, for instance HiPE do not support upgrade at all. Thisis indicated by an application upgrade file
containing only {Vsn, [],[]}. Any attempt at creating a release upgrade file with such input will fail. The only
way to force an upgrade involving applications like thisisto handwrite ther el up file, preferably as described above
with only ther est art _emul at or instruction.

2.5 Versions

2.5.1 OTP Version

Asof OTPrelease 17, the OTP release number corresponds to the major part of the OTP version. The OTP version as
aconcept wasintroduced in OTP 17. The version scheme used is described in more detail below.

54 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Versions

OTP of a specific version is a set of applications of specific versions. The application versions identified by an OTP
version corresponds to application versions that have been tested together by the Erlang/OTP team at Ericsson AB.
An OTP system can however be put together with applications from different OTP versions. Such a combination
of application versions has not been tested by the Erlang/OTP team. It is therefore always preferred to use OTP
applications from one single OTP version.

Release candidates have an - r c<N> suffix. The suffix - r cO will be used during development up to the first release
candidate.

Retrieving Current OTP Version

Inan OTP source code tree, the OTP version can beread from thetext file<OTP sour ce r oot >/ OTP_VERSI ON.
The absolute path to the file can be constructed by calling fil enanme:join([code:root _dir(),
"OTP_VERSI ON']) .

In an installed OTP development system, the OTP version can be read from the text file <OTP
installation root>/releases/<OTP release nunber>/ OTP_VERSI ON. The absolute path
to the file can by constructed by calling fil enane:join([code:root _dir(), "rel eases"”,
erl ang: systeminfo(otp_release), "OTP_VERSION']).

If the version read from the OTP_VERSI ONfilein adevelopment system hasa* * suffix, the system has been patched
using the ot p_pat ch_appl y tool available to licensed customers. In this case, the system consists of application
versions from multiple OTP versions. The version preceding the* * suffix correspondsto the OTP version of the base
system that has been patched. Notethat if adevel opment systemisupdated by other meansthanot p_pat ch_appl vy,
the OTP_VERSI ON file may identify an incorrect OTP version.

No OTP_VERSI ON file will be placed in atarget system created by OTP tools. This since one easily can create a
target system where it is hard to even determine the base OTP version. Y ou may, however, place such afile there
yourself if you know the OTP version.

OTP Versions Table

Thetext file<OTP sour ce root >/ ot p_versi ons. t abl e thatis part of the source code containsinformation
about al OTP versions from OTP 17.0 up to current OTP version. Each line contains information about application
versions that are part of a specific OTP version, and is on the format:

<0tpVersion> : <ChangedAppVersions> # <UnchangedAppVersions> :

<O pVer si on> is on the format OTP- <VSN>, i.e, the same as the git tag used to identify the source.
<ChangedAppVer si ons> and <UnchangedAppVer si ons> are space separated lists of application versions
on the format <appl i cat i on>- <vsn>. <ChangedAppVer si ons> corresponds to changed applications with
new version numbersin thisOTP version, and <UnchangedAppVer si ons> correspondsto unchanged application
versionsin this OTP version. Both of them might be empty, although not at the sametime. If <ChangedAppV ersions>
is empty, no changes has been made that change the build result of any application. This could for example be a pure
bug fix of the build system. The order of lines is undefined. All white space characters in this file are either space
(character 32) or line-break (character 10).

Using ordinary UNIX tools like sed and gr ep one can easily find answers to various questions like:
Which OTPversionsareker nel - 3. 0 part of?

$ grep ' kernel-3\.0 ' otp_versions.table
Inwhich OTP version wasker nel - 3. 0 introduced?

$ sed "s/#.*//;] kernel-3\.0 /!d" otp_versions.table

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 55

2.5 Versions

The above commands give a bit more information than the exact answers, but adequate information when manually
searching for answers to these questions.

Warning:

The format of theot p_ver si ons. t abl e might be subject to changes during the OTP 17 release.

2.5.2 Application Version

Asof OTP 17.0 application versions will use the same version scheme as the OTP version. Application versions part
of arelease candidate will however not have an - r c<N> suffix asthe OTP version. Also note that a major increment
in an application version does not necessarily imply a major increment of the OTP version. This depends on whether
the major change in the application is considered as a major change for OTP as awhole or not.

2.5.3 Version Scheme

Note:

Note that the version scheme was changed as of OTP 17.0. This implies that application versions used prior to
OTP 17.0 do not adhere to this version scheme. A list of application versions used in OTP 17.0 can be found
at the end of this document.

In the normal case, a version will be constructed as <Maj or >. <M nor >. <Pat ch> where <Maj or > is the most
significant part. However, more dot separated parts than this may exist. The dot separated parts consists of non-
negative integers. If all parts less significant than <M nor > equals 0, they are omitted. The three normal parts
<Maj or >. <M nor >. <Pat ch> will be changed as follows:

<Mpj or >

Increased when major changes, including incompatibilities, have been made.
<M nor >

Increased when new functionality has been added.
<Pat ch>

Increased when pure bug fixes have been made.

When apart in the version number isincreased, all less significant parts are set to 0.

An application version or an OTP version identifies source code versions. That is, it does not imply anything about
how the application or OTP has been built.

Order of Versions

Version numbersin general are only partially ordered. However, normal version numbers (with three parts) as of OTP
17.0 have atotal or linear order. This applies both to normal OTP versions and normal application versions.

When comparing two version numbers that have an order, one compare each part as ordinary integers from the most
significant part towardsless significant parts. The order isdefined by thefirst parts of the same significance that differ.
An OTP version with alarger version include all changes that that are part of a smaller OTP version. The same goes
for application versions.

In the general case, versions may have more than three parts. In this case the versions are only partially ordered. Note
that such versions are only used in exceptional cases. When an extra part (out of the normal three parts) is added
to aversion number, a new branch of versions is made. The new branch has a linear order against the base version.
However, versions on different branches have no order. Since they have no order, we only know that they all include

56 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

2.5 Versions

what isincluded in their closest common ancestor. When branching multiple times from the same base version, O parts
are added between the base version and the least significant 1 part until aunique version isfound. Versions that have
an order can be compared as described in the paragraph above.

Anexampleof branched versions: Theversion6. 0. 2. 1 isabranched versionfromthebaseversion6. 0. 2. Versions
ontheform 6. 0. 2. <X> can be compared with normal versions smaller than or equal to 6. 0. 2, and other versions
on the form 6. 0. 2. <X>. The version 6. 0. 2. 1 will include al changesin 6. 0. 2. However, 6. 0. 3 will most
likely not include all changesin 6. 0. 2. 1 (note that these versions have no order). A second branched version from
the base version 6. 0. 2 will beversion 6. 0. 2. 0. 1, and athird branched version will be 6. 0. 2. 0. 0. 1.

2.5.4 OTP 17.0 Application Versions

The following application versions were part of OTP 17.0. If the normal part of an applications version number
compares as smaller than the corresponding application version in this list, the version number does not adhere to
the version scheme introduced in OTP 17.0 and should be considered as not having an order against versions used
asof OTP 17.0.

e asnl-3.0

e common_test-1.8

e conpiler-5.0

e cosEvent-2.1.15

e cosEvent Dormi n-1.1. 14
e cosFileTransfer-1.1.16
e cosNotification-1.1.21
e cosProperty-1.1.17

e cosTine-1.1.14

e cosTransactions-1.2.14
e crypto-3.3
 debugger-4.0

e dialyzer-2.7

e dianeter-1.6

e edoc-0.7.13

e eldap-1.0.3

e erl_docgen-0.3.5

e erl_interface-3.7.16

e erts-6.0

e et-1.5

e eunit-2.2.7

e (@¢s-1.5.16

e hipe-3.10.3

e ic-4.3.5

e inets-5.10

e jinterface-1.5.9

e kernel-3.0

e negaco-3.17.1

e mesia-4.12
 oObserver-2.0

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 57

2.5 Versions

e odbc-2.10.20

e orber-3.6.27

e 0s_non-2.2.15

« o0se-1.0

e otp_mbs-1.0.9

e parsetools-2.0.11
e percept-0.8.9

* public_key-0.22

e reltool-0.6.5

e runtinme_tools-1.8.14
e sasl-2.4

e snnp-4.25.1

e ssh-3.0.1

» ssl-5.3.4

e stdlib-2.0

e syntax_tools-1.6.14
e test_server-3.7

e tools-2.6.14

e typer-0.9.6

« webtool -0.8.10

o WwWX-1.2

e xnerl-1.3.7

58 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

3 Embedded Systems User's Guide

This manual describes the issues that are specific for running Erlang on an embedded system. It describes the
differencesin installing and starting Erlang compared to how it is done for a non-embedded system.

Note that thisis a supplementary document. Y ou still need to read the Installation Guide.
There is aso target architecture specific information in the top level README file of the Erlang distribution.

3.1 Embedded Solaris

This chapter describes the OS specific parts of OTP which relate to Solaris.

3.1.1 Memory Usage

Solaris takes about 17 Mbyte of RAM on a system with 64 Mbyte of total RAM. This leaves about 47 Mbyte for the
applications. If the system utilizes swapping, these figures cannot beimproved because unnecessary daemon processes
are swapped out. However, if swapping isdisabled, or if the swap spaceis of limited resourcein the system, it becomes
necessary to kill off unnecessary daemon processes.

3.1.2 Disk Space Usage

The disk space required by Solaris can be minimized by using the Core User support installation. It requires about 80
Mbyte of disk space. Thisinstalls only the minimum software required to boot and run Solaris. The disk space can be
further reduced by deleting unnecessary individual files. However, unless disk space is a critical resource the effort
required and the risks involved may not be justified.

3.1.3 Installation
This section is about installing an embedded system. The following topics are considered,

» Creation of user and installation directory,
¢ Installation of embedded system,

« Configuration for automatic start at reboot,
e Making a hardware watchdog available,

e Changing permission for reboot,

* Patches,

« Configuration of the OS_Mon application.

Several of the procedures described below require expert knowledge of the Solaris 2 operating system. For most of
them super user privilege is needed.

Creation of User and Installation Directory

It is recommended that the Embedded Environment is run by an ordinary user, i.e. a user who does not have super
user privileges.

Throughout this section we assume that the user nameis ot puser , and that the home directory of that user is,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 59

3.1 Embedded Solaris

/export/home/otpuser

Furthermore, we assume that in the home directory of ot puser, there is a directory named ot p, the full path of
whichis,

/export/home/otpuser/otp

This directory istheinstallation directory of the Embedded Environment.

Installation of an Embedded System

The procedure for installation of an embedded system does not differ from that of an ordinary system (see the
Installation Guide), except for the following:

» the (compressed) tape archive file should be extracted in the installation directory as defined above, and,
» thereisno need to link the start script to a standard directory like/ usr/ | ocal / bi n.
Configuration for Automatic Start at Boot

A true embedded system has to start when the system boots. This section accounts for the necessary configurations
needed to achieve that.

The embedded system and all the applications will start automatically if the script file shown below is added to the /
et ¢/ r c3. d directory. The file must be owned and readable by r oot , and its name cannot be arbitrarily assigned.
The following name is recommended,

S750tp.system

For further details on initialization (and termination) scripts, and naming thereof, see the Solaris documentation.

#!/bin/sh
#
File name: S750tp.system
Purpose: Automatically starts Erlang and applications when the
system starts
Author: janne@erlang.ericsson.se
Resides in: /etc/rc3.d
#
if [' -d /usr/bin]
then # /usr not mounted
exit
fi
killproc() { # kill the named process(es)

pid="/usr/bin/ps -e |
/usr/bin/grep -w $1 |
/usr/bin/sed -e 's/~ *//' -e 's/ .*X//'
["$pid" != ""] && kill $pid
}

Start/stop processes required for Erlang
case "$1" in

‘start')
Start the Erlang emulator

60 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

#

su - otpuser -c "/export/home/otpuser/otp/bin/start" &
'stop')

killproc beam

echo "Usage: $0 { start | stop }"

esac

The file / export/ hone/ ot puser/ ot p/ bi n/ start referred to in the above script, is precisely the script
start described in the section Sarting Erlang below. The script variable OTP_ROOT in that st art script
corresponds to the example path

/export/home/otpuser/otp

used in this section. The st ar t script should be edited accordingly.

Use of theki | | pr oc procedure in the above script could be combined withacal toer| _cal | , eg.

$SOME_PATH/erl call -n Node init stop

In order to take Erlang down gracefully seetheer| cal | (1) reference manua page for further details on the use
of erl _cal | . That however requires that Erlang runs as a distributed node which is not always the case.

Theki | | pr oc procedure should not be removed: the purpose is here to move from run level 3 (multi-user mode
with networking resources) to run level 2 (multi-user mode without such resources), in which Erlang should not run.

Hardware Watchdog

For Solaris running on VME boards from Force Computers, there is a possihility to activate the onboard hardware
watchdog, provided aVME bus driver is added to the operating system (see also Installation Problems below).

Seeasotheheart (3) reference manual pagein Kernel.

Changing Permissions for Reboot

If the HEART_COMVAND environment variableisto be set in the st ar t script in the section, Starting Erlang, and if
the value shall be set to the path of the Solarisr eboot command, i.e.

HEART COMMAND=/usr/sbin/reboot

the ownership and file permissionsfor / usr/ sbi n/ r eboot must be changed as follows,
chown 0 /usr/sbin/reboot

chmod 4755 /usr/sbin/reboot

Seealsotheheart (3) reference manual pagein Kernel.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 61

3.1 Embedded Solaris

The TERM Environment Variable

When the Erlang runtime system is automatically started from the S750t p. syst emscript the TERMenvironment
variable has to be set. The following isaminimal setting,

TERM=sun

which should be added to the st ar t script described in the section.

Patches

For proper functioning of flushing file system data to disk on Solaris 2.5.1, the version specific patch with number
103640-02 must be added to the operating system. There may be other patches needed, see the release README file
<ERL_| NSTALL_DI R>/ README.

Installation of Module os_sup in Application OS_Mon
The following four installation procedures require super user privilege.

Installation
» Make a copy the Solaris standard configuration file for syslogd.
* Make acopy the Solaris standard configuration file for syslogd. Thisfileis usualy named sysl og. conf
and found inthe/ et c directory.
» Thefile name of the copy must be sysl og. conf . ORI Gbut the directory location is optional. Usualy it
is/ etc.

A simple way to do thisisto issue the command

cp /etc/syslog.conf /etc/syslog.conf.ORIG

e Make an Erlang specific configuration file for syslogd.

e Make an edited copy of the back-up copy previously made.
* Thefilename must besysl og. conf . OTP and the path must be the same as the back-up copy.

« The format of the configuration file is found in the man page for sysl og. conf (5), by issuing the
command man sysl og. conf.

e Usudly alineis added which should stete:

e which types of information that will be supervised by Erlang,
» the name of the file (actually a named pipe) that should receive the information.

e |If eg. only information originating from the unix-kernel should be supervised, the line should begin with
ker n. LEVEL (for the possible values of LEVEL seesysl og. conf (5)).

« After at least one tab-character, the line added should contain the full name of the named pipe where
syslogd writes its information. The path must be the same as for the sysl og. conf. ORI G and
sysl og. conf . OTPfiles. Thefile name must be sysl og. ot p.

» |If the directory for the sysl og. conf. ORI G and sysl og. conf. OTP files is / et ¢ the line in
sysl og. conf. OTP will look like:

kern.LEVEL /etc/syslog.otp

e Check thefile privileges of the configuration files.

62 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

e Theconfiguration files should haver w-r - - r - - file privileges and be owned by root.
e A simpleway to do thisisto issue the commands

chmod 644 /etc/syslog.conf
chmod 644 /etc/syslog.conf.ORIG
chmod 644 /etc/syslog.conf.OTP

* Note: If thesysl og. conf. ORI Gand sysl og. conf . OTP filesare not in the / et ¢ directory, the file
path in the second and third command must be modified.

Modify file privileges and owner ship of the mod_syslog utility.
« Thefile privileges and ownership of the nod_sysl og utility must be modified.

e Thefull name of the binary executable fileis derived from the position of the os__non application if thefile
system by adding / pri v/ bi n/ nod_sysl og. The generic full name of the binary executable fileisthus

<0TP_ROOT>/1ib/0s_mon-<REV>/priv/bin/mod syslog

Example: If the path to the otp-root is/ usr / ot p, thusthe path to the os_rmon applicationis/ usr/ ot p/
i b/ os_non-1. 0 (assuming revision 1.0) and the full name of the binary executablefileis/ usr/ ot p/
i b/ os_non-1.0/priv/bin/nmod_sysl og.

« Thebinary executable file must be owned by root, haver wsr - xr - x file privileges, in particular the setuid
bit of user must be set.

* A simpleway to do thisisto issue the commands

cd <OTP_ROOT>/1lib/0os_mon-<REV>/priv/bin/mod_syslog
chmod 4755 mod syslog
chown root mod syslog

Testing the Application Configuration File

The following procedure does not require root privilege.

Ensure that the configuration parameters for the os_sup moduleinthe os_rmon application are correct.
Browse the application configuration file (do not edit it). The full name of the application configuration file is
derived from the position of the OS_Mon application if the file system by adding / ebi n/ os_non. app.

The generic full name of thefileisthus

<0TP_R0O0T>/1ib/0s_mon-<REV>/ebin/os mon.app.

Example: If the path to the otp-rootis/ usr / ot p, thusthe pathtotheos _non applicationis/ usr/ ot p/ | i b/
os_non-1. 0 (assuming revision 1.0) and the full name of the binary executable fileis/ usr/ ot p/ | i b/
os_non- 1. 0/ ebi n/ os_non. app.

Ensure that the following configuration parameters are bound to the correct values.

Parameter Function Sandard value

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 63

3.1 Embedded Solaris

t r uefor thefirst instance on the
hardware; f al sefor the other
instances.

Specifiesif os_sup will be started or

start_os_sup ot

The directory for (1)the back-
0S_sup_own up copy, (2) the Erlang specific "letc"
configuration file for syslogd.

The full name for the Solaris

0s_sup_syslogconf standard configuration file for "/etc/sysl og.conf"
syslogd
The tag for the messages that are

error_tag sent to the error logger inthe Erlang |std_error

runtime system.

Table 1.1: Configuration Parameters

If the values listed in the os_non. app do not suit your needs, you should not edit that file. Instead you should
override valuesin a system configuration file, the full pathname of which is given on the command linetoer | .

Example: The following is an example of the contents of an application configuration file.

[{os mon, [{start os sup, true}, {os sup own, "/etc"},
{os sup syslogconf, "/etc/syslog.conf"}, {os sup errortag, std error}]}].

Related Documents
Seeasotheos _non(3),application(3) anderl (1) reference manua pages.

Installation Problems

The hardware watchdog timer whichiscontrolled by thehear t port program requiresthe FORCEv ne package, which
contains the VME bus driver, to be installed. This driver, however, may clash with the Sun ntp driver and cause the
system to completely refuse to boot. To cure this problem, the following lines should be added to / et ¢/ syst em

e« exclude: drv/ntp
e exclude: drv/ntpzsa
e« exclude: drv/ntpp

Warning:

It isrecommended that these lines be added to avoid the clash described, which may makeit compl etely impossible
to boot the system.

3.1.4 Starting Erlang

This section describes how an embedded system is started. There are four programs involved, and they all normally
reside in the directory <ERL_| NSTALL_DI R>/ bi n. The only exception is the program st ar t , which may be
located anywhere, and also is the only program that must be modified by the user.

64 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.1 Embedded Solaris

In an embedded system there usually is no interactive shell. However, it is possible for an operator to attach to the
Erlang system by giving the command t o_er | . He is then connected to the Erlang shell, and may give ordinary
Erlang commands. All interaction with the system through this shell islogged in a special directory.

Basically, the procedureis as follows. The program st ar t is called when the machineis started. It callsrun_er | ,
which sets things up so the operator can attach to the system. It callsst art _er | which calls the correct version of
erl exec (whichislocated in <ERL_| NSTALL_DI R>/ ert s- EVsn/ bi n) with the correct boot and confi g
files.

3.1.5 Programs

start

This program is called when the machine is started. It may be modified or re-written to suit a specia system. By
default, it must becalled st art andresidein<ERL_| NSTALL_DI R>/ bi n. Ancther start program can be used, by
using the configuration parameter st art _pr g in the application sasl .

The start program must call run_er | as shown below. It must also take an optional parameter which defaults to
<ERL_I NSTALL_DI R>/rel eases/ start _erl . dat a.

This program should set static parameters and environment variables such as- snane Name and HEART_COMVAND
to reboot the machine.

The<RELDI R> directory iswhere new rel ease packets are installed, and where the rel ease handler keepsinformation
about releases. Seer el ease_handl er (3) intheapplication sas!| for further information.

The following script illustrates the default behaviour of the program.

#!/bin/sh

Usage: start [DataFile]
#

ROOTDIR=/usr/local/otp

if [-z "$RELDIR"]

then
RELDIR=$RO0OTDIR/releases

fi

START ERL DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA" > /dev/null 2>&1 &

The following script illustrates a modification where the node is given the name cp1, and the environment variables
HEART_COMVAND and TERMhave been added to the above script.

#!/bin/sh

Usage: start [DataFile]

#

HEART COMMAND=/usr/sbin/reboot
TERM=sun

export HEART COMMAND TERM
ROOTDIR=/usr/local/otp
if [-z "$RELDIR"]

then
RELDIR=$RO0TDIR/releases

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 65

3.1 Embedded Solaris

fi
START_ERL_DATA=${1:-$RELDIR/start erl.data}

$ROOTDIR/bin/run_erl /tmp/ $ROOTDIR/log "exec $ROOTDIR/bin/start erl \
$ROOTDIR $RELDIR $START ERL DATA -heart -sname cpl" > /dev/null 2>&1 &

If adiskless and/or read-only client nodeisabout to start thest art _er | . dat a fileislocated in the client directory
at the master node. Thus, the START _ERL_DATA line should look like:

CLIENTDIR=$ROOTDIR/clients/clientname
START ERL DATA=${1:-$CLIENTDIR/bin/start erl.data}

run_erl

This program is used to start the emulator, but you will not be connected to the shell. t o_er | is used to connect
to the Erlang shell.

Usage: run erl pipe dir/ log dir "exec command [parameters ...]1"

Where pi pe_di r/ should be/t np/ (t o_er!| uses this name by default) and | og_di r is where the log files
are written. command [par anet er s] is executed, and everything written to stdin and stdout is logged in the
log dir.

Inthel og_di r, log filesare written. Each logfile has aname of theform: er | ang. | og. Nwhere N isageneration
number, ranging from 1to 5. Each logfile holds up to 100kB text. Astime goes by the following logfileswill be found
in the logfile directory

erlang.log.1

erlang.log.1l, erlang.log.2

erlang.log.1l, erlang.log.2, erlang.log.3

erlang.log.1l, erlang.log.2, erlang.log.3, erlang.log.4
erlang.log.2, erlang.log.3, erlang.log.4, erlang.log.5
erlang.log.3, erlang.log.4, erlang.log.5, erlang.log.1l

with the most recent logfile being the right most in each row of the above list. That is, the most recent file is the one
with the highest number, or if there are already four files, the one before the skip.

When alogfile is opened (for appending or created) atime stamp is written to the file. If nothing has been written to
thelog files for 15 minutes, arecord isinserted that says that we're till alive.

to_erl

This program is used to attach to arunning Erlang runtime system, started withr un_er | .

Usage: to erl [pipe_name | pipe dir]

Where pi pe_nane defaultsto/ t np/ er | ang. pi pe. N.
To disconnect from the shell without exiting the Erlang system, typeCt r | - D.

66 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

3.2 Windows NT

start_erl

Thisprogram startsthe Erlang emulator with parameters- boot and- conf i g set. It readsdataabout wherethesefiles
arelocated from afilecaled st art _er| . dat a whichislocated in the <RELDI R>. Each new release introduces a
new datafile. Thisfileis automatically generated by the release handler in Erlang.

The following script illustrates the behaviour of the program.

#!/bin/sh

This program is called by run erl. It starts

the Erlang emulator and sets -boot and -config parameters.
It should only be used at an embedded target system.

Usage: start erl RootDir RelDir DataFile [ErlFlags ...]

HH oW H K W KR

ROOTDIR=$1
shift
RELDIR=$1
shift
DataFile=$1
shift

ERTS VSN="awk '{print $1}' $DataFile"
VSN="awk '{print $2}' $DataFile"

BINDIR=$ROOTDIR/erts-$ERTS VSN/bin
EMU=beam

PROGNAME="echo $0 | sed 's/.*\///"
export EMU

export ROOTDIR

export BINDIR

export PROGNAME

export RELDIR

exec $BINDIR/erlexec -boot $RELDIR/$VSN/start -config $RELDIR/$VSN/sys $*

If adisklessand/or read-only client nodewiththesasl| configuration parameter st ati ¢_enul at or settotrueis
about to startthe- boot and- conf i g flagsmust bechanged. Assuchaclientcannotreadanewst art _erl . dat a
file (the file is not possible to change dynamically) the boot and config files are aways fetched from the same place

(but with new contents if a new release has been installed). Ther el ease_handl er copies this files to the bi n
directory in the client directory at the master nodes whenever anew release is made permanent.

Assuming the same CLI ENTDI R as above the last line should look like:

exec $BINDIR/erlexec -boot $CLIENTDIR/bin/start \
-config $CLIENTDIR/bin/sys $*

3.2 Windows NT
This chapter describes the OS specific parts of OTP which relate to Windows NT.

3.2.1 Introduction
A normal installation of NT 4.0, with service pack 4 or later, isrequired for an embedded Windows NT running OTP.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 67

3.2 Windows NT

3.2.2 Memory Usage

RAM memory of 96 MBytes is recommended to run OTP on NT. A system with less than 64 Mbytes of RAM is
not recommended.

3.2.3 Disk Space Usage
A minimum NT installation with networking needs 250 M B, and an additional 130 MB for the swap file.

3.2.4 Installation

Normal NT installation is performed. No additional application programs are needed, such as Internet explorer or web
server. Networking with TCP/IP is required.
Service pack 4 or later must beinstalled.

Hardware Watchdog

For Windows NT running on standard PCs with |SA and/or PCI bus there is a possibility to install an extension card
with a hardware watchdog.

Seeasotheheart (3) reference manual pagein Kernel.

3.2.5 Starting Erlang

On an embedded system, the er | sr v module should be used, to install the erlang process as a Windows system
service. This service can start after NT has booted. See documentation for er | srv.

68 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.1 Introduction

4 Getting Started With Erlang

4.1 Introduction

4.1.1 Introduction

Thisisa"kick start" tutorial to get you started with Erlang. Everything here is true, but only part of the truth. For
example, I'll only tell you the simplest form of the syntax, not all esoteric forms. Where I've greatly oversimplified
things I'll write *manual* which means there islots more information to be found in the Erlang book or in the Erlang
Reference Manual.

| also assume that thisisn't the first time you have touched a computer and you have a basic idea about how they are
programmed. Don't worry, | won't assume you're awizard programmer.

4.1.2 Things Left Out

In particular the following has been omitted:

* References

e Local error handling (catch/throw)

* Singledirection links (monitor)

* Handling of binary data (binaries/ bit syntax)
e List comprehensions

e How to communicate with the outside world and/or software written in other languages (ports). Thereis
however a separate tutorial for this, Interoperability Tutorial

* Very few of the Erlang libraries have been touched on (for example file handling)

e OTP hasbeen totally skipped and in consequence the Mnesia database has been skipped.
e Hashtablesfor Erlang terms (ETS)

» Changing code in running systems

4.2 Sequential Programming

4.2.1 The Erlang Shell

Most operating systems have a command interpreter or shell- Unix and Linux have many, while Windows has the
Command Prompt. Erlang has its own shell where you can directly write bits of Erlang code and evaluate (run) them
to see what happens (see shell(3)). Start the Erlang shell (in Linux or UNIX) by starting ashell or command interpreter
in your operating system and typing er | . You will see something like this.

% erl
Erlang R15B (erts-5.9.1) [source] [smp:8:8] [rq:8] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.9.1 (abort with ~G)
1>

Now typein "2+ 5." as shown below.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 69

4.2 Sequential Programming

1> 2 + 5.
7
2>

In Windows, the shell is started by double-clicking on the Erlang shell icon.

You'll notice that the Erlang shell has numbered the lines that can be entered, (as 1> 2>) and that it has correctly told
you that 2 + 5is 7! Also notice that you have to tell it you are done entering code by finishing with a full stop "."
and a carriage return. If you make mistakes writing things in the shell, you can delete things by using the backspace
key as in most shells. There are many more editing commands in the shell (See the chapter "tty - A command line
interface" in ERTS User's Guide).

(Note: you will find alot of line numbers given by the shell out of sequence in this tutoria as it was written and the
code tested in several sessions).

Now let's try a more complex calculation.

2> (42 + 77) * 66 / 3.
2618.0

Here you can see the use of brackets and the multiplication operator "*" and division operator "/", just as in normal
arithmetic (see the chapter " Arithmetic Expressions” in the Erlang Reference Manual).

To shutdown the Erlang system and the Erlang shell type Control-C. Y ou will see the following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

°

Type"a" to leave the Erlang system.
Another way to shutdown the Erlang system isby entering hal t () :

3> halt().

)
©

4.2.2 Modules and Functions

A programming language isn't much use if you can just run code from the shell. So here is a small Erlang program.
Enteritintoafilecalledt ut . er| (thefilenamet ut . er| isimportant, also make surethat itisin the sasmedirectory
as the one where you started er |) using a suitable text editor. If you are lucky your editor will have an Erlang mode
which will makeit easier for you to enter and format your code nicely (see the chapter "The Erlang mode for Emacs"
in Tools User's Guide), but you can manage perfectly well without. Here's the code to enter:

-module(tut).
-export([double/1]).

double(X) ->
2 * X.

70 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

It's not hard to guess that this "program” doubles the value of numbers. I'll get back to the first two lines later. Let's
compile the program. This can be done in your Erlang shell as shown below:

3> c(tut).
{ok, tut}

The{ ok, t ut} tellsyou that the compilation was OK. If it said "error" instead, you have made some mistake in the
text you entered and there will also be error messages to give you some idea as to what has gone wrong so you can
change what you have written and try again.

Now lets run the program.

4> tut:double(10).
20

As expected double of 10is 20.

Now let's get back to thefirst two lines. Erlang programs are written in files. Each file contains what we call an Erlang
module. Thefirst line of code in the module tells us the name of the module (see the chapter "Modules" in the Erlang
Reference Manual).

-module(tut).

Thistellsusthat the moduleiscaled tut. Notethe"." at the end of theline. Thefileswhich are used to store the module
must have the same name as the module but with the extension ".erl". In our case the file nameist ut . er| . When
we use afunction in another module, we use the syntax, modul e_nane: f uncti on_nane(ar gunent s) . So

4> tut:double(10).

means call function doubl e in modulet ut with argument "10".

The second line:

-export([double/1]).

saysthat the module t ut contains afunction called doubl e which takes one argument (X in our example) and that
thisfunction can be called from outside the modulet ut . More about thislater. Again notethe"." at the end of theline.

Now for amore complicated example, the factorial of anumber (e.g. factorial of 4is4* 3* 2* 1). Enter thefollowing
codeinafilecaledtut 1. erl .

-module(tutl).
-export([fac/1]).

fac(l) ->
i
fac(N) ->
N * fac(N - 1).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 71

4.2 Sequential Programming

Compilethefile
5> c(tutl).
{ok, tutl}

And now calculate the factorial of 4.

6> tutl:fac(4).

24
Thefirst part:
fac(1l) ->
1;

says that the factorial of 1is1. Note that we end this part with a";" which indicates that there is more of this function
to come. The second part:

fac(N) ->
N * fac(N - 1).

saysthat the factorial of N isN multiplied by the factoria of N - 1. Note that this part endswith a"." saying that there
are no more parts of this function.

A function can have many arguments. L et's expand the module t ut 1 with the rather stupid function to multiply two
numbers:

-module(tutl).
-export([fac/1, mult/2]).
fac(l) ->

L5
fac(N) ->

N * fac(N 1)
mult(Xx, Y) ->

X * Y.

Note that we have also had to expand the - expor t line with the information that there is another function nmul t
with two arguments.

Compile:
7> c(tutl).

{ok, tutl}

and try it out:

72 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

8> tutl:mult(3,4).
12

In the example above the numbers are integers and the arguments in the functions in the code, N, X, Y are called
variables. Variables must start with a capital letter (see the chapter "Variables' in the Erlang Reference Manual).
Examples of variable could be Nunber , ShoeSi ze, Age etc.

4.2.3 Atoms

Atoms are another datatypein Erlang. Atoms start with asmall letter ((seethe chapter "Atom" in the Erlang Reference
Manual)), for example: char | es, centi net er, i nch. Atoms are simply names, nothing else. They are not like
variables which can have avalue.

Enter the next program (file: t ut 2. er |) which could be useful for converting from inches to centimeters and vice
versa

-module(tut2).
-export([convert/2]).

convert(M, inch) ->
M/ 2.54;

convert(N, centimeter) ->
N * 2.54.

Compile and test:

9> c(tut2).

{ok, tut2}

10> tut2:convert(3, inch).
1.1811023622047243

11> tut2:convert(7, centimeter).
17.78

Notice that | have introduced decimals (floating point numbers) without any explanation, but | guess you can cope
with that.

See what happens if | enter something other than centimeter or inch in the convert function:

12> tut2:convert(3, miles).
** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

The two parts of the convert function are called its clauses. Here we see that "miles’ is not part of either of the
clauses. The Erlang system can't match either of the clauses so we get an error message f unct i on_cl ause. The
shell formats the error message nicely, but the error tuple is saved in the shell's history list and can be output by the
shell command v/ 1:

13> v(12).

{'EXIT',{function clause, [{tut2,convert,
[3,miles],
[{file,"tut2.erl"},{line,4}1},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 73

4.2 Sequential Programming

{erl _eval,do _apply,5,[{file,"erl eval.erl"},{line,482}]},
{shell,exprs,7,[{file, "shell.erl"},{line,666}1},
{shell,eval exprs,7,[{file,"shell.erl"},{line,621}]},
{shell,eval loop,3,[{file,"shell.erl"},{line,606}1}1}}

4.2.4 Tuples

Now thet ut 2 program is hardly good programming style. Consider:

tut2:convert(3, inch).

Doesthismean that 3isininches? or that 3isin centimeters and we want to convert it to inches? So Erlang hasaway to
group thingstogether to make things more understandable. We call these tuples. Tuplesare surrounded by "{" and "}".

So we can write {i nch, 3} to denote 3inchesand { cent i net er, 5} to denote 5 centimeters. Now let's write a
new program which converts centimeters to inches and vice versa. (filet ut 3. er |).

-module(tut3).
-export([convert length/1]).

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

Compile and test:

14> c(tut3).

{ok, tut3}

15> tut3:convert length({inch, 5}).

{centimeter,12.7}

16> tut3:convert length(tut3:convert length({inch, 5})).
{inch,5.0}

Note on line 16 we convert 5 inches to centimeters and back again and reassuringly get back to the original value.
|.e the argument to a function can be the result of another function. Pause for a moment and consider how line 16
(above) works. The argument we have given the function { i nch, 5} isfirst matched against the first head clause of
convert _lengthi.econvert | ength({centineter, X}) whereitcanbeseenthat { centi neter, X}
doesnot match {i nch, 5} (the head isthe bit before the "->"). This having failed, we try the head of the next clause
i.e.convert _| engt h({inch, Y}),thismatchesand Y get the value 5.

We have shown tuples with two parts above, but tuples can have as many parts as we want and contain any valid
Erlang term. For example, to represent the temperature of various cities of the world we could write

{moscow, {c, -10}}
{cape _town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of things in them. We call each thing in atuple an element. So in the tuple { nbscow,
{c,-10}},element lisnmoscowand element 2is{ c, - 10} . | have chosen ¢ meaning Centigrade (or Celsius) and
f meaning Fahrenheit.

74 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

425 Lists

Whereas tuples group thingstogether, we also want to be ableto represent lists of things. Listsin Erlang are surrounded
by "[" and "]". For example alist of the temperatures of various cities in the world could be:

[{moscow, {c, -10}}, {cape town, {f, 70}}, {stockholm, {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}1]

Note that thislist was so long that it didn't fit on oneline. This doesn't matter, Erlang allowsline breaks at all "sensible
places’ but not, for example, in the middle of atoms, integers etc.

A very useful way of looking at parts of lists, isby using "[". Thisis best explained by an example using the shell.

17> [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]

18> First.

1

19> TheRest.

[2,3,4,5]

We use | to separate the first elements of the list from the rest of the list. (Fi r st has got value 1 and TheRest
vaue[2,3,4,9]).

Another example:

20> [El1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]

21> E1.

1

22> E2.

2

23> R.

[3,4,5,6,7]

Here we see the use of | to get the first two elements from the list. Of course if we try to get more elements from the
list than there are elements in the list we will get an error. Note also the special case of the list with no elements|].

24> [A, B | C] = [1, 2].
[1,2]

25> A.

1

26> B.

2

27> C.

[]

In al the examples above, | have been using new variable names, not reusing the old ones. Fi r st , TheRest , E1,
E2, R A B, C. Thereason for thisisthat a variable can only be given avaue once in its context (scope). I'll get back
to thislater, it isn't so peculiar asit sounds!

The following example shows how we find the length of alist:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 75

4.2 Sequential Programming

-module(tut4).

-export([list_length/1]).

list length([]) ->

1ist?{ength([First | Rest]) ->
1 + list length(Rest).

Compile (filet ut 4. er |) and test:

28> c(tut4).

{ok, tut4}

29> tut4:list length([1,2,3,4,5,6,7]).
7

Explanation:

list length([]) ->
0;

The length of an empty list is obviously O.

list length([First | Rest]) ->
1 + list length(Rest).
The length of alist with the first element Fi r st and the remaining elements Rest is1 + the length of Rest .
(Advanced readers only: Thisis not tail recursive, there is a better way to write this function).

In general we can say we use tuples where we would use "records" or "structs' in other languages and we use lists
when we want to represent things which have varying sizes, (i.e. where we would use linked listsin other languages).

Erlang does not have a string data type, instead strings can be represented by lists of ASCII characters. So the list
[97, 98, 99] isequivalentto"abc". The Erlang shell is"clever" and guessesthe what sort of list we mean and outputs
itin what it thinks is the most appropriate form, for example:

30> [97,98,99].
llabcll

4.2.6 Maps

Maps are a set of key to value associations. These associations are encapsulated with "#{" and "}". To create an
association from "key" to value 42, we write:

> #{ "key" => 42 }.
#{"key" => 42}

We will jump straight into the deep end with an example using some interesting features.
The following example shows how we calcul ate alpha blending using maps to reference color and a pha channels:

76 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

-module(color).
-export([new/4, blend/2]).
-define(is channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).
new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is _channel(B), ?is channel(A) ->

#{red => R, green => G, blue => B, alpha => A}.

blend(Src,Dst) ->
blend(Src,Dst,alpha(Src,Dst)).

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue = blue(Src,Dst) / Alpha,
alpha := Alpha
}
blend(,Dst,) ->
Dst#{
red = 0.0,
green := 0.0,
blue := 0.0,
alpha := 0.0
}.
alpha(#{alpha := SA}, #{alpha := DA}) ->

SA + DA*(1.0 - SA).

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

Compile (filecol or . er |) and test:

> c(color).

{ok,color}

> Cl1 = color:new(0.3,0.4,0.5,1.0).

#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
> C2 = color:new(1.0,0.8,0.1,0.3).

#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}

> color:blend(C1,C2).

#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}

> color:blend(C2,C1).

#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

This example warrants some explanation:

-define(is channel(V), (is float(V) andalso V >= 0.0 andalso V =< 1.0)).

First we defineamacroi s_channel to help with our guard tests. Thisis only here for convenience and to reduce

syntax cluttering. Y ou can read more about Macros in the Erlang Reference Manual .

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 77

4.2 Sequential Programming

new(R,G,B,A) when ?is channel(R), ?is channel(G),
?is channel(B), ?is channel(A) ->
#{red => R, green => G, blue => B, alpha => A}.

The function new 4 creates a new map term with and lets the keys r ed, gr een, bl ue and al pha be associated
with an initial value. In this case we only alow for float values between and including 0.0 and 1.0 as ensured by the
?i s_channel / 1 macro for each argument. Only the => operator is allowed when creating a new map.

By calling bl end/ 2 on any color term created by new/ 4 we can calculate the resulting color as determined by the
two maps terms.

Thefirst thing bl end/ 2 doesisto calculate the resulting alpha channel.

alpha(#{alpha := SA}, #{alpha := DA}) ->
SA + DA*(1.0 - SA).

We fetch the value associated with key al pha for both arguments using the : = operator. Any other keysin the map
areignored, only the key al pha isrequired and checked for.

Thisisaso the case for functionsr ed/ 2, bl ue/ 2 and gr een/ 2.

red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
SV*SA + DV*DA*(1.0 - SA).

The difference hereis that we check for two keys in each map argument. The other keys are ignored.

Finally we return the resulting color in bl end/ 3.

blend(Src,Dst,Alpha) when Alpha > 0.0 ->

Dst#{
red = red(Src,Dst) / Alpha,
green := green(Src,Dst) / Alpha,
blue = blue(Src,Dst) / Alpha,
alpha := Alpha

};

We update the Dst map with new channel values. The syntax for updating an existing key with a new value is done
with : = operator.

4.2.7 Standard Modules and Manual Pages

Erlang has a lot of standard modules to help you do things. For example, the module i o contains a lot of functions
to help you do formatted input/output. To look up information about standard modules, the command er| - man
can be used at the operating shell or command prompt (i.e. a the same place as that where you started er |). Try the
operating system shell command:

% erl -man io
ERLANG MODULE DEFINITION io(3)

MODULE
io - Standard I/0 Server Interface Functions

78 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

DESCRIPTION
This module provides an interface to standard Erlang 1I0
servers. The output functions all return ok if they are suc-

If this doesn't work on your system, the documentation is included as HTML in the Erlang/OTP release, or you can
read the documentation asHTML or download it as PDF from either of the sites www.erlang.se (commercia Erlang)
or www.erlang.org (open source), for example for release R9B:

http://www.erlang.org/doc/r9b/doc/index.html

4.2.8 Writing Output to a Terminal

It's nice to be able to do formatted output in these example, so the next example shows a simple way to use to use
thei o: f or mat function. Of course, just like all other exported functions, you can test thei o: f or mat function
in the shell:

31> io:format("hello world~n", []).

hello world

ok

32> io:format("this outputs one Erlang term: ~w~n", [hello]).

this outputs one Erlang term: hello

ok

33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
this outputs two Erlang terms: helloworld

ok

34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
this outputs two Erlang terms: hello world

ok

Thefunctionf or mat / 2 (i.e.f or mat with two arguments) takestwo lists. Thefirst oneisnearly alwaysalist written
between " ". This list is printed out as it stands, except that each ~w is replaced by a term taken in order from the
second list. Each ~n isreplaced by anew line. Thei o: f or mat / 2 function itself returns the atom ok if everything
goes as planned. Like other functions in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it isa
deliberate policy. Erlang has sophisticated mechanisms to handle errors which we will show later. As an exercise,
try to makei o: f or mat crash, it shouldn't be difficult. But notice that although i o: f or mat crashes, the Erlang
shell itself does not crash.

4.2.9 A Larger Example

Now for alarger example to consolidate what we have learnt so far. Assume we have alist of temperature readings
from a number of cities in the world. Some of them are in Celsius (Centigrade) and some in Fahrenheit (as in the
previous list). First let's convert them all to Celsius, then let's print out the data neatly.

%% This module is in file tut5.erl

-module(tut5).
-export([format temps/1]).

%% Only this function is exported

format temps([])-> % No output for an empty list
ok;

format temps([City | Rest]) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 79

4.2 Sequential Programming

print temp(convert to celsius(City)),
format temps(Rest).

convert to celsius({Name, {c, Temp}}) -> % No conversion needed
{Name, {c, Temp}};

convert to celsius({Name, {f, Temp}}) -> % Do the conversion
{Name, {c, (Temp - 32) * 5 / 9}}.

print_temp({Name, {c, Temp}}) ->
io:format("~-15w ~w c~n", [Name, Temp]).

35> c(tuth5).

{ok, tut5}

36> tut5:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

moscow -10 ¢

cape_town 21.11111111111111 c
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢
ok

Before we look at how this program works, notice that we have added afew commentsto the code. A comment starts
with a % character and goes on to the end of the line. Note as well that the - export ([format _tenps/1]).
line only includes the function f or mat _t enps/ 1, the other functions are local functions, i.e. they are not visible
from outside the module t ut 5.

Note as well that when testing the program from the shell, | had to spread the input over two lines as the line was
too long.

When we call f or mat _t enps thefirst time, G t y getsthe value { moscow, { ¢, - 10} } and Rest istherest of
thelist. Sowe call thefunction pri nt _tenp(convert _to_cel sius({nmoscow, {c,-10}})).

Here we see afunction call asconvert to_cel si us({noscow, {c, - 10}}) asthe argument to the function
print_tenp. When we nest function calls like this we execute (evaluate) them from the inside out. l.e. we
first evaluateconvert to_cel sius({noscow, {c, - 10}}) whichgivesthevalue{ noscow, {c, - 10} } as
the temperature is aready in Celsius and then we evaluate pri nt _t enp({nmoscow, { ¢, - 10} }) . The function
convert to_cel sius worksinasimilar way totheconvert | engt h function in the previous example.

print_tenpsimply calsi o: f or mat inasimilar way to what has been described above. Note that ~-15w saysto
print the "term™ with afield length (width) of 15 and left justify it. (io(3)).

Now we call f or mat _t enps(Rest) with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Yes, this is recursion, but don't let that worry you). So the same
f ormat _t enps function is called again, thistime Ci t y getsthe value {cape_t own, {f, 70} } and we repeat
the same procedure as before. We go on doing this until the list becomes empty, i.e. [], which causes the first clause
format _tenps([]) tomatch. Thissimply returns (resultsin) the atom ok, so the program ends.

4.2.10 Matching, Guards and Scope of Variables

It could be useful to find the maximum and minimum temperature in lists like this. Before extending the program to
do this, let'slook at functions for finding the maximum value of the elementsin alist:

-module(tut6).
-export([list max/1]).

list max([Head|Rest]) ->

80 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

list max(Rest, Head).

list max([], Res) ->
Res;

list max([Head|Rest], Result so far) when Head > Result so far ->
list max(Rest, Head);

list max([Head|Rest], Result so far) ->
list max(Rest, Result so far).

37> c(tutb).

{ok, tut6}

38> tut6:list max([1,2,3,4,5,7,4,3,2,1]).
7

First note that we have two functions here with the same namel i st _max. However each of these takes a different
number of arguments (parameters). In Erlang these are regarded as completely different functions. Where we need to
distinguish between these functions we write nane/ ar i t y, where nane isthe name of the functionandarity is
the number of arguments, inthiscasel i st _nmax/ 1 andli st_max/ 2.

This is an example where we walk through a list "carrying” a value with us, in this case Result _so_far.
Iist_max/1simply assumesthat the max valueof thelist isthe head of thelistand callsl i st _max/ 2 withtherest
of thelist and thevalue of the head of thelist, intheabovethiswouldbel i st _max([2, 3,4,5,7,4, 3,2,1],1).
If wetriedtousel i st _nmax/ 1 with an empty list or tried to use it with something whichisn't alist at all, we would
cause an error. Note that the Erlang philosophy is not to handle errors of this type in the function they occur, but to
do so elsewhere. More about this later.

In I'ist_nmax/2 we wak down the list and use Head instead of Result _so far when Head >
Resul t _so_far.when isaspecia word we use before the -> in the function to say that we should only use this
part of the function if the test which follows is true. We call tests of this type a guard. If the guard isn't true (we say
the guard fails), we try the next part of the function. In this caseif Head isn't greater than Resul t _so_f ar thenit
must be smaller or equal to is, so we don't need a guard on the next part of the function.

Some useful operatorsin guards are, < lessthan, > greater than, == equal, >= greater or equal, =< less or equal, /= not
equal. (see the chapter "Guard Sequences' in the Erlang Reference Manual).

To change the above program to one which works out the minimum value of the element in alist, all we would need
to do isto write < instead of >. (But it would be wise to change the name of the functionto | i st _mi n :-).

Remember that | mentioned earlier that avariable could only be given avalue onceinits scope? I nthe above we see, for
example, that Resul t _so_f ar hasbeen given several values. Thisis OK since every timewecall | i st _nax/ 2
we create a new scope and one can regard the Resul t _so_f ar asacompletely different variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if | writeM = 5, a
variable called Mwill be created and given the value 5. If, in the same scope | then write M = 6, I'll get an error.
Try this out in the shell:

39> M = 5.
5
40> M = 6.

** exception error: no match of right hand side value 6
41> M =M + 1.

** exception error: no match of right hand side value 6
42> N =M + 1.

6

The use of the match operator is particularly useful for pulling apart Erlang terms and creating new ones.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 81

4.2 Sequential Programming

43> {X, Y} = {paris, {f, 28}}.
{paris, {f,28}}

44> X.

paris

45> Y.

{f,28}

Here we see that X getsthevaluepari s and Y{f, 28}.

Of courseif we try to do the same again with ancther city, we get an error:

46> {X, Y} = {london, {f, 36}}.
** exception error: no match of right hand side value {london,{f,36}}

Variables can a so be used to improve the readability of programs, for example, inthel i st _nmax/ 2 function above,
we could write:

list max([Head|Rest], Result so far) when Head > Result so far ->
New result far = Head,
list max(Rest, New result far);

which is possibly alittle clearer.

4.2.11 More About Lists
Remember that the | operator can be used to get the head of alist:

47> [M1|T1] = [paris, london, rome].
[paris, london, rome]

48> M1.

paris

49> T1.

[London, rome]

The | operator can also be used to add ahead to alist:

50> L1 = [madrid | T1].
[madrid, London, rome]
51> L1.

[madrid, london, rome]

Now an example of this when working with lists - reversing the order of alist:

-module(tut8).
-export([reverse/1]).

reverse(List) ->
reverse(List, []).

reverse([Head | Rest], Reversed List) ->

82 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

reverse(Rest, [Head | Reversed List]);
reverse([], Reversed List) ->
Reversed List.

52> c(tut8).

{ok, tut8}

53> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Rever sed_Li st isbuilt. It startsas[], wethen successively take off the heads of thelist to bereversed
and add them to thethe Rever sed_Li st , as shown in the following:

reverse([1]|2,31, []) =>
reverse([2,3], [1|[1])

reverse([2]|3]1, [1]) =>
reverse([3], [2][1])

reverse([3[[1], [2,1]) =>
reverse([1, [3][2,1]])

reverse([], [3,2,1]) =>
[3,2,1]

Themodulel i st s containsalot of functions for manipulating lists, for example for reversing them, so before you
write alist manipulating function it is a good ideato check that oneisn't already written for you. (see lists(3)).

Now lets get back to the cities and temperatures, but take a more structured approach thistime. First let's convert the
whole list to Celsius as follows and test the function:

-module(tut7).
-export([format temps/1]).

format temps(List of cities) ->
convert list to c(List of cities).

convert list to c([{Name, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

54> c(tut7).
{ok, tut7}.
55> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).
[{moscow, {c,-10}},

{cape town,{c,21.11111111111111}},

{stockholm, {c, -4}},

{paris, {c,-2.2222222222222223}},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 83

4.2 Sequential Programming

{london, {c,2.2222222222222223}}]

Looking at this bit by bit:

format temps(List of cities) ->
convert list to c(List of cities).

Here we see that f or mat _tenps/ 1 callsconvert list_to_c/1.convert |ist_to_c/1 takes off the
head of theLi st _of _ci ti es, convertsit to Celsiusif needed. The | operator is used to add the (maybe) converted
to the converted rest of thelist:

[Converted City | convert list to c(Rest)];

or

[City | convert list to c(Rest)];

We go on doing this until we get to the end of thelist (i.e. the list is empty:

convert list to c([]) ->
[1.

Now we have converted the list, we add a function to print it:

-module(tut?).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List).

convert list to c([{Name, {f, F}} | Rest]) ->
Converted City = {Name, {c, (F -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Rest]) ->
io:format("~-15w ~w c~n", [Name, Templ),
print temp(Rest);

print temp([]) ->
ok.

56> c(tut?).
{ok, tut7}

84 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

57> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢
ok

We now have to add a function to find the cities with the maximum and minimum temperatures. The program below
isn't the most efficient way of doing this as we walk through the list of cities four times. But it is better to first strive
for clarity and correctness and to make programs efficient only if really needed.

-module(tut?7).
-export([format temps/1]).

format temps(List of cities) ->
Converted List = convert list to c(List of cities),
print temp(Converted List),
{Max_city, Min city} = find max and min(Converted List),
print max and min(Max city, Min city).

convert list to c([{Name, {f, Temp}} | Rest]) ->
Converted City = {Name, {c, (Temp -32)* 5 / 9}},
[Converted City | convert list to c(Rest)];

convert list to c([City | Rest]) ->
[City | convert list to c(Rest)];

convert list to c([]) ->
[1.

print temp([{Name, {c, Temp}} | Rest]) ->
io:format("~-15w ~w c~n", [Name, Temp]),
print temp(Rest);

print temp([]) ->
ok.

find max_and min([City | Rest]) ->
find max_and min(Rest, City, City).

find max_and min([{Name, {c, Temp}} | Restl],
{Max Name, {c, Max Temp}},
{Min Name, {c, Min_ Temp}}) ->

if
Temp > Max Temp ->
Max_City = {Name, {c, Templ}}; % Change
true ->
Max City = {Max Name, {c, Max Temp}} % Unchanged
end,
if
Temp < Min Temp ->
Min City = {Name, {c, Templ}}; % Change
true ->
Min City = {Min Name, {c, Min Temp}} % Unchanged
end,

find max_and min(Rest, Max City, Min City);

find max_and min([], Max City, Min City) ->
{Max_City, Min City}.

print max_and min({Max name, {c, Max temp}}, {Min name, {c, Min_ temp}}) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 85

4.2 Sequential Programming

io:format("Max temperature was ~w ¢ in ~w~n", [Max_temp, Max name]),
io:format("Min temperature was ~w ¢ in ~w~n", [Min_temp, Min name]).

58> c(tut?7).

{ok, tut7}

59> tut7:format temps([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

moscow -10 ¢

cape_town 21.11111111111111 ¢
stockholm -4 ¢

paris -2.2222222222222223 ¢
london 2.2222222222222223 ¢

Max temperature was 21.11111111111111 c in cape_town
Min temperature was -10 ¢ in moscow
ok

4.2.12 If and Case

Thefunctionf i nd_rmax_and_mi n works out the maximum and minimum temperature. We have introduced a new
congtruct herei f . If works asfollows:

if
Condition 1 ->
Action 1;
Condition 2 ->
Action 2;
Condition 3 ->
Action 3;
Condition 4 ->
Action 4
end

Notethereisno";" before end! Conditions are the same as guards, tests which succeed or fail. Erlang starts at the top

until it findsacondition which succeeds and then it eval uates (performs) the action following the condition and ignores
all other conditions and action before the end. If no condition matches, there will be a run-time failure. A condition
which alwaysis succeeds isthe atom, t r ue and thisis often used last in ani f meaning do the action following the
t r ue if al other conditions have failed.

Thefollowing is a short program to show the workings of i f .

-module(tut9).
-export([test if/2]).

test if(A, B) ->
if

A == ->
io:format("A == 5~n", [1),
a_equals 5;

B == ->
io:format("B == 6~n", [1),
b equals 6;

A==2,B==3-> %i.e. A equals 2 and B equals 3
io:format("A == 2, B == 3~n", []),
a_equals 2 b equals 3;

A == ; B==7 -> %i.e. A equals 1 or B equals 7
io:format("A ==1 ; B == 7~n", []),

86 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

a_equals 1 or b equals 7
end.

Testing this program gives:

60> c(tut9).

{ok, tut9}

61> tut9:test if(5,33).

A==

a equals 5

62> tut9:test if(33,6).

B==

b equals 6

63> tut9:test if(2, 3).

A==2'B==3

a equals 2 b equals 3

64> tut9:test if(1, 33).

A==1;B==7

a equals 1 or b equals 7

65> tut9:test if(33, 7).

A==1;B==7

a equals 1 or b equals 7

66> tut9:test if(33, 33).

** exception error: no true branch found when evaluating an if expression
in function tut9:test if/2 (tut9.erl, line 5)

Notice that t ut 9: test _i f (33, 33) did not cause any condition to succeed so we got the run time error
i f_cl ause, here nicely formatted by the shell. See the chapter "Guard Sequences' in the Erlang Reference
Manual for details of the many guard tests available. case is another construct in Erlang. Recall that we wrote the
convert _| engt h function as:

convert length({centimeter, X}) ->
{inch, X / 2.54};

convert length({inch, Y}) ->
{centimeter, Y * 2.54}.

We could also write the same program as.

-module(tutl0).
-export([convert length/1]).

convert length(Length) ->
case Length of
{centimeter, X} ->
{inch, X / 2.54};
{inch, Y} ->
{centimeter, Y * 2.54}
end.

67> c(tutlo).

{ok, tutlo}

68> tutlO:convert length({inch, 6}).
{centimeter,15.24}

69> tutlO:convert length({centimeter, 2.5}).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 87

4.2 Sequential Programming

{inch,0.984251968503937}

Noticethat bothcase andi f havereturnvalues, i.e. inthe above example case returned either { i nch, X/ 2. 54}
or{centineter, Y*2. 54} . The behaviour of case can aso be modified by using guards. An example should
hopefully clarify this. The following example tells us the length of amonth, given the year. We need to know the year
of course, since February has 29 daysin aleap year.

-module(tutll).
-export([month length/2]).

month length(Year, Month) ->
%% All years divisible by 400 are leap
%% Years divisible by 100 are not leap (except the 400 rule above)
%% Years divisible by 4 are leap (except the 100 rule above)
Leap = if
trunc(Year / 400) * 400 == Year ->
leap;
trunc(Year / 100) * 100 == Year ->
not leap;
trunc(Year / 4) * 4 == Year ->
leap;
true ->
not leap
end,
case Month of
sep -> 30;
apr -> 30;
jun -> 30;
nov -> 30;
feb when Leap == leap -> 29;
feb -> 28;
jan -> 31;
mar -> 31;
may -> 31;
jul -> 31;
aug -> 31;
oct -> 31;
dec -> 31
end.

70> c(tutll).

{ok,tutll}

71> tutll:month length(2004, feb).
29

72> tutll:month length(2003, feb).
28

73> tutll:month length(1947, aug).
31

4.2.13 Built In Functions (BIFs)

Built in functions (BIFs) are functions which for some reason are built in to the Erlang virtual machine. BIFs often
implement functionality that isimpossible to implement in Erlang or is too inefficient to implement in Erlang. Some
BIFs can be called by use of the function name only, but they by default bel ong to the erlang module. So for example,
thecall tothe BIFt r unc below isequivalenttoacall toer | ang: t runc.

88 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

Asyou can see, we first find out if ayear isleap or not. If ayear is divisible by 400, it is aleap year. To find this
out we first divide the year by 400 and use the built in functiont r unc (more later) to cut off any decimals. We then
multiply by 400 again and see if we get back the same value. For example, year 2004:

2004 / 400 = 5.01
trunc(5.01) =5
5 * 400 = 2000

and we can see that we got back 2000 which is not the same as 2004, so 2004 isn't divisible by 400. Y ear 2000:

2000 / 400 .0
trunc(5.0)

5
5
5 * 400 = 2000

[

0

so we have aleap year. The next two tests, which check if the year isdivisible by 100 or 4, are done in the same way.
Thefirsti f returns| eap or not _| eap which ends up in the variable Leap. We use this variable in the guard for
f eb in the following case which tells us how long the month is.

This example showed the use of t r unc. An easier way would be to use the Erlang operator r em which gives the
remainder after division. For example:

74> 2004 rem 400.
4

so instead of writing

trunc(Year / 400) * 400 == Year ->
leap;

we could write

Year rem 400 == ->
leap;

There are many other built in functions (BIF) such ast r unc. Only afew built in functions can be used in guards,
and you cannot use functions you have defined yourself in guards. (see the chapter "Guard Sequences' in the Erlang
Reference Manual) (Aside for advanced readers. Thisisto ensure that guards don't have side effects). Let's play with
afew of these functionsin the shell:

75> trunc(5.6).

76> round(5.6).

77> length([a,b,c,d]).
78> float(5).

79> is atom(hello).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 89

4.2 Sequential Programming

true

80> is_atom("hello").

false

81> is tuple({paris, {c, 30}}).
true

82> is tuple([paris, {c, 30}1).
false

All the above can be used in guards. Now for some which can't be used in guards:

83> atom to list(hello).
"hello"

84> list to atom("goodbye").
goodbye

85> integer to list(22).
nyon

The 3 BIFs above do conversions which would be difficult (or impossible) to do in Erlang.

4.2.14 Higher Order Functions (Funs)

Erlang, like most modern functional programming languages, has higher order functions. We start with an example
using the shell:

86> Xf = fun(X) -> X * 2 end.
#Fun<erl eval.5.123085357>
87> Xf(5).

10

What we have done here is to define a function which doubles the value of number and assign this function to a
variable. Thus Xf (5) returned the value 10. Two useful functions when working with lists are f or each and map,
which are defined as follows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);
foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->
[Fun(First) |map(Fun,Rest)];
map (Fun, []) ->
[1.

These two functions are provided in the standard module | i st s. f or each takes alist and applies a fun to every

element inthelist, map createsanew list by applying afun to every element in alist. Going back to the shell, we start
by using map and afun to add 3 to every element of alist:

88> Add 3 = fun(X) -> X + 3 end.
#Fun<erl eval.5.123085357>

89> lists:map(Add 3, [1,2,3]).
[4,5,6]

90 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.2 Sequential Programming

Now lets print out the temperaturesin alist of cities (yet again):

90> Print City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.

#Fun<erl eval.5.123085357>

91> lists:foreach(Print City, [{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

moscow c -10
cape_town f 70
stockholm c -4
paris f 28
london f 36
ok

We will now define a fun which can be used to go through alist of cities and temperatures and transform them all
to Celsius.

-module(tutl3).
-export([convert list to c/1]).

convert to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert list to c(List) ->
lists:map(fun convert to c/1, List).

92> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).

[{moscow, {c,-10}},

{cape_town,{c,21}},

{stockholm, {c,-4}},

{paris,{c,-2}},

{london, {c,2}}]

Theconvert _t o_c functionisthe same as before, but we use it asafun:

lists:map(fun convert to c/1, List)

When we use afunction defined elsewhere asafun we canrefer toitasFunct i on/ Ari ty (remember that Ari ty
= number of arguments). So in the map call wewritel i st s: map(fun convert _to_c/1, List).Asyou
canseeconvert |ist _to_c becomesmuch shorter and easier to understand.

The standard modulel i st s also containsafunctionsort (Fun, Li st) where Fun isafun with two arguments.
Thisfun should returnt r ue if the the first argument isless than the second argument, or elsef al se. We add sorting
totheconvert list to c:

-module(tutl3).

-export([convert list to c/1]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 91

4.3 Concurrent Programming

convert to c({Name, {f, Temp}}) ->

{Name, {c, trunc((Temp - 32) * 5 / 9)}};
convert to c({Name, {c, Temp}}) ->

{Name, {c, Temp}}.

convert list to c(List) ->
New list = lists:map(fun convert to c/1, List),
lists:sort(fun({ , {c, Templ}}, { , {c, Temp2}}) ->
Templ < Temp2 end, New list).

93> c(tutl3).
{ok, tutl3}
94> tutl3:convert list to c([{moscow, {c, -10}}, {cape town, {f, 70}},
{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}1).
[{moscow, {c,-10}},
{stockholm, {c, -4}},
{paris,{c,-2}},
{london, {c,2}},
{cape_town, {c,21}}]

Insort we usethefun:

fun({ , {c, Templ}}, { , {c, Temp2}}) -> Templ < Temp2 end,

Here we introduce the concept of an anonymous variable"_". Thisis simply shorthand for a variable which is going
to get avalue, but we will ignore the value. This can be used anywhere suitable, not just in fun's. Tenpl < Tenp2
returnst r ue if Tenpl islessthan Tenp2.

4.3 Concurrent Programming

4.3.1 Processes

One of themain reasonsfor using Erlang instead of other functional languagesis Erlang's ability to handle concurrency
and distributed programming. By concurrency we mean programs which can handle several threads of execution at
the same time. For example, modern operating systems would alow you to use a word processor, a spreadsheet, a
mail client and aprint job all running at the same time. Of course each processor (CPU) in the system is probably only
handling one thread (or job) at atime, but it swaps between the jobs a such arate that it gives the illusion of running
them all at the sametime. It is easy to create parallel threads of execution in an Erlang program and it is easy to alow
these threads to communicate with each other. In Erlang we call each thread of execution a process.

(Aside: the term "process’ is usually used when the threads of execution share no data with each other and the term
"thread" when they share data in some way. Threads of execution in Erlang share no data, that's why we call them
processes).

The Erlang BIF spawn is used to create a new process: spawn(Modul e, Exported_Function, List of
Ar gurrent s) . Consider the following module:

-module(tutl4).
-export([start/0, say something/2]).

say something(What, 0) ->

92 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

done;

say_something(What, Times) ->
io:format("~p~n", [What]),
say something(What, Times - 1).

start() ->
spawn(tutl4, say something, [hello, 3]),
spawn(tutl4, say something, [goodbye, 3]).

5> c(tutld).

{ok, tutl4}

6> tutl4:say something(hello, 3).
hello

hello

hello

done

We can see that function say_somet hi ng writes its first argument the number of times specified by second
argument. Now look at the function st ar t . It starts two Erlang processes, one which writes "hello" three times and
one which writes "goodbye" three times. Both of these processes use the function say_sonet hi ng. Note that a
function used in this way by spawn to start a process must be exported from the module (i.e. in the - export at
the start of the module).

9> tutld:start().
hello

goodbye

<0.63.0>

hello

goodbye

hello

goodbye

Noticethat it didn't write "hello" three times and then "goodbye" three times, but the first process wrote a"hello", the
second a "goodbye”, the first another "hello” and so forth. But where did the <0.63.0> come from? The return value
of afunction is of course the return value of the last "thing" in the function. Thelast thing in the function st art is

spawn(tutl4, say something, [goodbye, 3]).

spawn returns a processidentifier, or pid, which uniquely identifies the process. So <0.63.0> isthe pid of the spawn
function call above. We will see how to use pids in the next example.

Note as well that we have used ~p instead of ~w ini o: f or mat . To quote the manual: "~p Writes the data with
standard syntax in the same way as~w, but breaks termswhose printed representation islonger than onelineinto many
lines and indents each line sensibly. It also tries to detect lists of printable characters and to output these as strings'.

4.3.2 Message Passing

In the following example we create two processes which send messages to each other a number of times.

-module(tutl5).

-export([start/0, ping/2, pong/0]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 93

4.3 Concurrent Programming

ping(0, Pong PID) ->
Pong PID ! finished,
io:format("ping finished~n", [1);

ping(N, Pong PID) ->
Pong PID ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong PID).

pong () i
receive
finished ->
io:format("Pong finished~n", []);
{ping, Ping PID} ->
io:format("Pong received ping~n", []),
Ping PID ! pong,
pong ()
end.

start() ->
Pong PID = spawn(tutl5, pong, []),
spawn(tutl5, ping, [3, Pong PID]).

1> c(tutls).

{ok, tutl5}

2> tutl5: start().
<0.36.0>

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished

Pong finished

Thefunctionst ar t first creates a process, let's call it "pong”:

Pong PID = spawn(tutl5, pong, [])

This process executes t ut 15: pong() . Pong_PI D is the process identity of the "pong" process. The function
st art now creates another process "ping".

spawn(tutl5, ping, [3, Pong PID]),

this process executes

tutl5:ping (3, Pong PID)

<0.36.0> isthereturn value from the st ar t function.

94 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

The process "pong" now does:

receive
finished ->
io:format("Pong finished~n", []);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong()
end.

Ther ecei ve construct is used to allow processes to wait for messages from other processes. It has the format:

receive
patternl ->
actionsl;
pattern2 ->
actions?2;

patternN
actionsN
end.

Note: no ";" before the end.

M essages between Erlang processes are simply valid Erlang terms. |.e. they can be lists, tuples, integers, atoms, pids
etc.

Each process has its own input queue for messages it receives. New messages received are put at the end of the
gueue. When a process executesar ecei ve, the first message in the queue is matched against the first pattern in the
recei ve, if this matches, the message is removed from the queue and the actions corresponding to the the pattern
are executed.

However, if the first pattern does not match, the second pattern istested, if this matches the message is removed from
the queue and the actions corresponding to the second pattern are executed. If the second pattern does not match the
third is tried and so on until there are no more pattern to test. If there are no more patterns to test, the first message
is kept in the queue and we try the second message instead. If this matches any pattern, the appropriate actions are
executed and the second message is removed from the queue (keeping the first message and any other messages in
the queue). If the second message does not match we try the third message and so on until we reach the end of the
gueue. If wereach the end of the queue, the process blocks (stops execution) and waits until anew messageisreceived
and this procedure is repeated.

Of course the Erlang implementation is "clever" and minimizes the number of times each message is tested against
the patternsin eachr ecei ve.

Now back to the ping pong example.

"Pong" iswaiting for messages. If theatom f i ni shed isreceived, "pong" writes "Pong finished" to the output and
asit has nothing more to do, terminates. If it receives a message with the format:

{ping, Ping PID}

it writes "Pong received ping" to the output and sends the atom pong to the process "ping":

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 95

4.3 Concurrent Programming

Ping PID ! pong

Note how the operator "!" is used to send messages. The syntax of "!" is:

Pid ! Message

|.e. Message (any Erlang term) is sent to the process with identity Pi d.

After sending the message pong, to the process "ping”, "pong" calls the pong function again, which causesit to get
back to the r ecei ve again and wait for another message. Now let's look at the process "ping”. Recall that it was
started by executing:

tutl5:ping(3, Pong PID)

Looking at the function pi ng/ 2 we see that the second clause of pi ng/ 2 is executed since the value of the first
argument is 3 (not 0) (first clause head is pi ng(0, Pong_PI D), second clause head ispi ng(N, Pong_PI D) , so
N becomes 3).

The second clause sends a message to "pong":

Pong PID ! {ping, self()},

sel f () returnsthe pid of the process which executes sel f (), in this case the pid of "ping". (Recall the code for
"pong", thiswill land up in the variable Pi ng_PI Dinther ecei ve previously explained).

"Ping" now waits for areply from "pong":

receive
pong ->
io:format("Ping received pong~n", [1)
end,

and writes "Ping received pong" when this reply arrives, after which "ping" callsthe pi ng function again.

ping(N - 1, Pong PID)

N- 1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause of pi ng/ 2
will be executed:

ping(@, Pong PID) ->
Pong PID ! finished,
io:format("ping finished~n", [1]);

Theatomfi ni shed issent to "pong" (causing it to terminate as described above) and "ping finished" is written to
the output. "Ping" then itself terminates as it has nothing left to do.

96 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

4.3.3 Registered Process Names

In the above example, wefirst created "pong" so asto be ableto givetheidentity of "pong" when we started "ping"”. |.e.
in someway "ping" must be able to know the identity of "pong" in order to be able to send a message to it. Sometimes
processes which need to know each others identities are started completely independently of each other. Erlang thus
provides a mechanism for processes to be given names so that these names can be used as identities instead of pids.
Thisisdone by using ther egi st er BIF:

register(some atom, Pid)

We will now re-write the ping pong example using this and giving the name pong to the "pong" process:

-module(tutls6).

-export([start/0, ping/1, pong/0]).

ping(0) ->

ping(N) ->

pong

pong ! finished,
io:format("ping finished~n", [1);

pong ! {ping, self()},
receive
->

io:format("Ping received pong~n", [1)

end,
ping(N - 1).

pong() ->

receive

finished -
io:format("Pong finished~n", [1);

{ping, Ping PID} ->

io:format("Pong received ping~n", [1),

Ping PID ! pong,

pong ()

end.

start() ->

2> c(tutle).

{ok,

tutl6}

3> tutl6:start().
<0.38.0>

Pong
Ping
Pong
Ping
Pong
Ping
ping
Pong

Inthest art/ 0 function,

received
received
received
received
received
received
finished
finished

ping
pong
ping
pong
ping
pong

register(pong, spawn(tutl6, pong, [1)),
spawn(tutl6, ping,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 97

4.3 Concurrent Programming

register(pong, spawn(tutl6, pong, [1)),

both spawns the "pong" process and gives it the name pong. In the "ping" process we can now send messages to
pong by:

pong ! {ping, self()},
so that pi ng/ 2 now becomes pi ng/ 1 aswe don't have to use the argument Pong_PI D.

4.3.4 Distributed Programming

Now let's re-write the ping pong program with "ping" and "pong" on different computers. Before we do this, there
are a few things we need to set up to get this to work. The distributed Erlang implementation provides a basic
security mechanism to prevent unauthorized access to an Erlang system on another computer. Erlang systems which
talk to each other must have the same magic cookie. The easiest way to achieve this is by having a file called
. erl ang. cooki e in your home directory on all machines which on which you are going to run Erlang systems
communicating with each other (on Windows systems the home directory is the directory where pointed to by the
$HOME environment variable - you may need to set this. On Linux or Unix you can safely ignore this and simply
create a file called . er | ang. cooki e in the directory you get to after executing the command cd without any
argument). The. er | ang. cooki e file should contain one line with the same atom. For example on Linux or Unix
in the OS shell:

$ cd

$ cat > .erlang.cookie
this is very secret

$ chmod 400 .erlang.cookie

The chnod above makethe. er | ang. cooki e file accessible only by the owner of thefile. Thisis areguirement.
When you start an Erlang system which is going to talk to other Erlang systems, you must give it aname, eg:

$ erl -sname my name

We will see more details of this later. If you want to experiment with distributed Erlang, but you only have one
computer to work on, you can start two separate Erlang systems on the same computer but give them different names.
Each Erlang system running on a computer is called an Erlang node.

(Note: er| - sname assumes that all nodes are in the same IP domain and we can use only the first component
of the IP address, if we want to use nodes in different domains we use - nane instead, but then all IP address must
be givenin full.

Here isthe ping pong example modified to run on two separate nodes:

-module(tutl?7).
-export([start ping/1, start pong/0, ping/2, pong/0]).
ping (0, Pong Node) ->

{pong, Pong Node} ! finished,
io:format("ping finished~n", [1);

98 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong () i
receive
finished ->
io:format("Pong finished~n", [1);
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start pong() ->
register(pong, spawn(tutl7, pong, [1)).

start ping(Pong Node) ->
spawn(tutl7, ping, [3, Pong Nodel]).

Let us assume we have two computers called gollum and kosken. We will start a node on kosken called ping and then
anode on gollum called pong.

On kosken (on aLinux/Unix system):

kosken> erl -sname ping
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ~G)
(ping@kosken)1>

On gollum:

gollum> erl -sname pong
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with "G)
(pong@gollum)1>

Now we start the "pong" process on gollum:

(pong@gollum)1> tutl7:start pong().
true

and start the "ping" process on kosken (from the code above you will see that a parameter of the st art _pi ng
function is the node name of the Erlang system where "pong" is running):

(ping@kosken)1> tutl7:start ping(pong@gollum).
<0.37.0>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 99

4.3 Concurrent Programming

Ping received pong
Ping received pong
Ping received pong
ping finished

Here we see that the ping pong program has run, on the "pong" side we see:

(pong@gollum)2>
Pong received ping
Pong received ping
Pong received ping
Pong finished
(pong@gollum)2>

Looking at thet ut 17 code we see that the pong function itself is unchanged, the lines:

{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,

work in the same way irrespective of on which node the "ping" process is executing. Thus Erlang pids contain
information about where the process executes so if you know the pid of aprocess, the"!" operator can be used to send
it amessageif the processis on the same node or on a different node.

A differenceis how we send messages to a registered process on another node:

{pong, Pong Node} ! {ping, self()},

Weuseatuple{regi st ered_nane, node_nane} instead of just ther egi st er ed_nane.

In the previous example, we started "ping" and "pong" from the shells of two separate Erlang nodes. spawn can also
be used to start processes in other nodes. The next example is the ping pong program, yet again, but this time we will
start "ping" in another node:

-module(tutl8).
-export([start/1, ping/2, pong/0]).

ping(0, Pong Node) ->
{pong, Pong Node} ! finished,
io:format("ping finished~n", [1);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong() ->
receive
finished ->
io:format("Pong finished~n", [1]);

100 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start(Ping Node) ->
register(pong, spawn(tutl8, pong, [1)),
spawn(Ping Node, tutl8, ping, [3, node()]).

Assuming an Erlang system called ping (but not the "ping" process) has already been started on kosken, then on gollum
we do:

(pong@gollum)1> tutl8:start(ping@kosken).
<3934.39.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong finished

ping finished

Notice we get al the output on gollum. This is because the io system finds out where the process is spawned from
and sends all output there.

4.3.5 A Larger Example

Now for alarger example. We will make an extremely simple "messenger”. The messenger isaprogram which allows
usersto log in on different nodes and send simple messages to each other.

Before we start, let's note the following:

e Thisexamplewill just show the message passing |logic- no attempt at all has been made to provide anice graphical
user interface. This can, of course, also be donein Erlang - but that's another tutorial.

» Thissort of problem can be solved more easily if you use the facilities in OTP, which will aso provide methods
for updating code on the fly etc. But again, that's another tutorial.

* Thefirst program we write will contain some inadequacies regarding the handling of nodes which disappear. We
will correct thesein alater version of the program.

We will set up the messenger by allowing "clients" to connect to a central server and say who and where they are. |.e.
auser won't need to know the name of the Erlang node where another user is located to send a message.

Filemessenger. erl :

%%% Message passing utility.
o

5%% User interface:

%%% Logon (Name)

%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.

%%% Logoff()

%%% Logs off anybody at at node

%%% message(ToName, Message)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 101

4.3 Concurrent Programming

sends Message to ToName. Error messages if the user of this
function is not logged on or if ToName is not logged on at
any node.

One node in the network of Erlang nodes runs a server which maintains

data about the logged on users. The server is registered as "messenger"
Each node where there is a user logged on runs a client process registered
as "mess client"

Protocol between the client processes and the server

To server: {ClientPid, logon, UserName}
Reply {messenger, stop, user exists at other node} stops the client
Reply {messenger, logged on} logon was successful

To server: {ClientPid, logoff}
Reply: {messenger, logged off}

To server: {ClientPid, logoff}
Reply: no reply

To server: {ClientPid, message to, ToName, Message} send a message
Reply: {messenger, stop, you are not logged on} stops the client

Reply: {messenger, receiver not found} no user with this name logged on
Reply: {messenger, sent} Message has been sent (but no guarantee)

To client: {message from, Name, Message},

Protocol between the "commands" and the client

Started: messenger:client(Server Node, Name)
To client: logoff
To client: {message to, ToName, Message}

Configuration: change the server node() function to return the
name of the node where the messenger server runs

A d® d° A° A° A° A° A A A A A A A A° A P of°
o o° o® 0° o A° ° 0° O° 0° O° S A° O I A I° A I° ° ° O S I O I A I A ° P ° O ° O o N o°

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

-module(messenger) .
-export([start server/0, server/1l, logon/1l, logoff/0, message/2, client/2]).

% Change the function below to return the name of the node where the
% messenger server runs
server node() ->

messenger@bill.

00
60
00

60

%% This is the server process for the "messenger"
%% the user list has the format [{ClientPidl, Namel}, {ClientPid22, Name2}, ...
server(User List) ->
receive
{From, logon, Name} ->
New User List = server logon(From, Name, User List),
server(New User List);
{From, logoff} ->
New User List = server logoff(From, User List),
server(New User List);
{From, message to, To, Message} ->
server_transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),
server(User List)

o of

end.

%%% Start the server
start server() ->

102 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

register(messenger, spawn(messenger, server, [[]])).

%%% Server adds a new user to the user list
server logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! {messenger, stop, user exists at other node}, %reject logon
User List;
false ->
From ! {messenger, logged on},
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};
{value, {From, Name}} ->
server_transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},
From ! {messenger, sent}
end.

%%% User Commands
logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(messenger, client, [server node(), Name]));
_ -> already logged on
end.

logoff() ->
mess_client ! logoff.

message (ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess_client ! {message to, ToName, Message},
ok
end.

%%% The client process which runs on each server node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 103

4.3 Concurrent Programming

await result(),
client(Server_ Node).

client(Server Node) ->
receive
logoff ->
{messenger, Server Node} ! {self(), logoff},
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Messagel)
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Whyl),
exit(normal);
{messenger, What} -> 9% Normal response
io:format("~p~n", [What])
end.

To use this program you need to:

e configuretheser ver _node() function
« copy the compiled code (messenger . bean) to the directory on each computer where you start Erlang.

In the following example of use of this program | have started nodes on four different computers, but if you don't have
that many machines available on your network you could start up several nodes on the same machine.

We start up four Erlang nodes: messenger@super, c1@bilbo, c2@kosken, c3@gollum.
First we start up athe server at messenger@super:

(messenger@super)1> messenger:start server().
true

Now Peter logs on at c1@bilbo:

(cl@bilbo)1> messenger:logon(peter).
true
logged on

Jameslogs on at c2@kosken:

(c2@kosken)1> messenger:logon(james).
true
logged on

and Fred logs on at c3@gollum:

104 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.3 Concurrent Programming

(c3@gollum) 1> messenger:logon(fred).
true
logged on

Now Peter sends Fred a message:

(cl@bilbo)2> messenger:message(fred, "hello").
ok
sent

And Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"

(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
ok

sent

(c3@gollum)3> messenger:logoff().

logoff

James now tries to send a message to Fred:

(c2@kosken)2> messenger:message(fred, "peter doesn't like you").
ok
receiver not found

But thisfails as Fred has already logged off.
First let'slook at some of the new concepts we have introduced.

There are two versions of the ser ver _t r ansf er function: one with four arguments (ser ver _t ransfer/ 4)
and one with five (ser ver _transf er/ 5). These are regarded by Erlang as two separate functions.

Note how we writethe ser ver function so that it callsitself, viaser ver (User _Li st), and thus creates a loop.
The Erlang compiler is"clever" and optimizes the code so that this really is a sort of loop and not a proper function
call. But thisonly worksif thereisno code after the call, otherwise the compiler will expect the call to return and make
aproper function call. Thiswould result in the process getting bigger and bigger for every loop.

Weusefunctionsfromthel i st s module. Thisisavery useful moduleand astudy of the manual pageisrecommended
(erl -man lists).lists: keynenber (Key, Position, Li sts) looks through alist of tuples and looks
at Posi ti onineachtupleto seeif itisthe sameasKey. Thefirst element is position 1. If it finds atuple where the
element at Posi ti on isthesameasKey, it returnst r ue, otherwisef al se.

3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}l).
true
4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
false

|ists: keydel et e worksin the same way but deletes the first tuple found (if any) and returns the remaining list:

5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 105

4.3 Concurrent Programming

[{x,y,z},{b,b,b},{q,r,s}]

lists: keysearchislikel i sts: keymenber, butit returns{val ue, Tupl e_Found} or theatomf al se.
There are alot more very useful functionsinthel i st s module.

An Erlang processwill (conceptually) run until it doesar ecei ve and thereisno messagewhich it wantstoreceivein
the message queue. | say "conceptually" because the Erlang system shares the CPU time between the active processes
in the system.

A process terminates when there is nothing more for it to do, i.e. the last function it calls simply returns and doesn't
call another function. Another way for a processto terminateisfor it to cal exi t / 1. Theargument toexi t / 1 has
aspecia meaning which we will look at later. In this example wewill do exi t (nor mal) which hasthe same effect
as a process running out of functionsto call.

The BIF wher ei s(Regi st er edNane) checks if a registered process of name Regi st er edNane exists and
return the pid of the processif it does exist or the atom undef i ned if it does not.

Y ou should by now be able to understand most of the code above so I'll just go through one case: a message is sent
from one user to another.

Thefirst user "sends" the message in the example above by:

messenger:message(fred, "hello")

After testing that the client process exists:

whereis(mess client)

and amessageissenttoness_client:

mess client ! {message to, fred, "hello"}

The client sends the message to the server by:

{messenger, messenger@super} ! {self(), message to, fred, "hello"},

and waits for areply from the server.

The server receives this message and calls:

server transfer(From, fred, "hello", User List),

which checks that the pid Fr omisinthe User _Li st :

lists:keysearch(From, 1, User List)

If keysear ch returnsthe atom f al se, some sort of error has occurred and the server sends back the message:

106 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

From ! {messenger, stop, you are not logged on}

whichisreceived by theclient whichinturndoesexi t (nor mal) andterminates. If keysear chreturns{ val ue,
{ From Nane}} weknow that the user islogged on and is his name (peter) isin variable Nare. We now call:

server_transfer(From, peter, fred, "hello", User List)

Notethat asthisisser ver _t r ansf er/ 5 itisnot the same asthe previous function ser ver _t r ansf er/ 4. We
do another keysear ch onUser _Li st tofind the pid of the client corresponding to fred:

lists:keysearch(fred, 2, User List)

This time we use argument 2 which is the second element in the tuple. If this returns the atom f al se we know that
fred is not logged on and we send the message:

From ! {messenger, receiver not found};

which isreceived by the client, if keysear ch returns;

{value, {ToPid, fred}}

we send the message:

ToPid ! {message from, peter, "hello"},

to fred's client and the message:

From ! {messenger, sent}

to peter's client.
Fred's client receives the message and printsiit:

{message from, peter, "hello"} ->
io:format("Message from ~p: ~p~n

, [peter, "hello"])

and peter's client receives the messageintheawai t _r esul t function.
4.4 Robustness

There are several things which are wrong with the messenger example from the previous chapter. For example if a
node where a user is logged on goes down without doing a log off, the user will remain in the server'sUser _Li st

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 107

4.4 Robustness

but the client will disappear thus making it impossible for the user to log on again as the server thinks the user already
logged on.

Or what happens if the server goes down in the middle of sending a message leaving the sending client hanging for
everintheawai t _resul t function?

4.4.1 Timeouts

Before improving the messenger program we will ook into some general principles, using the ping pong program as
an example. Recall that when "ping" finishes, it tells "pong" that it has done so by sending the atom f i ni shed as
a message to "pong" so that "pong" could also finish. Another way to let "pong" finish, is to make "pong" exit if it
does not receive a message from ping within a certain time, this can be done by adding a timeout to pong as shown
in the following example:

-module(tutl9).
-export([start ping/1, start pong/0, ping/2, pong/0]).

ping(0, Pong Node) ->
io:format("ping finished~n", [1);

ping(N, Pong Node) ->
{pong, Pong Node} ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [])
end,
ping(N - 1, Pong Node).

pong () =
receive
{ping, Ping PID} ->

io:format("Pong received ping~n", []),
Ping PID ! pong,
pong ()

after 5000 ->
io:format("Pong timed out~n", [])

end.

start pong() ->
register(pong, spawn(tutl9, pong, [1)).

start ping(Pong Node) ->
spawn(tutl9, ping, [3, Pong Nodel).

After we have compiled this and copied the t ut 19. beamfile to the necessary directories:
On (pong@kaosken):

(pong@kosken)1> tutl9:start pong().
true

Pong received ping

Pong received ping

Pong received ping

Pong timed out

On (ping@gollum):

108 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

(ping@gollum)1> tutl9:start ping(pong@kosken).
<0.36.0>

Ping received pong

Ping received pong

Ping received pong

ping finished

(The timeout is set in:

pong() ->
receive
{ping, Ping PID} ->

io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong()

after 5000 ->
io:format("Pong timed out~n", [])

end.

We start the timeout (af t er 5000) when we enter r ecei ve. The timeout is canceled if { pi ng, Pi ng_PI D}
is received. If { pi ng, Pi ng_PI D} is not received, the actions following the timeout will be done after 5000
milliseconds. af t er must belastinther ecei ve, i.e. preceded by all other message reception specificationsin the
recei ve. Of course we could aso call afunction which returned an integer for the timeout:

after pong timeout() ->

In general, there are better ways than using timeouts to supervise parts of a distributed Erlang system. Timeouts are
usually appropriate to supervise external events, for example if you have expected a message from some external
system within a specified time. For example, we could use atimeout to log a user out of the messenger system if they
have not accessed it, for example, in ten minutes.

4.4.2 Error Handling

Before we go into details of the supervision and error handling in an Erlang system, we need see how Erlang processes
terminate, or in Erlang terminology, exit.

A process which executesexi t (nor mal) or simply runs out of things to do has anormal exit.

A process which encounters a runtime error (e.g. divide by zero, bad match, trying to call a function which doesn't
exist etc) exits with an error, i.e. has an abnormal exit. A process which executes exit(Reason) where Reason isany
Erlang term except the atom nor mal , also has an abnormal exit.

An Erlang process can set up linksto other Erlang processes. If aprocess callslink(Other_Pid) it setsup abidirectional
link between itself and the process called & her _Pi d. When a process terminates, it sends something called asignal
to al the processesit haslinks to.

The signal carries information about the pid it was sent from and the exit reason.
The default behaviour of a process which receives anormal exit is to ignore the signal.

The default behaviour in the two other cases (i.e. abnormal exit) above is to bypass al messages to the receiving
process and to kill it and to propagate the same error signal to the killed process links. In this way you can connect
all processesin atransaction together using links and if one of the processes exits abnormally, all the processesin the
transaction will be killed. Aswe often want to create a process and link to it at the same time, there is a special BIF,
spawn_link which does the same as spawn, but also creates alink to the spawned process.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 109

4.4 Robustness

Now an example of the ping pong example using links to terminate "pong":

-module(tut20).
-export([start/1l, ping/2, pong/01]).

ping(N, Pong Pid) ->
link(Pong Pid),
pingl(N, Pong Pid).

pingl(0,) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [1])
end,
pingl(N - 1, Pong Pid).

pong() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pong ()
end.

start(Ping Node) ->
PongPID = spawn(tut20, pong, []),
spawn(Ping Node, tut20, ping, [3, PongPID]).

(s1@bill)3> tut20:start(s2@kosken).
Pong received ping

<3820.41.0>

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Thisis aslight modification of the ping pong program where both processes are spawned from the samestart/ 1
function, where the "ping" process can be spawned on a separate node. Note the use of the | i nk BIF. "Ping" calls
exi t (pi ng) whenit finishes and thiswill cause an exit signal to be sent to "pong" which will also terminate.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives abnormal exit
signals, but all signalswill beturned into normal messagesontheformat{' EXI T' , Fr onPl D, Reason} and added
to the end of the receiving processes message queue. This behaviour is set by:

process flag(trap exit, true)

There are several other process flags, see erlang(3). Changing the default behaviour of aprocessin thisway isusually
not donein standard user programs, but isleft to the supervisory programsin OTP (but that's another tutorial). However
we will modify the ping pong program to illustrate exit trapping.

110 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

-module(tut2l).
-export([start/1l, ping/2, pong/0]).

ping(N, Pong Pid) ->
link(Pong Pid),
pingl(N, Pong Pid).

plngl(el 7) ->
exit(ping);

pingl(N, Pong Pid) ->
Pong Pid ! {ping, self()},
receive
pong ->
io:format("Ping received pong~n", [1)
end,
pingl(N - 1, Pong Pid).

pong() ->
process flag(trap exit, true),
pongl().

pongl() ->
receive
{ping, Ping PID} ->
io:format("Pong received ping~n", [1),
Ping PID ! pong,
pongl();
{'EXIT', From, Reason} ->
io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
end.

start(Ping Node) ->
PongPID = spawn(tut2l, pong, [1),
spawn(Ping Node, tut2l, ping, [3, PongPID]).

(sl@bill)1l> tut2l:start(s2@gollum).
<3820.39.0>

Pong received ping

Ping received pong

Pong received ping

Ping received pong

Pong received ping

Ping received pong

pong exiting, got {'EXIT',6<3820.39.0>,ping}

4.4.3 The Larger Example with Robustness Added

Now we return to the messenger program and add changes which make it more robust:

%%% Message passing utility.
o

5%% User interface:

%%% Login(Name)

%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 111

4.4 Robustness

%% Logoff()
Logs off anybody at at node

message(ToName, Message)
sends Message to ToName. Error messages if the user of this
function is not logged on or if ToName is not logged on at
any node.

3
o
o
o
o
o
3
o
o
o
o
o
% One node in the network of Erlang nodes runs a server which maintains
% data about the logged on users. The server is registered as "messenger"

% Each node where there is a user logged on runs a client process registered
% as "mess client"

N _

o

o

O

Protocol between the client processes and the server

To server: {ClientPid, logon, UserName}
Reply {messenger, stop, user exists at other node} stops the client
Reply {messenger, logged on} logon was successful

When the client terminates for some reason
To server: {'EXIT', ClientPid, Reason}

To server: {ClientPid, message to, ToName, Message} send a message
Reply: {messenger, stop, you are not logged on} stops the client

Reply: {messenger, receiver not found} no user with this name logged on
Reply: {messenger, sent} Message has been sent (but no guarantee)

To client: {message from, Name, Message},

Protocol between the "commands" and the client

Started: messenger:client(Server Node, Name)
To client: logoff
To client: {message to, ToName, Message}

Configuration: change the server node() function to return the
name of the node where the messenger server runs

-module(messenger) .
-export([start server/0, server/0,
logon/1, logoff/0, message/2, client/2]).

messenger@super.

%% This is the server process for the "messenger"
%% the user list has the format [{ClientPidl, Namel}, {ClientPid22, Name2}, ...
server() ->

process flag(trap exit, true),

server([]).

o of

server(User List) ->
receive

{From, logon, Name} ->
New User List = server logon(From, Name, User List),
server(New User List);

{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);

{From, message to, To, Message} ->
server_transfer(From, To, Message, User List),
io:format("list is now: ~p~n", [User List]),

112 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.4 Robustness

server(User List)
end.

%%% Start the server
start server() ->
register(messenger, spawn(messenger, server, [])).

%%% Server adds a new user to the user list
server logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! {messenger, stop, user exists at other node}, %reject logon
User List;
false ->
From ! {messenger, logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

%%% Server deletes a user from the user list
server logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! {messenger, stop, you are not logged on};
{value, { , Name}} ->
server_transfer(From, Name, To, Message, User List)
end.

%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! {messenger, receiver not found};
{value, {ToPid, To}} ->
ToPid ! {message from, Name, Message},
From ! {messenger, sent}
end.

%%% User Commands
logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn (messenger, client, [server node(), Name]));
_ -> already logged on
end.

logoff() ->
mess_client ! logoff.

message (ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess_client ! {message to, ToName, Message},
ok
end.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 113

4.5 Records and Macros

%%% The client process which runs on each user node
client(Server Node, Name) ->
{messenger, Server Node} ! {self(), logon, Name},
await result(),
client(Server Node).

client(Server Node) ->
receive
logoff ->
exit(normal);
{message to, ToName, Message} ->
{messenger, Server Node} ! {self(), message to, ToName, Message},
await result();
{message from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Messagel)
end,
client(Server Node).

%%% wait for a response from the server
await result() ->
receive
{messenger, stop, Why} -> % Stop the client
io:format("~p~n", [Whyl),
exit(normal);
{messenger, What} -> 9% Normal response
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", []),
exit(timeout)
end.

We have added the following changes:

The messenger server traps exits. If it receives an exit signal, {' EXI T' , Fr om Reason} this means that a client
process has terminated or is unreachable because:

« theuser haslogged off (we have removed the "logoff" message),

* thenetwork connection to the client is broken,

» thenode on which the client process resides has gone down, or

« theclient processes has done someillegal operation.

If we receive an exit signa as above, we delete the tuple, { Fr om Nane} from the servers User _Li st using the
server _| ogof f function. If the node on which the server runs goes down, an exit signal (automatically generated

by the system), will be sent to all of the client processes: {' EXI T' , Messenger PI D, noconnect i on} causing
all the client processes to terminate.

We have also introduced a timeout of five secondsin theawai t _r esul t function. |.e. if the server does not reply
within five seconds (5000 ms), the client terminates. Thisisreally only needed in the logon sequence before the client
and server are linked.

Aninteresting case is if the client was to terminate before the server links to it. Thisis taken care of because linking
to anon-existent process causes an exit signal, {' EXI T' , Fr om nopr oc}, to be automatically generated as if the
process terminated immediately after the link operation.

4.5 Records and Macros

Larger programs are usually written as a collection of fileswith awell defined interface between the various parts.

114 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

4.5.1 The Larger Example Divided into Several Files
Toillustrate this, we will divide the messenger example from the previous chapter into five files.

nmess_config. hrl

header file for configuration data
mess_i nterface. hrl

interface definitions between the client and the messenger
user _interface. erl

functions for the user interface
mess_client.erl

functions for the client side of the messenger
mess_server. erl

functions for the server side of the messenger

While doing this we will also clean up the message passing interface between the shell, the client and the server and
define it using records, we will also introduce macros.

%%%----FILE mess config.hrl----

%%% Configure the location of the server node,
-define(server node, messenger@super).

%%%- - - -END FILE----

oP

%%----FILE mess interface.hrl----

%% Message interface between client and server and client shell for
%% messenger program

o° o°

%%%Messages from Client to server received in server/1l function.
-record(logon,{client pid, username}).

record(message, {client pid, to name, message}).

%% {'EXIT', ClientPid, Reason} (client terminated or unreachable.

P

%%% Messages from Server to Client, received in await result/0 function
-record(abort client,{message}).

%%% Messages are: user exists at other node,

%%% you are not logged on

-record(server reply,{message}).

%%% Messages are: logged on

%%% receiver not found

%%% sent (Message has been sent (no guarantee)

%%% Messages from Server to Client received in client/1 function
-record(message from,{from name, message}).

Messages from shell to Client received in client/1 function
spawn(mess client, client, [server node(), Name])
ecord(message to,{to name, message}).

logoff

o° o°

00
“6°6
0.0
“6°6
r

o
6

o°
o°

%%%- - - -END FILE----

%%%----FILE user interface.erl----

%%% User interface to the messenger program

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 115

4.5 Records and Macros

login(Name)
One user at a time can log in from each Erlang node in the
system messenger: and choose a suitable Name. If the Name
is already logged in at another node or if someone else is
already logged in at the same node, login will be rejected
with a suitable error message.

logoff()
Logs off anybody at at node

message(ToName, Message)
sends Message to ToName. Error messages if the user of this
function is not logged on or if ToName is not logged on at
any node.

-module(user_interface).
-export([logon/1, logoff/0, message/2]).
-include("mess interface.hrl").
-include("mess config.hrl").

logon(Name) ->
case whereis(mess client) of
undefined ->
register(mess client,
spawn(mess client, client, [?server node, Name]));
_ -> already logged on
end.

logoff() ->
mess_client ! logoff.

message(ToName, Message) ->
case whereis(mess client) of % Test if the client is running
undefined ->
not logged on;
_ -> mess_client ! #message to{to name=ToName, message=Message},
ok
end.

%%%- - - -END FILE----

%%%----FILE mess_client.erl----
%%% The client process which runs on each user node

-module(mess_client).
-export([client/2]).
-include("mess interface.hrl").

client(Server Node, Name) ->
{messenger, Server Node} ! #logon{client pid=self(), username=Name},
await result(),
client(Server_ Node).

client(Server Node) ->
receive

logoff ->
exit(normal);

#message to{to name=ToName, message=Message} ->
{messenger, Server Node} !

#message{client pid=self(), to name=ToName, message=Message},

await result();

{message from, FromName, Message} ->

116 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

io:format("Message from ~p: ~p~n", [FromName, Message])
end,
client(Server_ Node).

%%% wait for a response from the server
await result() ->
receive
#abort client{message=Why} ->
io:format("~p~n", [Whyl),
exit(normal);
#server reply{message=What} ->
io:format("~p~n", [What])
after 5000 ->
io:format("No response from server~n", [1]),
exit(timeout)
end.

%%%- - - -END FILE---

%%%----FILE mess_server.erl----
%%% This is the server process of the messenger service

-module(mess_server).
-export([start server/0, server/0]).
-include("mess interface.hrl").

server() ->
process flag(trap exit, true),
server([]).

%%% the user list has the format [{ClientPidl, Namel},{ClientPid22, Name2},..
r

server(User List) ->
io:format("User list = ~p~n", [User List]),
receive

#logon{client pid=From, username=Name} ->
New User List = server logon(From, Name, User List),
server(New User List);

{'EXIT', From, } ->
New User List = server logoff(From, User List),
server(New User List);

#message{client pid=From, to name=To, message=Message} ->
server_transfer(From, To, Message, User List),
server(User List)

end.

%%% Start the server
start server() ->
register(messenger, spawn(?MODULE, server, [])).

%%% Server adds a new user to the user list
server logon(From, Name, User List) ->

%% check if logged on anywhere else

case lists:keymember(Name, 2, User List) of

true ->
From ! #abort client{message=user exists at other node},
User List;
false ->
From ! #server reply{message=logged on},
link(From),
[{From, Name} | User List] %add user to the list

end.

.1

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 117

4.5 Records and Macros

%%% Server deletes a user from the user list
server logoff(From, User List) ->
lists:keydelete(From, 1, User List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User List) ->
%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User List) of
false ->
From ! #abort client{message=you are not logged on};
{value, { , Name}} ->
server_transfer(From, Name, To, Message, User List)
end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User List) ->
%% Find the receiver and send the message
case lists:keysearch(To, 2, User List) of
false ->
From ! #server reply{message=receiver not found};
{value, {ToPid, To}} ->
ToPid ! #message from{from name=Name, message=Message},
From ! #server reply{message=sent}
end.

%%%- - - -END FILE---

4. 5.2 Header Files

Y ou will see some files above with extension . hr | . These are header fileswhich areincluded inthe. er | filesby:

-include("File Name").

for example:

-include("mess interface.hrl").

In our case abovethefileisfetched from the same directory asall the other filesin the messenger example. (* manual*).
.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

4.5.3 Records
A record is defined as:

-record(name_of record,{field namel, field name2, field name3, 1.

For example:

-record(message to,{to name, message}).

Thisis exactly equivalent to:

118 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

4.5 Records and Macros

{message to, To Name, Message}

Creating record, is best illustrated by an example:

#message to{message="hello", to_ name=fred)

Thiswill create:

{message to, fred, "hello"}

Note that you don't have to worry about the order you assign values to the various parts of the records when you
createit. The advantage of using recordsisthat by placing their definitionsin header files you can conveniently define
interfaces which are easy to change. For example, if you want to add a new field to the record, you will only have to
change the code where the new field is used and not at every place the record is referred to. If you leave out afield
when creating arecord, it will get the value of the atom undefined. (* manual*)

Pattern matching with records is very similar to creating records. For exampleinsideacase orr ecei ve:
#message to{to name=ToName, message=Message} ->

isthe same as:

{message to, ToName, Message}

45.4 Macros

The other thing we have added to the messenger isamacro. Thefileness_confi g. hrl contains the definition:

)
“©

%% Configure the location of the server node,
-define(server node, messenger@super).

Weincludethisfilein mess server.erl:

-include("mess config.hrl").

Every occurrence of ?ser ver _node inness_server . er| will now be replaced by messenger @uper .
The other place amacro is used is when we spawn the server process:

spawn (?MODULE, server, [])

Thisisastandard macro (i.e. defined by the system, not the user). ? MODUL E is always replaced by the name of current
module (i.e. the - modul e definition near the start of the file). There are more advanced ways of using macros with,
for example parameters (* manual*).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 119

4.5 Records and Macros

Thethree Erlang (. er |) filesin the messenger example are individually compiled into object codefile (. bean). The
Erlang system loads and links these files into the system when they are referred to during execution of the code. In
our case we simply have put them in the same directory which is our current working directory (i.e. the place we have
done "cd" to). There are ways of putting the . beamfilesin other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It could be any
valid Erlang term.

120 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.1 Introduction

5 Erlang Reference Manual

5.1 Introduction

5.1.1 Purpose

This reference manual describes the Erlang programming language. The focus is on the language itself, not the
implementation. The language constructs are described in text and with examples rather than formally specified, with
the intention to make the manual more readable. The manual is not intended as a tutorial.

I nformation about thisimplementation of Erlang can befound, for example, in System Principles (starting and stopping,
boot scripts, code loading, error logging, creating target systems), Efficiency Guide (memory consumption, system
limits) and ERTS User's Guide (crash dumps, drivers).

5.1.2 Prerequisites

It is assumed that the reader has done some programming and is familiar with concepts such as data types and
programming language syntax.

5.1.3 Document Conventions

In the document, the following terminology is used:

* A sequenceisone or more items. For example, a clause body consists of a sequence of expressions. This means
that there must be at least one expression.

e Alistisany number of items. For example, an argument list can consist of zero, one or more arguments.
If afeature has been added recently, in Erlang 5.0/0TP R7 or later, thisis mentioned in the text.

5.1.4 Complete List of BIFs

For acomplete list of BIFs, their arguments and return values, refer toer | ang(3) .

5.1.5 Reserved Words

The following are reserved wordsin Erlang:

after and andalso band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse receive rem
try when xor

5.2 Character Set and Source File Encoding

5.2.1 Character Set

In Erlang 4.8/OTP R5A the syntax of Erlang tokens was extended to allow the use of the full 1SO-8859-1 (Latin-1)
character set. Thisis noticeable in the following ways:

e All the Latin-1 printable characters can be used and are shown without the escape backslash convention.
e Atomsand variables can use al Latin-1 |etters.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 121

5.3 Data Types

Octal Decimal Class
200 - 237 128 - 159 Control characters
240 - 277 160- 191 - ¢ | Punctuation characters
300- 326 192 - 214 A-0 Uppercase |etters

327 215 x Punctuation character
330- 336 216 - 222 g-b Uppercase letters
337 - 366 223 - 246 k-0 Lowercase letters

367 247 + Punctuation character
370- 377 248 - 255 g-y Lowercase letters

Table 2.1: Character Classes.

In Erlang/OTP R16B the syntax of Erlang tokens was extended to handle Unicode. The support is limited to string
literals and comments. Atoms, module names, and function names are restricted to the | SO-L atin-1 range. More about
the usage of Unicode in Erlang source files can be found in STDLIB's User's Guide.

5.2.2 Source File Encoding

The Erlang source file encoding is selected by a comment in one of the first two lines of the source file. The first
string that matches the regular expression codi ng\ s*[: =]\ s*([- a- zA- Z0- 9]) + selects the encoding. If the
matching string is not a valid encoding it is ignored. The valid encodings are Lat i n- 1 and UTF- 8 where the case
of the characters can be chosen freely.

The following example selects UTF-8 as default encoding:

%% coding: utf-8

Two more examples, both selecting Latin-1 as default encoding:

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-
The default encoding for Erlang source files was changed from Latin-1 to UTF-8 in Erlang OTP 17.0.

5.3 Data Types

5.3.1 Terms
Erlang provides anumber of datatypeswhich arelisted in thischapter. A piece of dataof any datatypeiscalled aterm.

122 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Data Types

5.3.2 Number

There are two types of numeric literals, integers and floats. Besides the conventional notation, there are two Erlang-
specific notations:

e S$char
ASCI| value of the character char .

* base#val ue
Integer with the base bas e, which must be an integer in the range 2..36.
In Erlang 5.2/0OTP R9B and earlier versions, the allowed rangeis 2..16.

Examples:

1> 42.

42

2> $A.

65

3> $\n.
10

4> 2#101.
5

5> 16#1f.
31

6> 2.3.
2.3

7> 2.3e3.
2.3e3

8> 2.3e-3.
0.0023

5.3.3 Atom

An atom isaliteral, a constant with name. An atom should be enclosed in single quotes () if it does not begin with a
lower-case letter or if it contains other characters than alphanumeric characters, underscore (), or @.

Examples:

hello

phone number
'Monday'
'phone number'

5.3.4 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.

Bit Strings are expressed using the bit syntax.

Bit Strings which consists of a number of bitswhich is evenly divisible by eight are called Binaries
Examples:

1> <<10,20>>.
<<10,20>>
2> <<"ABC">>.
<<"ABC">>

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 123

5.3 Data Types

1> <<1:1,0:1>>.
<<2:2>>

More examples can be found in Programming Examples.

5.3.5 Reference

A reference is aterm which is unique in an Erlang runtime system, created by calling make_ref / 0.

5.3.6 Fun

A funisafunctional object. Funs make it possible to create an anonymous function and pass the function itself -- not
its name -- as argument to other functions.

Example:

1> Funl = fun (X) -> X+1 end.
#Fun<erl eval.6.39074546>

2> Funl(2).

3

Read more about funsin Fun Expressions. More examples can be found in Programming Examples.

5.3.7 Port Identifier

A portidentifier identifiesan Erlang port. open_por t / 2, whichisused to create ports, will return avalue of thistype.

Read more about portsin Ports and Port Drivers.

5.3.8 Pid

A process identifier, pid, identifies a process. spawn/ 1, 2, 3, 4, spawn_| i nk/ 1, 2, 3, 4 and spawn_opt / 4,
which are used to create processes, return values of thistype. Example:

1> spawn(m, f, []).
<0.51.0>

TheBIF sel f () returnsthe pid of the calling process. Example:

-module(m) .
-export([loop/0]).

loop() ->
receive
who are you ->
io:format("I am ~p~n", [self()]),
Loop()
end.

1> P = spawn(m, loop, []).
<0.58.0>

2> P ! who are you.

I am <0.58.0>

who are you

124 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Data Types

Read more about processes in Processes.

5.3.9 Tuple

Compound data type with a fixed number of terms:

{Terml,...,TermN}

Each term Ter min the tupleis called an element. The number of elementsis said to be the size of the tuple.

There exists anumber of BIFs to manipulate tuples.

Examples:

1> P = {adam,24,{july,29}}.
{adam, 24, {july,29}}

2> element(1,P).

adam

3> element(3,P).

{july, 29}

4> P2 = setelement(2,P,25).
{adam, 25, {july,29}}

5> tuple size(P).

3

6> tuple size({}).

0

5.3.10 Map

Compound data type with a variable number of key-value associations:

#{Keyl=>Valuel, ..., KeyN=>ValueN}

Each key-value association in the map is called an association pair. The key and value parts of the pair are called

elements. The number of association pairsis said to be the size of the map.
There exists anumber of BIFs to manipul ate maps.

Examples:

1> M1 = #{name=>adam,age=>24,date=>{july,29}}.
#{age => 24,date => {july,29},name => adam}
2> maps:get(name,M1).

adam

3> maps:get(date,M1).

{july, 29}

4> M2 = maps:update(age,25,M1).

#{age => 25,date => {july,29},name => adam}
5> map_size(M).

3

6> map_size(#{}).

0

A collection of maps processing functions can be found in the STDLIB module maps.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 125

5.3 Data Types

Read more about Maps.

Note:
Maps are considered experimental during OTP 17.

5.3.11 List
Compound data type with a variable number of terms.
[Terml, ..., TermN]

Each term Ter min thelist is called an element. The number of elementsis said to be the length of thelist.
Formally, alistiseither theempty list[] or consists of ahead (first element) and atail (remainder of thelist) whichis

also alist. The latter can be expressed as[H| T] . Thenotation[Ter mi, . . ., Ter m\] aboveisactualy shorthand
forthelist[TerniL|[...|[[TernN[]11]].

Example:

[1 isalist, thus

[cl[]] isalist, thus
[bl[cl[]1]] isalig, thus
[al[bl[cl[11]] isalist,orinshort| a, b, c].

A list wherethetail isalist is sometimes called aproper list. Itis allowed to have alist where the tail isnot alist, for
example[a| b] . However, thistype of list is of little practical use.

Examples:

1> L1 = [a,2,{c,4}].
[a,2,{c,4}]

2> [H|T] = L1.
[a,2,{c,4}]

3> H.

a

4> T,
[2,{c,4}]

5> L2 = [d|T].
[d,2,{c,4}]

6> length(L1).

3
7> length([1]).
0

A collection of list processing functions can be found in the STDLIB modulel i st s.

5.3.12 String

Strings are enclosed in double quotes (), but is not adatatypein Erlang. Instead a string " hel | 0" is shorthand for
thelist[$h, $e, $I , $I , $o] , thatis[104, 101, 108, 108, 111].

Two adjacent string literals are concatenated into one. This is done at compile-time and does not incur any runtime
overhead. Example:

126 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.3 Data Types

gt ring nongom

isequivalent to

"string42"

5.3.13 Record

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct
in C. However, record is not a true data type. Instead record expressions are translated to tuple expressions during
compilation. Therefore, record expressions are not understood by the shell unless specia actions are taken. See
shel | (3) for details.

Examples:

-module(person) .
-export([new/2]).

-record(person, {name, age}).

new(Name, Age) ->
#person{name=Name, age=Age}.

1> person:new(ernie, 44).
{person,ernie, 44}

Read more about records in Records. More examples can be found in Programming Examples.

5.3.14 Boolean

There is no Boolean data type in Erlang. Instead the atomst r ue and f al se are used to denote Boolean values.

Examples:

1> 2 =< 3.

true

2> true or false.
true

5.3.15 Escape Sequences
Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description
\b backspace
\d delete

\e escape

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 127

5.3 Data Types

\f form feed

\n newline

\r carriage return

\s space

\t tab

\v vertical tab

\XYZ,\YZ,\Z character with octal representation XYZ, YZ or Z

\XXY character with hexadecimal representation XY

WX} character with hexadecimal representation; X... is one or
more hexadecimal characters

&2\(\'\22 control A to control Z

\' single quote

\" double quote

\ backslash

Table 3.1: Recognized Escape Sequences.

5.3.16 Type Conversions

There are anumber of BIFsfor type conversions. Examples:

1> atom to list(hello).

"hello"

2> list_to_atom("hello").

hello

3> binary to list(<<"hello">>).
"hello"

4> binary to list(<<104,101,168,108,111>>).
"hello"

5> list_to binary("hello").
<<104,101,108,108,111>>

6> float to list(7.0).
"7.00000000000000000000e+00"
7> list to float("7.000e+00").

7.0

8> integer to list(77).
II77II

9> list to integer("77").
77

10> tuple to list({a,b,c}).
[a,b,c]

11> list to tuple([a,b,c]).

128 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.4 Pattern Matching

{a,b,c}

12> term_to_binary({a,b,c}).
<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
13> binary to term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
{a,b,c}

14> binary to_integer(<<"77">>).

77

15> integer to binary(77).

<<"77">>

16> float to binary(7.0).
<<"7.00000000000000000000e+00">>

17> binary to float(<<"7.000e+00>>").

7.0

5.4 Pattern Matching
5.4.1 Pattern Matching

Variables are bound to values through the pattern matching mechanism. Pattern matching occurs when evaluating a
function call, case-r ecei ve-t r y- expressions and match operator (=) expressions.

In apattern matching, aleft-hand side pattern is matched against aright-hand side term. If the matching succeeds, any
unbound variables in the pattern become bound. If the matching fails, arun-time error occurs.

Examples:

1> X.

** 1: variable 'X' is unbound **
2> X = 2.

2

3> X + 1.

3

4> {X, Y} = {1, 2}.

** exception error: no match of right hand side value {1,2}
5> {X, Y} = {2, 3}.

{2,3}

6> Y.

3

5.5 Modules
5.5.1 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of attributes and function declarations, each
terminated by period (.). Example:

module attribute
module attribute

-module(m) .
-export([fact/1]).

o° o°

fact(N) when N>0 ->

(beginning of function declaration
N * fact(N-1);

(

1

end of function declaration

fact(0) ->

o® o° o° o°

See the Functions chapter for a description of function declarations.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 129

5.5 Modules

5.5.2 Module Attributes

A module attribute defines a certain property of amodule. A module attribute consists of atag and avalue.

-Tag(Value).

Tag must be an atom, while Val ue must be a literal term. As a convenience in user-defined attributes, if the literal
term Val ue hasthe syntax Nane/ Ari t y (where Nane isan atom and Ar i t y apositive integer), the term Nane/
Arity will betransated to { Name, Ari ty}.

Any module attribute can be specified. The attributes are stored in the compiled code and can be retrieved by calling
Modul e: modul e_i nfo(attri butes) or by using beam lib(3).

There are several modul e attributes with predefined meanings, some of which have arity two, but user-defined module
attributes must have arity one.

Pre-Defined Module Attributes
Pre-defined modul e attributes should be placed before any function declaration.
- nodul e(Modul e) .

Module declaration, defining the name of the module. The name Modul e, an atom, should be the same as the
file name minus the extension er | . Otherwise code loading will not work as intended.

This attribute should be specified first and is the only attribute which is mandatory.
-export (Functions).
Exported functions. Specifieswhich of thefunctions defined within the modul e that are visible outside the modul e.

Functions isalist [Namel/ Arityl, ..., NameN ArityN], where each Nanel is an atom and
Arityl aninteger.

-i mport (Modul e, Functi ons).

Imported functions. Imported functions can be called the same way aslocal functions, that iswithout any module
prefix.

Modul e, an atom, specifieswhich moduleto import functionsfrom. Funct i ons isalist smilar asfor expor t
above.

-conpi | e(Options).

Compiler options. Opt i ons, which isasingle option or alist of options, will be added to the option list when
compiling the module. Seeconpi | e(3) .

-vsn(Vsn).
Moduleversion. Vsn isany literal term and can beretrieved using beam | i b: ver si on/ 1, see beam lib(3).
If this attribute is not specified, the version defaults to the MD5 checksum of the module.

-on_l oad(Function).

Names a function that should be run automatically when a module a loaded. See code loading for more
information.

Behaviour Module Attribute
It is possible to specify that the module is the callback module for a behaviour:

130 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.5 Modules

-behaviour(Behaviour).

The atom Behavi our gives the name of the behaviour, which can be a user defined behaviour or one of the OTP
standard behavioursgen_ser ver,gen_f smgen_event or supervi sor.

The spelling behavi or isalso accepted.
The callback functions of the modul e can be specified either directly by the exported functionbehavi our _i nf o/ 1:

behaviour info(callbacks) -> Callbacks.

or by a- cal | back attribute for each callback function:

-callback Name(Arguments) -> Result.

where Ar gunrent s isalist of zero or more arguments. The - cal | back attribute is to be preferred since the extra
type information can be used by tools to produce documentation or find discrepancies.

Read more about behaviours and callback modulesin OTP Design Principles.

Record Definitions

The same syntax as for module attributes is used by for record definitions:

-record(Record, Fields).

Record definitions are allowed anywhere in amodule, aso among the function declarations. Read more in Records.

The Preprocessor

The same syntax as for module attributes is used by the preprocessor, which supports file inclusion, macros, and
conditional compilation:

-include("SomeFile.hrl").
-define(Macro,Replacement).

Read more in The Preprocessor.

Setting File and Line

The same syntax as for module attributes is used for changing the pre-defined macros ?FI LE and ?LI NE:

-file(File, Line).

This attribute is used by tools such as Y ecc to inform the compiler that the source program was generated by another
tool and indicates the correspondence of source files to lines of the original user-written file from which the source
program was produced.

Types and function specifications

A similar syntax as for module attributes is used for specifying types and function specifications.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 131

5.5 Modules

-type my type() :: atom() | integer().
-spec my function(integer()) -> integer().

Read more in Types and Function specifications.
The description is based on EEP8 - Types and function specifications which will not be further updated.

5.5.3 Comments

Comments may be placed anywherein amodul e except within strings and quoted atoms. The comment beginswith the
character "%", continues up to, but does not include the next end-of-line, and has no effect. Note that the terminating
end-of-line has the effect of white space.

5.5.4 The module_info/0 and module_info/1 functions

The compiler automaticaly inserts the two specia, exported functions into each module:
Modul e: modul e_i nf o/ 0 andMbdul e: nodul e_i nf o/ 1. Thesefunctionscan becalledtoretrieveinformation
about the module.
module_info/0

The nodul e_i nf o/ 0 function in each module returns a list of { Key, Val ue} tuples with information about
the module. Currently, the list contain tuples with the following Keys: att ri but es, conpi | e, export s, and
i mport s. The order and number of tuples may change without prior notice.

Warning:

The{i nmport s, Val ue} tuple may be removed in afuture release because Val ue isalways an empty list. Do
not write code that depends on it being present.

module_info/1l

Thecall nodul e_i nf o(Key) , where key is an atom, returns a single piece of information about the module.
The following values are allowed for Key:

attributes

Returnalistof { At t ri but eNane, Val uelLi st} tuples,whereAt t r i but eNane isthenameof an attribute,
and Val uelLi st isalist of values. Note: a given attribute may occur more than once in the list with different
valuesif the attribute occurs more than once in the module.

Thelist of attributes will be empty if the module has been stripped with beam lib(3).
conpile

Return alist of tuples containing information about how the module was compiled. Thislist will be empty if the
module has been stripped with beam _lib(3).

i mports

Alwaysreturn an empty list. Thei nport s key may not be supported in future release.
exports

Return alist of { Name, Ari t y} tupleswith all exported functions in the module.

132 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

5.6 Functions

functions

Return alist of { Name, Ari t y} tupleswith all functionsin the module.

5.6 Functions

5.6.1 Function Declaration Syntax
A function declaration is a sequence of function clauses separated by semicolons, and terminated by period (.).
A function clause consists of a clause head and a clause body, separated by - >.

A clause head consists of the function name, an argument list, and an optional guard sequence beginning with the
keyword when.

Name(Patternll, ...,PatternlN) [when GuardSeql] ->
Body1l;

Name(PatternKl, ...,PatternKN) [when GuardSegK] ->
BodyK.

The function name is an atom. Each argument is a pattern.

The number of arguments Nisthe arity of the function. A function is uniquely defined by the module name, function
name and arity. That is, two functions with the same name and in the same module, but with different arities are two
completely different functions.

A function named f in the module mand with arity Nis often denoted asm f / N.
A clause body consists of a sequence of expressions separated by comma (,):

Exprl,
ExprN
Valid Erlang expressions and guard sequences are described in Erlang Expressions.

Example:

fact(N) when N>0 -> first clause head

o° o°

N * fact(N-1); first clause body
fact(0) -> % second clause head
1. % second clause body

5.6.2 Function Evaluation

When afunctionm f / Niscalled, first the code for the function islocated. If the function cannot be found, an undef
run-time error will occur. Note that the function must be exported to be visible outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clauseisfound that fulfills the following
two conditions:

» thepatternsin the clause head can be successfully matched against the given arguments, and
e theguard sequence, if any, istrue.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 133

5.6 Functions

If such aclause cannot be found, af unct i on_cl ause run-time error will occur.

If such aclauseisfound, the corresponding clause body is evaluated. That is, the expressionsin the body are evaluated
sequentially and the value of the last expression is returned.

Example: Consider the function f act :

-module(m) .
-export([fact/1]).

fact(N) when N>0 ->
N * fact(N-1);
(0)
1

fact(0) ->

Assume we want to calculate factoria for 1:

1> m:fact(1l).

Evaluation starts at the first clause. The pattern N is matched against the argument 1. The matching succeeds and the
guard (N>0) istrue, thus Nis bound to 1 and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

Now f act (0) iscalled and the function clauses are scanned sequentially again. First, the pattern Nis matched against
0. The matching succeeds, but the guard (N>0) is false. Second, the pattern 0 is matched against 0. The matching
succeeds and the body is evaluated:

1 * fact(0) =>
1*1=
1
Evaluation has succeed and m f act (1) returns 1.

If m fact/ 1 iscalled with anegative number as argument, no clause head will match. A f unct i on_cl ause run-
time error will occur.

5.6.3 Tail recursion

If the last expression of a function body isafunction call, atail recursive call is done so that no system resources for
example call stack are consumed. This means that an infinite loop can be done if it usestail recursive calls.

Example:

loop(N) ->
io:format("~w~n", [N]1),
loop (N+1) .

As a counter-example see the factorial example above that is not tail recursive since a multiplication is done on the
result of therecursivecall tof act (N- 1) .

134 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

5.6.4 Built-In Functions, BIFs

Built-in functions, BIFs, areimplemented in C code in the runtime system and do thingsthat are difficult or impossible
to implement in Erlang. Most of the built-in functions belong to the module er | ang but there are aso built-in
functions belonging to afew other modules, for examplel i st s and et s.

The most commonly used BIFs belonging to er | ang are auto-imported, they do not need to be prefixed with the
module name. Which BIFs are auto-imported is specified in er | ang(3) . For example, standard type conversion
BIFslikeat om t o_I i st and BIFsallowed in guards can be called without specifying the module name. Examples:

1> tuple size({a,b,c}).

3

2> atom to list('Erlang').
"Erlang"

Note that normally it is the set of auto-imported built-in functions that is referred to when talking about 'BIFs.

5.7 Types and Function Specifications

5.7.1 The Erlang Type Language

Erlang is a dynamically typed language. Still, it comes with a notation for declaring sets of Erlang terms to form a
particular type, effectively forming a specific sub-type of the set of al Erlang terms.

Subsequently, these types can be used to specify types of record fields and the argument and return types of functions.

Typeinformation can be used to document function interfaces, provide more information for bug detection tools such
asDi al yzer, and can be exploited by documentation tools such as Edoc for generating program documentation of
various forms. It is expected that the type language described in this document will supersede and replace the purely
comment-based @ ype and @ pec declarations used by Edoc.

5.7.2 Types and their Syntax

Types describe sets of Erlang terms. Types consist and are built from a set of predefined types (e.g. i nt eger (),
at om(), pi d(), ...) described below. Predefined types represent atypically infinite set of Erlang termswhich belong
to thistype. For example, thetype at on{) standsfor the set of all Erlang atoms.

For integers and atoms, we allow for singleton types (e.g. theintegers- 1 and 42 or theatoms' f oo’ and' bar').
All other types are built using unions of either predefined types or singleton types. In atype union between atype and
one of its sub-types the sub-type is absorbed by the super-type and the union is subsequently treated asif the sub-type
was not a constituent of the union. For example, the type union:

atom() | 'bar' | integer() | 42
describes the same set of terms as the type union:
atom() | integer()

Because of sub-typerelationsthat exist between types, typesform alattice wherethe topmost element, any() , denotes
the set of all Erlang terms and the bottom-most element, none() , denotes the empty set of terms.

The set of predefined types and the syntax for typesis given below:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 135

5.7 Types and Function Specifications

Type :: any()
| none()
| pid()
| port()
| reference()
| [1 %% nil
| Atom
| Bitstring
| float()
I
I
I
I
I
I

% The top type, the set of all Erlang terms
% The bottom type, contains no terms

Fun

Integer
List

Map

Tuple

Union
UserDefined

o°
o°

described in Section 7.3

Atom :: atom()

| Erlang Atom %% 'foo', 'bar',
Bitstring :: <<>>
| << :M>> %% M is a positive integer
| << : *N>> %% N is a positive integer
| << M, : *N>>
Fun :: fun() %% any function
| fun((...) -> Type) %% any arity, returning Type
| fun(() -> Type)
| fun((TList) -> Type)

Integer :: integer()
| Erlang Integer
| Erlang Integer..Erlang Integer

., -1, 0,1, ... 42 ...
specifies an integer range

o of
o o°

List :: list(Type)
| maybe improper list(Typel, Type2)
| nonempty improper list(Typel, Type2)
| nonempty list(Type)

Proper list ([]-terminated)
Typel=contents, Type2=termination
Typel and Type2 as above

Proper non-empty list

o o o o°
o® o° o° o°

Map :: map() %% stands for a map of any size
| #{} %% stands for a map of any size
| #{PairList}
Tuple :: tuple() %% stands for a tuple of any size
[{}
| {TList}

PairList :: Type => Type
| Type => Type, PairlList

TList :: Type
| Type, TList

Union :: Typel | Type2
The general form of bitstringsis<<_: M _: _*N>>, where Mand N are positive integers. It denotes a bitstring that
isM + (k*N) bitslong (i.e., abitstring that starts with Mbits and continues with k segments of N bits each, where k

isalso apositive integer). The notations<<_: _*N>>, <<_: M>>, and <<>> are convenient shorthands for the cases
that M N, or both, respectively, are zero.

136 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

Because lists are commonly used, they have shorthand type notations. The types list(T) and
nonenpty_list(T) havetheshorthands[T] and[T, . ..], respectively. The only difference between the two
shorthandsisthat [T] may bean empty listbut[T, ...] may not.

Notice that the shorthand for | i st (), i.e. thelist of elements of unknown type, is[_] (or[any()]),not[].The
notation [] specifies the singleton type for the empty list.

For convenience, the following types are also built-in. They can be thought as predefined aliases for the type unions
also shown in the table.

Built-in type Defined as

term() any()

bi nary() << _*8>>
bitstring() << _*1>>

bool ean() 'false' | '"true'

byt e() 0..255

char () 0..16#10ffff

nunber () integer() | float()
list() [any()]

maybe_i nproper _list() maybe_i nproper _list(any(), any())
nonenpty list() nonenpty_list(any())
string() [char ()]
nonenpty_string() [char(),...]

i odat a() iolist() | binary()

maybe_i nproper _list(byte() | binary()

otist() | iolist(), binary() | [])
function() fun()

modul e() at on()

nf a() {aton(),aton(),arity()}
arity() 0..255

node() aton()

ti meout () “infinity' | non_neg_integer()
no_return() none()

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 137

5.7 Types and Function Specifications

In addition, the following three built-in types exist and can be thought as defined below, though strictly their "type
definition” is not valid syntax according to the type language defined above.

Built-in type Could bethought defined by the syntax
non_neg_i nt eger () 0..

pos_integer () 1..

neg_i nteger () .o-1

Users are not allowed to define types with the same names as the predefined or built-in ones. Thisis checked by the
compiler and its violation results in a compilation error.

Note:
Thefollowing built-in list types also exist, but they are expected to be rarely used. Hence, they have long names:

nonempty maybe improper list() :: nonempty maybe improper list(any(), any())
nonempty improper list(Typel, Type2)
nonempty maybe improper list(Typel, Type2)

where the last two types define the set of Erlang terms one would expect.

Alsofor convenience, weallow for record notation to be used. Recordsarejust shorthandsfor the corresponding tuples.

Record :: #Erlang Atom{}
| #Erlang Atom{Fields}

Records have been extended to possibly contain type information. This is described in the sub-section "Type
information in record declarations' below.

Note:

Map types, bothmap() and#{ ... },areconsidered experimental during OTP 17.
No type information of maps pairs, only the containing map types, are used by Dialyzer in OTP 17.

5.7.3 Type declarations of user-defined types

As seen, the basic syntax of atype is an atom followed by closed parentheses. New types are declared using -type
and '-opaque’ compiler attributes as in the following:

-type my struct type() :: Type.
-opaque my opaq_type() :: Type.

138 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

where the type name is an atom (' my_struct _t ype' in the above) followed by parentheses. Type is a type as
defined in the previous section. A current restriction is that Type can contain only predefined types, or user-defined
typeswhich are either module-local (i.e., with adefinition that is present in the code of the module) or are remote types
(i.e., types defined in and exported by other modules; see below). For module-local types, the restriction that their
definition exists in the module is enforced by the compiler and results in a compilation error. (A similar restriction
currently exists for records.)

Type declarations can also be parameterized by including type variables between the parentheses. The syntax of type
variablesisthe same as Erlang variables (starts with an upper case |etter). Naturally, these variables can - and should
- appear on the RHS of the definition. A concrete example appears below:

-type orddict(Key, Val) :: [{Key, Val}l].

A module can export some types in order to declare that other modules are allowed to refer to them as remote types.
This declaration has the following form:

-export type([T1/A1, ..., Tk/AK]).

where the Ti's are atoms (the name of the type) and the Ai's are their arguments. An exampleis given below:

-export _type([my struct type/0, orddict/2]).

Assuming that these types are exported from module ' nod' then one can refer to them from other modules using
remote type expressions like those below:

mod:my struct type()
mod:orddict(atom(), term())

Oneisnot allowed to refer to types which are not declared as exported.

Typesdeclared asopaque represent sets of termswhose structure is not supposed to be visible in any way outside of
their defining module (i.e., only the module defining them is allowed to depend on their term structure). Consequently,
such types do not make much sense as module local - module local types are not accessible by other modules anyway
- and should always be exported.

5.7.4 Type information in record declarations

The types of record fields can be specified in the declaration of the record. The syntax for thisis:

-record(rec, {fieldl :: Typel, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). |.e., the above is a shorthand for:

-record(rec, {fieldl :: Typel, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after the initialization as in the following:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 139

5.7 Types and Function Specifications

-record(rec, {fieldl = [] :: Typel, field2, field3 = 42 :: Type3}).

Naturally, the initial values for fields should be compatible with (i.e. a member of) the corresponding types. Thisis
checked by the compiler and results in a compilation error if aviolation is detected. For fields without initial values,
thesingletontype' undefi ned' isaddedto al declared types. In other words, the following two record declarations
have identical effects:

-record(rec, {fl = 42 :: integer(),

2 :: float(),
f3 :: 'a' | 'b'}).
-record(rec, {fl = 42 :: integer(),
f2 :: 'undefined' | float(),
f3 :: 'undefined' | 'a' | 'b'}).

For this reason, it is recommended that records contain initializers, whenever possible.

Any record, containing type information or not, once defined, can be used as a type using the syntax:
#rec{}

In addition, the record fields can be further specified when using a record type by adding type information about the
field in the following manner:

#rec{some field :: Type}
Any unspecified fields are assumed to have the typein the original record declaration.

5.7.5 Specifications for functions

A specification (or contract) for a function is given using the new compiler attribute ' - spec' . The general format
isasfollows:

-spec Module:Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

The arity of the function has to match the number of arguments, or else a compilation error occurs.

Thisform can also be used in header files (.hrl) to declare type information for exported functions. Then these header
files can beincluded in files that (implicitly or explicitly) import these functions.

For most uses within a given module, the following shorthand suffices:

-spec Function(ArgTypel, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

-spec Function(ArgNamel :: Typel, ..., ArgNameN :: TypeN) -> RT.

140 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.7 Types and Function Specifications

A function specification can be overloaded. That is, it can have several types, separated by a semicolon (;):

-spec foo(Tl, T2) -> T3
; (T4, T5) -> T6.

A current restriction, which currently resultsin awarning (OBS: not an error) by the compiler, is that the domains of
the argument types cannot be overlapping. For example, the following specification results in awarning:

-spec foo(pos_integer()) -> pos_integer()
; (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input and output arguments of a function. For
example, the following specification defines the type of a polymorphic identity function:

-spec id(X) -> X.

However, note that the above specification does not restrict the input and output type in any way. We can constrain
these types by guard-like subtype constraints and provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the: : congtraint (read asi s_subt ype) isthe only guard constraint which can be used in the' when'
part of a' - spec' attribute.

Note:

The above function specification, using multiple occurrences of the same type variable, provides more type
information than the function specification below where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns some tuple, while the one with the X
type variable specifies that the function takes a tuple and returns the same tuple.

However, it's up to the tools that process the specs to choose whether to take this extra information into account
or ignore it.

Thescopeof an: : constraintisthe(...) -> Ret Type specification after which it appears. To avoid confusion,
we suggest that different variables are used in different constituents of an overloaded contract asin the example bel ow:

-spec foo({X, integer()}) -> X when X :: atom()
; ([Y]) -> Y when Y :: number().

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 141

5.8 Expressions

Note:

For backwards compatibility the following form is also allowed:
-spec id(X) -> X when is subtype(X, tuple()).

but its useis discouraged. It will be taken out in a future Erlang/OTP release.

Some functions in Erlang are not meant to return; either because they define servers or because they are used to throw
exceptions as the function below:

my error(Err) -> erlang:throw({error, Err}).

For such functions we recommend the use of the special no_r et ur n() type for their "return", via a contract of
the form:

-spec my error(term()) -> no_return().

5.8 Expressions

In this chapter, al valid Erlang expressions are listed. When writing Erlang programs, it is also allowed to use macro-
and record expressions. However, these expressions are expanded during compilation and are in that sense not true
Erlang expressions. Macro- and record expressions are covered in separate chapters: Macros and Records.

5.8.1 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated otherwise. For
example, consider the expression:

Exprl + Expr2

Expr 1 and Expr 2, which are also expressions, are evaluated first - in any order - before the addition is performed.
Many of the operators can only be applied to arguments of a certain type. For example, arithmetic operators can only

be applied to numbers. An argument of the wrong type will cause abadar g run-time error.

5.8.2 Terms

The simplest form of expression is aterm, that is an integer, float, atom, string, list, map or tuple. The return value
isthetermitself.

5.8.3 Variables

A variable is an expression. If a variable is bound to a value, the return value is this value. Unbound variables are
only alowed in patterns.

Variables start with an uppercase letter or underscore () and may contain alphanumeric characters, underscore and
@. Examples:

142 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

X

Namel
PhoneNumber
Phone number

_Height

Variables are bound to values using pattern matching. Erlang uses single assignment, a variable can only be bound
once.

The anonymous variable is denoted by underscore () and can be used when avariable is required but its value can
be ignored. Example:

[H|_] = [1,2,3]

Variablesstarting with underscore (), for example__Hei ght , arenormal variables, not anonymous. They are however
ignored by the compiler in the sense that they will not generate any warnings for unused variables. Example: The
following code

member(, []) ->
[1.

can be rewritten to be more readable:

member (Elem, []) ->
[].

This will however cause a warning for an unused variable El em if the code is compiled with the flag
war n_unused_var s set. Instead, the code can be rewritten to:

member(Elem, []) ->
[].

Note that since variables starting with an underscore are not anonymous, this will match:

{,_} =112}
But this will fail:
{_N, N} = {1,2}

The scope for avariableisits function clause. Variables bound in abranch of ani f, case, or r ecei ve expression
must be bound in all branchesto have avalue outside the expression, otherwise they will beregarded as'unsafe’ outside
the expression.

For thet r y expression introduced in Erlang 5.4/0OTP-R10B, variable scoping islimited so that variables bound in the
expression are always 'unsafe’ outside the expression. Thiswill be improved.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 143

5.8 Expressions

5.8.4 Patterns

A pattern has the same structure as aterm but may contain unbound variables. Example:

Namel
[H|T]
{error,Reason}

Patterns are allowed in clause heads, case and r ecei ve expressions, and match expressions.

Match Operator = in Patterns
If Patt er n1 and Pat t er n2 are valid patterns, then the following is also avalid pattern:
Patternl = Pattern2

When matched against aterm, both Pat t er n1 and Pat t er n2 will be matched against the term. The idea behind
this feature is to avoid reconstruction of terms. Example:

f({connect,From,To,Number,Options}, To) ->
Signal = {connect,From,To,Number,Options},

f(Signal, To) ->

ignore.

can instead be written as
f({connect, ,To, , } = Signal, To) ->
f(signal, To) ->
ignore.
String Prefix in Patterns
When matching strings, the following isavalid pattern:

f("prefix" ++ Str) -> ...

Thisis syntactic sugar for the equivalent, but harder to read

f(I$p,$r,%e,$F,$1,$x | Str]) -> ...
Expressions in Patterns

An arithmetic expression can be used within apattern, if it uses only numeric or bitwise operators, and if its value can
be evaluated to a constant at compile-time. Example:

144 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

case {Value, Result} of
{?THRESHOLD+1, ok} -> ...

This feature was added in Erlang 5.0/0TP R7.

5.8.5 Match

Exprl = Expr2

Matches Expr 1, a pattern, against Expr 2. If the matching succeeds, any unbound variable in the pattern becomes
bound and the value of Expr 2 isreturned.

If the matching fails, abadmat ch run-time error will occur.

Examples:

1> {A, B} = {answer, 42}.

{answer, 42}

2> A.

answer

3> {C, D} = [1, 2].

** exception error: no match of right hand side value [1,2]

5.8.6 Function Calls

ExprF(Exprl,...,ExprN)
ExprM: ExprF (Exprl,...,ExprN)

In the first form of function calls, Expr M Expr F(Expr 1, ..., Expr N), each of Expr Mand Expr F must be an
atom or an expression that evaluates to an atom. The function is said to be called by using the fully qualified function
name. Thisis often referred to as aremote or external function call. Example:

lists:keysearch(Name, 1, List)

In the second form of function calls, Expr F(Expr 1, . . ., Expr N) , Expr F must be an atom or evaluate to a fun.

If ExprF is an atom the function is said to be called by using the implicitly qualified function name. If the
function Expr F is locally defined, it is caled. Alternatively if Expr F is explicitly imported from module M
M Expr F(Expr1, ..., ExprN) iscaled. If Expr F is neither declared locally nor explicitly imported, Expr F
must be the name of an automatically imported BIF. Examples:

handle(Msg, State)
spawn(m, init, [])

Examples where ExprF isafun:

Funl = fun(X) -> X+1 end

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 145

5.8 Expressions

Funl(3)
= 4

fun lists:append/2([1,2], [3,4])
= [1,2,3,4]

Note that when calling alocal function, there is a difference between using the implicitly or fully qualified function
name, asthe latter always refers to the latest version of the module. See Compilation and Code Loading.

See also the chapter about Function Evaluation.
Local Function Names Clashing With Auto-imported BIFs

If alocal function has the same name as an auto-imported BIF, the semanticsis that implicitly qualified function calls
are directed to the locally defined function, not to the BIF. To avoid confusion, thereis acompiler directive available,
-conpi l e({no_auto_i nport, [F/ A]}),that makesaBIF not being auto-imported. In certain situations, such
a compile-directive is mandatory.

Warning:

Before OTP R14A (ERTS version 5.8), an implicitly qualified function call to afunction having the same name
as an auto-imported BIF always resulted in the BIF being called. In newer versions of the compiler the local
functionisinstead called. The changeisthereto avoid that future additions to the set of auto-imported BIFs does
not silently change the behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled with OTP version R14A or |ater,
the following restriction applies: If you override the name of a BIF that was auto-imported in OTP versions prior
to R14A (ERTS version 5.8) and have an implicitly qualified call to that function in your code, you either need
to explicitly remove the auto-import using a compiler directive, or replace the call with afully qualified function
call, otherwise you will get a compilation error. See example below:

-export([length/1,f/11).
-compile({no_auto import,[length/1]}). % erlang:length/1 no longer autoimported
length([]) ->

length([H|T]) ->
1 + length(T). %% Calls the local function length/1

f(X) when erlang:length(X) > 3 ->

[)
o
[)

o

% Calls erlang:length/1,
which is allowed in guards

)
"o

long.

The same logic applies to explicitly imported functions from other modules as to locally defined functions. To both
import a function from another module and have the function declared in the module at the same time is not allowed.

-export([f/1]).
-compile({no auto import, [length/1]}). % erlang:length/1 no longer autoimported
-import(mod, [length/1]).

f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,

146 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

%% which is allowed in guards

erlang:length(X); %% Explicit call to erlang:length in body
f(X) ->
length(X). %% mod:length/1 is called

For auto-imported BIFs added to Erlang in release R14A and thereafter, overriding the name with a local function
or explicit import is always allowed. However, if the - conpi | e({no_aut o_i nport, [F/ A]) directiveis not
used, the compiler will issue a warning whenever the function is called in the module using the implicitly qualified
function name.

5.8.7 If

if
GuardSeql ->
Body1l;

GuardSegN ->
BodyN
end

Thebranchesof ani f -expression are scanned sequentially until aguard sequence Guar dSeq which evaluatesto true
isfound. Then the corresponding Body (sequence of expressions separated by ',') is evaluated.

Thereturn value of Body isthereturn value of thei f expression.

If no guard sequenceistrue, ani f _cl ause run-time error will occur. If necessary, the guard expressiont r ue can
be used in the last branch, as that guard sequence is always true.

Example:

is _greater than(X, Y) ->
if
XY ->
true;
true -> % works as an 'else' branch
false
end

5.8.8 Case

case Expr of
Patternl [when GuardSeql] ->
Body1l;

PatternN [when GuardSegN] ->

BodyN
end

The expression Expr is evauated and the patterns Pat t er n are sequentially matched against the result. If amatch
succeeds and the optional guard sequence Guar dSeq istrue, the corresponding Body is evaluated.

Thereturn value of Body isthe return value of the case expression.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 147

5.8 Expressions

If thereis no matching pattern with atrue guard sequence, acase_cl ause run-time error will occur.

Example:

is valid signal(Signal) ->
case Signal of
{signal, What, From, To} ->
true;
{signal, What, To} ->
true;
_Else ->
false
end.

5.8.9 Send

Exprl ! Expr2

Sends the value of Expr 2 as a message to the process specified by Expr 1. The value of Expr 2 is aso the return
value of the expression.

Expr 1 must evaluateto apid, aregistered name (atom) or atuple{ Nanme, Node} , where Nare isan atlom and Node

anode name, also an atom.

* |If Expr 1 evaluatesto a name, but this nameis not registered, abadar g run-time error will occur.

» Sending amessage to a pid never fails, even if the pid identifies a non-existing process.

« Distributed message sending, that isif Expr 1 evaluatesto atuple{ Nane, Node} (or apid located at another
node), also never fails.

5.8.10 Receive

receive
Patternl [when GuardSeql] ->
Body1l;

PatternN [when GuardSegN] ->
BodyN
end

Receives messages sent to the process using the send operator (!). The patterns Pat t er n are sequentially matched
against the first message in time order in the mailbox, then the second, and so on. If amatch succeeds and the optional
guard sequence Guar dSeq istrue, the corresponding Body is evaluated. The matching messageis consumed, that is
removed from the mailbox, while any other messages in the mailbox remain unchanged.

Thereturn value of Body isthe return value of ther ecei ve expression.

recei ve never fails. Execution is suspended, possibly indefinitely, until a message arrives that does match one of
the patterns and with a true guard sequence.

Example:

wait for onhook() ->
receive

148 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

onhook ->
disconnect(),
idle();
{connect, B} ->
B ! {busy, self()},
wait for_onhook()
end.

It is possible to augment ther ecei ve expression with atimeout:

receive
Patternl [when GuardSeql] ->
Body1l;

PatternN [when GuardSegN] ->
BodyN
after
ExprT ->
BodyT
end

Expr T should evaluate to an integer. The highest allowed value is 16#ffffffff, that is, the value must fit in 32 bits.
recei ve. . af t er works exactly as r ecei ve, except that if no matching message has arrived within Expr T
milliseconds, then Body T isevaluated instead and itsreturn value becomesthereturnvalueof ther ecei ve. . af t er

expression.
Example:

wait for onhook() ->
receive

onhook ->
disconnect(),
idle();

{connect, B} ->
B ! {busy, self()},
wait for onhook()

after
60000 ->
disconnect(),
error()
end.

Itislegal tousear ecei ve. . af t er expression with no branches:

receive
after
ExprT ->
BodyT
end

This construction will not consume any messages, only suspend execution in the process for Expr T milliseconds and
can be used to implement simple timers.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 149

5.8 Expressions

timer() ->
spawn(m, timer, [self()]).

timer(Pid) ->

receive
after
5000 ->
Pid ! timeout
end.

There are two special cases for the timeout value Expr T:

infinity
The process should wait indefinitely for a matching message -- this is the same as not using atimeout. Can be
useful for timeout values that are calculated at run-time.

If there is no matching message in the mailbox, the timeout will occur immediately.

5.8.11 Term Comparisons

Exprl op Expr2

op Description

== equal to

/= not equal to

=< lessthan or equal to

< less than

>= greater than or equal to
> greater than

== exactly equal to

=/= exactly not equal to

Table 8.1: Term Comparison Operators.

The arguments may be of different data types. The following order is defined:

number < atom < reference < fun < port < pid < tuple < list < bit string

Listsare compared element by element. Tuplesare ordered by size, two tupleswith the same size are compared el ement
by element.

150 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

When comparing an integer to a float, the term with the lesser precision will be converted into the other term's type,
unless the operator is one of =:= or =/=. A float is more precise than an integer until al significant figures of the float
are to the left of the decimal point. This happens when the float is larger/smaller than +/-9007199254740992.0. The
conversion strategy is changed depending on the size of the float because otherwise comparison of large floats and
integers would lose their transitivity.

Returns the Boolean value of the expression, t r ue or f al se.

Examples:

1> 1==1.0.
true

2> 1=:=1.0.
false

3> 1> a.
false

5.8.12 Arithmetic Expressions

op Expr
Exprl op Expr2

op Description Argument type
+ unary + number
- unary - number
+ number
- number
* number
/ floating point division number
bnot unary bitwise not integer
div integer division integer
rem integer remainder of X/Y integer
band bitwise and integer
bor bitwise or integer
bxor arithmetic bitwise xor integer
bsl arithmetic bitshift left integer

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 151

5.8 Expressions

bsr bitshift right integer

Table 8.2: Arithmetic Operators.

Examples:

1> +1.
1
2> -1,
-1
3> 1+1.
2
4> 4/2.
2.0
5> 5 div 2.
2
6> 5 rem 2.
1
7> 2#10 band 2#01.
0
8> 2#10 bor 2#01.
3
9> a + 10.
** exception error: an error occurred when evaluating an arithmetic expression
in operator +/2
called as a + 10
10> 1 bsl (1 bsl 64).
** exception error: a system limit has been reached
in operator bsl/2
called as 1 bsl 18446744073709551616

5.8.13 Boolean Expressions

op Expr
Exprl op Expr2

op Description

not unary logical not
and logical and

or logical or

Xor logical xor

Table 8.3: Logical Operators.

Examples:

152 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

1> not true.
false
2> true and false.
false
3> true xor false.
true
4> true or garbage.
** exception error: bad argument
in operator or/2
called as true or garbage

5.8.14 Short-Circuit Expressions

Exprl orelse Expr2
Exprl andalso Expr2

Expressions where Expr 2 is evaluated only if necessary. That is, Expr 2 is evaluated only if Expr 1 evaluates to
fal seinanorel se expression, or only if Expr 1 evaluatesto t r ue in an andal so expression. Returns either
thevalue of Expr 1 (thatis, t r ue or f al se) or thevaue of Expr 2 (if Expr 2 was evaluated).

Example 1:

case A >= -1.0 andalso math:sqrt(A+1l) > B of

Thiswill work even if Aislessthan- 1. 0, sincein that case, mat h: sqrt/ 1 isnever evaluated.

Example 2:

OnlyOne = is_atom(L) orelse
(is_list(L) andalso length(L) == 1),

From R13A, Expr 2 isno longer required to evaluate to a boolean value. As a consequence, andal so and or el se
are now tail-recursive. For instance, the following function is tail-recursive in R13A and later:

all(Pred, [Hd|Taill) ->
Pred(Hd) andalso all(Pred, Tail);
ali(_, [1) ->

true.

5.8.15 List Operations

Exprl ++ Expr2
Exprl -- Expr2
The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator - - produces a list which is a copy of the first argument, subjected to the following
procedure: for each element in the second argument, the first occurrence of this element (if any) is removed.

Example:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 153

5.8 Expressions

1> [1,2,3]1++[4,5].
[1,2,3,4,5]

2> [1,2,3,2,1,2]--[2,1,2].
[3,1,2]

Warning:

The complexity of A -- B s proportional to | engt h(A) *| engt h(B) , meaning that it will be very slow
if both A and B arelong lists.

5.8.16 Map Expressions
Creating Maps

Constructing a new map is done by letting an expression K be associated with another expression V:
#{K=V1}

New maps may include multiple associations at construction by listing every association:
#{ KL => V1, .., Kn => Vn }

An empty map is constructed by not associating any terms with each other:
#{}

All keys and values in the map are terms. Any expression is first evaluated and then the resulting terms are used as
key and value respectively.

Keys and values are separated by the => arrow and associations are separated by , .

Examples:

MO = #{}, % empty map

M1 = #{a => <<"hello">>}, % single association with literals

M2 = #{1 => 2, b => b}, % multiple associations with literals

M3 = #{k => {A,B}}, % single association with variables

M4 = #{{"w", 1} => f()}. % compound key associated with an evaluated expression

where, A and B are any expressions and MD through M4 are the resulting map terms.
If two matching keys are declared, the latter key will take precedence.
Example:

1> #{1 => a, 1 => b}.
#{1 => b }

2> #{1.0 => a, 1 => b}.
#{1 => Db, 1.0 => a}

154 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

The order in which the expressions constructing the keys and their associated values are evaluated is not defined. The
syntactic order of the key-value pairs in the construction is of no relevance, except in the above mentioned case of
two matching keys.

Updating Maps
Updating a map has similar syntax as constructing it.

An expression defining the map to be updated is put in front of the expression defining the keys to be updated and
their respective values.

M#{ K => V }

where Mis aterm of type map and K and V are any expression.

If key K does not match any existing key in the map, a new association will be created from key Kto value V. If key K
matches an existing key in map Mits associated value will be replaced by the new value V. In both cases the evaluated
map expression will return a new map.

If Mis not of type map an exception of type badmap isthrown.
To only update an existing value, the following syntax is used,

M#{ K := V }

where Mis an term of type map, V isan expression and K is an expression which evaluates to an existing key in M

If key K does not match any existing keys in map Man exception of type badar g will be triggered at runtime. If a
matching key K is present in map Mits associated value will be replaced by the new value V and the evaluated map
EXPression returns a new map.

If Mis not of type map an exception of type badmap isthrown.

Examples:
MO = #{},
M1 MO#{a => 0},
Ml#{a => 1, b => 2},

M2#{"function" => fun() -> f() end},
M3#{a := 2, b :=3}. % 'a' and 'b' was added in "M1® and "M2 .

=
N
L | B [|

where M) isany map. It followsthat ML .. M are mapsaswell.
More Examples:

1> M = #{1 => a}.

#{1 => a }

2> M#{1.0 => b}.

#{1 => a, 1.0 => b}.

3> M#{1l := b}.

#{1 => b}

4> M#{1.0 := b}.

** exception error: bad argument

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 155

5.8 Expressions

Asin construction, the order in which the key and value expressions are evaluated is not defined. The syntactic order
of the key-value pairs in the update is of no relevance, except in the case where two keys match, in which case the
latter value is used.

Maps in Patterns

Matching of key-value associations from maps is done in the following way:
#HK:=V}=M

where Mis any map. The key K has to be an expression with bound variables or aliteras, and V can be any pattern
with either bound or unbound variables.

If the variable V is unbound, it will be bound to the value associated with the key K, which has to exist in the map M
If the variable V is bound, it has to match the value associated with Kin M

Example:

1>
#{"tuple" => {1,2}}
2>
#{"tuple" => {1,2}}
3>
2.

Thiswill bind variable B to integer 2.
Similarly, multiple values from the map may be matched:

K1 := V1, .., Kn :=Vn } =M

wherekeysK1 .. Kn areany expressions with literals or bound variables. If all keys exist in map Mall variablesin
V1 .. Vn will be matched to the associated values of their respective keys.

If the matching conditions are not met, the match will fail, either with

« abadmat ch exception, if used in the context of the matching operator as in the example,
» orresulting in the next clause being tested in function heads and case expressions.

Matching in maps only alowsfor : = as delimiters of associations. The order in which keys are declared in matching
has no relevance.

Duplicate keys are allowed in matching and will match each pattern associated to the keys.

#{ K:=Vl, K:=V2} =M

Matching an expression against an empty map literal will match its type but no variables will be bound:
#{} = Expr

Thisexpression will match if the expression Expr isof type map, otherwiseit will fail with an exception badmat ch.
Matching syntax: Example with literals in function heads
Matching of literals as keys are alowed in function heads.

156 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

%% only start if not started
handle call(start, From, #{ state := not started } =5S) ->

{reply, ok, S#{ state := start }};

%% only change if started
handle call(change, From, #{ state := start } = S) ->

{reply, ok, S#{ state := changed }};

Maps in Guards
Maps are allowed in guards as long as all sub-expressions are valid guard expressions.
Two guard BIFs handles maps:

* is map/l
e map size/l

5.8.17 Bit Syntax Expressions

<<>>
<<El,...,En>>

Each element Ei specifies a segment of the bit string. Each element Ei is a value, followed by an optional size
expression and an optional type specifier list.

Ei = Value |
Value:Size |
Value/TypeSpecifierList |
Value:Size/TypeSpecifierList

Used in abit string construction, Val ue isan expression which should evaluate to an integer, float or hit string. If the
expression is something else than asingle literal or variable, it should be enclosed in parenthesis.

Used in abit string matching, Val ue must be avariable, or an integer, float or string.

Note that, for example, using a string literal asin <<" abc" >> is syntactic sugar for <<$a, $b, $c>>.
Used in abit string construction, Si ze is an expression which should evaluate to an integer.

Used in a bit string matching, Si ze must be an integer or a variable bound to an integer.

The value of Si ze specifies the size of the segment in units (see below). The default value depends on the type (see
below). For i nt eger itis8, forfl oat itis64, for bi nary and bi t st ri ng it isthe whole binary or bit string.
In matching, this default value is only valid for the very last element. All other bit string or binary elements in the
matching must have a size specification.

For theut f 8, ut f 16, and ut f 32 types, Si ze must not be given. The size of the segment is implicitly determined
by the type and value itself.

TypeSpeci fi erLi st isalist of type specifiers, in any order, separated by hyphens (-). Default values are used
for any omitted type specifiers.
Type=integer |float |binary|bytes |bitstring|bits|utf8|utfl6|utf32
The defaultisi nt eger . byt es isashorthand for bi nary and bi t s isashorthand for bi t st ri ng. See
below for more information about the ut f types.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 157

5.8 Expressions

Si gnedness=si gned |unsi gned
Only matters for matching and when thetypeisi nt eger . Thedefault isunsi gned.
Endi anness=big|little|native
Native-endian means that the endianness will be resolved at 1oad time to be either big-endian or little-endian,
depending on what is native for the CPU that the Erlang machine is run on. Endianness only matters when the
Typeiseitheri nt eger,utf 16, ut f 32, or f | oat . Thedefault isbi g.
Unit=unit:|ntegerlLiteral
The allowed rangeis 1..256. Defaultsto 1 for i nt eger , f 1 oat andbi t stri ng, andto 8 for bi nary. No
unit specifier must be given for the typesut f 8, ut f 16, and ut f 32.

The value of Si ze multiplied with the unit gives the number of bits. A segment of type bi nar y must have asize
that isevenly divisible by 8.

Note:

When constructing binaries, if the size N of an integer segment istoo small to contain the given integer, the most
significant bits of the integer will be silently discarded and only the N least significant bits will be put into the
binary.

Thetypesut f 8, ut f 16, and ut f 32 specifies encoding/decoding of the Unicode Transformation Formats UTF-8,
UTF-16, and UTF-32, respectively.

When constructing a segment of a utf type, Val ue must be an integer in the range 0..16#D7FF or
16#E000....16#10FFFF. Construction will fail with abadar g exceptionif Val ue isoutside the allowed ranges. The
size of the resulting binary segment depends on the type and/or Val ue. For ut f 8, Val ue will be encoded in 1
through 4 bytes. For ut f 16, Val ue will be encoded in 2 or 4 bytes. Finally, for ut f 32, Val ue will always be
encoded in 4 bytes.

When constructing, aliteral string may be given followed by one of the UTF types, for example: <<" abc" / ut f 8>>
which is syntatic sugar for <<$a/ ut f 8, $b/ ut f 8, $c/ ut f 8>>.

A successful match of asegment of aut f typeresultsin aninteger in therange 0..16#D7FF or 16#E000..16#10FFFF.
The match will fail if returned value would fall outside those ranges.

A segment of type ut f 8 will match 1 to 4 bytes in the binary, if the binary at the match position contains a valid
UTF-8 sequence. (See RFC-3629 or the Unicode standard.)

A segment of type ut f 16 may match 2 or 4 bytesin the binary. The match will fail if the binary at the match position
does not contain alegal UTF-16 encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type ut f 32 may match 4 bytes in the binary in the same way asan i nt eger segment matching 32
bits. The match will fail if the resulting integer is outside the legal ranges mentioned above.

Examples:

1> Binl = <<1,17,42>>.
<<1,17,42>>

2> Bin2 = <<"abc">>.

<<97,98,99>>

3> Bin3 = <<1,17,42:16>>.
<<1,17,0,42>>

4> <<A,B,C:16>> = <<1,17,42:16>>.
<<1,17,0,42>>

5> C.

42

6> <<D:16,E,F>> = <<1,17,42:16>>.

158 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

<<1,17,0,42>>

7> D.

273

8> F.

42

9> <<G,H/binary>> = <<1,17,42:16>>.
<<1,17,0,42>>

10> H.

<<17,0,42>>

11> <<G,H/bitstring>> = <<1,17,42:12>>.
<<1,17,1,10:4>>

12> H.

<<17,1,10:4>>

13> <<1024/utf8>>.

<<208,128>>

Note that bit string patterns cannot be nested.

Note also that "B=<<1>>" isinterpreted as"B =<<1>>" which isasyntax error. The correct way isto write a space
after '=": "B= <<1>>,

More examples can be found in Programming Examples.

5.8.18 Fun Expressions

fun
[Name] (Patternll,...,PatternlN) [when GuardSeql] ->
Body1l;
[Name] (PatternKl,...,PatternkKN) [when GuardSegK] ->
BodyK
end

A fun expression begins with the keyword f un and ends with the keyword end. Between them should be a function
declaration, similar to aregular function declaration, except that the function nameis optional and should beavariable
if any.

Variables in afun head shadow the function name and both shadow variables in the function clause surrounding the
fun expression, and variables bound in afun body are local to the fun body.

The return value of the expression is the resulting fun.
Examples:

1> Funl = fun (X) -> X+1 end.
#Fun<erl eval.6.39074546>

2> Funl(2).

3

3> Fun2 = fun (X) when X>=5 -> gt; (X) -> 1t end.

#Fun<erl eval.6.39074546>

4> Fun2(7).

gt

5> Fun3 = fun Fact(l) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
#Fun<erl eval.6.39074546>

6> Fun3(4).

24

The following fun expressions are also allowed:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 159

5.8 Expressions

fun Name/Arity
fun Module:Name/Arity

InNanme/ Arity, Name isanatomand Ari ty isaninteger. Nanme/ Ari t y must specify an existing local function.
The expression is syntactic sugar for:

fun (Argl,...,ArgN) -> Name(Argl,...,ArgN) end

In Modul e: Nane/ Arity, Modul e and Nane areatomsand Ari t y isan integer. Starting from the R15 release,
Modul e, Nanme, and Ari t y may also be variables. A fun defined in this way will refer to the function Nanme with
arity Ari ty inthe latest version of module Modul e. A fun defined in this way will not be dependent on the code
for module in which it is defined.

More examples can be found in Programming Examples.

5.8.19 Catch and Throw

catch Expr

Returnsthe value of Expr unless an exception occurs during the evaluation. In that case, the exception is caught. For
exceptions of classer r or, that isrun-time errors; {' EXI T' , { Reason, St ack}} isreturned. For exceptions of
classexit, thatisthecodecalledexit (Term: {' EXI T', Ter n} isreturned. For exceptions of classt hr ow,
that isthe code called t hr ow(Ter n) : Ter mis returned.

Reason depends on the type of error that occurred, and St ack is the stack of recent function calls, see Errors and
Error Handling.

Examples:

1> catch 1+2.

3
2> catch 1l+a.
{'EXIT',{badarith,[...]1}}

Note that cat ch has low precedence and catch subexpressions often needs to be enclosed in a block expression or
in parenthesis:

3> A = catch 1+2.

** 1: syntax error before: 'catch' **
4> A = (catch 1+2).

3

TheBIFt hr owm(Any) can be used for non-local return from afunction. It must be evaluated within acat ch, which
will return the value Any. Example:

5> catch throw(hello).
hello

160 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

If t hr ow 1 isnot evaluated within a catch, anocat ch run-time error will occur.

5.8.20 Try

try Exprs
catch
[Classl:]ExceptionPatternl [when ExceptionGuardSeql] ->
ExceptionBody1l;
[ClassN:]ExceptionPatternN [when ExceptionGuardSegN] ->
ExceptionBodyN
end

Thisisan enhancement of catch that appeared in Erlang 5.4/OTP-R10B. It givesthe possibility do distinguish between
different exception classes, and to choose to handle only the desired ones, passing the others on to an enclosingt ry
or cat ch or to default error handling.

Note that although the keyword cat ch isused in thet r y expression, there is not acat ch expression within the
t ry expression.

Returnsthevaueof Expr s (asequenceof expressionsExpr 1, ..., Expr N)unlessanexceptionoccursduringthe
evaluation. In that case the exception is caught and the patterns Except i onPat t er n with the right exception class
Qd ass are sequentially matched against the caught exception. An omitted Cl ass isshorthand for t hr ow. If amatch
succeeds and the optional guard sequence Except i onGuar dSeq istrue, the corresponding Except i onBody is
evaluated to become the return value.

If an exception occurs during evaluation of Expr s but there is no matching Except i onPat t er n of the right
Cd ass with atrue guard sequence, the exception ispassed on asif Expr s had not been enclosedinat r y expression.

If an exception occurs during evaluation of Except i onBody it isnot caught.
Thet ry expression can have an of section:

try Exprs of
Patternl [when GuardSeql] ->

Body1l;
PatternN [when GuardSegN] ->
BodyN
catch
[Classl:]ExceptionPatternl [when ExceptionGuardSeql] ->
ExceptionBody1l;

[ClassN:]ExceptionPatternN [when ExceptionGuardSegN] ->
ExceptionBodyN
end

If the evaluation of Expr s succeeds without an exception, the patterns Pat t er n are sequentially matched against
the result in the same way as for a case expression, except that if the matching fails, at ry_cl ause run-time error
will occur.

An exception occurring during the evaluation of Body is not caught.

Thet ry expression can also be augmented with an af t er section, intended to be used for cleanup with side effects:

try Exprs of
Patternl [when GuardSeql] ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 161

5.8 Expressions

Body1l;

PatternN [when GuardSegN] ->
BodyN
catch
[Classl:]ExceptionPatternl [when ExceptionGuardSeql] ->
ExceptionBody1l;

[ClassN:]ExceptionPatternN [when ExceptionGuardSegN] ->
ExceptionBodyN
after
AfterBody
end

Af t er Body is evaluated after either Body or Except i onBody no matter which one. The evaluated value of
Af t er Body islost; the return value of thet r y expression isthe same with an af t er section as without.

Even if an exception occurs during evaluation of Body or Except i onBody, Af t er Body isevaluated. In thiscase
the exception is passed on after Af t er Body has been evaluated, so the exception from the t r y expression is the
same with an af t er section aswithout.

If an exception occurs during evaluation of Af t er Body itself itisnot caught, soif Af t er Body isevaluated after an
exceptionin Expr s, Body or Except i onBody, that exceptionislost and masked by the exceptionin Af t er Body.

Theof , cat ch and af t er sections are al optional, aslong asthereis at least acat ch or an af t er section, so
thefollowing arevalidt r y expressions:

try Exprs of
Pattern when GuardSeq ->
Body
after
AfterBody
end

try Exprs
catch
ExpressionPattern ->
ExpressionBody
after
AfterBody
end

try Exprs after AfterBody end

Example of using af t er, this code will close the file even in the event of exceptionsinfil e:read/ 2 or in
bi nary to_terni 1, and exceptionswill bethe same aswithout thet ry...af t er ...end expression:

termize file(Name) ->

{ok,F} = file:open(Name, [read,binary]),

try
{ok,Bin} = file:read(F, 1024*1024),
binary to term(Bin)

after
file:close(F)

end.

Example: Usingt ry to emulate cat ch Expr .

162 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

try Expr
catch

throw:Term -> Term;

exit:Reason -> {'EXIT',Reason}

error:Reason -> {'EXIT',{Reason,erlang:get stacktrace()}}
end

5.8.21 Parenthesized Expressions

(Expr)

Parenthesized expressions are useful to override operator precedences, for example in arithmetic expressions:

1> 1 + 2 * 3,

7

2> (1 + 2) * 3.
9

5.8.22 Block Expressions

begin
Exprl,

ExprN
end

Block expressions provide away to group a sequence of expressions, similar to a clause body. Thereturn valueisthe
value of the last expression Expr N.

5.8.23 List Comprehensions

List comprehensions are a feature of many modern functional programming languages. Subject to certain rules, they
provide a succinct notation for generating elementsin alist.

List comprehensions are anal ogousto set comprehensionsin Zermel o-Frankel set theory and are called ZF expressions
in Miranda. They are analogous to the set of andf i ndal | predicatesin Prolog.

List comprehensions are written with the following syntax:

[Expr || Qualifierl,...,QualifierN]

Expr isan arbitrary expression, and each Qual i fi er iseither agenerator or afilter.

e A generator iswritten as.
Pattern <- ListExpr.
Li st Expr must be an expression which evaluatesto alist of terms.

e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression which evaluates to a bitstring.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 163

5.8 Expressions

* Afilter isan expression which evaluatestot r ue or f al se.

The variablesin the generator patterns shadow variablesin the function clause surrounding the list comprehensions.
A list comprehension returns a list, where the elements are the result of evaluating Expr for each combination of
generator list elements and bit string generator elements for which all filters are true.

Example:

1> [X*2 || X <- [1,2,3]1].
[2,4,6]

More examples can be found in Programming Examples.

5.8.24 Bit String Comprehensions

Bit string comprehensions are analogous to List Comprehensions. They are used to generate bit strings efficiently and
succinctly.

Bit string comprehensions are written with the following syntax:

<< BitString || Qualifierl,...,QualifierN >>

Bi t Stri ng isabit string expression, and each Qual i f i er iseither agenerator, abit string generator or afilter.

e A generator iswritten as.
Pattern <- ListExpr.
Li st Expr must be an expression which evaluatesto alist of terms.

e A bit string generator iswritten as:
BitstringPattern <= BitStringExpr.
Bi t St ri ngExpr must be an expression which evaluates to a bitstring.

» Afilter isan expression which evaluatestot r ue or f al se.

The variables in the generator patterns shadow variables in the function clause surrounding the bit string
comprehensions.

A bit string comprehension returnsabit string, which is created by concatenating the results of evaluatingBi t St r i ng
for each combination of bit string generator elements for which all filters are true.

Example;
1> << << (X*¥2) >> ||

<<X>> <= << 1,2,3 >> >>.
<<2,4,6>>

More examples can be found in Programming Examples.

5.8.25 Guard Sequences

A guard sequence is a sequence of guards, separated by semicolon (;). The guard sequenceistrueif at least one of the
guardsistrue. (The remaining guards, if any, will not be evaluated.)
Guardil;...; GuardK

164 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.8 Expressions

A guard isasequence of guard expressions, separated by comma(,). Theguard istrueif al guard expressions evaluate
totrue.
Guar dExpr1, ..., GuardExprN

The set of valid guard expressions (sometimes called guard tests) is a subset of the set of valid Erlang expressions.
The reason for restricting the set of valid expressions is that evaluation of a guard expression must be guaranteed to
be free of side effects. Valid guard expressions are:

* theatomtrue,

« other constants (terms and bound variables), all regarded asfalse,

e callstothe BIFs specified below,

e term comparisons,

e arithmetic expressions,

* boolean expressions, and

» short-circuit expressions (andal so/or el se).

is atom 1

is _binary/1l

is bitstring/1

i s_bool ean/ 1

is_float/1

is function/1

is_function/2

is_integer/1

is list/1

is_map/ 1

i s_nunber/1

is_pid1l

is_port/1

is_record/2

is_record/3

is_reference/l

is_tuplel/l

Table 8.4: Type Test BIFs.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 165

5.8 Expressions

Notethat most typetest BIFshave older equivalents, without thei s__ prefix. Theseold BlFsareretained for backwards
compatibility only and should not be used in new code. They are also only allowed at top level. For example, they
are not allowed in boolean expressions in guards.

abs(Nunmber)

bit_size(Bitstring)

byte_size(Bitstring)

el ement (N, Tupl e)

float(Term

hd(Li st)

| engt h(Li st)

map_si ze(Map)

node()

node(Pi d| Ref | Port)

round(Number)

sel f ()

size(Tupl e| Bitstring)

t1(List)

t runc(Nunber)

tupl e_size(Tupl e)

Table 8.5: Other BIFs Allowed in Guard Expressions.

If an arithmetic expression, aboolean expression, a short-circuit expression, or acal to aguard BIF fails (because of
invalid arguments), the entire guard fails. If the guard was part of a guard sequence, the next guard in the sequence
(that is, the guard following the next semicolon) will be evaluated.

5.8.26 Operator Precedence
Operator precedence in falling priority:

#

Unary + - bnot not

166 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.9 The Preprocessor

/* div rem band and L eft associative
+ - bor bxor bsl bsr or xor L eft associative
++ -- Right associative

== /==<<>=>===[=

andalso

orelse

=1 Right associative

catch

Table 8.6: Operator Precedence.

When evaluating an expression, the operator with the highest priority isevaluated first. Operatorswith the samepriority
are evaluated according to their associativity. Example: The left associative arithmetic operators are evaluated |eft
toright:

6 +5 *4 - 3/ 2 evaluates to
6 + 20 - 1.5 evaluates to

26 - 1.5 evaluates to

24.5

5.9 The Preprocessor

5.9.1 File Inclusion

A file can be included in the following way:

-include(File).
-include lib(File).

Fi | e, astring, should point out afile. The contents of thisfile areincluded as-is, at the position of the directive.

Includefilesaretypically used for record and macro definitions that are shared by several modules. It isrecommended
that the file name extension . hr | be used for include files.

Fi | e may start with a path component $VAR, for some string VAR. If that is the case, the value of the environment
variable VAR as returned by os: get env(VAR) is substituted for $VAR. If os: get env(VAR) returnsf al se,
$VARisleft asis.

If the filename Fi | e is absolute (possibly after variable substitution), the include file with that name is included.
Otherwise, the specified fileis searched for in the current working directory, in the same directory as the modul e being
compiled, and in the directories given by thei ncl ude option, in that order. Seeer | c(1) and conpi | e(3) for
details.

Examples:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 167

5.9 The Preprocessor

-include("my records.hrl").
-include("incdir/my records.hrl").
-include("/home/user/proj/my records.hrl").
-include("$PROJ ROOT/my records.hrl").

i ncl ude_Il i bissimilartoi ncl ude, but should not point out an absolute file. Instead, the first path component
(possibly after variable substitution) is assumed to be the name of an application. Example:

-include lib("kernel/include/file.hrl").

The code server usescode: | i b_di r (ker nel) tofind the directory of the current (latest) version of Kernel, and
then the subdirectory i ncl ude issearched for thefilefil e. hrl .

5.9.2 Defining and Using Macros
A macro is defined the following way:

-define(Const, Replacement).
-define(Func(Varl,...,VarN), Replacement).

A macro definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the macro.

If amacro isused in several modules, it is recommended that the macro definition is placed in an include file.

A macro is used the following way:

?Const
?Func(Argl,...,ArgN)

Macros are expanded during compilation. A simple macro ?Const will bereplaced with Repl acenent . Example:
-define (TIMEOUT, 200).
ééil(Request) ->

server:call(refserver, Request, ?TIMEOUT).

Thiswill be expanded to:
call(Request) ->

server:call(refserver, Request, 200).

A macro ?Func(Argl, ..., ArgN) will be replaced with Repl acenent , where al occurrences of a variable
Var from the macro definition are replaced with the corresponding argument Ar g. Example:

-define(MACRO1(X, Y), {a, X, b, Y}).

168 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.9 The Preprocessor

bar(X) ->
?MACRO1(a, b),
?MACRO1 (X, 123)

Thiswill be expanded to:

bar(X) ->
{a,a,b,b},
{a,X,b,123}.

It isgood programming practice, but not mandatory, to ensure that amacro definitionisavalid Erlang syntactic form.

To view the result of macro expansion, a module can be compiled with the* P' option. conpil e: fil e(Fil e,
['P']).Thisproducesalisting of the parsed code after preprocessing and parse transforms, in thefileFi | e. P.

5.9.3 Predefined Macros

The following macros are predefined:

?MODULE

The name of the current module.
?MODULE_STRI NG

The name of the current module, as a string.
?FI LE.

The file name of the current module.
?LI NE.

The current line number.
?MACHI NE.

The machine name, ' BEAM .

5.9.4 Macros Overloading

It is possible to overload macros, except for predefined macros. An overloaded macro has more than one definition,
each with a different number of arguments.

The feature was added in Erlang 5.7.5/0TP R13B04.

A macro ?Func(Argl, ..., ArgN) witha(possibly empty) list of arguments resultsin an error message if there
is at least one definition of Func with arguments, but none with N arguments.

Assuming these definitions:

-define(FO(), c).
-define(F1(A), A).
-define(C, m:f).

the following will not work:

fo() ->
?FO. % No, an empty list of arguments expected.

f1(A) ->
?F1(A, A). % No, exactly one argument expected.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 169

5.9 The Preprocessor

On the other hand,

f() ->
?7C().

will expand to

f() ->
m:f().

5.9.5 Flow Control in Macros
The following macro directives are supplied:

- undef (Macr 0) .
Causes the macro to behave as if it had never been defined.
-i fdef (Macr o).
Evaluate the following lines only if Macr o is defined.
-i f ndef (Macr o).
Evaluate the following lines only if Macr o is not defined.
- el se.
Only allowed after ani f def ori f ndef directive. If that condition was false, the linesfollowing el se are
evaluated instead.
-endif.
Specifiestheend of ani f def ori f ndef directive.

Note:

The macro directives cannot be used inside functions.

Example:

-module(m) .

-ifdef (debug) .

-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
-else.

-define(LOG(X), true).

-endif.

When trace output is desired, debug should be defined when the module mis compiled:

% erlc -Ddebug m.erl

or

170 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.10 Records

1> c(m, {d, debug}).
{ok,m}

?LOE Ar g) will thenexpandtoacall toi o: f or mat / 2 and provide the user with some simple trace output.

5.9.6 Stringifying Macro Arguments

The construction ??Ar g, where Ar g isamacro argument, will be expanded to a string containing the tokens of the
argument. Thisissimilar to the #ar g stringifying constructionin C.

The feature was added in Erlang 5.0/0TP R7.
Example:

-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Calll)).

?TESTCALL (myfunction(1,2)),
?TESTCALL (you: function(2,1)).

resultsin

io:format("Call ~s: ~w~n",["myfunction (1 , 2)",myfunction(1,2)1]),
io:format("Call ~s: ~w~n",["you : function (2 , 1)",you:function(2,1)]).

That is, atrace output with both the function called and the resulting value.

5.10 Records

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a struct in
C. Record expressions are translated to tuple expressions during compilation. Therefore, record expressions are not
understood by the shell unless specia actions are taken. Seeshel | (3) for details.

More record examples can be found in Programming Examples.

5.10.1 Defining Records

A record definition consists of the name of the record, followed by the field names of the record. Record and field
names must be atoms. Each field can be given an optional default value. If no default value is supplied, undef i ned
will be used.

-record(Name, {Fieldl [= Valuel],
FieldN [= ValueN]}).

A record definition can be placed anywhere among the attributes and function declarations of a module, but the
definition must come before any usage of the record.

If arecord isused in several modules, it is recommended that the record definition is placed in an include file.

5.10.2 Creating Records

Thefollowing expression creates anew Nane record where the value of each field Fi el dI isthe value of evaluating
the corresponding expression Expr | :

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 171

5.10 Records

#Name{Fieldl=Exprl, ...,FieldK=ExprK}

The fields may be in any order, not necessarily the same order as in the record definition, and fields can be omitted.
Omitted fields will get their respective default value instead.

If several fields should be assigned the same value, the following construction can be used:

#Name{Fieldl=Exprl, ...,FieldK=ExprK, =ExprL}

Omitted fields will then get the value of evaluating Expr L instead of their default values. This feature was added
in Erlang 5.1/OTP R8 and is primarily intended to be used to create patterns for ETS and Mnesia match functions.
Example:

-record(person, {name, phone, address}).

lookup(Name, Tab) ->
ets:match object(Tab, #person{name=Name, =' '}).

5.10.3 Accessing Record Fields

Expr#Name.Field

Returns the value of the specified field. Expr should evaluate to a Name record.

The following expression returns the position of the specified field in the tuple representation of the record:

#Name.Field

Example:

-record(person, {name, phone, address}).

lookup(Name, List) ->
lists:keysearch(Name, #person.name, List).

5.10.4 Updating Records

Expr#Name{Fieldl=Exprl, ..., FieldK=ExprK}

Expr should evaluate to aNane record. Returns a copy of thisrecord, with the value of each specified field Fi el dl
changed to the value of evaluating the corresponding expression Expr | . All other fields retain their old values.

172 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.10 Records

5.10.5 Records in Guards

Since record expressions are expanded to tuple expressions, creating records and accessing record fields are allowed
in guards. However all subexpressions, for example for field initiations, must of course be valid guard expressions
aswell. Examples:

handle(Msg, State) when Msg==#msg{to=void, no=3} ->

handle(Msg, State) when State#state.running==true ->
Thereisaso atypetest BIFi s_record(Term RecordTag).Example:

is person(P) when is record(P, person) ->
true;

is person(P) ->
false.

5.10.6 Records in Patterns

A pattern that will match a certain record is created the same way as arecord is created:

#Name{Fieldl=Exprl, ...,FieldK=ExprK}

In this case, one or more of Expr 1...Expr K may be unbound variables.

5.10.7 Nested records

Beginning with R14 parentheses when accessing or updating nested records can be omitted. Assuming we have the
following record definitions:

-record(nrec@, {name
-record(nrecl, {name
-record(nrec2, {name

"nested0"}).
"nestedl", nrecO=#nrec0{}}).
"nested2", nrecl=#nrecl{}}).

N2 = #nrec2{},

Before R14 you would have needed to use parentheses as following:

"nested0" = ((N2#nrec2.nrecl)#nrecl.nrec0Q)#nrec0@.name,
NOn = ((N2#nrec2.nrecl)#nrecl.nrecO)#nrecO0{name = "nested0a"},

Since R14 you can also write:

"nested0@" = N2#nrec2.nrecl#nrecl.nrec0#nrec0.name,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 173

5.11 Errors and Error Handling

NOn = N2#nrec2.nrecl#nrecl.nrec0#nrec0{name = "nested0a"},

5.10.8 Internal Representation of Records

Record expressions are translated to tuple expressions during compilation. A record defined as

-record(Name, {Fieldl,...,FieldN}).

isinternally represented by the tuple

{Name,Valuel, ...,ValueN}

where each Val uel isthedefault valuefor Fi el dl .

To each module using records, a pseudo function is added during compilation to obtain information about records:

record info(fields, Record) -> [Field]
record info(size, Record) -> Size

Si ze isthe size of the tuple representation, that is one more than the number of fields.

In addition, #Recor d. Nane returns the index in the tuple representation of Nane of the record Recor d. Nane
must be an atom.

5.11 Errors and Error Handling
5.11.1 Terminology

Errors can roughly be divided into four different types:

e Compile-time errors
* Logicd errors

* Run-timeerrors

* Generated errors

A compile-time error, for example a syntax error, should not cause much trouble as it is caught by the compiler.

A logical error iswhen a program does not behave as intended, but does not crash. An example could be that nothing
happens when a button in agraphical user interface is clicked.

A run-time error iswhen a crash occurs. An example could be when an operator is applied to arguments of the wrong
type. The Erlang programming language has built-in features for handling of run-time errors.

A run-time error can also be emulated by calling er | ang: error (Reason) or erl ang: error (Reason,
Ar gs) (those appeared in Erlang 5.4/0TP-R10).

A run-time error is another name for an exception of classerr or .

A generated error is when the code itself callsexi t/ 1 or t hr ow 1. Note that emulated run-time errors are not
denoted as generated errors here.

Generated errors are exceptions of classesexi t andt hr ow.

174 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.11 Errors and Error Handling

When arun-time error or generated error occurs in Erlang, execution for the process which evaluated the erroneous
expression is stopped. This is referred to as a failure, that execution or evaluation fails, or that the process fails,
terminates or exits. Note that a process may terminate/exit for other reasons than afailure.

A process that terminates will emit an exit signal with an exit reason that says something about which error has
occurred. Normally, some information about the error will be printed to the terminal.

5.11.2 Exceptions

Exceptions are run-time errors or generated errors and are of three different classes, with different origins. The try
expression (appeared in Erlang 5.4/0TP-R10B) can distinguish between the different classes, whereas the catch
expression can not. They are described in the Expressions chapter.

Class Origin
Run-time error for example 1+a, or the process called
error erlang: error/ 1, 2 (appeared in Erlang 5.4/0TP-
R10B)
exit Theprocesscalledexi t/ 1
t hr ow Theprocesscalledt hr ow 1

Table 11.1: Exception Classes.

An exception consists of its class, an exit reason (the Exit Reason), and a stack trace (that aids in finding the code
location of the exception).

The stack trace can beretrieved using er | ang: get _st ackt race/ 0 (new in Erlang 5.4/OTP-R10B) from within
atry expression, and isreturned for exceptions of classer r or fromacat ch expression.

An exception of classer r or isaso known as arun-time error.

5.11.3 Handling of Run-Time Errors in Erlang

Error Handling Within Processes

It is possible to prevent run-time errors and other exceptions from causing the process to terminate by using cat ch
or t ry, seethe Expressions chapter about Catch and Try.

Error Handling Between Processes

Processes can monitor other processes and detect process terminations, see the Processes chapter.

5.11.4 Exit Reasons

When a run-time error occurs, that is an exception of class er r or, the exit reason is atuple { Reason, St ack}.
Reason isaterm indicating the type of error:

Reason Type of error

Bad argument. The argument is of wrong datatype, or is

badar g otherwise badly formed.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 175

5.12 Processes

badarith Bad argument in an arithmetic expression.
{badmat ch, V} Evaluation of a match expression failed. The value V

did not match.

function_cl ause

No matching function clause is found when evaluating a
function call.

{case_cl ause, V}

No matching branch is found when evaluating acase
expression. The value V did not match.

i f_clause

No true branch is found when evaluating an i f
expression.

{try_cl ause, V}

No matching branch is found when evaluating the of-
section of at ry expression. The value V did not match.

undef

The function cannot be found when evaluating a
function call.

{badf un, F}

There is something wrong with afun F.

{badarity, F}

A funis applied to the wrong number of arguments. F
describes the fun and the arguments.

ti meout val ue

Thetimeout valueinar ecei ve. . af t er expression
is evaluated to something else than an integer or
infinity.

nopr oc

Trying to link to a non-existing process.

{nocat ch, V}

Trying to evaluate at hr ow outsideacat ch. Visthe
thrown term.

systemlimt

A system limit has been reached. See Efficiency Guide
for information about system limits.

Table 11.2: Exit Reasons.

St ack is the stack of function calls being evaluated when the error occurred, given as a list of tuples
{ Modul e, Nane, Ari ty} with the most recent function call first. The most recent function call tuple may in some

casesbe{ Modul e, Nane, [Arg] }.

5.12 Processes

5.12.1 Processes

Erlang is designed for massive concurrency. Erlang processes are light-weight (grow and shrink dynamically) with
small memory footprint, fast to create and terminate and the scheduling overhead is low.

176 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.12 Processes

5.12.2 Process Creation
A processis created by calling spawn:

spawn (Module, Name, Args) -> pid()
Module = Name = atom()
Args = [Argl,...,ArgN]
Argl = term()
Spawn creates a new process and returns the pid.

The new process will start executing in Modul e: Nanme(Argl, ..., ArgN) where the arguments is the elements
of the (possible empty) Ar gs argument list.

There exist anumber of other spawn BIFs, for example spawn/ 4 for spawning a process at another node.

5.12.3 Registered Processes

Besides addressing a process by using its pid, there are also BIFs for registering a process under a name. The name
must be an atom and is automatically unregistered if the process terminates:

Associates the name Nane, an atom, with the process

regi ster(Nanme, Pid) Pi d

Returns alist of names which have been registered

registered() usingr egi st er/ 2.

Returns the pid registered under Nane,

wher ei s(Narre) orundef i nedif the nameis not registered.

Table 12.1: Name Registration BIFs.

5.12.4 Process Termination
When a process terminates, it always terminates with an exit reason. The reason may be any term.

A processissaid to terminate normally, if the exit reasonistheatomnor mal . A processwith no more code to execute
terminates normally.

A process terminates with exit reason { Reason, St ack} when a run-time error occurs. See Error and Error
Handling.

A process can terminate itself by calling one of the BIFs exit (Reason), erl ang: error (Reason),
erl ang: error (Reason, Args),erlang: fault(Reason) orerl ang: fault (Reason, Args).The
process then terminates with reason Reason for exi t / 1 or { Reason, St ack} for the others.

A processmay aso beterminatedif it receivesan exit signal with another exit reasonthannor mal , seeError Handling
below.

5.12.5 Message Sending

Processes communicate by sending and receiving messages. Messages are sent by using the send operator ! and
received by calling receive.

Message sending is asynchronous and safe, the message is guaranteed to eventually reach the recipient, provided that
the recipient exists.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 177

5.12 Processes

5.12.6 Links

Two processes can be linked to each other. A link between two processes Pi d1 and Pi d2 iscreated by Pi d1 calling
the BIF | i nk(Pi d2) (or vice versa). There also exist a number of spawn_I i nk BIFs, which spawn and link to
aprocess in one operation.

Links are bidirectional and there can only be one link between two processes. Repeated callsto | i nk(Pi d) have
no effect.

A link can be removed by calling the BIF unl i nk(Pi d) .

Links are used to monitor the behaviour of other processes, see Error Handling below.

5.12.7 Error Handling

Erlang has a built-in feature for error handling between processes. Terminating processes will emit exit signals to
all linked processes, which may terminate as well or handle the exit in some way. This feature can be used to build
hierarchical program structures where some processes are supervising other processes, for example restarting them
if they terminate abnormally.

Refer to OTP Design Principles for more information about OTP supervision trees, which uses this feature.

Emitting Exit Signals

When a process terminates, it will terminate with an exit reason as explained in Process Termination above. This exit
reason is emitted in an exit signal to al linked processes.

A process can also call thefunctionexi t (Pi d, Reason) . Thiswill resultin an exit signal with exit reason Reason
being emitted to Pi d, but does not affect the calling process.

Receiving Exit Signals

The default behaviour when a process receives an exit signal with an exit reason other than nor mal , isto terminate
and in turn emit exit signals with the same exit reason to its linked processes. An exit signal with reason nor nal
isignored.

A process can be set to trap exit signals by calling:

process flag(trap exit, true)

When aprocessistrapping exits, it will not terminate when an exit signal isreceived. Instead, the signal istransformed
into amessage {' EXI T' , FronPi d, Reason} which is put into the mailbox of the process just like a regular

message.

An exception to the above is if the exit reason iski | | , that isif exi t (Pi d, kil |') has been caled. This will
unconditionally terminate the process, regardless of if it istrapping exit signals or not.

5.12.8 Monitors

An dternative to links are monitors. A process Pi d1 can create a monitor for Pi d2 by caling the BIF
erl ang: noni t or (process, Pi d2). Thefunction returnsareference Ref .

If Pi d2 terminates with exit reason Reason, a'DOWN' messageis sent to Pi d1:

{'DOWN', Ref, process, Pid2, Reason}

If Pi d2 doesnot exist, the ' DOWN' message is sent immediately with Reason set to nopr oc.

178 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.13 Distributed Erlang

Monitors are unidirectional. Repeated calls to er| ang: noni t or (process, Pid) will create severa,
independent monitors and each one will send a'DOWN' message when Pi d terminates.

A monitor can be removed by calling er | ang: deroni t or (Ref) .

It is possible to create monitors for processes with registered names, also at other nodes.

5.12.9 Process Dictionary

Each process has its own process dictionary, accessed by calling the following BIFs:

put(Key, Value)
get (Key)

get()

get keys(Value)
erase(Key)
erase()

5.13 Distributed Erlang

5.13.1 Distributed Erlang System

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each other. Each
such runtime system is called a node. Message passing between processes at different nodes, as well as links and
monitors, are transparent when pids are used. Registered names, however, are local to each node. This meansthe node
must be specified as well when sending messages etc. using registered names.

Thedistribution mechanismisimplemented using TCP/I P sockets. How to implement an alternative carrier isdescribed
in ERTSUser's Guide.

5.13.2 Nodes

A node is an executing Erlang runtime system which has been given a name, using the command line flag - name
(long names) or - snane (short names).

The format of the node name is an atom name@ost where nane is the name given by the user and host isthe
full host name if long names are used, or the first part of the host name if short names are used. node() returnsthe
name of the node. Example:

% erl -name dilbert
(dilbert@uab.ericsson.se)1> node().
'dilbert@uab.ericsson.se'

% erl -sname dilbert

(

dilbert@uab)1> node().
dilbert@uab

Note:

A node with along node name cannot communicate with a node with a short node name.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 179

5.13 Distributed Erlang

5.13.3 Node Connections

The nodes in a distributed Erlang system are loosely connected. The first time the name of another node is used, for
example if spawn(Node, M F, A) or net _adm pi ng(Node) is called, a connection attempt to that node will
be made.

Connectionsare by default transitive. If anode A connectsto node B, and node B has a connection to node C, then node
A will aso try to connect to node C. This feature can be turned off by using the command lineflag - connect _al |
fal se,seeerl (1).

If anode goes down, all connectionsto that node are removed. Callinger | ang: di sconnect _node(Node) will
force disconnection of anode.

Thelist of (visible) nodes currently connected to isreturned by nodes() .

5.13.4 epmd

The Erlang Port Mapper Daemon epmd is automatically started at every host where an Erlang node is started. It is
responsible for mapping the symbolic node names to machine addresses. Seeepnd(1) .

5.13.5 Hidden Nodes

In adistributed Erlang system, it is sometimes useful to connect to a node without also connecting to all other nodes.
An example could be some kind of O&M functionality used to inspect the status of a system without disturbing it.
For this purpose, a hidden node may be used.

A hidden node is a node started with the command lineflag - hi dden. Connections between hidden nodes and other
nodesare not transitive, they must be set up explicitly. Also, hidden nodes does not show up inthelist of nodesreturned
by nodes() . Instead, nodes(hi dden) or nodes(connect ed) must be used. This means, for example, that
the hidden node will not be added to the set of nodesthat gl obal iskeeping track of.

This feature was added in Erlang 5.0/0TP R7.

5.13.6 C Nodes

A C node is a C program written to act as a hidden node in a distributed Erlang system. The library Erl_Interface
contains functions for this purpose. Refer to the documentation for Erl_Interface and Interoperability Tutorial for
more information about C nodes.

5.13.7 Security

Authentication determines which nodes are allowed to communicate with each other. In anetwork of different Erlang
nodes, it is built into the system at the lowest possible level. Each node has its own magic cookie, which is an Erlang
atom.

When a nodes tries to connect to another node, the magic cookies are compared. If they do not match, the connected
node rejects the connection.

At start-up, a node has a random atom assigned as its magic cookie and the cookie of other nodes is assumed to
be nocooki e. The first action of the Erlang network authentication server (aut h) is then to read a file named
$HOMVE/ . er | ang. cooki e. If the file does not exist, it is created. The UNIX permissions mode of the file is set
to octal 400 (read-only by user) and its contents are a random string. An atom Cooki e is created from the contents
of the file and the cookie of the local nodeis set to thisusing er | ang: set _cooki e(node(), Cooki e). This
also makes the local node assume that all other nodes have the same cookie Cooki e.

Thus, groups of users with identical cookie files get Erlang nodes which can communicate freely and without
interference from the magic cookie system. Users who want run nodes on separate file systems must make certain that
their cookie files are identical on the different file systems.

180 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.13 Distributed Erlang

For a node Node 1 with magic cookie Cooki e to be able to connect to, or accept a connection from, another node
Node?2 with a different cookie Di f f Cooki e, the function er | ang: set _cooki e(Node2, Diff Cooki e)
must first be called at Node1. Distributed systems with multiple user IDs can be handled in this way.

The default when a connection is established between two nodes, isto immediately connect all other visible nodes as
well. Thisway, thereis always afully connected network. If there are nodes with different cookies, this method might
be inappropriate and the command line flag - connect _al | f al se must be set, see erl(1).

The magic cookie of the local node isretrieved by calling er | ang: get _cooki e() .

5.13.8 Distribution BIFs

Some useful BIFs for distributed programming, seeer | ang(3) for more information:

er| ang: di sconnect _node(Node) Forces the disconnection of anode.

erl ang: get _cooki e() Returns the magic cookie of the current node.

Returnst r ue if the runtime system is anode and can

is_alive() connect to other nodes, f al se otherwise.

Monitor the status of Node. A message{ nodedown,

moni tor_node(Node, trueffalse) Node} isreceived if the connectionto it islost.

Returns the name of the current node. Allowed in
node()

guards.

Returns the node where Ar g, apid, reference, or port, is
node(Arg) located. 9P P

Returns alist of all visible nodes this node is connected
nodes()

to.

Depending on Ar g, this function can return alist
nodes(Ar Q) not only of visible nodes, but aso hidden nodes and
previously known nodes, etc.

Sets the magic cookie used when connecting to Node.
erl ang: set _cooki e(Node, Cooki e) If Node isthe current node, Cooki e will be used when
connecting to all new nodes.

spawn|[_| i nk| _opt] (Node, Fun) Creates a process at aremote node.

spawn|[_| i nk| opt] (Node, Modul e,

Functi onNane, Args) Creates a process at aremote node.

Table 13.1: Distribution BIFs.

5.13.9 Distribution Command Line Flags

Examples of command line flags used for distributed programming, seeer | (1) for moreinformation:

-connect _all fal se Only explicit connection set-ups will be used.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 181

5.14 Compilation and Code Loading

- hi dden

Makes a node into a hidden node.

-nanme Name

Makes a runtime system into a node, using long node
names.

-set cooki e Cooki e

Sameascalinger | ang: set _cooki e(node(),
Cooki e) .

-sname Name

Makes a runtime system into a node, using short node
names.

Table 13.2: Distribution Command Line Flags.

5.13.10 Distribution Modules

Examples of modules useful for distributed programming:

In Kernel:

gl obal A global name registration facility.

gl obal _group Grouping nodes to global name registration groups.
net _adm Various Erlang net administration routines.

net ker nel Erlang networking kernel.

Table 13.3: Kernel Modules Useful For Distribution.

In STDLIB:

sl ave

Start and control of slave nodes.

Table 13.4: STDLIB Modules Useful For Distribution.

5.14 Compilation and Code Loading

How codeis compiled and loaded is not alanguage issue, but is system dependent. This chapter describes compilation

and code loading in Erlang/OTP with pointers to relevant parts of the documentation.

5.14.1 Compilation

Erlang programs must be compiled to object code. The compiler can generate a new file which contains the object
code. The current abstract machine which runs the object codeis called BEAM, therefore the object files get the suffix

. beam The compiler can also generate a binary which can be loaded directly.

The compiler islocated in the Kernel module conpi | e, seeconpi | e(3).

compile:file(Module)
compile:file(Module, Options)

182 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.14 Compilation and Code Loading

The Erlang shell understands the command ¢ (Modul e) which both compiles and loads Modul e.
Thereisalsoamodulemmak e which providesaset of functionssimilar to the UNIX type Makefunctions, seenake(3) .

The compiler can also be accessed from the OS prompt, seeer | (1) .

erl -compile Modulel...ModuleN
erl -make

[}
i)
[}

©

Theer | ¢ program provides an even better way to compile modules from the shell, seeer | c¢(1) . It understands a
number of flags that can be used to define macros, add search paths for include files, and more.

% erlc <flags> Filel.erl...FileN.erl

5.14.2 Code Loading

The object code must be loaded into the Erlang runtime system. Thisis handled by the code server, seecode(3) .

The code server loads code according to a code loading strategy which is either interactive (default) or embedded. In
interactive mode, code are searched for in a code path and loaded when first referenced. In embedded mode, code is
loaded at start-up according to a boot script. Thisis described in System Principles.

5.14.3 Code Replacement
Erlang supports change of code in arunning system. Code replacement is done on module level.

The code of amodule can exist in two variantsin a system: current and old. When amoduleisloaded into the system
for the first time, the code becomes 'current'. If then a new instance of the module is loaded, the code of the previous
instance becomes 'old' and the new instance becomes ‘current'.

Both old and current code is valid, and may be evaluated concurrently. Fully qualified function calls always refer to
current code. Old code may still be evaluated because of processes lingering in the old code.

If athird instance of the modul e isloaded, the code server will remove (purge) the old code and any processeslingering
init will be terminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

To change from old code to current code, a process must make a fully qualified function call. Example:

-module(m) .
-export([loop/0]).

loop() ->
receive
code switch ->
m:loop();
Msg ->

Loop()
end.

To makethe process change code, send themessagecode_swi t ch toit. The processthen will make afully qualified
cal tom | oop() and changeto current code. Note that m | oop/ 0 must be exported.

For code replacement of funsto work, the syntax f un Modul e: Funct i onNane/ Ari t y should be used.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 183

5.15 Ports and Port Drivers

5.14.4 Running a function when a module is loaded

Warning:

Theon_| oad feature should be considered experimental as there are a number of known weak pointsin current
semantics which therefore might also change in future releases:

e Doing external call in on_load to the module itself |eads to deadlock.

e At module upgrade, other processes calling the module get suspended waiting for on_load to finish. Thiscan
be very bad for applications with demands on realtime characteristics.

e At module upgrade, no rollback is done if the on_load function fails. The system will be left in abad limbo
state without any working and reachable instance of the module.

The problems with modul e upgrade described above could be fixed in future releases by changing the behaviour
to not make the modul e reachable until after the on_load function has successfully returned.

The-on_I oad() directive namesafunction that should be run automatically when amodule aloaded. Itssyntax is:

-on_load(Name/0) .

It is not necessary to export the function. It will be called in afreshly spawned process (which will be terminated as
soon as the function returns). The function must return ok if the moduleisto be remained |oaded and become callable,
or any other valueif the moduleisto be unloaded. Generating an exception will also cause the modul e to be unloaded.
If the return value is not an atom, awarning error report will be sent to the error logger.

A process that calls any function in amodule whose on_| oad function has not yet returned will be suspended until
theon_| oad function has returned.

In embedded mode, al modules will be loaded first and then will all on_load functions be called. The system will be
terminated unless al of the on_load functions return ok

Example:

-module(m) .
-on_load(load my nifs/0).

load my nifs() ->
NifPath = ..., %Set up the path to the NIF library.
Info = ..., %Initialize the Info term

erlang:load nif(NifPath, Info).

If thecall toerl ang: | oad_ni f/ 2 fails, the module will be unloaded and there will be warning report sent to the
error loader.

5.15 Ports and Port Drivers

Examples of how to use ports and port drivers can be found in Interoperability Tutorial. The BIFs mentioned are as
usua documentediner | ang(3) .

184 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

5.15 Ports and Port Drivers

5.15.1 Ports

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide abyte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes, including binaries.

The Erlang process which creates a port is said to be the port owner, or the connected process of the port. All
communication to and from the port should go via the port owner. If the port owner terminates, so will the port (and
the external program, if it iswritten correctly).

The external program resides in another OS process. By default, it should read from standard input (file descriptor 0)
and write to standard output (file descriptor 1). The externa program should terminate when the port is closed.

5.15.2 Port Drivers

It is also possible to write adriver in C according to certain principles and dynamically link it to the Erlang runtime
system. The linked-in driver looks like a port from the Erlang programmer’s point of view and is called a port driver.

Warning:

An erroneous port driver will cause the entire Erlang runtime system to leak memory, hang or crash.

Port drivers are documented iner | _driver (4),driver_entry(1) anderl _ddl I (3).

5.15.3 Port BIFs
To create a port:

Returns a port identifier Por t as the result of opening a
new Erlang port. Messages can be sent to and received
open_port (PortNanme, PortSettings from a port identifier, just like a pid. Port identifiers
can also be linked to or registered under a name using
i nk/ 1landregi ster/ 2.

Table 15.1: Port Creation BIF.

Por t Name isusualy atuple{ spawn, Comrand} , where the string Command is the name of the external program.
The external program runs outside the Erlang workspace unless a port driver with the name Comrand is found. If
found, that driver is started.

Port Setti ngs isalist of settings (options) for the port. The list typically contains at least atuple { packet , N}
which specifies that data sent between the port and the external program are preceded by an N-byte length indicator.
Validvauesfor N are 1, 2 or 4. If binaries should be used instead of listsof bytes, theoptionbi nar y must beincluded.

The port owner Pi d can communicate with the port Por t by sending and receiving messages. (In fact, any process
can send the messages to the port, but the port owner must be identified in the message).

As of OTP-R16 messages sent to ports are delivered truly asynchronously. The underlying implementation
previously delivered messages to ports synchronously. Message passing has however always been documented as an
asynchronous operation, so this should not be an issue for an Erlang program communicating with ports, unless false
assumptions about ports has been made.

Below, Dat a must be an I/O list. An /O list isabinary or a (possibly deep) list of binaries or integers in the range
0..255.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 185

5.15 Ports and Port Drivers

{Pi d, {conmmand, Dat a}} Sends Dat ato the port.

Closes the port. Unless the port is already closed, the
{Pid, cl ose} port replieswith { Por t , cl osed} when all buffers
have been flushed and the port really closes.

Sets the port owner of Por t to NewPi d. Unless

the port is aready closed, the port replies

{Pi d, {connect, NewPi d} } with{ Por t , connect ed} to the old port owner. Note
that the old port owner is still linked to the port, but the
new port owner is not.

Table 15.2: Messages Sent To a Port.

{Port,{data, Data}} Dat aisreceived from the external program.
{Port, cl osed} ReplytoPort | {Pid, cl ose}.

{Port, connect ed} ReplytoPort ! {Pid, {connect, NewPi d} }
{"EXIT, Port, Reason} If the port has terminated for some reason.

Table 15.3: Messages Received From a Port.

Instead of sending and receiving messages, there are also a number of BIFs that can be used.

port _conmand(Port, Dat a) Sends Dat ato the port.

port _cl ose(Port) Closes the port.

Setsthe port owner of Por t to NewPi d. The old port
port _connect (Port, NewPi d) owner Pi dstays linked to the port and have to call
unl i nk(Port) if thisis not desired.

erl ang: port _info(Port,Iten Returnsinformation as specified by | t em

erl ang: ports() Returns alist of all ports on the current node.

Table 15.4: Port BIFs.

There are some additional BIFsthat only apply to port drivers: port _control /3 ander| ang: port _cal | / 3.

186 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.1 Records

6 Programming Examples

This chapter contains examples on using records, funs, list comprehensions and the bit syntax.

6.1 Records

6.1.1 Records vs Tuples

The main advantage of using records instead of tuplesisthat fields in a record are accessed by name, whereas fields
in atuple are accessed by position. To illustrate these differences, suppose that we want to represent a person with
thetuple{ Nane, Address, Phone}.

We must remember that the Nane field isthefirst element of thetuple, the Addr ess field isthe second element, and
so on, in order to write functions which manipulate this data. For example, to extract data from a variable P which
contains such atuple we might write the following code and then use pattern matching to extract the relevant fields.

Name = element(1l, P),
Address = element(2, P),

Code like this is difficult to read and understand and errors occur if we get the numbering of the elements in the
tuple wrong. If we change the data representation by re-ordering the fields, or by adding or removing afield, then all
references to the person tuple, wherever they occur, must be checked and possibly modified.

Records allow us to refer to the fields by name and not position. We use arecord instead of atuple to store the data.
If we write arecord definition of the type shown below, we can then refer to the fields of the record by name.

-record(person, {name, phone, address}).

For example, if P is now avariable whose value is aper son record, we can code as follows in order to access the
name and address fields of the records.

Name = P#person.name,
Address = P#person.address,

Internally, records are represented using tagged tuples:

{person, Name, Phone, Address}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 187

6.1 Records

6.1.2 Defining a Record

This definition of a person will be used in many of the exampleswhich follow. It contains three fields, nane, phone
and addr ess. Thedefault valuesfor nane and phone is"" and [], respectively. The default value for addr ess is
the atom undef i ned, since no default valueis supplied for thisfield:

-record(person, {name = "", phone = [], address}).

We have to define the record in the shell in order to be able use the record syntax in the examples:

> rd(person, {name =
person

, phone = [], address}).

Thisis due to the fact that record definitions are available at compile time only, not at runtime. See shel | (3) for
details on records in the shell.

6.1.3 Creating a Record

A new per son record is created as follows:

> #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

Since the addr ess field was omitted, its default value is used.

There is a new feature introduced in Erlang 5.1JOTP R8B, with which you can set a value to al fields in a record,
overriding the defaults in the record specification. The special field _, means"all fields not explicitly specified".

> #person{name = "Jakob", ="' '}.

#person{name = “Jakob",phoﬁe = ' ',address = ' '}

It is primarily intended to be used in et s: nmat ch/ 2 and resi a: mat ch_obj ect / 3, to set record fields to the
aom' ' . (Thisisawildcardinet s: mat ch/ 2.)

6.1.4 Accessing a Record Field

> P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]1}.
#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
> P#person.name.

IIJoeII

6.1.5 Updating a Record

> P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
#person{name = "Joe",phone = [1,2,3],address = "A street"}
> P2 = Pl#person{name="Robert"}.

188 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.1 Records

#person{name = "Robert",phone = [1,2,3],address = "A street"}

6.1.6 Type Testing

The following example shows that the guard succeeds if P is record of type per son.

foo(P) when is record(P, person) -> a person;
foo() -> not a person.

6.1.7 Pattern Matching

Matching can be used in combination with records as shown in the following example:

> P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.

#person{name = "Joe",phone = [0,0,7],address = "A street"}
> #person{name = Name} = P3, Name.
"Joe"

Thefollowing function takes alist of per son records and searchesfor the phone number of aperson with a particular
name:

find phone([#person{name=Name, phone=Phone} | 1, Name) ->
{found, Phone};

find phone([| T], Name) ->
find phone(T, Name);

find phone([], Name) ->
not found.

Thefields referred to in the pattern can be given in any order.

6.1.8 Nested Records

The value of afield in arecord might be an instance of arecord. Retrieval of nested data can be done stepwise, or in
asingle step, as shown in the following example:

-record(name, {first = "Robert", last = "Ericsson"}).
-record(person, {name = #name{}, phone}).

demo() ->
P = #person{name= #name{first="Robert",last="Virding"}, phone=123},
First = (P#person.name)#name.first.

Inthisexample, denmo() evaluatesto" Robert".

6.1.9 Example

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 189

6.2 Funs

%% Data Type: person

%% where:

%% name: A string (default is undefined).

%% age: An integer (default is undefined).

%% phone: A list of integers (default is []).

%% dict: A dictionary containing various information

%% about the person.

%% A {Key, Value} list (default is the empty list).

-module(person) .
-include("person.hril").
-compile(export all). % For test purposes only.

This creates an instance of a person.
Note: The phone number is not supplied so the
default value [] will be used.

o® o of
o® o° o°

make hacker without phone(Name, Age) ->
#person{name = Name, age = Age,
dict = [{computer knowledge, excellent},
{drinks, coke}]}.

%% This demonstrates matching in arguments

print (#person{name = Name, age = Age,
phone = Phone, dict = Dict}) ->
io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
"Dictionary: ~w.~n", [Name, Age, Phone, Dict]).

%% Demonstrates type testing, selector, updating.

birthday(P) when record(P, person) ->
P#person{age = P#person.age + 1}.

register two hackers() ->

Hackerl = make hacker without phone("Joe", 29),
OldHacker = birthday(Hackerl),
% The central register server should have
% an interface function for this.
central_register_server ! {register person, Hackerl},
central_register_server ! {register person,

OldHacker#person{name = "Robert",

phone = [0,8,3,2,4,5,3,11}}.

6.2 Funs

6.2.1 Example 1 - map

If we want to double every element in alist, we could write a function named doubl e:
double([H|T]) -> [2*H|double(T)];

double([]) -> [].

This function obviously doubles the argument entered as input as follows:

190 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

> double([1,2,3,4]).
[2,4,6,8]

We now add the function add_one, which adds one to every element in alist:

add one([H|T]) -> [H+1l|add one(T)1;
add one([]) -> [1].

These functions, doubl e and add_one, have avery similar structure. We can exploit this fact and write afunction
map which expresses this similarity:

map(F, [H|T1) -> [F(H)|map(F, T)1;
map(F, [1) -> [].

We can now express the functionsdoubl e and add_one in terms of map asfollows:

double(L) -> map(fun(X) -> 2*X end, L).
add one(L) -> map(fun(X) -> 1 + X end, L).

map(F, List) isafunction which takes afunction F and alist L as arguments and returns the new list which is
obtained by applying F to each of the elementsin L.

The process of abstracting out the common features of anumber of different programsis called procedural abstraction.
Procedural abstraction can be used in order to write several different functions which have a similar structure, but
differ only in some minor detail. Thisis done as follows:

« write one function which represents the common features of these functions
» parameterize the difference in terms of functions which are passed as arguments to the common function.

6.2.2 Example 2 - foreach

Thisexampleillustrates procedural abstraction. Initially, we show the following two exampl es written as conventional
functions:

« dl elementsof alist are printed onto a stream
e amessageis broadcast to alist of processes.

print list(Stream, [H|T]) ->
io:format(Stream, "~p~n", [H]),
print list(Stream, T);

print list(Stream, []) ->
true.

broadcast(Msg, [Pid|Pids]) ->
Pid ! Msg,
broadcast(Msg, Pids);
broadcast(, [1) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 191

6.2 Funs

true.

Both these functions have avery similar structure. They both iterate over alist doing something to each element in the
list. The "something" hasto be carried round as an extra argument to the function which does this.

Thefunction f or each expresses this similarity:

foreach(F, [H|T]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.

Using f or each, print _|i st becomes:

foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

br oadcast becomes:

foreach(fun(Pid) -> Pid ! M end, L)

f or each isevaluated for its side-effect and not its value. f or each(Fun , L) calsFun(X) for each element X
in L and the processing occurs in the order in which the elements were defined in L. nap does not define the order
in which its elements are processed.

6.2.3 The Syntax of Funs

Funs are written with the syntax:
F = fun (Argl, Arg2, ... ArgN) ->
g

This creates an anonymous function of N arguments and binds it to the variable F.

If we have already written a function in the same module and wish to pass this function as an argument, we can use
the following syntax:

F = fun FunctionName/Arity

With this form of function reference, the function which is referred to does not need to be exported from the module.
We can aso refer to afunction defined in a different module with the following syntax:

F = {Module, FunctionName}

In this case, the function must be exported from the module in question.

192 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

The follow program illustrates the different ways of creating funs:

-module(fun_ test).

-export([tl/0, t2/0, t3/0, t4/0, double/1]).
-import(lists, [map/21).

t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
t2() -> map(fun double/1, [1,2,3,4,5]).

t3() -> map({?MODULE, double}, [1,2,3,4,5]).

double(X) -> X * 2.

We can eva uate the fun F with the syntax:

F(Argl, Arg2, ..., Argn)

To check whether atermisafun, usethetesti s_functi on/ 1 inaguard. Example:

f(F, Args) when is function(F) ->
apply(F, Args);

f(N,) when is integer(N) ->
N.

Funs are a distinct type. The BIFs erlang:fun_info/1,2 can be used to retrieve information about a fun, and the BIF
erlang:fun_to_list/1 returnsatextual representation of afun. The check_process code/2 BIF returnstrueif the process
contains funs that depend on the old version of amodule.

Note:
In OTP R5 and earlier releases, funs were represented using tuples.

6.2.4 Variable Bindings Within a Fun

The scope rules for variables which occur in funs are as follows:

« All variables which occur in the head of afun are assumed to be "fresh" variables.

e Variableswhich are defined before the fun, and which occur in function calls or guard tests within the fun, have
the values they had outside the fun.

* No variables may be exported from afun.

The following examplesillustrate these rules:

print list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
file:close(Stream).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 193

6.2 Funs

In the above example, the variable X which is defined in the head of the funisanew variable. Thevalue of thevariable
St r eamwhich is used within within the fun getsits value fromthef i | e: open line.

Since any variable which occursin the head of afunis considered a new variable it would be equally valid to write:

print list(File, List) ->
{ok, Stream} = file:open(File, write),
foreach(fun(File) ->
io:format(Stream,"~p~n", [File])
end, List),
file:close(Stream).

In this example, Fi | e isused as the new variable instead of X. Thisis rather silly since code in the body of the fun
cannot refer to the variable Fi | e which is defined outside the fun. Compiling this example will yield the diagnostic:

./FileName.erl:Line: Warning: variable 'File'
shadowed in 'lambda head'

This reminds us that the variable Fi | e which is defined inside the fun collides with the variable Fi | e which is
defined outside the fun.

The rules for importing variables into a fun has the consegquence that certain pattern matching operations have to be
moved into guard expressions and cannot be written in the head of the fun. For example, we might write the following
code if we intend the first clause of F to be evaluated when the value of itsargument is'Y:

f(...) ->
Y= ...
map (fun(X) when X == ->
) ->
end, ...)
instead of
f(...) ->
Y:

map(%ﬁﬁ(Y) ->

() ->

end, ...)

6.2.5 Funs and the Module Lists

The following examples show a dialogue with the Erlang shell. All the higher order functions discussed are exported
fromthemodulel i st s.

194 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

map

map(F, [H|TI) -> [F(H)|map(F, T)I;
map(F, [1]) -> [].

map takes afunction of one argument and alist of terms. It returns the list obtained by applying the function to every
argument in the list.

> Double = fun(X) -> 2 * X end.
#Fun<erl eval.6.72228031>

> lists:map(Double, [1,2,3,4,5]).
[2,4,6,8,10]

When anew fun is defined in the shell, the value of the Fun is printed as Fun#<er | _eval >.

any

any(Pred, [H|T]) ->
case Pred(H) of
true -> true;
false -> any(Pred, T)
end;
any(Pred, [1) ->
false.

any takes apredicate P of one argument and alist of terms. A predicate is afunction which returnst r ue or f al se.
any istrueif thereisaterm Xin thelist such that P(X) ist r ue.

We define apredicate Bi g(X) whichist r ue if itsargument is greater that 10.

> Big = fun(X) -> if X > 10 -> true; true -> false end end.
#Fun<erl eval.6.72228031>

> lists:any(Big, [1,2,3,41]).

false

> lists:any(Big, [1,2,3,12,5]).

true

all

all(Pred, [H|T]) ->
case Pred(H) of
true -> all(Pred, T);
false -> false
end;
all(Pred, []1) ->
true.

al | hasthe same argumentsasany. It istrueif the predicate applied to all elementsin thelist istrue.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 195

6.2 Funs

> lists:all(Big, [1,2,3,4,12,6]).
false
> lists:all(Big, [12,13,14,15]).
true

foreach

foreach(F, [H|T]) ->
F(H),
foreach(F, T);
foreach(F, []) ->
ok.

f or each takes a function of one argument and alist of terms. The function is applied to each argument in the list.
f or each returns ok. It isused for its side-effect only.

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
1

2

3

4

ok

foldl

foldl(F, Accu, [Hd|Tail]) ->
foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) -> Accu.

f ol dI takesafunction of two arguments, an accumulator and alist. The function is called with two arguments. The
first argument is the successive elementsin thelist, the second argument is the accumulator. The function must return
anew accumulator which is used the next time the function is called.

If wehavealistof listssL = ["I","like","Erlang"], then we can sum the lengths of al the stringsin L
asfollows:

>L = ["I","like","Erlang"].

[IIIII , II'LikeII , IIEr'Langll]

10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
11

f ol dI workslikeawhi | e loop in an imperative language:

L= ["I","like","Erlang"],
Sum = 0,
while(L '= [1){
Sum += length(head(L)),
L = tail(L)

196 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

end

mapfoldl

mapfoldl(F, Accubd, [Hd|Tail]) ->
{R,Accul} = F(Hd, Accu0),
{Rs,Accu2} = mapfoldl(F, Accul, Tail),
{[R|Rs], Accu2};

mapfoldl(F, Accu, []) -> {[], Accu}.

mapf ol dl simultaneously maps and folds over alist. The following example shows how to change all lettersin L
to upper case and count them.

First upcase:

> Upcase = fun(X) when $a =< X, X =< $z -> X + $A - $a;
(X) -> X

end.

#Fun<erl eval.6.72228031>

> Upcase word =

fun(X) ->
lists:map(Upcase, X)
end.

#Fun<erl eval.6.72228031>

> Upcase word("Erlang").
"ERLANG"

> lists:map(Upcase word, L).
["I","LIKE","ERLANG"]

Now we can do the fold and the map at the same time:

> lists:mapfoldl(fun(Word, Sum) ->
{Upcase word(Word), Sum + length(Word)}
end, 0, L).

{["I","LIKE","ERLANG"],11}

filter

filter(F, [H|T]) ->
case F(H) of
true -> [H|filter(F, T)I1;
false -> filter(F, T)
end;
filter(F, []) -> [].

filter takesapredicate of one argument and alist and returns al element in the list which satisfy the predicate.

> lists:filter(Big, [500,12,2,45,6,7]).
[5600,12,45]

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 197

6.2 Funs

When we combine maps and filters we can write very succinct code. For example, suppose we want to define a set
difference function. Wewant to definedi f f (L1, L2) tobethe difference betweenthelistsL1 and L2. Thisisthe
list of all elementsin L1 which are not contained in L2. This code can be written as follows:

diff(Ll, L2) ->
filter(fun(X) -> not member(X, L2) end, L1).

The AND intersection of thelist L1 and L2 is also easily defined:

intersection(L1l,L2) -> filter(fun(X) -> member(X,L1l) end, L2).

takewhile

takewhile(Pred, [H|T1) ->
case Pred(H) of
true -> [H|takewhile(Pred, T)I];
false -> []
end;
takewhile(Pred, []) ->
[1.

t akewhi | e(P, L) takeselements X from alist L aslong asthe predicate P(X) istrue.

> lists:takewhile(Big, [200,500,45,5,3,45,6]).
[200,500,45]

dropwhile

dropwhile(Pred, [H|T]) ->
case Pred(H) of
true -> dropwhile(Pred, T);
false -> [H|TI]
end;
dropwhile(Pred, []) ->
[1.

dr opwhi | e isthe complement of t akewhi | e.

> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
[5,3,45,6]

splitwith

198 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

splitwith(Pred, L) ->
splitwith(Pred, L, [1).

splitwith(Pred, [H|T], L) ->
case Pred(H) of

true -> splitwith(Pred, T, [H|L]);
false -> {reverse(L), [H|TI]}
end;
splitwith(Pred, [], L) ->
{reverse(L), [1}.
splitwith(P, L) splitsthelistL into the two sub-lists{ L1,

L2 = dropwhile(P, L).

> lists:splitwith(Big, [200,500,45,5,3,45,6]).
{[200,500,45],[5,3,45,6]}

6.2.6 Funs Which Return Funs

L2}, whereL = takewhile(P,

L) and

Sofar, thissection has only described functionswhich takefunsas arguments. It isal so possibl e to write more powerful
functions which themselves return funs. The following examplesillustrate these type of functions.

Simple Higher Order Functions

Adder (X) isafunction which, given X, returns a new function Gsuch that G(K) returnsK + X

> Adder = fun(X) -> fun(Y)
#Fun<erl eval.6.72228031>
> Add6 = Adder(6) .
#Fun<erl eval.6.72228031>
> Add6(10).

16

-> X + Y end end.

Infinite Lists

Theideaisto write something like:

-module(lazy).
-export([ints from/1]).
ints from(N) ->
fun() ->
[N]ints from(N+1)]
end.

Then we can proceed as follows:

> XX = lazy:ints from(1).
#Fun<lazy.0.29874839>

> XX().
[1|#Fun<lazy.0.29874839>]
> hd(XX()) .

1

> Y = t1(XX()).
#Fun<lazy.0.29874839>

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 199

6.2 Funs

> hd(Y()).
2

etc. - thisis an example of "lazy embedding".

Parsing
The following examples show parsers of the following type:
Parser(Toks) -> {ok, Tree, Toksl} | fail

Toks isthelist of tokensto be parsed. A successful parse returns{ ok, Tree, Toksl1}, whereTr ee isaparse
treeand Toks1 isatail of Tr ee which contains symbols encountered after the structure which was correctly parsed.
Otherwisef ai | isreturned.

The example which follows illustrates a simple, functional parser which parses the grammar:

(a | b) & (c | d)

The following code defines a function pconst (X) in the module f unpar se, which returns a fun which parses a
list of tokens.

pconst(X) ->

fun (T) ->
case T of
[X|T1] -> {ok, {const, X}, T1};
_ -> fail
end
end.

This function can be used as follows:

> P1 = funparse:pconst(a).
#Fun<funparse.0.22674075>
> P1([a,b,c]).

{ok, {const,a}, [b,c]}

> P1([x,y,z]).

fail

Next, we define the two higher order functions pand and por which combine primitive parsers to produce more
complex parsers. Firstly pand:

pand(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R1, T1} ->
case P2(T1) of
{ok, R2, T2} ->
{ok, {'and', R1l, R2}};

200 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.2 Funs

fail ->

fail
end;
fail ->
fail

end
end.

Given a parser P1 for grammar Gl, and a parser P2 for grammar G2, pand(P1, P2) returns a parser for the
grammar which consists of sequences of tokens which satisfy G1 followed by sequences of tokens which satisfy G2.

por (P1l, P2) returnsa parser for the language described by the grammar Gl or 2.

por(P1, P2) ->
fun (T) ->
case P1(T) of
{ok, R, T1} ->
{ok, {'or',1,R}, T1};
fail ->
case P2(T) of
{ok, R1, T1} ->
{ok, {'or',2,R1}, T1};
fail ->
fail
end
end
end.

The original problem wasto parsethegrammar (a | b) & (c¢ | d).Thefollowing code addressesthis problem:

grammar() ->
pand (
por(pconst(a), pconst(b)),
por(pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
(grammar()) (List).

We can test this parser asfollows:

> funparse:parse([a,c]).
{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
> funparse:parse([a,d]).
{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
> funparse:parse([b,c]).
{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
> funparse:parse([b,d]).
{ok,{'and',{'or"',2,{const,b}},{'or',2,{const,d}}}}
> funparse:parse([a,b]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 201

6.3 List Comprehensions

fail

6.3 List Comprehensions

6.3.1 Simple Examples

We start with asimple example:

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].

[a,4,b,5,6]
This should be read as follows:
Thelist of X such that X istaken fromthelist[1, 2, a, . . .] and X isgreater than 3.
Thenotation X <- [1, 2, a,...] isagenerator and the expression X > 3 isafilter.
An additional filter can be added in order to restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], integer(X), X > 3].
[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

6.3.2 Quick Sort

The well known quick sort routine can be written as follows:

sort([Pivot|T]) ->
sort([X || X <- T, X < Pivot]) ++
[Pivot] ++
sort([X || X <- T, X >= Pivot]);
sort([1) -> I[].
Theexpression[X || X <- T, X < Pivot] isthelist of all elementsin T, which are lessthan Pi vot .
[X|] X<- T, X >= Pivot] isthelist of al elementsin T, which are greater or equal to Pi vot .

To sort alist, we isolate the first element in the list and split the list into two sub-lists. The first sub-list contains all
elements which are smaller than the first element in the list, the second contains all elements which are greater than
or equal to the first element in the list. We then sort the sub-lists and combine the resuilts.

6.3.3 Permutations

The following example generates all permutations of the elementsin alist:

perms([1) -> [[I];

202 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.3 List Comprehensions

perms(L) -> [[H|T] || H<- L, T <- perms(L--[H])].

We take take Hfrom L in all possible ways. The result isthe set of al lists[H| T] , where T isthe set of all possible
permutations of L with Hremoved.

> perms([b,u,qg]).
[[b,u,q],[b,g,ul,[u,b,g],[u,g9,bl,[g,b,ul,[g,u,b]]

6.3.4 Pythagorean Triplets
Pythagorean triplets are sets of integers{ A, B, C} suchthat A**2 + B**2 = C**2.

Thefunction pyt h(N) generatesalist of al integers{ A, B, C} suchthat A**2 + B**2 = C**2 and wherethe
sum of the sidesis equal to or lessthan N.

pyth(N) ->
[{A,B,C} ||
A <- lists:seq(1,N),
B <- lists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
A*A+B*B == C*C

> pyth(3).
[1.

> pyth(11).
[1.

> pyth(12).
[{3,4,5},{4,3,5}]

> pyth(50).
[{3.,4,5},
{41315}1
{5,12,13},
{6,8,10},
{8,6,10},
{8,15,17},
{9,12,15},
{12,5,13},
{12,9,15},
{12,16,20},
{15,8,17},
{16,12,20}]

The following code reduces the search space and is more efficient:

pythl(N) ->
A <- lists:seq(1,N-2),
B <- lists:seq(A+1,N-1),
C <- lists:seq(B+1,N),
A+B+C =< N,
A*A+B*B == C*C].

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 203

6.3 List Comprehensions

6.3.5 Simplifications with List Comprehensions

Asan example, list comprehensions can be used to simplify some of the functionsinl i sts. erl :

append(L) -> [X || L1 <- L, X <- L1].
map(Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) -> [X || X <- L, Pred(X)].

6.3.6 Variable Bindings in List Comprehensions
The scope rules for variables which occur in list comprehensions are as follows:

« al variableswhich occur in agenerator pattern are assumed to be "fresh" variables

» any variables which are defined before the list comprehension and which are used in filters have the values they
had before the list comprehension

* no variables may be exported from alist comprehension.

As an example of these rules, suppose we want to write the function sel ect , which selects certain elements from a
list of tuples. We might writesel ect (X, L) -> [Y || {X Y} <- L]. withtheintention of extracting
all tuples from L where thefirst itemis X.

Compiling thisyields the following diagnostic:
./FileName.erl:Line: Warning: variable 'X' shadowed in generate

This diagnostic warns us that the variable X in the pattern is not the same variable as the variable X which occursin
the function head.

Evaluating sel ect yieldsthe following result:

> select(b, [{a,1},{b,2},{c,3},{b,7}1).
[1,2,3,7]

Thisresult is not what we wanted. To achieve the desired effect we must write sel ect asfollows:

select(X, L) -> [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into thefilter. This now works as expected:

> select(b, [{a,1},{b,2},{c,3},{b,7}]).
[2,7]

One consequence of the rules for importing variables into a list comprehensions is that certain pattern matching
operations have to be moved into the filters and cannot be written directly in the generators. To illustrate this, do not
write asfollows:

204 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

[Expression || PatternInvolving Y <- Expr, ...]

Instead, write as follows:

Y= ...
[Expression || PatternInvolving Y1 <- Expr, Y == Y1, ...]

6.4 Bit Syntax

6.4.1 Introduction

In Erlang a Bin is used for constructing binaries and matching binary patterns. A Bin is written with the following
syntax:

<<El1l, E2, ... En>>

A Binisalow-level sequence of bitsor bytes. The purpose of aBinisto beableto, fromahighlevel, construct abinary,

Bin = <<E1, E2, ... En>>

in which case all elements must be bound, or to match a binary,

<<El, E2, ... En>> = Bin

where Bi n isbound, and where the elements are bound or unbound, as in any match.
In R12B, a Bin need not consist of awhole number of bytes.

A bitstring is a sequence of zero or more bits, where the number of bits doesn't need to be divisible by 8. If the number
of bitsisdivisible by 8, the bitstring is also abinary.

Each element specifies a certain segment of the bitstring. A segment is a set of contiguous bhits of the binary (not
necessarily on a byte boundary). The first element specifies the initial segment, the second element specifies the
following segment etc.

The following examples illustrate how binaries are constructed or matched, and how elements and tails are specified.

Examples

Example 1: A binary can be constructed from a set of constants or a string literal:

Binll = <<1, 17, 42>>,
Binl2 = <<"abc">>
yields binaries of size 3; binary to list(Binll) evauaes to [1, 17, 42], and

binary to Iist(Binl2) evaduatesto[97, 98, 99].

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 205

6.4 Bit Syntax

Example 2: Similarly, abinary can be constructed from a set of bound variables:

yieldsabinary of size4,and bi nary_to_|i st(Bi n2) evauatesto[1, 17, 00, 42] too. Hereweused a
size expression for the variable Cin order to specify a 16-bits segment of Bi n2.

Example 3: A Bin can also be used for matching: if D, E, and F are unbound variables, and Bi n2 is bound as in the
former example,

<<D:16, E, F/binary>> = Bin2

yieldsD = 273,E = 00,and Fbindstoabinary of sizel: binary to list(F) = [42].

Example 4: The following is a more elaborate example of matching, where Dgr amis bound to the consecutive bytes
of an |P datagram of |P protocol version 4, and where we want to extract the header and the data of the datagram:

-define(IP_VERSION, 4).
-define(IP_MIN HDR LEN, 5).

DgramSize = byte size(Dgram),
case Dgram of
<<?IP VERSION:4, HLen:4, SrvcType:8, TotlLen:16,
ID:16, Flgs:3, Frag0ff:13,
TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32,
DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
OptsLen = 4*(HLen - ?IP_MIN HDR LEN),
<<0Opts:OptsLen/binary,Data/binary>> = RestDgram,

end.

Herethe segment corresponding to the Opt s variable hasatype modifier specifying that Opt s should bindto abinary.
All other variables have the default type equal to unsigned integer.

An |P datagram header is of variable length, and its length - measured in the number of 32-bit words - is given in the
segment corresponding to HLen, the minimum value of which is 5. It is the segment corresponding to Opt s that is
variable: if HLen isequal to 5, Opt s will be an empty binary.

Thetail variables Rest Dgr amand Dat a bind to binaries, as al tail variables do. Both may bind to empty binaries.
If the first 4-bits segment of Dgr amis not equal to 4, or if HLen islessthan 5, or if the size of Dgr amis less than
4* HLen, the match of Dgr amfails.

6.4.2 A Lexical Note

Note that "B=<<1>>" will beinterpreted as "B =< <1>>", which is a syntax error. The correct way to write the
expressionis"B = <<1>>".

6.4.3 Segments

Each segment has the following general syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

206 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

Boththe Si ze and the TypeSpeci f i er or both may be omitted; thus the following variations are allowed:
Val ue

Val ue: Si ze

Val ue/ TypeSpeci fi erLi st

Default values will be used for missing specifications. The default values are described in the section Defaults.

Used in binary construction, the Val ue part is any expression. Used in binary matching, the Val ue part must be a
literal or variable. Y ou can read more about the Val ue part in the section about constructing binaries and matching
binaries.

The Si ze part of the segment multiplied by the unit in the TypeSpeci fi er Li st (described below) gives the
number of bits for the segment. In construction, Si ze is any expression that evaluates to an integer. In matching,
Si ze must be a constant expression or avariable.

The TypeSpeci fi er Li st isalist of type specifiers separated by hyphens.

Type
Thetypecan bei nt eger,fl oat, or bi nary.

Signedness
The signedness specification can be either si gned or unsi gned. Note that signedness only matters for
matching.

Endianness
The endianness specification can be either bi g, i ttl e, or nat i ve. Native-endian means that the endian
will be resolved at |oad time to be either big-endian or little-endian, depending on what is "native" for the CPU
that the Erlang machineis run on.

Unit
Theunitsizeisgivenasuni t : | nt eger Li t er al . Thealowed rangeis 1-256. It will be multiplied by
the Si ze specifier to give the effective size of the segment. In R12B, the unit size specifies the alignment for
binary segments without size (examples will follow).

Example:

X:4/little-signed-integer-unit:8
This element has atotal size of 4*8 = 32 hits, and it contains a signed integer in little-endian order.

6.4.4 Defaults

The default type for a segment is integer. The default type does not depend on the value, even if the value is aliteral.
For instance, the default typein '<<3. 14>>'isinteger, not float.

The default Si ze depends on the type. For integer it is 8. For float it is 64. For binary it is al of the binary. In
matching, this default value is only valid for the very last element. All other binary elements in matching must have
asize specification.

The default unit depends on the the type. For i nt eger ,fl oat ,andbi t stri ngitisl. Forbinaryitis8.
The default signednessisunsi gned.

The default endiannessisbi g.

6.4.5 Constructing Binaries and Bitstrings

This section describes therules for constructing binaries using the bit syntax. Unlike when constructing lists or tuples,
the construction of abinary can fail with abadar g exception.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 207

6.4 Bit Syntax

There can be zero or more segments in a binary to be constructed. The expression '<<>>' constructs a zero length
binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual segments of
typei nt eger andf | oat . For binaries and bitstrings without size, the unit specifiesthe alignment. Since the default
alignment for the bi nar y typeis 8, the size of abinary segment must be a multiple of 8 bits (i.e. only whole bytes).
Example:

<<Bin/binary,Bitstring/bitstring>>

Thevariable Bi n must contain awhole number of bytes, because the bi nar y type defaultstouni t : 8. A badar g
exception will be generated if Bi n would consist of (for instance) 17 bits.

On the other hand, the variable Bi t st ri ng may consist of any number of bits, for instance 0, 1, 8, 11, 17, 42, and
S0 on, because the default uni t for bitstringsis 1.

Warning:

For clarity, it is recommended not to change the unit size for binaries, but to use bi nar y when you need byte
alignment, and bi t st r i ng when you need hit alignment.

The following example

<<X:1,Y:6>>

will successfully construct a bitstring of 7 bits. (Provided that all of X and Y are integers.)
As noted earlier, ssgments have the following general syntax:
Val ue: Si ze/ TypeSpeci fi erLi st

When constructing binaries, Val ue and Si ze can be any Erlang expression. However, for syntactical reasons, both
Val ue and Si ze must be enclosed in parenthesis if the expression consists of anything more than a single literal or
variable. The following gives a compiler syntax error:

<<X+1:8>>

This expression must be rewritten to

<<(X+1):8>>

in order to be accepted by the compiler.

Including Literal Strings

As syntactic sugar, an literal string may be written instead of a element.

208 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

6.4 Bit Syntax

<<"hello">>

which is syntactic sugar for

<<$h, $e, $1, 31, $0>>

6.4.6 Matching Binaries
This section describes the rules for matching binaries using the bit syntax.

There can be zero or more segmentsin abinary pattern. A binary pattern can occur in every place patterns are allowed,
also inside other patterns. Binary patterns cannot be nested.

The pattern '<<>>' matches a zero length binary.
Each segment in a binary can consist of zero or more bits.

A segment of type bi nar y must have a size evenly divisible by 8 (or divisible by the unit size, if the unit size has
been changed).

A segment of type bi t st ri ng has no restrictions on the size.
As noted earlier, ssgments have the following general syntax:
Val ue: Si ze/ TypeSpeci fi er Li st

When matching Val ue value must be either a variable or an integer or floating point literal. Expressions are not
alowed.

Si ze must be an integer literal, or a previously bound variable. Note that the following is not allowed:

foo(N, <<X:N,T/binary>>) ->
{X,T}.

The two occurrences of N are not related. The compiler will complain that the Nin the size field is unbound.

The correct way to write this example islike this:

foo(N, Bin) ->
<<X:N,T/binary>> = Bin,
{X,T}.

Getting the Rest of the Binary or Bitstring
To match out the rest of abinary, specify abinary field without size:

foo(<<A:8,Rest/binary>>) ->

The size of the tail must be evenly divisible by 8.
To match out the rest of a bitstring, specify afield without size:

foo(<<A:8,Rest/bitstring>>) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 209

6.4 Bit Syntax

There is no restriction on the number of bitsin the tail.

6.4.7 Appending to a Binary

In R12B, the following function for creating a binary out of alist of triples of integersis now efficient:

triples to bin(T) ->
triples to bin(T, <<>>).

triples to bin([{X,Y,Z} | Tl, Acc) ->

triples to bin(T, <<Acc/binary,X:32,Y:32,Z:32>>); % inefficient before R12B
triples to bin([], Acc) ->

Acc.

In previous releases, this function was highly inefficient, because the binary constructed so far (Acc) was copied in
each recursion step. That is no longer the case. See the Efficiency Guide for more information.

210 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.1 Introduction

7 Efficiency Guide

7.1 Introduction

7.1.1 Purpose
Premature optimization is the root of al evil. -- D.E. Knuth

Efficient code can be well-structured and clean code, based on on a sound overall architecture and sound algorithms.
Efficient code can be highly implementation-code that by passes documented interfaces and takes advantage of obscure
quirksin the current implementation.

Ideally, your code should only contain the first kind of efficient code. If that turns out to be too slow, you should
profile the application to find out where the performance bottlenecks are and optimize only the bottlenecks. Other
code should stay as clean as possible.

Fortunately, compiler and run-time optimizations introduced in R12B makes it easier to write code that is both clean
and efficient. For instance, the ugly workarounds needed in R11B and earlier releases to get the most speed out of
binary pattern matching are no longer necessary. In fact, the ugly codeis slower than the clean code (because the clean
code has become faster, not because the uglier code has become slower).

This Efficiency Guide cannot really learn you how to write efficient code. It can give you afew pointers about what to
avoid and what to use, and some understanding of how certain language features are implemented. We have generally
not included general tips about optimization that will work in any language, such as moving common calculations
out of loops.

7.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language and concepts of OTP.

7.2 The Eight Myths of Erlang Performance

Some truths seem to live on well beyond their best-before date, perhaps because "information™ spreads more rapidly
from person-to-person faster than a single rel ease note that notes, for instance, that funs have become faster.

Here we try to kill the old truths (or semi-truths) that have become myths.

7.2.1 Myth: Funs are slow

Y es, funs used to be slow. Very slow. Slower than appl y/ 3. Originaly, funs were implemented using nothing more
than compiler trickery, ordinary tuples, appl y/ 3, and agreat deal of ingenuity.

But that is ancient history. Funs was given its own data type in the R6B release and was further optimized in the R7B
release. Now the cost for afun call falls roughly between the cost for acall to local function and appl y/ 3.
7.2.2 Myth: List comprehensions are slow

List comprehensions used to be implemented using funs, and in the bad old days funs were really slow.

Nowadays the compiler rewrites list comprehensions into an ordinary recursive function. Of course, using a tail-
recursive function with areverse at the end would be still faster. Or would it? That leads us to the next myth.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 211

7.2 The Eight Myths of Erlang Performance

7.2.3 Myth: Tail-recursive functions are MUCH faster than recursive functions

According to the myth, recursive functions leave references to dead terms on the stack and the garbage collector will
have to copy all those dead terms, while tail-recursive functions immediately discard those terms.

That used to be true before R7B. In R7B, the compiler started to generate code that overwrites references to terms
that will never be used with an empty list, so that the garbage collector would not keep dead values any longer than
necessary.

Even after that optimization, a tail-recursive function would still most of the time be faster than a body-recursive
function. Why?

It has to do with how many words of stack that are used in each recursive call. In most cases, a recursive function
would use more words on the stack for each recursion than the number of words a tail-recursive would allocate on
the heap. Since more memory is used, the garbage collector will be invoked more frequently, and it will have more
work traversing the stack.

In R12B and later releases, there is an optimization that will in many cases reduces the number of words used on the
stack in body-recursive calls, so that a body-recursive list function and tail-recursive function that callslists:reverse/1
at the end will use exactly the same amount of memory. | i sts: map/ 2,1 i sts:filter/2,listcomprehensions,
and many other recursive functions now use the same amount of space as their tail-recursive equivalents.

So which is faster?

It depends. On Solarisg/Sparc, the body-recursive function seems to be slightly faster, even for lists with very many
elements. On the x86 architecture, tail-recursion was up to about 30 percent faster.

So the choice is now mostly a matter of taste. If you really do need the utmost speed, you must measure. Y ou can no
longer be absolutely sure that the tail-recursive list function will be the fastest in all circumstances.

Note: A tail-recursive function that does not need to reversethelist at theend is, of course, faster than abody-recursive
function, as are tail-recursive functions that do not construct any terms at all (for instance, a function that sums all
integersin alist).

7.2.4 Myth: '++'is always bad

The ++ operator has, somewhat undeservedly, got avery bad reputation. It probably has something to do with codelike
DO NOT

naive reverse([H|T]) ->
naive reverse(T)++[H];
naive reverse([]) ->

[1.

which isthe most inefficient way thereisto reverse alist. Since the ++ operator copiesitsleft operand, the result will
be copied again and again and again... leading to quadratic complexity.

On the other hand, using ++ like this
OK

naive but ok reverse([H|T], Acc) ->
naive but ok reverse(T, [H]++Acc);
naive but ok reverse([], Acc) ->
Acc.

212 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.3 Common Caveats

isnot bad. Each list element will only be copied once. The growing result Acc isthe right operand for the ++ operator,
and it will not be copied.

Of course, experienced Erlang programmers would actually write
DO

vanilla reverse([H|T], Acc) ->
vanilla reverse(T, [H]|Accl);

vanilla reverse([], Acc) ->
Acc.

which is dightly more efficient because you don't build a list element only to directly copy it. (Or it would be more
efficient if the the compiler did not automatically rewrite[H) ++Acc to[H Acc] .)

7.2.5 Myth: Strings are slow

Actually, string handling could be slow if done improperly. In Erlang, you'll have to think a little more about how
the strings are used and choose an appropriate representation and use the re module instead of the obsoleter egexp
moduleif you are going to use regular expressions.

7.2.6 Myth: Repairing a Dets file is very slow

Therepair timeisstill proportional to the number of recordsin thefile, but Dets repairs used to be much, much slower
in the past. Dets has been massively rewritten and improved.

7.2.7 Myth: BEAM is a stack-based byte-code virtual machine (and therefore
slow)

BEAM isaregister-based virtual machine. It has 1024 virtual registersthat are used for holding temporary values and
for passing arguments when calling functions. Variables that need to survive afunction call are saved to the stack.

BEAM is a threaded-code interpreter. Each instruction is word pointing directly to executable C-code, making
instruction dispatching very fast.

7.2.8 Myth: Use ' 'to speed up your program when a variable is not used

That was once true, but since R6B the BEAM compiler is quite capable of seeing itself that avariable is not used.

7.3 Common Caveats

Here we list afew modules and BIFs to watch out for, and not only from a performance point of view.

7.3.1 The timer module

Creating timers using erlang:send_after/3 and erlang:start_timer/3 is much more efficient than using the timers
provided by the timer module. The t i mer module uses a separate process to manage the timers, and that process
can easily become overloaded if many processes create and cancel timers frequently (especially when using the SMP
emulator).

The functionsin the t i mer module that do not manage timers (such astiner:tc/ 3 orti ner: sl eep/ 1), do
not call the timer-server process and are therefore harmless.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 213

7.3 Common Caveats

7.3.2 list_to_atom/1

Atoms are not garbage-collected. Once an atom is created, it will never be removed. The emulator will terminate if
the limit for the number of atoms (1048576 by default) is reached.

Therefore, converting arbitrary input strings to atoms could be dangerous in a system that will run continuously. If
only certain well-defined atoms are allowed as input, you can use list_to_existing_atonv1 to guard against a denial-
of-service attack. (All atoms that are allowed must have been created earlier, for instance by simply using all of them
in amodule and loading that module.)

Usingl i st _t o_at on 1 to construct an atom that is passed to appl y/ 3 likethis

apply(list to atom("some prefix"++Var), foo, Args)

is quite expensive and is not recommended in time-critical code.

7.3.3 length/1

The time for calculating the length of alist is proportional to the length of the list, asopposed tot upl e_si ze/ 1,
byte size/ 1,andbit _size/ 1, whichal executein constant time.

Normally you don't have to worry about the speed of | engt h/ 1, because it is efficiently implemented in C. In time
critical-code, though, you might want to avoid it if the input list could potentialy be very long.

Someuses of | engt h/ 1 can be replaced by matching. For instance, this code
foo(L) when length(L) >= 3 ->

can be rewritten to
foo([_,_,_|_1=L) ->

(One dlight differenceisthat | engt h(L) will fail if the L is an improper list, while the pattern in the second code
fragment will accept an improper list.)

7.3.4 setelement/3

setelement/3 copies the tuple it modifies. Therefore, updating atuple in aloop using set el enent / 3 will create a
new copy of the tuple every time.

There is one exception to the rule that the tuple is copied. If the compiler clearly can see that destructively updating
the tuple would give exactly the same result asif the tuple was copied, the call to set el enent / 3 will be replaced
with a special destructive setelement instruction. In the following code sequence

multiple setelement(TO) ->
Tl = setelement(9, TO, bar),
T2 = setelement(7, T1, foobar),
setelement (5, T2, new value).

214 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.3 Common Caveats

thefirstset el enent / 3 call will copy the tuple and modify the ninth element. Thetwo following set el ement / 3
callswill modify the tuple in place.

For the optimization to be applied, all of the followings conditions must be true:

e Theindices must be integer literas, not variables or expressions.
e Theindices must be given in descending order.
e Theremust be no calsto other function in between the callsto set el ement / 3.

e Thetuplereturned from oneset el errent / 3 call must only be used in the subsequent call to
set el enent/ 3.

If it is not possible to structure the code asin the mul ti pl e_set el ement / 1 example, the best way to modify
multiple elementsin alarge tuple isto convert the tuple to alist, modify the list, and convert the list back to atuple.

7.3.5 sizel/l

si ze/ 1 returnsthe size for both tuples and binary.

Using the new BIFst upl e_si ze/ 1 and byt e_si ze/ 1 introduced in R12B gives the compiler and run-time
system more opportunities for optimization. A further advantage is that the new BIFs could help Dialyzer find more
bugs in your program.

7.3.6 split_binary/2

It is usually more efficient to split a binary using matching instead of calling the spl it _bi nary/ 2 function.
Furthermore, mixing bit syntax matching and spl i t _bi nary/ 2 may prevent some optimizations of bit syntax
matching.

DO
<<Binl:Num/binary,Bin2/binary>> = Bin,

DO NOT

{Binl,Bin2} = split binary(Bin, Num)

7.3.7 The '--' operator

Note that the '- - ' operator has a complexity proportional to the product of the length of its operands, meaning that it
will be very slow if both of its operands are long lists:

DO NOT
HugelListl -- Hugelist2
Instead use the ordsets module:

DO

HugeSetl
HugeSet2

ordsets:from list(HugelListl),
ordsets:from list(HugelList2),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 215

7.4 Constructing and matching binaries

ordsets:subtract(HugeSetl, HugeSet2)

Obvioudly, that code will not work if the original order of thelist isimportant. If the order of thelist must be preserved,
do like this:

DO
Set = gb sets:from list(HugelList2),
[E || E <- HugelListl, not gb sets:is element(E, Set)]
Subtle note 1: This code behaves differently from '- - * if the lists contain duplicate elements. (One occurrence of an

element in HugeList2 will remove all occurrences in Hugel ist1.)

Subtle note 2: This code compares lists elements using the '==" operator, while - - ' usesthe '=: ='. If that difference
is important, set s can be used instead of gb_set s, but note that sets: from_|i st/ 1 is much slower than
gb_sets:fromlist/1forlonglists.

Using the - - ' operator to delete an element from alist is not a performance problem:
OK

HugelListl -- [Element]

7.4 Constructing and matching binaries

In R12B, the most natural way to write binary construction and matching is now significantly faster than in earlier
releases.

To construct at binary, you can simply write
DO (in R12B) / REALLY DO NOT (in earlier releases)

my list to binary(List) ->
my list to binary(List, <<>>).

my list to binary([H|T], Acc) ->
my list to binary(T, <<Acc/binary,H>>);

my list to binary([], Acc) ->
Acc.

Inreleasesbefore R12B, Acc would be copied in every iteration. In R12B, Acc will becopied only inthefirst iteration
and extra space will be allocated at the end of the copied binary. In the next iteration, Hwill be written in to the extra
space. When the extra space runs out, the binary will be reallocated with more extra space.

The extra space all ocated (or reallocated) will be twice the size of the existing binary data, or 256, whichever islarger.
The most natural way to match binariesis now the fastest:
DO (in R12B)

my binary to list(<<H,T/binary>>) ->
[H|my binary to list(T)];

216 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and matching binaries

my binary to list(<<>>) -> [].

7.4.1 How binaries are implemented

Internally, binaries and bitstrings are implemented in the same way. In this section, we will call them binaries since
that is what they are called in the emulator source code.

There are four types of binary objects internally. Two of them are containers for binary data and two of them are
merely references to a part of abinary.

The binary containers are called refc binaries (short for reference-counted binaries) and heap binaries.

Refc binaries consist of two parts: an object stored on the process heap, called a ProcBin, and the binary object itself
stored outside all process heaps.

The binary object can be referenced by any number of ProcBins from any number of processes; the object contains a
reference counter to keep track of the number of references, sothat it can beremoved when thelast reference disappears.

All ProcBin objects in a process are part of a linked list, so that the garbage collector can keep track of them and
decrement the reference counters in the binary when a ProcBin disappears.

Heap binaries are small binaries, up to 64 bytes, that are stored directly on the process heap. They will be copied
when the process is garbage collected and when they are sent as a message. They don't require any special handling
by the garbage collector.

There are two types of reference objects that can reference part of arefc binary or heap binary. They are called sub
binaries and match contexts.

A sub binary is created by spl i t _bi nary/ 2 and when a binary is matched out in a binary pattern. A sub binary
isareference into a part of another binary (refc or heap binary, never into aanother sub binary). Therefore, matching
out abinary isrelatively cheap because the actual binary datais never copied.

A match context issimilar to asub binary, but is optimized for binary matching; for instance, it contains adirect pointer
tothe binary data. For each field that is matched out of abinary, the position in the match context will be incremented.

In R11B, a match context was only used during a binary matching operation.

In R12B, the compiler triesto avoid generating code that creates a sub binary, only to shortly afterwards create a new
match context and discard the sub binary. Instead of creating a sub binary, the match context is kept.

The compiler can only do thisoptimization if it can know for sure that the match context will not be shared. If it would
be shared, the functional properties (also called referential transparency) of Erlang would break.

7.4.2 Constructing binaries

In R12B, appending to a binary or bitstring

<<Binary/binary, ...>>
<<Binary/bitstring, ...>>

is specially optimized by the run-time system. Because the run-time system handles the optimization (instead of the
compiler), there are very few circumstances in which the optimization will not work.

To explain how it works, we will go through this code

Bin® = <<0>>, %0]
Binl = <<Bin@/binary,1,2,3>>, %% 2
Bin2 = <<Binl/binary,4,5,6>>, %% 3

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 217

7.4 Constructing and matching binaries

Bin3 = <<Bin2/binary,7,8,9>>, %% 4
Bin4 = <<Binl/binary,17>>, %% 5 !!
{Bin4,Bin3} %% 6

line by line.
Thefirst line (marked with the 986 1 comment), assigns a heap binary to the variable Bi nO.

The second line is an append operation. Since Bi n0O has not been involved in an append operation, a new refc binary
will be created and the contents of Bi nO will be copied into it. The ProcBin part of the refc binary will have its size
set to the size of the data stored in the binary, while the binary object will have extra space allocated. The size of the
binary object will be either twice the size of Bi nO or 256, whichever islarger. In this case it will be 256.

It gets more interesting in the third line. Bi n1 has been used in an append operation, and it has 255 bytes of unused
storage at the end, so the three new bytes will be stored there.

Same thing in the fourth line. There are 252 bytes left, so there is no problem storing another three bytes.

But in the fifth line something interesting happens. Note that we don't append to the previous result in Bi n3, but to
Bi n1. We expect that Bi n4 will be assigned the value <<0, 1, 2, 3, 17>>. We aso expect that Bi n3 will retain
itsvalue (<<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>>). Clearly, the run-time system cannot write the byte 17 into the binary,
because that would change the value of Bi n3 to <<0, 1, 2, 3, 4, 17, 6, 7, 8, 9>>.

What will happen?

The run-time system will see that Bi nl is the result from a previous append operation (not from the latest append
operation), so it will copy the contents of Bi n1 to a new binary and reserve extra storage and so on. (We will not
explain here how the run-time system can know that it is not allowed to writeinto Bi n1; it isleft asan exerciseto the
curious reader to figure out how it is done by reading the emulator sources, primarily erl _bits. c.)

Circumstances that force copying

The optimization of the binary append operation reguires that there is a single ProcBin and a single reference to the
ProcBin for the binary. The reason is that the binary object can be moved (reallocated) during an append operation,
and when that happens the pointer in the ProcBin must be updated. If there would be more than one ProcBin pointing
to the binary aobject, it would not be possible to find and update all of them.

Therefore, certain operations on a binary will mark it so that any future append operation will be forced to copy the
binary. In most cases, the binary object will be shrunk at the sametimeto reclaim the extra space all ocated for growing.

When appending to a binary

Bin = <<Bin0,...>>

only the binary returned from the latest append operation will support further cheap append operations. In the code
fragment above, appending to Bi n will be cheap, while appending to Bi nO will force the creation of a new binary
and copying of the contents of Bi nO.

If abinary is sent as a message to a process or port, the binary will be shrunk and any further append operation will
copy the binary datainto a new binary. For instance, in the following code fragment

Binl = <<Bin@,...>>,
PortOrPid ! Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

Bi n1 will be copied in the third line.

218 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and matching binaries

The samething happensif you insert abinary into an etstable or sendittoaportusing er I ang: port _conmand/ 2
or passit to enif_inspect_binaryin aNIF.

Matching a binary will also cause it to shrink and the next append operation will copy the binary data:

Binl = <<Bin@,...>>,
<<X,Y,Z,T/binary>> = Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

The reason isthat a match context contains a direct pointer to the binary data.

If a process simply keeps binaries (either in "loop data' or in the process dictionary), the garbage collector may
eventually shrink the binaries. If only one such binary is kept, it will not be shrunk. If the process later appendsto a
binary that has been shrunk, the binary object will be reallocated to make place for the data to be appended.

7.4.3 Matching binaries
We will revisit the example shown earlier
DO (in R12B)

my binary to list(<<H,T/binary>>) ->
[Hlmy binary to list(T)];
my binary to list(<<>>) -> [].

too see what is happening under the hood.

The very first time my_bi nary_to_li st/ 1 iscaled, a match context will be created. The match context will
point to the first byte of the binary. One byte will be matched out and the match context will be updated to point to
the second byte in the binary.

In R11B, at this point a sub binary would be created. In R12B, the compiler sees that there is no point in creating a
sub binary, because there will soon be acall to afunction (inthiscase,tony_bi nary _to | i st/ 1 itself) that will
immediately create a new match context and discard the sub binary.

Therefore, in R12B, ny_bi nary_to_li st/ 1 will cal itself with the match context instead of with a sub binary.
Theinstruction that initializes the matching operation will basically do nothing when it seesthat it was passed amatch
context instead of abinary.

When the end of the binary is reached and the second clause matches, the match context will simply be discarded
(removed in the next garbage collection, since there is no longer any reference to it).

To summarize, my_bi nary_to_list/1inR12B only needs to create one match context and no sub binaries. In
R11B, if the binary contains N bytes, N+ 1 match contexts and N sub binaries will be created.

In R11B, the fastest way to match binariesis:
DO NOT (in R12B)

my complicated binary to list(Bin) ->
my complicated binary to list(Bin, 0).

my complicated binary to list(Bin, Skip) ->
case Bin of
<< :Skip/binary,Byte, /binary>> ->
[Byte|my complicated binary to list(Bin, Skip+1)];
<<_:Skip/binary>> ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 219

7.4 Constructing and matching binaries

[l
end.

Thisfunction cleverly avoids building sub binaries, but it cannot avoid building amatch context in each recursion step.
Therefore, in both R11B and R12B, ny_conpl i cated_bi nary_t o_l i st/ 1 builds N+1 match contexts. (In a

future release, the compiler might be able to generate code that reuses the match context, but don't hold your breath.)

Returningtony_bi nary_to_|i st/ 1, notethat the match context was discarded when the entire binary had been
traversed. What happens if the iteration stops before it has reached the end of the binary? Will the optimization still

work?

after zero(<<0,T/binary>>) ->
T;

after zero(<<_ ,T/binary>>) ->
after zero(T);

after zero(<<>>) ->
<<>>,

Yes, it will. The compiler will remove the building of the sub binary in the second clause

after zero(<< ,T/binary>>) ->
after zero(T);

but will generate code that builds a sub binary in the first clause

after zero(<<0,T/binary>>) ->
T;

Therefore, af t er _zer o/ 1 will build one match context and one sub binary (assuming it is passed a binary that
contains a zero byte).

Code like the following will also be optimized:

all but zeroes to list(Buffer, Acc, 0) ->
{lists:reverse(Acc),Buffer};

all but zeroes to list(<<0,T/binary>>, Acc, Remaining) ->
all but zeroes to list(T, Acc, Remaining-1);

all but zeroes to list(<<Byte,T/binary>>, Acc, Remaining) ->
all but zeroes to list(T, [Byte|Acc], Remaining-1).

The compiler will remove building of sub binaries in the second and third clauses, and it will add an instruction to

the first clause that will convert Buf f er from a match context to a sub binary (or do nothing if Buf f er aready
isabinary).

220 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.4 Constructing and matching binaries

Before you begin to think that the compiler can optimize any binary patterns, here is a function that the compiler
(currently, at least) is not able to optimize:

non opt eq([H|T1], <<H,T2/binary>>) ->
non opt eq(T1l, T2);

non_opt_eq([_| 1, <<_, /binary>>) ->
false;

non opt eq([], <<>>) ->
true.

It was briefly mentioned earlier that the compiler can only delay creation of sub binariesif it can be sure that the binary
will not be shared. In this case, the compiler cannot be sure.

We will soon show how to rewritenon_opt _eq/ 2 so that the delayed sub binary optimization can be applied, and
more importantly, we will show how you can find out whether your code can be optimized.

The bin_opt_info option

Usethebi n_opt _i nf o option to have the compiler print alot of information about binary optimizations. It can be
given either to the compiler orer | ¢

erlc +bin opt info Mod.erl

or passed via an environment variable

export ERL COMPILER OPTIONS=bin opt info

Note that the bi n_opt _i nf o is not meant to be a permanent option added to your Makef i | es, because it is not
possible to eliminate all messages that it generates. Therefore, passing the option through the environment is in most
cases the most practical approach.

The warnings will look like this:

./efficiency guide.erl:60: Warning: NOT OPTIMIZED: sub binary is used or returned
./efficiency guide.erl:62: Warning: OPTIMIZED: creation of sub binary delayed

To make it clearer exactly what code the warnings refer to, in the examples that follow, the warnings are inserted as
comments after the clause they refer to:

after zero(<<0,T/binary>>) ->
%% NOT OPTIMIZED: sub binary is used or returned
T;
after zero(<< ,T/binary>>) ->
%% OPTIMIZED: creation of sub binary delayed
after zero(T);
after zero(<<>>) ->
<<>>,

The warning for the first clause tells us that it is not possible to delay the creation of a sub binary, because it will be
returned. The warning for the second clause tells us that a sub binary will not be created (yet).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 221

7.4 Constructing and matching binaries

Itistimeto revisit the earlier example of the code that could not be optimized and find out why:

non opt eq([H|T1], <<H,T2/binary>>) ->
%% INFO: matching anything else but a plain variable to
the left of binary pattern will prevent delayed
sub binary optimization;
SUGGEST changing argument order
%% NOT OPTIMIZED: called function non opt eq/2 does not
begin with a suitable binary matching instruction
non opt eq(Tl, T2);
non opt eq([| 1, << , /binary>>) ->
false;
non opt eq([], <<>>) ->
true.

o° o° o°
o° o° o°

o°
o°

The compiler emitted two warnings. Thel NFOwarning refersto thefunctionnon_opt _eq/ 2 asacallee, indicating
that any functionsthat call non_opt _eq/ 2 will not be able to make delayed sub binary optimization. Thereisaso
a suggestion to change argument order. The second warning (that happens to refer to the same line) refers to the
construction of the sub binary itself.

Wewill soon show another exampl e that should make the distinction between | NFOand NOT OPTI M ZEDwarnings
somewhat clearer, but first we will heed the suggestion to change argument order:

opt eq(<<H,Tl/binary>>, [H|T2]) ->
%% OPTIMIZED: creation of sub binary delayed
opt eq(T1l, T2);
opt eq(<< , /binary>>, [| 1) ->
false;
opt eq(<<>>, []) ->
true.

The compiler gives awarning for the following code fragment:

match body([0]| 1, <<H, /binary>>) ->
%% INFO: matching anything else but a plain variable to
the left of binary pattern will prevent delayed
sub binary optimization;
% SUGGEST changing argument order
done;

o oo
& oo

o0

The warning means that if thereis a call to mat ch_body/ 2 (from another clause in mat ch_body/ 2 or another
function), the delayed sub binary optimization will not be possible. There will be additional warnings for any place
where asub binary is matched out at the end of and passed as the second argument to mat ch_body/ 2. For instance:

match head(List, << :10,Data/binary>>) ->
%% NOT OPTIMIZED: called function match body/2 does not
%% begin with a suitable binary matching instruction
match body(List, Data).

222 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.5 List handling

Unused variables

The compiler itself figures out if avariableis unused. The same code is generated for each of the following functions

countl(<<_ ,T/binary>>, Count) -> countl(T, Count+1);
countl(<<>>, Count) -> Count.

count2(<<H,T/binary>>, Count) -> count2(T, Count+l);
count2(<<>>, Count) -> Count.

count3(<< H,T/binary>>, Count) -> count3(T, Count+l);
count3(<<>>, Count) -> Count.

In each iteration, the first 8 bitsin the binary will be skipped, not matched out.

7.5 List handling
7.5.1 Creating a list

Lists can only be built starting from the end and attaching list elements at the beginning. If you use the ++ operator
like this

Listl ++ List2

you will create a new list which is copy of the elements in Li st 1, followed by Li st2. Looking at how
Iists:append/ 1 or++ would beimplemented in plain Erlang, it can be seen clearly that the first list is copied:

append([H|T], Tail) ->
[H|append(T, Tail)l;

append([], Tail) ->
Tail.

So the important thing when recursing and building a list is to make sure that you attach the new elements to the
beginning of the list, so that you build a list, and not hundreds or thousands of copies of the growing result list.

Let usfirst look at how it should not be done:
DO NOT

bad fib(N) ->
bad fib(N, 0, 1, []).

bad fib(06, Current, Next, Fibs) ->
Fibs;
bad fib(N, Current, Next, Fibs) ->
bad fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

Here we are not a building a list; in each iteration step we create a new list that is one element longer than the new
previous list.

To avoid copying the result in each iteration, we must build the list in reverse order and reverse the list when we
are done:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 223

7.5 List handling

DO

tail recursive fib(N) ->
tail recursive fib(N, 0, 1, []).

tail recursive fib(®, Current, Next, Fibs) ->
lists:reverse(Fibs);
tail recursive fib(N, Current, Next, Fibs) ->
tail_recursive fib(N - 1, Next, Current + Next, [Current|Fibs]).

7.5.2 List comprehensions

Lists comprehensions still have a reputation for being slow. They used to be implemented using funs, which used
to be slow.

In recent Erlang/OTP releases (including R12B), alist comprehension

[Expr(E) || E <- List]

isbasically translated to alocal function

‘1c”0' ([E|Taill, Expr) ->
[Expr(E)|'lc”0' (Tail, Expr)l;
‘1c™0'([1, Expr) -> [].

In R12B, if the result of the list comprehension will obviously not be used, alist will not be constructed. For instance,
in this code

[io:put_chars(E) || E <- List],
ok.

or in this code

case Var of
. =>
[io:put chars(E) || E <- List];
. =>

end,

some_function(...),

the valueis neither assigned to avariable, nor passed to another function, nor returned, so thereis no need to construct
alist and the compiler will simplify the code for the list comprehension to

224 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.5 List handling

'1c”0' ([E|Taill, Expr) ->
Expr(E),
'lc”0' (Tail, Expr);
‘1c™0' ([1, Expr) -> [].

7.5.3 Deep and flat lists

lists:flatten/1 buildsan entirely new list. Therefore, it isexpensive, and even more expensive than the ++ (which copies
its left argument, but not its right argument).

In the following situations, you can easily avoid callingl i sts: fl atten/ 1:

* When sending data to a port. Ports understand deep lists so there is no reason to flatten the list before sending it
to the port.

* When calling BIFs that accept deep lists, such aslist_to_binary/1 or iolist_to_binary/1.
e When you know that your list is only one level deep, you can can use lists:append/1.

Port example
DO

port command(Port, DeepList)

DO NOT

port command(Port, lists:flatten(DeepList))

A common way to send a zero-terminated string to a port is the following:
DO NOT

TerminatedStr = String ++ [0], % String="foo" => [$f, $0, $0, O]
port command(Port, TerminatedStr)

Instead do like this:
DO

TerminatedStr = [String, 0], % String="foo" => [[$f, $0, $0], O]
port command(Port, TerminatedStr)

Append example
DO

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 225

7.6 Functions

> lists:append([[1], [2], [3]]).
[1,2,3]

>

DO NOT

> lists:flatten([[1], [2], [31]).
[1,2,3]
>

7.5.4 Why you should not worry about recursive lists functions

In the performance myth chapter, the following myth was exposed: Tail-recursive functions are MUCH faster than
recursive functions.

To summarize, in R12B thereis usually not much difference between a body-recursive list function and tail-recursive
function that reverses the list a the end. Therefore, concentrate on writing beautiful code and forget about the
performance of your list functions. In the time-critical parts of your code (and only there), measure before rewriting
your code.

Important note: This section talks about lists functions that construct lists. A tail-recursive function that does not
construct alist runsin constant space, while the corresponding body-recursive function uses stack space proportional
to the length of the list. For instance, afunction that sumsalist of integers, should not be written like this

DO NOT

recursive sum([H|T]) -> H+recursive sum(T);
recursive sum([]) -> 0.

but like this

DO

sum(L) -> sum(L, 0).

sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.

7.6 Functions

7.6.1 Pattern matching

Pattern matching in function head and in case and r ecei ve clauses are optimized by the compiler. With a few
exceptions, there is nothing to gain by rearranging clauses.

One exception is pattern matching of binaries. The compiler will not rearrange clauses that match binaries. Placing
the clause that matches against the empty binary last will usually be slightly faster than placing it first.

Hereisarather contrived example to show another exception:
DO NOT

226 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.6 Functions

atom mapl(one) -> 1;
atom mapl(two) -> 2;
atom mapl(three) -> 3;

atom mapl(Int) when is integer(Int) -> Int;
atom mapl(four) -> 4;

atom mapl(five) -> 5;

atom mapl(six) -> 6.

The problem is the clause with the variable | nt . Since a variable can match anything, including the atoms f our ,
five, and si x that the following clauses also will match, the compiler must generate sub-optimal code that will
execute as follows:

First the input valueis compared to one, t wo, and t hr ee (using asingle instruction that does a binary search; thus,
quite efficient even if there are many values) to select which one of the first three clauses to execute (if any).

If none of the first three clauses matched, the fourth clause will match since a variable always matches. If the guard
testi s_i nt eger (1 nt) succeeds, the fourth clause will be executed.

If the guard test failed, the input value is compared to f our , fi ve, and si x, and the appropriate clause is selected.
(Therewill beaf unct i on_cl ause exception if none of the values matched.)

Rewriting to either
DO

atom map2(one) -> 1;
atom map2(two) -> 2;
atom map2(three) -> 3;

atom map2(four) -> 4;

atom map2(five) -> 5;

atom map2(six) -> 6;

atom map2(Int) when is integer(Int) -> Int.

or
DO

atom map3(Int) when is integer(Int) -> Int;
atom map3(one) -> 1;

atom map3(two) -> 2;

atom map3(three) -> 3;

atom map3(four) -> 4;

atom map3(five) -> 5;

atom map3(six) -> 6.

will give sightly more efficient matching code.
Hereis aless contrived example:
DO NOT

map_pairsl(Map, [1, Ys) ->
Ys;
map_pairsl(Map, Xs, []) ->
Xs;
map_pairsl(Map, [X|Xs], [Y|Ys]) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 227

7.6 Functions

[Map(X, Y)|map _pairsl(Map, Xs, Ys)].

Thefirst argument is not aproblem. It isvariable, but it isavariable in all clauses. The problem isthe variable in the
second argument, Xs, in the middle clause. Because the variable can match anything, the compiler is not allowed to
rearrange the clauses, but must generate code that matches them in the order written.

If the function is rewritten like this
DO

map_pairs2(Map, [], Ys) ->
Ys;

map_pairs2(Map, [| 1=Xs, []) ->
Xs;

map_pairs2(Map, [X|Xs], [Y|Ys]) ->
[Map(X, Y)|map _pairs2(Map, Xs, Ys)].

the compiler isfree to rearrange the clauses. It will generate code similar to this
DO NOT (already done by the compiler)

explicit map pairs(Map, Xs0, Ys0O) ->
case Xs0O of
[X|Xs] ->
case Ys0O of
[Y]|Ys] ->
[Map(X, Y)|explicit map pairs(Map, Xs, Ys)I;
[1 ->
Xs0
end;
[1 ->
Ys0O
end.

which should be slightly faster for presumably the most common case that the input lists are not empty or very short.
(Another advantage is that Dialyzer is able to deduce a better type for the variable Xs.)

7.6.2 Function Calls
Here is an intentionally rough guide to the relative costs of different kinds of calls. It is based on benchmark figures
run on Solaris/Sparc:

» Cdlstolocal or external functions (f oo() , m f 0o()) arethe fastest kind of calls.

e Cdling or applying afun (Fun() , appl y(Fun, [])) isabout threetimes as expensive as calling alocal
function.

» Applying an exported function (Mod: Nane(), appl y(Mod, Nane, []))isabout twice asexpensive as
calling afun, or about six times as expensive as calling alocal function.

Notes and implementation details

Calling and applying afun does not involve any hash-tablelookup. A fun contains an (indirect) pointer to the function
that implements the fun.

228 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.6 Functions

Warning:

Tuples are not fun(s). A "tuple fun”, { Modul e, Funct i on}, isnot afun. The cost for calling a "tuple fun" is
similar to that of appl y/ 3 or worse. Using "tuple funs" is strongly discouraged, as they may not be supported
in a future release, and because there exists a superior alternative since the R10B release, namely the f un
Modul e: Functi on/ Ari ty syntax.

app! y/ 3 must look up the code for the function to execute in a hash table. Therefore, it will always be slower than
adirect call or afun call.

It no longer matters (from a performance point of view) whether you write

Module:Function(Argl, Arg2)

or

apply(Module, Function, [Argl,Arg2])

(The compiler internally rewrites the latter code into the former.)
The following code

apply(Module, Function, Arguments)

isdlightly slower because the shape of the list of argumentsis not known at compile time.

7.6.3 Memory usage in recursion

When writing recursive functions it is preferable to make them tail-recursive so that they can execute in constant
memory space.

DO

list length(List) ->
list length(List, 0).

list length([], AccLen) ->
AccLen; % Base case

list length([|Tail], AccLen) ->

list length(Tail, AccLen + 1). % Tail-recursive

DO NOT

list length([]) ->
0. % Base case
list length([| Tail]) ->
list length(Tail) + 1. % Not tail-recursive

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 229

7.7 Tables and databases

7.7 Tables and databases

7.7.1 Ets, Dets and Mnesia

Every example using Ets has acorresponding examplein Mnesia. In general all Ets examplesalso apply to Detstables.

Select/Match operations

Select/Match operations on Ets and Mnesia tables can become very expensive operations. They usually need to scan
the complete table. Y ou should try to structure your data so that you minimize the need for select/match operations.
However, if you really need a select/match operation, it will still be more efficient than usingt ab2l i st . Examples
of this and also of ways to avoid select/match will be provided in some of the following sections. The functions
ets: sel ect/ 2 and mesi a: sel ect/ 3 should be preferred over et s: mat ch/ 2,et s: mat ch_obj ect/ 2,
and mesi a: nat ch_obj ect/ 3.

Note:

There are exceptions when the complete table is not scanned, for instance if part of the key is bound when
searching an or der ed_set table, or if it isa Mnesia table and there is a secondary index on the field that is
selected/matched. If the key is fully bound there will, of course, be no point in doing a select/match, unless you
have a bag table and you are only interested in a sub-set of the elements with the specific key.

When creating a record to be used in a select/match operation you want most of the fields to have the value' '. The
easiest and fastest way to do that is as follows:

#person{age = 42, ="' '}.

Deleting an element

Thedelete operationisconsidered successful if the element was not present inthetable. Henceall attemptsto check that
the element is present in the EtYMnesiatabl e before del etion are unnecessary. Here follows an example for Etstables.

DO

é%é:delete(Tab, Key),

DO NOT

case ets:lookup(Tab, Key) of
[1 ->
ok;
L1 ->
ets:delete(Tab, Key)
end,

230 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and databases

Data fetching

Do not fetch datathat you already have! Consider that you haveamodul e that handlesthe abstract datatype Person. Y ou
export theinterfacefunction pri nt _per son/ 1 that usestheinternal functionspri nt _nane/ 1,pri nt _age/ 1,
print_occupation/1.

Note:

If the functions pri nt _name/ 1 and so on, had been interface functions the matter comes in to a whole new
light, as you do not want the user of the interface to know about the internal data representation.

DO

%%% Interface function
print person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print name(Person),
print age(Person),
print occupation(Person);
[1->
io:format("No person with ID = ~p~n", [PersonID])
end.

%%% Internal functions
print name(Person) ->
io:format("No person ~p~n", [Person#person.name]).

print age(Person) ->
io:format("No person ~p~n", [Person#person.age]).

print occupation(Person) ->
io:format("No person ~p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
print person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print name(PersonID),
print age(PersonID),
print occupation(PersonID);
[1 ->
io:format("No person with ID = ~p~n", [PersonID])
end.

%%% Internal functions

print name(PersonID) ->
[Person] = ets:lookup(person, PersonId),
io:format("No person ~p~n", [Person#person.name]).

print age(PersonID) ->
[Person] = ets:lookup(person, PersonId),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 231

7.7 Tables and databases

io:format("No person ~p~n", [Person#person.age]).

print occupation(PersonID) ->
[Person] = ets:lookup(person, PersonId),
io:format("No person ~p~n", [Person#person.occupation]).

Non-persistent data storage

For non-persistent database storage, prefer Ets tables over Mnesia local_content tables. Even the Mnesia
dirty_wite operationscarry afixed overhead compared to Etswrites. Mnesiamust check if thetableisreplicated
or has indices, this involves at least one Etslookup for each di rty_wri t e. Thus, Etswrites will aways be faster
than Mnesiawrites.

tab2list
Assume we have an Ets-table, which usesi dno askey, and contains;

[#person{idno = 1, name = "Adam", age = 31, occupation = "mailman"},
#person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
#person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
#person{idno = 4, name = "Carl", age = 25, occupation = "mailman"}]

If we must return all data stored in the Ets-table we can use et s: t ab2l i st/ 1. However, usualy we are only
interested in a subset of the information in which case et s: t ab2l i st/ 1 isexpensive. If we only want to extract
one field from each record, e.g., the age of every person, we should use:

DO

ets:select(Tab, [{ #person{idno="' "',
name="'_",
age='$1',
occupation = ' '},

I,

[
['$1'1}]),

DO NOT

TabList = ets:tab2list(Tab),
lists:map(fun(X) -> X#person.age end, TablList),

If we are only interested in the age of al persons named Bryan, we should:
DO

ets:select(Tab, [{ #person{idno="'_",
name="Bryan",
age='$1",
occupation = ' '},
[1,

232 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.7 Tables and databases

['$1"'1}1),

DO NOT

TablList = ets:tab2list(Tab),
lists:foldl(fun(X, Acc) -> case X#person.name of
"Bryan" ->
[X#person.age|Accl;
->

Acc
end
end, [], TabList),
REALLY DO NOT
TabList = ets:tab2list(Tab),
BryanList = lists:filter(fun(X) -> X#person.name == "Bryan" end,

TabList),
lists:map(fun(X) -> X#person.age end, BryanList),

If we need all information stored in the Ets table about persons named Bryan we should:
DO

ets:select(Tab, [{#person{idno="'_"',
name="Bryan",

age='_"',
occupation = ' '}, [1, ['$_"'1}1),

DO NOT

TabList = ets:tab2list(Tab),
lists:filter(fun(X) -> X#person.name == "Bryan" end, TablList),

Ordered_set tables

If the data in the table should be accessed so that the order of the keys in the table is significant, the table type
ordered_set could be used instead of the more usual set tabletype. Anor der ed_set isawaystraversed in
Erlang term order with regard to the key field so that return valuesfrom functionssuch assel ect ,mat ch_obj ect ,
andf ol dl areordered by the key values. Traversing an or der ed_set withthefi r st and next operationsalso
returns the keys ordered.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 233

7.7 Tables and databases

Note:

An ordered_set only guarantees that objects are processed in key order. Results from functions as
et s: sel ect/ 2 appear in the key order even if the key is not included in the result.

7.7.2 Ets specific

Utilizing the keys of the Ets table

An Etstableisasingle key table (either a hash table or atree ordered by the key) and should be used as one. In other
words, use the key to look up things whenever possible. A lookup by a known key in a set Ets table is constant and
for aordered_set Etstableit is O(logN). A key lookup is always preferable to a call where the whole table has to be
scanned. In the examples above, the field i dno isthe key of the table and all lookups where only the name is known
will result in a complete scan of the (possibly large) table for a matching result.

A simple solution would be to use the nane field asthe key instead of thei dno field, but that would cause problems
if the names were not unique. A more general solution would be to create a second table with nane askey andi dno
asdata, i.e. toindex (invert) the table with regardsto the nane field. The second table would of course haveto be kept
consistent with the master table. Mnesia could do this for you, but a home brew index table could be very efficient
compared to the overhead involved in using Mnesia.

An index table for the table in the previous examples would have to be a bag (as keys would appear more than once)
and could have the following contents:

[#index_entry{name="Adam", idno=1},
#index_entry{name="Bryan", idno=2},
#index_entry{name="Bryan", idno=3},
#index entry{name="Carl", idno=4}]

Given thisindex table alookup of the age fields for all persons named "Bryan" could be done like this:

MatchingIDs = ets:lookup(IndexTable, "Bryan"),
lists:map(fun(#index _entry{idno = ID}) ->
[#person{age = Age}] = ets:lookup(PersonTable, ID),
Age
end,
MatchingIDs),

Note that the code above never uses ets: nmatch/2 but instead utilizes the ets: | ookup/ 2 cal. The
i sts: map/ 2 calisonly usedtotraversethei dnosmatching the name"Bryan" in the table; therefore the number
of lookups in the master table is minimized.

Keeping an index table introduces some overhead when inserting records in the table, therefore the number of
operations gained from the table has to be weighted against the number of operations inserting objects in the table.
However, note that the gain when the key can be used to lookup elements is significant.

234 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.8 Processes

7.7.3 Mnesia specific

Secondary index

If you frequently do alookup on afield that is not the key of the table, you will lose performance using "mnesia:sel ect/
match_object" as this function will traverse the whole table. You may create a secondary index instead and use
"mnesiaiindex_read" to get faster access, however thiswill require more memory. Example:

-record(person, {idno, name, age, occupation}).

{atomic, ok} =
mnesia:create table(person, [{index, [#person.agel},
{attributes,
record info(fields, person)}l),
{atomic, ok} = mnesia:add table index(person, age),

PersonsAge42 =
mnesia:dirty index read(person, 42, #person.age),

Transactions

Transactions is away to guarantee that the distributed Mnesia database remains consistent, even when many different
processes update it in parallel. However if you have real time requirementsit is recommended to use dirty operations
instead of transactions. When using the dirty operations you lose the consistency guarantee, thisis usually solved by
only letting one process update the table. Other processes have to send update requests to that process.

% Using transaction
Fun = fun() ->
[mnesia:read({Table, Key}),
mnesia:read({Table2, Key2})]
end,

{atomic, [Resultl, Result2]} = mnesia:transaction(Fun),
% Same thing using dirty operations

Resultl
Result2

mnesia:dirty read({Table, Key}),
mnesia:dirty read({Table2, Key2}),

7.8 Processes

7.8.1 Creation of an Erlang process
An Erlang processis lightweight compared to operating systems threads and processes.

A newly spawned Erlang process uses 309 words of memory in the non-SMP emulator without HiPE support. (SMP
support and HiPE support will both add to this size.) The size can be found out like this:

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 235

7.8 Processes

Erlang (BEAM) emulator version 5.6 [async-threads:0] [kernel-poll:false]

Eshell V5.6 (abort with ~G)

1> Fun = fun() -> receive after infinity -> ok end end.
#Fun<...>

2> { ,Bytes} = process info(spawn(Fun), memory).
{memory, 1232}

3> Bytes div erlang:system info(wordsize).

309

The size includes 233 words for the heap area (which includes the stack). The garbage collector will increase the heap
as needed.

The main (outer) loop for a process must be tail-recursive. If not, the stack will grow until the process terminates.
DO NOT

loop() ->
receive
{sys, Msg} ->
handle sys msg(Msg),
loop();
{From, Msg} ->
Reply = handle msg(Msg),
From ! Reply,
loop ()
end,
io:format("Message is processed~n", []).

Thecall toi o: f or mat / 2 will never be executed, but a return address will still be pushed to the stack each time
| oop/ O iscalled recursively. The correct tail-recursive version of the function looks like this:

DO

loop() ->
receive
{sys, Msg} ->
handle sys msg(Msg),
Loop();
{From, Msg} ->
Reply = handle msg(Msg),
From ! Reply,
Loop ()
end.

Initial heap size

The default initial heap size of 233 words is quite conservative in order to support Erlang systems with hundreds of
thousands or even millions of processes. The garbage collector will grow and shrink the heap as needed.

In a system that use comparatively few processes, performance might be improved by increasing the minimum heap
size using either the +h option for erl or on a process-per-process basis using the m n_heap_si ze option for
Spawn_opt/4.

The gainistwofold: Firstly, although the garbage collector will grow the heap, it will grow it step by step, which will
be more costly than directly establishing alarger heap when the process is spawned. Secondly, the garbage collector

236 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.8 Processes

may also shrink the heap if it is much larger than the amount of data stored on it; setting the minimum heap size will
prevent that.

Warning:

The emulator will probably use more memory, and because garbage collections occur less frequently, huge
binaries could be kept much longer.

In systems with many processes, computation tasks that run for a short time could be spawned off into a new process
with a higher minimum heap size. When the process is done, it will send the result of the computation to another
process and terminate. If the minimum heap size is calculated properly, the process may not have to do any garbage
collections at all. This optimization should not be attempted without proper measurements.

7.8.2 Process messages
All datain messages between Erlang processesis copied, with the exception of refc binaries on the same Erlang node.

When a message is sent to a process on another Erlang node, it will first be encoded to the Erlang External Format
before being sent via an TCP/IP socket. The receiving Erlang node decodes the message and distributes it to the right
process.

The constant pool

Constant Erlang terms (also called literals) are now kept in constant pools; each loaded module has its own pool. The
following function

DO (in R12B and later)

days in month(M) ->
element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

will no longer build the tuple every timeit is called (only to have it discarded the next time the garbage collector was
run), but the tuple will be located in the modul€'s constant pool.

But if a constant is sent to another process (or stored in an ETStable), it will be copied. The reason isthat the run-time
system must be able to keep track of al references to constantsin order to properly unload code containing constants.
(When the codeis unloaded, the constants will be copied to the heap of the processes that refer to them.) The copying
of constants might be eliminated in afuture release.

Loss of sharing

Shared sub-terms are not preserved when a term is sent to another process, passed as the initial process arguments
in the spawn call, or stored in an ETS table. That is an optimization. Most applications do not send messages with
shared sub-terms.

Here is an example of how a shared sub-term can be created:

kilo byte() ->
kilo_byte(10, [42]).

kilo byte(0, Acc) ->

Acc;
kilo byte(N, Acc) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 237

7.8 Processes

kilo byte(N-1, [Acc|Acc]).

kil o_byte/ 0 createsadeep list. If wecall | i st _t o_bi nary/ 1, we can convert the deep list to a binary of
1024 bytes:

1> byte size(list to binary(efficiency guide:kilo byte())).
1024

Usingtheert s_debug: si ze/ 1 BIF we can see that the deep list only requires 22 words of heap space:

2> erts debug:size(efficiency guide:kilo byte()).
22

Usingtheerts_debug: fl at _si ze/ 1 BIF, we can calculate the size of the deep list if sharing isignored. It will
be the size of the list when it has been sent to another process or stored in an ETS table;

3> erts debug:flat size(efficiency guide:kilo byte()).
4094

We can verify that sharing will be lost if we insert the datainto an ETStable:

4> T = ets:new(tab, []).

17

5> ets:insert(T, {key,efficiency guide:kilo byte()}).

true

6> erts debug:size(element(2, hd(ets:lookup(T, key)))).

4094

7> erts debug:flat size(element(2, hd(ets:lookup(T, key)))).
4094

When the datahas passed throughan ETStable, ert s_debug: si ze/ 1 andert s_debug: fl at _si ze/ 1 return
the same value. Sharing has been lost.

In afuture release of Erlang/OTP, we might implement a way to (optionally) preserve sharing. We have no plans to
make preserving of sharing the default behaviour, since that would penalize the vast majority of Erlang applications.

7.8.3 The SMP emulator

The SMP emulator (introduced in R11B) will take advantage of a multi-core or multi-CPU computer by running
several Erlang scheduler threads (typically, the same as the number of cores). Each scheduler thread schedules Erlang
processes in the same way as the Erlang scheduler in the non-SMP emulator.

To gain performance by using the SMP emulator, your application must have more than one runnable Erlang process
most of thetime. Otherwise, the Erlang emulator can still only run one Erlang process at thetime, but you must still pay
the overhead for locking. Although we try to reduce the locking overhead as much as possible, it will never become
exactly zero.

Benchmarks that may seem to be concurrent are often sequential. The estone benchmark, for instance, is entirely
sequential. So is also the most common implementation of the "ring benchmark"; usually one processis active, while
the otherswait in ar ecei ve statement.

238 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.9 Drivers

The percept application can be used to profile your application to see how much potential (or lack thereof) it has for
concurrency.

7.9 Drivers

This chapter provides a (very) brief overview on how to write efficient drivers. It is assumed that you already have
agood understanding of drivers.

7.9.1 Drivers and concurrency
The run-time system will always take alock before running any codein adriver.

By default, that lock will be at the driver level, meaning that if several ports have been opened to the same driver, only
code for one port at the same time can be running.

A driver can be configured to instead have one lock for each port.

If adriver isusedin afunctional way (i.e. it holds no state, but only does some heavy calculation and returns aresult),
several ports with registered names can be opened beforehand and the port to be used can be chosen based on the
scheduler ID likethis:

-define (PORT NAMES(),

{some driver 01, some driver 02, some driver 03, some driver 04,
some driver 05, some driver 06, some driver 07, some driver 08,
some driver 09, some driver 10, some driver 11, some driver 12,
some driver 13, some driver 14, some driver 15, some driver 16}).

client port() ->
element(erlang:system info(scheduler id) rem tuple size(?PORT NAMES()) + 1,
?PORT _NAMES()) .

Aslong asthere are no more than 16 schedulers, there will never be any lock contention on the port lock for the driver.

7.9.2 Avoiding copying of binaries when calling a driver
There are basically two ways to avoid copying a binary that is sent to adriver.

If the Dat a argument for port_control/3 is a binary, the driver will be passed a pointer to the contents of the binary
and the binary will not be copied. If the Dat a argument isan iolist (list of binaries and lists), all binariesin theiolist
will be copied.

Therefore, if you want to send both a pre-existing binary and some additional data to a driver without copying the
binary, you must call port _cont r ol / 3 twice; once with the binary and once with the additional data. However,
that will only work if thereis only one process communicating with the port (because otherwise another process could
cal the driver in-between the calls).

Another way to avoid copying binariesisto implement an out put v callback (instead of an out put callback) in the
driver. If adriver hasanout put v callback, refc binariespassedin aniolistinthe Dat a argument for port_command/2
will be passed as references to the driver.

7.9.3 Returning small binaries from a driver

The run-time system can represent binaries up to 64 bytes as heap binaries. They will always be copied when sentina
messages, but they will require less memory if they are not sent to another process and garbage collection is cheaper.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 239

7.10 Advanced

If you know that the binaries you return are always small, you should use driver API calls that do not require a pre-
alocated binary, for instance driver_output() or erl_drv_output_term() using the ERL_DRV_BUF2BI NARY format,
to allow the run-time to construct a heap binary.

7.9.4 Returning big binaries without copying from a driver

To avoid copying data when abig binary is sent or returned from the driver to an Erlang process, the driver must first
allocate the binary and then send it to an Erlang process in some way.

Usedriver_alloc_binary() to allocate a binary.
There are several waysto send abinary created withdri ver _al | oc_bi nary().

» From the cont r ol callback, a binary can be returned provided that set_port_control_flags() has been called
with the flag value PORT_CONTROL_FLAG_BI NARY.

e A single binary can be sent with driver_output_binary().
e Usingerl_drv_output_term() or erl_drv_send_term(), abinary can be included in an Erlang term.

7.10 Advanced
7.10.1 Memory

A good start when programming efficiently is to have knowledge about how much memory different data types and
operationsrequire. It isimplementation-dependent how much memory the Erlang datatypes and other items consume,
but here are some figuresfor the erts-5.2 system (OTP release R9B). (There have been no significant changesin R13.)

The unit of measurement is memory words. There exists both a 32-bit and a 64-bit implementation, and a word is
therefore, 4 bytes or 8 bytes, respectively.

Datatype Memory size
1 word
On 32-hit architectures: -134217729 < i < 134217728
Small integer (28 hits)

On 64-bit architectures. -576460752303423489 < i <
576460752303423488 (60 bits)

Big integer 3..N words

1 word. Note: an atom refers into an atom table which
also consumes memory. The atom text is stored once

Atom for each unique atom in this table. The atom table is not
garbage-collected.

Float On 32-hit architectures: 4 words
On 64-bit architectures: 3 words

Binary 3..6 + data (can be shared)

List 1 word + 1 word per element + the size of each element

String (isthe same as alist of integers) 1 word + 2 words per character

Tuple 2 words + the size of each element

240 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.10 Advanced

1 word for a process identifier from the current local
node, and 5 words for a process identifier from another
node. Note: a process identifier refers into a process
table and a node table which also consumes memory.

Pid

1 word for aport identifier from the current local node,
and 5 words for a port identifier from another node.
Note: a port identifier refersinto a port table and a node
table which also consumes memory.

On 32-hit architectures; 5 words for areference from
the current local node, and 7 words for a reference from
another node.

Reference On 64-bit architectures: 4 words for areference from
the current local node, and 6 words for a reference from
another node. Note: areference refers into a node table
which also consumes memory.

9..13 words + size of environment. Note: afun refers

Fun into a fun table which also consumes memory.

Initially 768 words + the size of each element (6 words
Etstable + size of Erlang data). The table will grow when
necessary.

327 words when spawned including a heap of 233

Erlang process words.

Table 10.1: Memory size of different data types

7.10.2 System limits

The Erlang language specification puts no limits on number of processes, length of atoms etc., but for performance
and memory saving reasons, there will always be limits in a practical implementation of the Erlang language and
execution environment.

Processes

The maximum number of simultaneously alive Erlang processesisby default 32768. Thislimit can be configured
at startup, for more information see the +P command lineflagof er | (1) .

Distributed nodes
Known nodes

A remote node Y has to be known to node X if there exist any pids, ports, references, or funs (Erlang data
types) fromY on X, orif X andY are connected. The maximum number of remote nodes simultaneously/ever
known to anodeislimited by the maximum number of atoms available for node names. All data concerning
remote nodes, except for the node name atom, are garbage-collected.

Connected nodes
The maximum number of simultaneously connected nodes is limited by either the maximum number of
simultaneously known remote nodes, the maximum number of (Erlang) ports available, or the maximum
number of sockets available.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 241

7.11 Profiling

Charactersin an atom
255

Atoms
By default, the maximum number of atomsis 1048576. This limit can be raised or lowered using the +t option.

Ets-tables
The default is 1400, can be changed with the environment variable ERL_MAX_ETS TABLES.

Elementsin a tuple
The maximum number of elementsin atuple is 67108863 (26 bit unsigned integer). Other factors such as the
available memory can of course make it hard to create atuple of that size.

Sze of binary
In the 32-bit implementation of Erlang, 536870911 bytesis the largest binary that can be constructed or
matched using the bit syntax. (In the 64-bit implementation, the maximum size is 2305843009213693951
bytes.) If the limit is exceeded, bit syntax construction will fail withasystem | i mi t exception, while any
attempt to match a binary that istoo large will fail. Thislimit is enforced starting with the R11B-4 release; in
earlier releases, operations on too large binaries would in general either fail or give incorrect results. In future
releases of Erlang/OTP, other operations that create binaries (such asl i st _t o_bi nar y/ 1) will probably
also enforce the same limit.

Total amount of data allocated by an Erlang node
The Erlang runtime system can use the complete 32 (or 64) bit address space, but the operating system often
limits asingle process to use |l ess than that.

Length of a node name
An Erlang node name has the form host@shortname or host@longname. The node name is used as an atom
within the system so the maximum size of 255 holds for the node name too.

Open ports

Themaximum number of simultaneously open Erlang portsisoften by default 16384. Thislimit can be configured
at startup, for more information see the +Qcommand lineflagof er | (1) .

Open files, and sockets
The maximum number of simultaneously open files and sockets depend on the maximum number of Erlang
ports available, and operating system specific settings and limits.

Number of arguments to a function or fun
255

7.11 Profiling

7.11.1 Do not guess about performance - profile

Even experienced software developers often guess wrong about where the performance bottlenecks are in their
programs.

Therefore, profile your program to see where the performance bottlenecks are and concentrate on optimizing them.
Erlang/OTP contains several tools to help finding bottlenecks.

f pr of providethe most detailed information about wherethetimeisspent, but it significantly slowsdown the program
it profiles.

epr of provides time information of each function used in the program. No callgraph is produced but epr of has
considerable lessimpact on the program profiled.

If the program istoo big to be profiled by f pr of or epr of , cover and cpr of could be used to locate parts of the
code that should be more thoroughly profiled using f pr of or epr of .

242 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.11 Profiling

cover provides execution counts per line per process, with less overhead than f pr of . Execution counts can with
some caution be used to locate potential performance bottlenecks. The most lightweight tool is cpr of , but it only
provides execution counts on afunction basis (for all processes, not per process).

7.11.2 Big systems

If you have a big system it might be interesting to run profiling on a simulated and limited scenario to start with.
But bottlenecks have a tendency to only appear or cause problems when there are many things going on at the same
time, and when there are many nodes involved. Therefore it is desirable to aso run profiling in a system test plant
on areal target system.

When your system is big you do not want to run the profiling tools on the whole system. Y ou want to concentrate on
processes and modules that you know are central and stand for a big part of the execution.

7.11.3 What to look for

When analyzing the result file from the profiling activity you should look for functions that are called many times and
have along "own" execution time (time excluding calls to other functions). Functions that just are called very many
times can aso be interesting, as even small things can add up to quite a bit if they are repeated often. Then you need
to ask yourself what can | do to reduce this time. Appropriate types of questionsto ask yourself are:

e Can| reduce the number of timesthe function is called?

» Arethereteststhat can be run less often if | change the order of tests?

« Arethere redundant tests that can be removed?

» |Isthere some expression calculated giving the same result each time?

* Arethere other ways of doing this that are equivalent and more efficient?

e Can| use another internal data representation to make things more efficient?

These questions are not always trivial to answer. Y ou might need to do some benchmarks to back up your theory, to
avoid making things slower if your theory iswrong. See benchmarking.

7.11.4 Tools
fprof

f pr of measures the execution time for each function, both own time i.e how much time a function has used for its
own execution, and accumulated timei.e. including called functions. The values are displayed per process. You also
get to know how many times each function has been called. f pr of is based on trace to file in order to minimize
runtime performance impact. Using fprof is just a matter of calling a few library functions, see fprof manual page
under the application tools. f pr of wasintroduced in version R8 of Erlang/OTP.

eprof

epr of isbased on the Erlang trace_info BIFs. Eprof shows how much time has been used by each process, and in
which function calls this time has been spent. Time is shown as percentage of total time and absolute time. See eprof
for additional information.

cover

cover 'sprimary useis coverage analysisto verify test cases, making sure all relevant codeis covered. cover counts
how many times each executable line of code is executed when a program isrun. Thisis done on a per module basis.
Of course this information can be used to determine what code is run very frequently and could therefore be subject
for optimization. Using cover is just a matter of calling a few library functions, see cover manual page under the
application tools.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 243

7.11 Profiling

cprof

cpr of issomething in between f pr of and cover regarding features. It counts how many times each function is
called when the program is run, on a per module basis. cpr of has a low performance degradation effect (versus
f pr of) and does not need to recompile any modulesto profile (versuscover). See cprof manual page for additional
information.

Tool summarization

. Effects on Records Records Records
Size of program ; Records
Tool Results . number Execution garbage
result execution . caled by ;
. of calls time collection
time
f or of F(;ersgroc / large significant s total and s s
P file g dowdown |7 own y y
per process/
. ' small
epr of functionto | medium yes only total no no
. slowdown
screen/file
per module moderate .
cover to screen/ small yes, per line | no no no
file slowdown
cpr of per module small small es no no no
P tocaller dowdown |7
Table 11.1:

7.11.5 Benchmarking

The main purpose of benchmarking isto find out which implementation of a given agorithm or function isthe fastest.
Benchmarking isfar from an exact science. Today's operating systems generally run background tasksthat are difficult
to turn off. Caches and multiple CPU cores doesn't make it any easier. It would be best to run Unix-computers in
single-user mode when benchmarking, but that isinconvenient to say the least for casual testing.

Benchmarks can measure wall-clock time or CPU time.

timer:tc/3 measures wall-clock time. The advantage with wall-clock time is that 1/O, swapping, and other activities
in the operating-system kernel are included in the measurements. The disadvantage is that the the measurements will
vary wildly. Usually it is best to run the benchmark several times and note the shortest time - that time should be the
minimum time that is possible to achieve under the best of circumstances.

statistics/1 with the argument r unt i me measures CPU time spent in the Erlang virtual machine. The advantage is
that the results are more consistent from run to run. The disadvantage is that the time spent in the operating system
kernel (such as swapping and 1/0) are not included. Therefore, measuring CPU time is misleading if any 1/0 (file or
socket) isinvolved.

It is probably a good ideato do both wall-clock measurements and CPU time measurements.
Some additional advice:

* Thegranularity of both types of measurement could be quite high so you should make sure that each individual
measurement lasts for at least several seconds.

244 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

7.11 Profiling

To make the test fair, each new test run should run in its own, newly created Erlang process. Otherwise, if al
tests run in the same process, the later tests would start out with larger heap sizes and therefore probably do less
garbage collections. Y ou could also consider restarting the Erlang emulator between each test.

Do not assume that the fastest implementation of a given algorithm on computer architecture X alsoisthe
fastest on computer architecture Y.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 245

8.1 Introduction

8 Interoperability Tutorial

8.1 Introduction

8.1.1 Purpose

The purpose of this tutoria is to give the reader an orientation of the different interoperability mechanisms that can
be used when integrating a program written in Erlang with a program written in another programming language, from
the Erlang programmer's point of view.

8.1.2 Prerequisites

Itisassumed that thereader isaskilled Erlang programmer, familiar with concepts such as Erlang datatypes, processes,
messages and error handling.

Toillustrate the interoperability principles C programs running in aUNIX environment have been used. It is assumed
that the reader has enough knowledge to be able to apply these principles to the relevant programming languages and
platforms.

Note:

For the sake of readability, the example code has been kept as simple as possible. It does not include functionality
such as error handling, which might be vital in areal-life system.

8.2 Overview

8.2.1 Built-In Mechanisms

There are two interoperability mechanisms built into the Erlang runtime system. One is distributed Erlang and the
other oneis ports. A variation of portsis linked-in drivers.

Distributed Erlang

An Erlang runtime system is made into a distributed Erlang node by giving it a name. A distributed Erlang node
can connect to and monitor other nodes, it is also possible to spawn processes at other nodes. Message passing and
error handling between processes at different nodes are transparent. There exists anumber of useful st dl i b modules
intended for use in a distributed Erlang system; for example, gl obal which provides global name registration. The
distribution mechanism is implemented using TCP/IP sockets.

When to use: Distributed Erlang is primarily used for communication Erlang-Erlang. It can also be used for
communication between Erlang and C, if the C program isimplemented as a C node, see below.

Where to read more: Distributed Erlang and some distributed programming techniques are described in the Erlang
book.

In the Erlang/OTP documentation there is a chapter about distributed Erlang in " Getting Started” (User's Guide).
Relevant man pages are er | ang (describes the BIFs) and gl obal , net _adm pg2,r pc, pool andsl ave.

246 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.2 Overview

Ports and Linked-In Drivers

Ports provide the basic mechanism for communication with the external world, from Erlang's point of view. They
provide a byte-oriented interface to an external program. When a port has been created, Erlang can communicate with
it by sending and receiving lists of bytes (not Erlang terms). This means that the programmer may have to invent a
suitable encoding and decoding scheme.

The actual implementation of the port mechanism depends on the platform. In the Unix case, pipes are used and the
external program should as default read from standard input and write to standard output. Theoretically, the external
program could be written in any programming language as long as it can handle the interprocess communication
mechanism with which the port isimplemented.

The external program resides in another OS process than the Erlang runtime system. In some cases this is not
acceptable, consider for exampledriverswith very hard timerequirements. It istherefore possibleto write aprogramin
C according to certain principles and dynamically link it to the Erlang runtime system, thisis called alinked-in driver.

When to use: Being the basic mechanism, ports can be used for all kinds of interoperability situations where the Erlang
program and the other program runs on the same machine. Programming is fairly straight-forward.

Linked-in driversinvolveswriting certain call-back functionsin C. Very good skills are required as the code is linked
to the Erlang runtime system.

Warning:

An erroneous linked-in driver will cause the entire Erlang runtime system to leak memory, hang or crash.

Where to read more: Ports are described in the "Miscellaneous Items' chapter of the Erlang book. Linked-in drivers
are described in Appendix E.

The BIF open_por t/ 2 isdocumented in the man page for er | ang. For linked-in drivers, the programmer needs
to read the information in the man pagefor er | _ddlI | .

Examples: Port example.

8.2.2 C and Java Libraries

Erl_Interface

Very often the program at the other side of a port is a C program. To help the C programmer a library called
Erl_Interface has been developed. It consists of five parts:

e erl_marshal ,erl _etermerl _format,erl _mal | oc Handling of the Erlang external term format.

* erl_connect Communication with distributed Erlang, see C nodes below.

e erl _error Error print routines.

e erl _gl obal Accessglobally registered names.

* Regi st ry Store and backup of key-value pairs.

The Erlang external term format is a representation of an Erlang term as a sequence of bytes, a binary. Conversion
between the two representations is done using BIFs.

Binary = term to binary(Term)
Term = binary to term(Binary)

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 247

8.2 Overview

A port can be set to use binaries instead of lists of bytes. It is then not necessary to invent any encoding/decoding
scheme. Erl_Interface functions are used for unpacking the binary and convert it into a struct similar to an Erlang term.
Such a struct can be manipulated in different ways and be converted to the Erlang external format and sent to Erlang.

When to use: In C code, in conjunction with Erlang binaries.

Whereto read more: Read about the Erl_Interface User's Guide; Command Reference and Library Reference. In R5B
and earlier versions the information can be found under the Kernel application.

Examples.erl_interface example.

C Nodes

A C programwhich usesthe Erl_Interfacefunctionsfor setting up aconnection to and communicating with adistributed
Erlang nodeis called a C node, or a hidden node. The main advantage with a C node is that the communication from
the Erlang programmer's point of view is extremely easy, since the C program behaves as a distributed Erlang node.

When to use: C nhodes can typically be used on device processors (as opposed to control processors) where C isabetter
choice than Erlang due to memory limitations and/or application characteristics.

Wheretoread more: Intheer | _connect part of the Erl_Interface documentation, see above. The programmer also
needs to be familiar with TCP/IP sockets, see below, and distributed Erlang, see above.

Examples. C node example.

Jinterface
In Erlang/OTP R6B, alibrary similar to Erl_Interface for Java was added called jinterface.

8.2.3 Standard Protocols

Sometimes communication between an Erlang program and another program using a standard protocol is desirable.
Erlang/OTP currently supports TCP/IP and UDP sockets, SNMP, HTTP and 110OP (CORBA). Using one of the latter
three requires good knowledge about the protocol and is not covered by thistutorial. Please refer to the documentation
for the SNMP, Inets and Orber applications, respectively.

Sockets

Simply put, connection-oriented socket communication (TCP/IP) consists of an initiator socket ("server") started at
a certain host with a certain port number. A connector socket (“client") aware of the initiator's host name and port
number can connect to it and data can be sent between them. Connection-less socket communication (UDP) consists of
an initiator socket at a certain host with a certain port number and a connector socket sending datato it. For adetailed
description of the socket concept, please refer to a suitable book about network programming. A suggestion is UNIX
Network Programming, Volume 1: Networking APIs - Sockets and XTI by W. Richard Stevens, ISBN: 013490012X.

In Erlang/OTP, accessto TCP/IP and UDP socketsis provided by the Kernel modulesgen_t cp andgen_udp. Both
are easy to use and do not require any deeper knowledge about the socket concept.

When to use: For programs running on the same or on another machine than the Erlang program.
Whereto read more: The man pagesfor gen_t cp and gen_udp.

8.24 IC

IC (IDL Compiler) is an interface generator which given an IDL interface specification automatically generates stub
codein Erlang, C or Java. Please refer to the IC User's Guide and IC Reference Manual.

248 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.3 Problem Example

8.2.5 Old Applications

There are two old applications of interest when talking about interoperability: 1G which was removed in Erlang/OTP
R6B and Jive which was removed in Erlang/OTP R7B. Both applications have been replaced by | C and are mentioned
here for reference only.

IG (Interface Generator) automatically generated code for port or socket communication between an Erlang program
and a C program, given a C header file with certain keywords. Jive provided a simple interface between an Erlang
program and a Java program.

8.3 Problem Example

8.3.1 Description

A common interoperability situation is when there exists a piece of code solving some complex problem, and we
would like to incorporate this piece of code in our Erlang program. Suppose for example we have the following C
functions that we would like to be able to call from Erlang.

/* complex.c */
int foo(int x) {

return x+1;

}

int bar(int y) {
return y*2;

}

(For the sake of keeping the example as simple as possible, the functions are not very complicated in this case).
Preferably we would liketo ableto call f oo and bar without having to bother about them actually being C functions.

% Erlang code

Res = complex:foo(X),

The communication with C is hidden in the implementation of conpl ex. er| . Inthefollowing chaptersit is shown
how this module can be implemented using the different interoperability mechanisms.

8.4 Ports

Thisis an example of how to solve the example problem by using a port.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 249

8.4 Ports

ERTS External program

: EEEEE——
H—h Farl
B EEEsE—

I:l Q5 proceas

o Erlangprocess
—* Communicabion

Figure 4.1: Port Communication.

8.4.1 Erlang Program

First of all communication between Erlang and C must be established by creating the port. The Erlang process which
creates a port is said to be the connected process of the port. All communication to and from the port should go via
the connected process. If the connected process terminates, so will the port (and the external program, if it iswritten
correctly).

Theport iscreated using the BIF open_por t / 2 with{ spawn, Ext Pr g} asthefirst argument. Thestring Ext Pr g
isthe name of the external program, including any command line arguments. The second argument isalist of options,
in this case only { packet, 2}. This option says that a two byte length indicator will be used to simplify the
communication between C and Erlang. Adding the length indicator will be done automatically by the Erlang port, but
must be done explicitly in the external C program.

The processis also set to trap exits which makes it possible to detect if the external program fails.

-module(complexl).
-export([start/1, init/1]).

start(ExtPrg) ->
spawn (?MODULE, init, [ExtPrgl).

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg}, [{packet, 2}]),
loop(Port).

Now it is possible to implement conpl ex1: f oo/ 1 and conpl ex1: bar/ 1. They both send a message to the
conpl ex process and receive the reply.

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

250 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Ports

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

The conpl ex process encodes the message into a sequence of bytes, sendsit to the port, waits for areply, decodes
the reply and sends it back to the caller.

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port)
end.

Assuming that both the arguments and the results from the C functions will be less than 256, a very simple encoding/
decoding scheme is employed where f 00 is represented by the byte 1, bar is represented by 2, and the argument/
result is represented by a single byte as well.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

Theresulting Erlang program, including functionality for stopping the port and detecting port failuresis shown below.

-module(complexl).
-export([start/1, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->

register(complex, self()),
process flag(trap exit, true),

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 251

8.4 Ports

Port = open port({spawn, ExtPrg}, [{packet, 2}]),
loop(Port).

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

8.4.2 C Program

On the C side, it is necessary to write functions for receiving and sending data with two byte length indicators from/
to Erlang. By default, the C program should read from standard input (file descriptor 0) and write to standard output
(file descriptor 1). Examples of such functions, r ead_cnd/ 1 andw i t e_cnd/ 2, are shown below.

/* erl comm.c */
typedef unsigned char byte;
read cmd(byte *buf)
int len;
if (read exact(buf, 2) !'= 2)
return(-1);
len = (buf[0] << 8) | buf[1];

return read exact(buf, len);

}
write cmd(byte *buf, int len)
{

byte 1i;

1li = (len >> 8) & Oxff;
write exact(&li, 1);

1i = len & Oxff;
write exact(&li, 1);

return write exact(buf, len);

}

read exact(byte *buf, int len)

252 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.4 Ports

int i, got=0;

do {
if ((1i = read(0, buf+got, len-got)) <= 0)
return(i);
got += 1i;
} while (got<len);

return(len);
}
write exact(byte *buf, int len)
{
int i, wrote = 0;
do {
if ((i = write(1l, buf+wrote, len-wrote)) <= 0)
return (i);
wrote += 1i;

} while (wrote<len);
return (len);
3
Notethat st di nandst dout arefor buffered input/output and should not be used for the communication with Erlang!

Inthe mai n function, the C program should listen for amessage from Erlang and, according to the selected encoding/
decoding scheme, usethefirst byte to determine which function to call and the second byte as argument to the function.
Theresult of calling the function should then be sent back to Erlang.

/* port.c */
typedef unsigned char byte;
int main() {

int fn, arg, res;

byte buf[100];

while (read cmd(buf) > 0) {

fn = buf[0];
arg = buf[1];
if (fn == 1) {

res = foo(arg);
} else if (fn == 2) {
res = bar(arg);

}
buf[0] = res;
write cmd(buf, 1);

Note that the C program isin awhi | e-loop checking for the return value of r ead_cnd/ 1. The reason for thisis
that the C program must detect when the port gets closed and terminate.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 253

8.5 Erl_Interface

8.4.3 Running the Example
1. Compilethe C code.

unix> gcc -o extprg complex.c erl comm.c port.c

2. Start Erlang and compile the Erlang code.

unix> erl
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~G)
1> c(complexl).
{ok, complex1}

3. Run the example.

2> complexl:start("extprg").
<0.34.0>

3> complexl:foo(3).

4

4> complexl:bar(5).

10

5> complexl:stop().

stop

8.5 Erl_Interface

Thisis an example of how to solve the example problem by using aport and er| _i nt er f ace. It is necessary to
read the port example before reading this chapter.

8.5.1 Erlang Program

The example below shows an Erlang program communicating with a C program over a plain port with home made
encoding.

-module(complexl).
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/11).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},

254 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

receive

{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),

Port = open port({spawn, ExtPrg}, [{packet, 2}]),

loop(Port).

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

Compared to the Erlang module above used for the plain port, there are two differences when using Erl_Interface
on the C side: Since Erl_Interface operates on the Erlang external term format the port must be set to use binaries
and, instead of inventing an encoding/decoding scheme, theBIFst erm t o_bi nary/ 1 andbi nary_to_term 1

should beused. That is:

open_port({spawn, ExtPrg}, [{packet, 2}1)

is replaced with:

open port({spawn, ExtPrg}, [{packet, 2}, binary])

And:

Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end

is replaced with:

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 255

8.5 Erl_Interface

Port ! {self(), {command, term to binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, binary to term(Data)}
end

The resulting Erlang program is shown below.

-module(complex2).
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/1]).

start(ExtPrg) ->

spawn (?MODULE, init, [ExtPrgl).
stop() ->

complex ! stop.

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

init(ExtPrg) ->
register(complex, self()),
process flag(trap exit, true),
Port = open port({spawn, ExtPrg}, [{packet, 2}, binaryl),
loop(Port).

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, term to binary(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {complex, binary to term(Data)}
end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;
{'EXIT', Port, Reason} ->
exit(port terminated)
end.

Notethat caling conpl ex2: f oo/ 1 and conpl ex2: bar/ 1 will resultinthetuple{f oo, X} or{bar, Y} being

sent to the conpl ex process, which will code them as binaries and send them to the port. This means that the C
program must be able to handle these two tuples.

256 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

8.5.2 C Program

The example below shows a C program communicating with an Erlang program over a plain port with home made
encoding.

/* port.c */
typedef unsigned char byte;
int main() {

int fn, arg, res;

byte buf[1600];

while (read cmd(buf) > 0) {

fn = buf[0];
arg = buf[1];
if (fn == 1) {

res = foo(arg);
} else if (fn == 2) {
res = bar(arg);

}
buf[0] = res;
write cmd(buf, 1);
}
}

Compared to the C program above used for the plain port the whi | e-loop must be rewritten. Messages coming from
the port will be on the Erlang external term format. They should be converted into an ETERMSstruct, a C struct similar
to an Erlang term. Theresult of callingf oo() or bar () must be converted to the Erlang external term format before

being sent back to the port. But before calling any other er | _i nt er f ace function, the memory handling must be
initiated.

erl init(NULL, 0);

For reading from and writing to the port the functionsr ead_cnd() and wite_cnd() from the erl_comm.c
example below can still be used.

/* erl comm.c */
typedef unsigned char byte;

read cmd(byte *buf)
{

int len;

if (read exact(buf, 2) != 2)
return(-1);

len = (buf[0] << 8) | buf[1];

return read exact(buf, len);

}

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 257

8.5 Erl_Interface

write cmd(byte *buf, int len)
{
byte 1i;

1li = (len >> 8) & Oxff;
write exact(&li, 1);

1li = len & Oxff;
write exact(&li, 1);

return write exact(buf, len);

}

read _exact(byte *buf, int len)

{
int i, got=0;

do {
if ((1i = read(0, buf+got, len-got)) <= 0)
return(i);
got += 1i;
} while (got<len);

return(len);

}

write exact(byte *buf, int len)
{

int i, wrote = 0;

do {
if ((i = write(1l, buf+wrote, len-wrote)) <= 0)
return (i);
wrote += 1i;
} while (wrote<len);

return (len);

}

Thefunctioner| _decode() fromer| _mar shal will convert the binary into an ETERMstruct.

int main() {
ETERM *tuplep;

while (read cmd(buf) > 0) {
tuplep = erl decode(buf);

Inthiscaset upl ep now pointsto an ETERMstruct representing a tuple with two elements; the function name (atom)
and the argument (integer). By using thefunctioner | _el enent () fromer| _et er mitispossibleto extract these
elements, which also must be declared as pointers to an ETERMstruct.

fnp = erl element(1l, tuplep);
argp = erl element(2, tuplep);

The macros ERL_ATOM PTRand ERL_| NT_VALUE fromer | _et er mcan be used to obtain the actual values of
the atom and the integer. The atom value is represented as a string. By comparing this value with the strings "foo"
and "bar" it can be decided which function to call.

258 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.5 Erl_Interface

if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
res = foo(ERL _INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL_INT_ VALUE(argp));

}

Now an ETERM struct representing the integer result can be constructed using the function er | _nk_i nt () from
erl _etermltisalso possibleto usethefunctioner| _format () fromthemoduleer! _format.

intp = erl mk int(res);

The resulting ETERM struct is converted into the Erlang external term format using the function er | _encode()
fromer| _mar shal and sentto Erlangusingwri te_cnd().

erl encode(intp, buf);
write cmd(buf, erl eterm len(intp));

Last, the memory allocated by the ETERMcreating functions must be freed.

erl free compound(tuplep);
erl free term(fnp);
erl free term(argp);
erl free term(intp);

The resulting C program is shown below:

/* ei.c */

#include "erl interface.h"
#include "ei.h"

typedef unsigned char byte;

int main() {
ETERM *tuplep, *intp;
ETERM *fnp, *argp;
int res;
byte buf[100];
long allocated, freed;

erl init(NULL, 0);

while (read cmd(buf) > 0) {
tuplep = erl decode(buf);
fnp = erl _element(1l, tuplep);
argp = erl_element(2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM_PTR(fnp), "bar", 17) == 0) {
res = bar(ERL _INT VALUE(argp));

¥

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 259

8.6 Port drivers

intp = erl mk int(res);
erl encode(intp, buf);
write cmd(buf, erl term len(intp));

erl free compound(tuplep);
erl free term(fnp);

erl free term(argp);

erl free term(intp);

8.5.3 Running the Example

1. Compile the C code, providing the paths to the includefileser | _i nt er f ace. h and ei . h, and to the libraries
erl _interfaceandei.

unix> gcc -o extprg -I/usr/local/otp/lib/erl interface-3.2.1/include \\
-L/usr/local/otp/lib/erl interface-3.2.1/lib \\
complex.c erl comm.c ei.c -lerl interface -lei

In R5B and later versions of OTP, the i ncl ude and |i b directories are situated under OTPROOT/ | i b/
erl _interface- VSN, where OTPROOT isthe root directory of the OTP installation (/ usr/ | ocal / ot p inthe
example above) and VSN isthe version of theer | _i nt er f ace application (3.2.1 in the example above).

In R4B and earlier versions of OTP, i ncl ude and | i b are situated under OTPROOT/ usr .

2. Start Erlang and compile the Erlang code.

unix> erl
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~G)
1> c(complex2).
{ok, complex2}

3. Run the example.

2> complex2:start("extprg").
<0.34.0>

3> complex2:foo(3).

4

4> complex2:bar(5).

10

5> complex2:bar(352).

704

6> complex2:stop().

stop

8.6 Port drivers

Thisis an example of how to solve the example problem by using alinked in port driver.

260 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 Port drivers

emulator .
Port driver
Connected shared librar
process Port y
OS process

O Erlang process
—= Comnmnication

Figure 6.1: Port Driver Communication.

8.6.1 Port Drivers

A port driver isalinked in driver that is accessible asaport from an Erlang program. It isashared library (SO in Unix,
DLL in Windows), with special entry points. The Erlang runtime calls these entry points, when the driver is started
and when datais sent to the port. The port driver can aso send data to Erlang.

Since a port driver is dynamically linked into the emulator process, this is the fastest way of calling C-code from
Erlang. Calling functions in the port driver requires no context switches. But it is also the |least safe, because a crash
in the port driver brings the emulator down too.

8.6.2 Erlang Program

Just aswith aport program, the port communicates with a Erlang process. All communication goes through one Erlang
process that is the connected process of the port driver. Terminating this process closes the port driver.

Before the port is created, the driver must be loaded. Thisis done with the functioner| _dl | : 1 oad_driver/1,
with the name of the shared library as argument.

Theportisthen created using the BIFopen_por t / 2 withthetuple{ spawn, Dri ver Nane} asthefirst argument.
The string Shar edLi b isthe name of the port driver. The second argument is alist of options, nonein this case.

-module(complex5).
-export([start/1, init/1]).

start(SharedLib) ->
case erl ddll:load driver(".", SharedLib) of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
spawn (?MODULE, init, [SharedlLib]).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 261

8.6 Port drivers

init(SharedLib) ->
register(complex, self()),

Port = open port({spawn, SharedLib}, []),
loop(Port).

Now it is possible to implement conpl ex5: f oo/ 1 and conpl ex5: bar/ 1. They both send a message to the
conpl ex process and receive the reply.

foo(X) ->
call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

The conpl ex process encodes the message into a sequence of bytes, sendsit to the port, waits for areply, decodes
the reply and sends it back to the caller.

loop(Port) ->
receive
{call, Caller, Msg} ->

Port ! {self(), {command, encode(Msg)}},
receive

{Port, {data, Data}} ->

Caller ! {complex, decode(Data)}
end,

loop(Port)
end.

Assuming that both the arguments and the results from the C functions will be less than 256, a very simple encoding/

decoding scheme is employed where f 00 is represented by the byte 1, bar is represented by 2, and the argument/
result is represented by a single byte aswell.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

The resulting Erlang program, including functionality for stopping the port and detecting port failuresis shown below.

-module(complex5).
-export([start/1l, stop/0, init/1]).
-export([foo/1, bar/1]).

start(SharedLib) ->

case erl ddll:load driver(".", SharedLib) of
ok -> ok;

262 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.6 Port drivers

{error, already loaded} -> ok;

_ -> exit({error, could not load driver})
end,
spawn (?MODULE, init, [SharedlLibl]).

init(SharedLib) ->
register(complex, self()),
Port = open port({spawn, SharedLib}, []),
loop(Port).

stop() ->
complex ! stop.

foo(X) ->

call port({foo, X}).
bar(Y) ->

call port({bar, Y}).

call port(Msg) ->
complex ! {call, self(), Msg},
receive
{complex, Result} ->
Result
end.

loop(Port) ->
receive

{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive

{Port, {data, Data}} ->
Caller ! {complex, decode(Data)}
end,
loop(Port);

stop ->
Port ! {self(), close},
receive

{Port, closed} ->
exit(normal)
end;

{'EXIT', Port, Reason} ->
io:format("~p ~n", [Reason]),
exit(port terminated)

end.

encode({foo, X}) -> [1, X];
encode({bar, Y}) -> [2, Y].

decode([Int]) -> Int.

8.6.3 C Driver

The C driver isamodule that is compiled and linked into a shared library. It uses adriver structure, and includes the
header fileer| _dri ver. h.

The driver structure is filled with the driver name and function pointers. It is returned from the special entry point,
declared with themacro DRI VER_| NI T(<dri ver _nane>).

Thefunctionsfor receiving and sending data, are combined into afunction, pointed out by the driver structure. The data
sent into the port isgiven as arguments, and the data the port sendsback is sent with the C-functiondr i ver _out put .

Since the driver is a shared module, not a program, no main function should be present. All function pointers are not
used in our example, and the corresponding fieldsinthedri ver _ent ry structure are set to NULL.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 263

8.6 Port drivers

All functionsin the driver, takes ahandle (returned from st ar t), that isjust passed along by the erlang process. This
must in some way refer to the port driver instance.

The example_drv_start, isthe only function that is called with a handle to the port instance, so we must savethis. It is
customary to use a allocated driver-defined structure for this one, and pass a pointer back as areference.

It isnot agood ideato use aglobal variable; since the port driver can be spawned by multiple Erlang processes, this
driver-structure should be instantiated multiple times.

/* port driver.c */

#include <stdio.h>
#include "erl driver.h"

typedef struct {
ErlDrvPort port;
} example data;

static ErlDrvData example drv start(ErlDrvPort port, char *buff)

{
example data* d = (example data*)driver alloc(sizeof(example data));
d->port = port;
return (ErlDrvData)d;
}
static void example drv _stop(ErlDrvData handle)
{
driver free((char*)handle);
}

static void example drv output(ErlDrvData handle, char *buff,
ErlDrvSizeT bufflen)

{
example data* d = (example data*)handle;
char fn = buff[0], arg = buff[1], res;
if (fn == 1) {
res = foo(arg);
} else if (fn == 2) {
res = bar(arg);
¥
driver output(d->port, &res, 1);
}

ErlDrvEntry example driver entry = {
NULL, /* F_PTR init, called when driver is loaded */
example drv start, /* L PTR start, called when port is opened */
example drv stop, /* F PTR stop, called when port is closed */
example drv output, /* F PTR output, called when erlang has sent */
NULL, /* F_PTR ready input, called when input descriptor ready */
NULL, /* F_PTR ready output, called when output descriptor ready */

"example drv", /* char *driver name, the argument to open port */
NULL, /* F_PTR finish, called when unloaded */
NULL, /* void *handle, Reserved by VM */

NULL, /* F_PTR control, port command callback */
NULL, /* F_PTR timeout, reserved */
NULL, /* F_PTR outputv, reserved */

NULL, /* F_PTR ready async, only for async drivers */
NULL, /* F_PTR flush, called when port is about

to be closed, but there is data in driver

queue */
NULL, /* F_PTR call, much like control, sync call

to driver */

264 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

NULL, /* F_PTR event, called when an event selected
by driver event() occurs. */
ERL _DRV_EXTENDED MARKER, /* int extended marker, Should always be

set to indicate driver versioning */
ERL_DRV_EXTENDED MAJOR VERSION, /* int major_version, should always be
set to this value */
ERL_DRV_EXTENDED MINOR VERSION, /* int minor_version, should always be
set to this value */

0, /* int driver flags, see documentation */
NULL, /* void *handle2, reserved for VM use */
NULL, /* F_PTR process exit, called when a
monitored process dies */
NULL /* F_PTR stop select, called to close an
event object */
I ¢
DRIVER INIT(example drv) /* must match name in driver entry */
{
return &example driver entry;
}

8.6.4 Running the Example
1. Compilethe C code.

unix> gcc -o exampledrv -fpic -shared complex.c port driver.c
windows> cl -LD -MD -Fe exampledrv.dll complex.c port driver.c

2. Start Erlang and compile the Erlang code.

> erl
Erlang (BEAM) emulator version 5.1

Eshell V5.1 (abort with ~G)
1> c(complex5).
{ok, complex5}

3. Run the example.

2> complex5:start("example drv").
<0.34.0>

3> complex5:foo(3).

4

4> complex5:bar(5).

10

5> complex5:stop().

stop

8.7 C Nodes

Thisis an example of how to solve the example problem by using a C node. Note that a C node would not typically
be used for solving a simple problem like this, a port would suffice.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 265

8.7 C Nodes

8.7.1 Erlang Program

From Erlang's point of view, the C node is treated like a normal Erlang node. Therefore, calling the functions f oo
and bar only involves sending a message to the C node asking for the function to be called, and receiving the result.
Sending a message requires a recipient; a process which can be defined using either a pid or a tuple consisting of a
registered name and a node name. In this case atuple is the only alternative as no pid is known.

{RegName, Node} ! Msg

The node name Node should be the name of the C node. If short node names are used, the plain name of the node will
be cNwhere Nis an integer. If long node names are used, there is no such restriction. An example of a C node name
using short node namesisthusc1@ dri | , an example using long node namesiscnode@dri | . eri csson. se.

The registered name RegNane could be any atom. The name can be ignored by the C code, or it could be used for
exampl e to distinguish between different types of messages. Below is an example of what the Erlang code could look
like when using short node names.

-module(complex3).
-export([foo/1, bar/1]).

foo(X) ->
call cnode({foo, X}).
bar(Y) ->

call cnode({bar, Y}).

call cnode(Msg) ->
{any, cl@idril} ! {call, self(), Msg},
receive
{cnode, Result} ->
Result
end.

When using long node names the code is slightly different as shown in the following example:

-module(complex4).
-export([foo/1, bar/11).

foo(X) ->
call cnode({foo, X}).
bar(Y) ->

call cnode({bar, Y}).

call cnode(Msg) ->
{any, 'cnode@idril.du.uab.ericsson.se'} ! {call, self(), Msg},
receive
{cnode, Result} ->
Result
end.

266 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

8.7.2 C Program

Setting Up the Communication
Before calling any other Erl_Interface function, the memory handling must be initiated.
erl_init(NULL, 0);

Now the C node can beinitiated. If short node names are used, thisisdone by callinger| _connect _init().

erl connect init(1, "secretcookie", 0);

The first argument is the integer which is used to construct the node name. In the example the plain node name will
becl.

The second argument is a string defining the magic cookie.

The third argument is an integer which is used to identify a particular instance of a C node.

If long node node names are used, initiation isdone by callinger| _connect _xinit().

erl connect xinit("idril", "cnode", "cnode@idril.ericsson.se",
&addr, "secretcookie", 0);

The first three arguments are the host name, the plain node name, and the full node name. The fourth argument is a
pointer to ani n_addr struct with the IP address of the host, and the fifth and sixth arguments are the magic cookie
and instance number.

The C node can act asa server or aclient when setting up the communication Erlang-C. If it actsasaclient, it connects
to an Erlang node by calling er | _connect (), which will return an open file descriptor at success.

fd = erl connect("el@idril");

If the C node acts as a server, it must first create a socket (call bi nd() and | i st en()) listening to a certain port
number por t . It then publishes its name and port number with epnd (the Erlang port mapper daemon, see the man
page for epnd).

erl publish(port);

Now the C node server can accept connections from Erlang nodes.

fd = erl accept(listen, &conn);

The second argument to er| _accept is a struct Er | Connect that will contain useful information when a
connection has been established; for example, the name of the Erlang node.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 267

8.7 C Nodes

Sending and Receiving Messages

The C node can receive amessage from Erlang by callinger | _r ecei ve nsg() . Thisfunction reads datafrom the
open file descriptor f d into a buffer and puts the result in an Er | Message struct ensg. Er | Message hasafield
t ype defining which kind of datawas received. In this case the type of interest is ERL_REG_SEND which indicates
that Erlang sent amessageto aregistered process at the C node. The actual message, an ETERM will beinthensg field.

Itisalso necessary to take care of the types ERL_ ERROR (an error occurred) and ERL_TI CK (alive check from other
node, should be ignored). Other possible types indicate process events such as link/unlink and exit.

while (loop) {

got = erl receive msg(fd, buf, BUFSIZE, &emsg);
if (got == ERL TICK) {
/* ignore */
} else if (got == ERL ERROR) {
loop = 0; /* exit while loop */
} else {
if (emsg.type == ERL REG SEND) {

Since the message is an ETERMstruct, Erl_Interface functions can be used to manipulateit. In this case, the message
will be a 3-tuple (because that was how the Erlang code was written, see above). The second element will be the
pid of the caller and the third element will be the tuple { Funct i on, Ar g} determining which function to call with
which argument. The result of calling the function is made into an ETERMstruct aswell and sent back to Erlang using
erl _send(), which takes the open file descriptor, a pid and a term as arguments.

fromp = erl element(2, emsg.msg);
tuplep = erl element(3, emsg.msg);
fnp = erl element(1l, tuplep);
argp = erl element(2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL _INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL_INT VALUE(argp));

}

resp = erl_format("{cnode, ~i}", res);
erl send(fd, fromp, resp);

Finally, the memory allocated by the ETERMcreating functions (includinger | _r ecei ve_nsg() must be freed.

erl free term(emsg.from); erl free term(emsg.msg);
erl free term(fromp); erl free term(tuplep);

erl free term(fnp); erl free term(argp);

erl free term(resp);

The resulting C programs can be found in looks like the following examples. First a C node server using short node
names.

/* cnode s.c */

268 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include "erl interface.h"

#include "ei.h"

#define BUFSIZE 1000

int main(int argc, char **argv)
int port; /* Listen port number */
int listen; /* Listen socket */
int fd; /* fd to Erlang node */
ErlConnect conn; /* Connection data */
int loop = 1; /* Loop flag */
int got; /* Result of receive */
unsigned char buf[BUFSIZE]; /* Buffer for incoming message */
ErlMessage emsg; /* Incoming message */

ETERM *fromp, *tuplep, *fnp, *argp, *resp;
int res;

port = atoi(argv[1]);
erl init(NULL, 0);

if (erl connect init(1, "secretcookie", 0) == -1)
erl err quit("erl connect init");

/* Make a listen socket */
if ((listen = my listen(port)) <= 0)
erl err quit("my listen");

if (erl_publish(port) == -1)
erl_err_quit("erl_publish");

if ((fd = erl accept(listen, &conn)) == ERL_ERROR)
erl err quit("erl accept");
fprintf(stderr, "Connected to %s\n\r", conn.nodename);

while (loop) {

got = erl receive msg(fd, buf, BUFSIZE, &emsg);
if (got == ERL TICK) {
/* ignore */
} else if (got == ERL _ERROR) {
loop = 0;
} else {

if (emsg.type == ERL REG SEND) {
fromp = erl element(2, emsg.msg);
tuplep = erl element(3, emsg.msg);
fnp = erl element(1l, tuplep);
argp = erl _element(2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL _INT VALUE(argp));

}

resp = erl_format("{cnode, ~i}", res);
erl_send(fd, fromp, resp);

Ericsson AB. All Rights Reserved

.. Erlang/OTP System Documentation | 269

8.7 C Nodes

erl free term
erl free term
erl free term
erl free term

}

}
} /* while */
}

fnp); erl free term(argp);
resp);

—_———

int my listen(int port) {
int listen fd;
struct sockaddr in addr;
int on = 1;

emsg.from); erl free term(emsg.msg);
fromp); erl free term(tuplep);

if ((listen_fd = socket(AF_INET, SOCK STREAM, 0)) < 0)

return (-1);

setsockopt(listen fd, SOL SOCKET, SO REUSEADDR, &on, sizeof(on));

memset ((void*) &addr, 0, (size t) sizeof(addr));

addr.sin_family = AF_INET;
addr.sin port = htons(port);
addr.sin addr.s addr = htonl(INADDR ANY);

if (bind(listen fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)

return (-1);

listen(listen fd, 5);
return listen fd;

Below follows a C node server using long node names.

/* cnode s2.c */

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "erl interface.h"
#include "ei.h"

#define BUFSIZE 1000

int main(int argc, char **argv) {
struct in_addr addr;
int port;
int listen;
int fd;
ErlConnect conn;

int loop = 1;

int got;

unsigned char buf[BUFSIZE];
ErlMessage emsg;

/*
/*
/*
/*
/*

/*
/*
/*
/*

ETERM *fromp, *tuplep, *fnp, *argp, *resp;

int res;

32-bit IP number of host */
Listen port number */
Listen socket */

fd to Erlang node */
Connection data */

Loop flag */

Result of receive */

Buffer for incoming message */
Incoming message */

270 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

port = atoi(argv[1]);
erl init(NULL, 0);

addr.s_addr = inet_addr("134.138.177.89");
if (erl connect xinit("idril", "cnode", "cnode@idril.du.uab.ericsson.se",
&addr, "secretcookie", 0) == -1)

erl err quit("erl connect xinit");

/* Make a listen socket */
if ((listen = my listen(port)) <= 0)
erl err quit("my listen");

if (erl_publish(port) == -1)
erl_err_quit("erl _publish");

if ((fd = erl accept(listen, &conn)) == ERL_ERROR)
erl err quit("erl accept");
fprintf(stderr, "Connected to %s\n\r", conn.nodename);

while (loop) {

got = erl receive msg(fd, buf, BUFSIZE, &emsg);
if (got == ERL TICK) {
/* ignore */
} else if (got == ERL _ERROR) {
loop = 0;
} else {

if (emsg.type == ERL REG SEND) {
fromp = erl element(2, emsg.msg);
tuplep = erl element(3, emsg.msg);
fnp = erl element(1l, tuplep);
argp = erl _element(2, tuplep);

if (strncmp(ERL_ATOM PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL_INT VALUE(argp));

}

resp = erl_format("{cnode, ~i}", res);
erl_send(fd, fromp, resp);

erl free term(emsg.from); erl free term(emsg.msg);
erl_free_term(fromp); erl_free_term(tuplep);
erl_free_term(fnp); erl _free term(argp);
erl free term(resp);
}
}
}

int my listen(int port) {
int listen fd;
struct sockaddr in addr;
int on = 1;

if ((listen_fd = socket(AF_INET, SOCK STREAM, 0)) < 0)
return (-1);

setsockopt(listen fd, SOL SOCKET, SO REUSEADDR, &on, sizeof(on));

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 271

8.7 C Nodes

memset ((void*) &addr, 0, (size t) sizeof(addr));
addr.sin_family = AF_INET;

addr.sin port = htons(port);

addr.sin addr.s addr = htonl(INADDR ANY);

if (bind(listen fd, (struct sockaddr*) &addr, sizeof(addr)) < 0)
return (-1);

listen(listen fd, 5);
return listen fd;

And finally we have the code for the C node client.

/* cnode c.c */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#include "erl interface.h"
#include "ei.h"

#define BUFSIZE 1000

int main(int argc, char **argv) {

int fd; /* fd to Erlang node */

int loop = 1; /* Loop flag */

int got; /* Result of receive */

unsigned char buf[BUFSIZE]; /* Buffer for incoming message */
ErlMessage emsg; /* Incoming message */

ETERM *fromp, *tuplep, *fnp, *argp, *resp;
int res;

erl init(NULL, 0);

if (erl connect init(1, "secretcookie", 0) == -1)
erl err quit("erl connect init");

if ((fd = erl connect("el@idril")) < 0)
erl err quit("erl connect");
fprintf(stderr, "Connected to ei@idril\n\r");

while (loop) {

got = erl receive msg(fd, buf, BUFSIZE, &emsg);
if (got == ERL TICK) {
/* ignore */
} else if (got == ERL ERROR) {
loop = 0;
} else {

if (emsg.type == ERL REG SEND) {
fromp = erl element(2, emsg.msg);
tuplep = erl element(3, emsg.msg);
fnp = erl element(1l, tuplep);
argp = erl element(2, tuplep);

272 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.7 C Nodes

if (strncmp(ERL_ATOM_PTR(fnp), "foo", 3) == 0) {
res = foo(ERL INT VALUE(argp));

} else if (strncmp(ERL_ATOM PTR(fnp), "bar", 3) == 0) {
res = bar(ERL_INT_VALUE(argp));

}

resp = erl_format("{cnode, ~i}", res);
erl_send(fd, fromp, resp);

erl free term(emsg.from); erl free term(emsg.msg);
erl_free_term(fromp); erl_free_term(tuplep);
erl_free_term(fnp); erl_free_term(argp);
erl free term(resp);
}
}
}
}

8.7.3 Running the Example

1. Compile the C code, providing the paths to the Erl_Interface include files and libraries, and to the socket and
nsl libraries.

In R5B and later versions of OTP, the i ncl ude and |i b directories are situated under OTPROOT/ | i b/
erl _interface- VSN, where OTPROOT isthe root directory of the OTP installation (/ usr /| ocal / ot p inthe
example above) and VSN is the version of theer | _i nt er f ace application (3.2.1 in the example above).

In R4B and earlier versions of OTP, i ncl ude and | i b are situated under OTPROOT/ usr .

> gcc -0 cserver \\

-I/usr/local/otp/lib/erl interface-3.2.1/include \\
-L/usr/local/otp/lib/erl interface-3.2.1/lib \\
complex.c cnode s.c \\

-lerl interface -lei -lsocket -lnsl

unix> gcc -o cserver2 \\

-I/usr/local/otp/lib/erl interface-3.2.1/include \\
-L/usr/local/otp/lib/erl interface-3.2.1/lib \\
complex.c cnode s2.c \\

-lerl interface -lei -lsocket -lnsl

unix> gcc -o cclient \\

-I/usr/local/otp/lib/erl interface-3.2.1/include \\
-L/usr/local/otp/lib/erl interface-3.2.1/lib \\
complex.c cnode c.c \\

-lerl interface -lei -lsocket -lnsl

2. Compile the Erlang code.

unix> erl -compile complex3 complex4

3. Run the C node server example with short node names.

Start the C program cser ver and Erlang in different windows. cser ver takesaport number as argument and must
be started before trying to call the Erlang functions. The Erlang node should be given the short name el and must be
set to use the same magic cookie asthe C node, secr et cooki e.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 273

8.8 NIFs

unix> cserver 3456

unix> erl -sname el -setcookie secretcookie
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with ~G)
(el@idril)1> complex3:foo(3).

4

(el@idril)2> complex3:bar(5).

10

4. Run the C node client example. Terminate cser ver but not Erlang and start ccl i ent . The Erlang node must
be started before the C node client is.

unix> cclient

el@idril)3> complex3:foo(3).

=5~

el@idril)4> complex3:bar(5).
0

5. Run the C node server, long node names, example.

unix> cserver2 3456

unix> erl -name el -setcookie secretcookie
Erlang (BEAM) emulator version 4.9.1.2

Eshell V4.9.1.2 (abort with 7G)
(el@idril.du.uab.ericsson.se)1> complex4:foo(3).
4

(el@idril.du.uab.ericsson.se)2> complex4:bar(5).
10

8.8 NIFs

This is an example of how to solve the example problem by using NIFs. NIFs were introduced in R13B03 as an
experimental feature. It is a simpler and more efficient way of calling C-code than using port drivers. NIFs are most
suitable for synchronous functions like f 0o and bar in the example, that does some relatively short calculations
without side effects and return the resullt.

8.8.1 NIFs

A NIF (Native Implemented Function) is a function that is implemented in C instead of Erlang. NIFs appear as any
other functions to the callers. They belong to a module and are called like any other Erlang functions. The NIFs of
amodule are compiled and linked into a dynamic loadable shared library (SO in Unix, DLL in Windows). The NIF
library must be loaded in runtime by the Erlang code of the module.

Since a NIF library is dynamically linked into the emulator process, this is the fastest way of calling C-code from
Erlang (alongside port drivers). Calling NIFs requires no context switches. But it is also the |east safe, because acrash
inaNIF will bring the emulator down too.

274 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

8.8 NIFs

8.8.2 Erlang Program

Even if al functions of amodule will be NIFs, you still need an Erlang module for two reasons. First, the NIF library
must be explicitly loaded by Erlang code in the same module. Second, all NIFs of a module must have an Erlang
implementation as well. Normally these are minimal stub implementations that throw an exception. But it can also be
used as fallback implementations for functions that do not have native implemenations on some architectures.

NIF libraries are loaded by calling er | ang: | oad_ni f/ 2, with the name of the shared library as argument. The
second argument can be any term that will be passed on to the library and used for initialization.

-module(complex6) .
-export([foo/1, bar/1]).
-on_load(init/0).

init() ->
ok = erlang:load nif("./complex6 nif", 0).

foo(X) ->
exit(nif library not loaded).

bar(Y) ->
exit(nif library not loaded).

We usethe directive on_| oad to get functioni ni t to be automatically called when the module isloaded. If i ni t
returns anything other than ok, such when the loading of the NIF library fails in this example, the module will be
unloaded and calls to functions within it will fail.

Loading the NIF library will override the stub implementations and cause callsto f 0o and bar to be dispatched to
the NIF implementations instead.

8.8.3 NIF library code

The NIFsof themodule are compiled and linked into ashared library. Each NIF isimplemented asanormal C function.
Themacro ERL_NI F_I NI T together with an array of structures defines the names, arity and function pointers of all
the NIFs in the module. The header fileer | _ni f. h must be included. Since the library is a shared module, not a
program, no main function should be present.

The function arguments passed to a NIF appearsin an array ar gv, with ar gc asthe length of the array and thus the
arity of thefunction. The Nth argument of the function can beaccessed asar gv[N- 1] . NIFsalso take an environment
argument that serves as an opaque handle that is needed to be passed on to most API functions. The environment
contains information about the calling Erlang process.

#include "erl nif.h"

extern int foo(int x);
extern int bar(int y);

static ERL NIF TERM foo nif(ErlNifEnv* env, int argc, const ERL NIF TERM argv[])
{
int x, ret;
if (!enif get int(env, argv[0], &x)) {
return enif make badarg(env);
}
ret = foo(x);
return enif make int(env, ret);

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 275

8.8 NIFs

static ERL_NIF TERM bar nif(ErlNifEnv* env, int argc, const ERL NIF TERM argv[])
{
int y, ret;
if ('enif get int(env, argv[0], &y)) {
return enif make badarg(env);

ret = bar(y);
return enif make int(env, ret);

}

static ErlNifFunc nif funcs[] = {
{"foo", 1, foo nif},
{"bar", 1, bar nif}

}

ERL_NIF INIT(complex6, nif funcs, NULL, NULL, NULL, NULL)

Thefirst argument to ERL_NI F_I NI T must be the name of the Erlang module as a C-identifier. It will be stringified
by the macro. The second argument is the array of Er | Ni f Func structures containing name, arity and function
pointer of each NIF. The other arguments are pointers to callback functions that can be used to initialize the library.
We do not use them in this simple example so we set them all to NULL.

Function arguments and return values are represented as values of type ERL_NI F_TERM We use functions like
enif_get _int and eni f_nake_i nt to convert between Erlang term and C-type. If the function argument
ar gv[0] isnot aninteger theneni f _get i nt will return false, in which case we return by throwing abadar g-
exception witheni f _nake_badar g.

8.8.4 Running the Example
1. Compilethe C code.

unix> gcc -o complex6 nif.so -fpic -shared complex.c complex6 nif.c
windows> cl -LD -MD -Fe complex6 nif.dll complex.c complex6 nif.c

2. Start Erlang and compile the Erlang code.

> erl
Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.5 (abort with ~G)

1> c(complex6) .
{ok, complex6}

3. Run the example.

3> complex6:foo(3).

4> complex6:bar(5).

5> complex6:foo("not an integer").
** exception error: bad argument

in function complex6:foo/1
called as comlpex6:foo("not an integer")

276 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.1 Overview

9 OTP Design Principles

9.1 Overview

The OTP Design Principlesis a set of principles for how to structure Erlang code in terms of processes, modules
and directories.

9.1.1 Supervision Trees

A basic concept in Erlang/OTPisthe supervision tree. Thisisaprocess structuring model based on the idea of workers

and supervisors.

* Workers are processes which perform computations, that is, they do the actua work.

e Supervisors are processes which monitor the behaviour of workers. A supervisor can restart aworker if
something goes wrong.

e Thesupervision treeis ahierarchical arrangement of code into supervisors and workers, making it possible to
design and program fault-tolerant software.

—
=

Figure 1.1: Supervision Tree

In the figure above, square boxes represents supervisors and circles represent workers.

9.1.2 Behaviours

In a supervision tree, many of the processes have similar structures, they follow similar patterns. For example, the
supervisors are very similar in structure. The only difference between them is which child processes they supervise.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 277

9.1 Overview

Also, many of the workers are serversin a server-client relation, finite state machines, or event handlers such as error
loggers.

Behaviours are formalizations of these common patterns. The ideaisto divide the code for a processin a generic part
(a behaviour module) and a specific part (a callback module).

The behaviour module is part of Erlang/OTP. To implement a process such as a supervisor, the user only has to
implement the callback module which should export a pre-defined set of functions, the callback functions.

An example to illustrate how code can be divided into a generic and a specific part: Consider the following code
(writtenin plain Erlang) for asimple server, which keepstrack of anumber of "channels'. Other processes can allocate
and free the channels by calling the functionsal | oc/ 0 and f r ee/ 1, respectively.

-module(chl).
-export([start/0]).
-export([alloc/0, free/1]).
-export([init/0]).

start() ->
spawn(chl, init, []).
alloc() ->
chl ! {self(), alloc},
receive
{chl, Res} ->
Res
end.
free(Ch) ->
chl ! {free, Ch},
ok.
init() ->

register(chl, self()),
Chs = channels(),
loop(Chs).

loop(Chs) ->
receive
{From, alloc} ->
{Ch, Chs2} = alloc(Chs),
From ! {chl, Ch},
loop(Chs2);
{free, Ch} ->
Chs2 = free(Ch, Chs),
loop(Chs2)
end.

The code for the server can be rewritten into a generic part server . erl :

-module(server).
-export([start/1]).
-export([call/2, cast/2]).
-export([init/1]).

start(Mod) ->
spawn(server, init, [Mod]).

call(Name, Req) ->
Name ! {call, self(), Req},

278 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.1 Overview

receive
{Name, Res} ->
Res
end.

cast(Name, Req) ->
Name ! {cast, Req},
ok.

init(Mod) ->
register(Mod, self()),
State = Mod:init(),
loop(Mod, State).

loop(Mod, State) ->
receive
{call, From, Req} ->
{Res, State2} = Mod:handle call(Req, State),
From ! {Mod, Res},
loop(Mod, State2);
{cast, Req} ->
State2 = Mod:handle cast(Req, State),
loop(Mod, State2)
end.

and acalback modulech?2. erl :

-module(ch2).

-export([start/0]).

-export([alloc/0, free/1]).

-export([init/0, handle call/2, handle cast/2]).

start() ->
server:start(ch2).

alloc() ->
server:call(ch2, alloc).

free(Ch) ->
server:cast(ch2, {free, Ch}).

init() ->
channels().

handle call(alloc, Chs) ->
alloc(Chs). % => {Ch,Chs2}

handle cast({free, Ch}, Chs) ->
free(Ch, Chs). % => Chs2

Note the following:

« Thecodeinserver canbere-used to build many different servers.

* Thename of the server, in this example the atom ch2, is hidden from the users of the client functions. This
means the name can be changed without affecting them.

* The protcol (messages sent to and received from the server) is hidden aswell. Thisis good programming
practice and allows us to change the protocol without making changes to code using the interface functions.

* Wecan extend the functionality of ser ver , without having to change ch2 or any other callback module.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 279

9.1 Overview

(Inchl.erl and ch2. erl above, the implementation of channel s/ 0, all oc/ 1 and free/ 2 has been
intentionally left out, asit is not relevant to the example. For completeness, one way to write these functions are given
below. Note that this is an example only, a redlistic implementation must be able to handle situations like running
out of channels to allocate etc.)

channels() ->
{ Allocated = [], Free = lists:seq(1,100)}.

alloc({Allocated, [H|T] = Free}) ->
{H, {[H|Allocated], T}}.

free(Ch, {Alloc, Free} = Channels) ->
case lists:member(Ch, Alloc) of
true ->
{lists:delete(Ch, Alloc), [Ch|Freel};
false ->
Channels
end.

Code written without making use of behaviours may be more efficient, but the increased efficiency will be at the
expense of generality. The ability to manage all applicationsin the system in a consistent manner is very important.

Using behavioursalso makesit easier to read and understand code written by other programmers. Ad hoc programming
structures, while possibly more efficient, are always more difficult to understand.

Themodule ser ver corresponds, greatly simplified, to the Erlang/OTP behaviour gen_ser ver .
The standard Erlang/OTP behaviours are:

gen_server
For implementing the server of a client-server relation.
gen_fsm
For implementing finite state machines.
gen_event
For implementing event handling functionality.
super visor
For implementing a supervisor in a supervision tree.

The compiler understands the module attribute - behavi our (Behavi our) and issues warnings about missing
callback functions. Example:

-module(chs3).
-behaviour(gen server).

3> c(chs3).
./chs3.erl:10: Warning: undefined call-back function handle call/3
{ok,chs3}

9.1.3 Applications

Erlang/OTP comes with a number of components, each implementing some specific functionality. Components are
with Erlang/OTP terminology called applications. Examples of Erlang/OTP applications are Mnesia, which has
everything needed for programming database services, and Debugger which is used to debug Erlang programs. The
minimal system based on Erlang/OTP consists of the applications Kernel and STDLIB.

The application concept applies both to program structure (processes) and directory structure (modules).

280 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 Gen_Server Behaviour

The simplest kind of application does not have any processes, but consists of a collection of functional modules. Such
an application is called alibrary application. An example of alibrary application is STDLIB.

An application with processesis easiest implemented as a supervision tree using the standard behaviours.

How to program applicationsis described in Applications.

9.1.4 Releases

A release is a complete system made out from a subset of the Erlang/OTP applications and a set of user-specific
applications.

How to program releases is described in Releases.
How toinstall areleasein atarget environment is described in the chapter about Target Systemsin System Principles.

9.1.5 Release Handling

Release handling isupgrading and downgrading between different versionsof arelease, in a(possibly) running system.
How to do thisis described in Release Handling.

9.2 Gen_Server Behaviour

This chapter should be read in conjunction with gen_server(3), where al interface functions and callback functions
are described in detail.
9.2.1 Client-Server Principles

The client-server model is characterized by acentral server and an arbitrary number of clients. The client-server model
isgenerally used for resource management operations, where several different clientswant to shareacommon resource.
The server is responsible for managing this resource.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 281

9.2 Gen_Server Behaviour

)

Clients

Server

The Client-server model

Figure 2.1: Client-Server Model

9.2.2 Example

An example of asimple server written in plain Erlang was given in Overview. The server can be re-implemented using
gen_ser ver, resulting in this callback module:

-module(ch3).
-behaviour(gen server).

-export([start link/0]).
-export([alloc/0, free/1]).
-export([init/1, handle call/3, handle cast/2]).

start link() ->
gen server:start link({local, ch3}, ch3, [], []).

alloc() ->
gen_server:call(ch3, alloc).

free(Ch) ->
gen_server:cast(ch3, {free, Ch}).

init(Args) ->
{ok, channels()}.

handle call(alloc, From, Chs) ->

{Ch, Chs2} = alloc(Chs),
{reply, Ch, Chs2}.

282 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.2 Gen_Server Behaviour

handle cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

The codeis explained in the next sections.

9.2.3 Starting a Gen_Server

In the example in the previous section, the gen_server isstarted by callingch3: start i nk():

start _link() ->
gen server:start link({local, ch3}, ch3, [], []1) => {ok, Pid}

start _|i nk callsthefunctiongen_ser ver: start _| i nk/ 4. Thisfunction spawnsand linksto anew process,

agen_server.

e Thefirst argument {1 ocal , ch3} specifiesthe name. In this case, the gen_server will be locally registered
aschs.
If the nameis omitted, the gen_server isnot registered. Instead its pid must be used. The name could also be given
as{gl obal , Nane},inwhich casethe gen server isregistered using gl obal : r egi st er _nane/ 2.

* The second argument, ch3, is the name of the callback module, that is the module where the callback functions
are located.

In this case, the interface functions (st art _| i nk, al | oc and f r ee) are located in the same module as the
callback functions (i ni t, handl e_cal | and handl e_cast). Thisis normally good programming practice,
to have the code corresponding to one process contained in one module.

* Thethird argument, [], isaterm which is passed as-is to the callback functioni ni t . Here, i ni t does not need
any indata and ignores the argument.

e Thefourth argument, [], isalist of options. Seegen_ser ver (3) for available options.

If name registration succeeds, the new gen_server process calls the calback function ch3:init([]).init is
expected toreturn { ok, St at e}, where St at e istheinternal state of the gen_server. In this case, the state isthe
available channels.

init(_Args) ->
{ok, channels()}.

Notethat gen_server: start | i nk issynchronous. It does not return until the gen_server has been initialized
and is ready to receive requests.

gen_server:start _|ink must be used if the gen server is part of a supervision tree, i.e. is started by a
supervisor. Thereisanother functiongen_ser ver : st art to start astand-alonegen_server, i.e. agen_server which
isnot part of a supervision tree.

9.2.4 Synchronous Requests - Call

The synchronous request al |1 oc() isimplemented usinggen_server: cal |/ 2:

alloc() ->
gen_server:call(ch3, alloc).

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 283

9.2 Gen_Server Behaviour

ch3 isthe name of the gen_server and must agree with the name used to start it. al | oc isthe actua request.

The request is made into a message and sent to the gen_server. When the request is received, the gen_server calls
handl e_cal | (Request, From State) whichisexpectedtoreturnatuple{reply, Reply, Statel}.
Repl y isthereply which should be sent back to the client, and St at el isanew value for the state of the gen_server.

handle call(alloc, From, Chs) ->

{Ch, Chs2} = alloc(Chs),

{reply, Ch, Chs2}.
In this case, the reply isthe alocated channel Ch and the new state is the set of remaining available channels Chs 2.
Thus, thecall ch3: al | oc() returnsthe allocated channel Ch and the gen_server then waits for new requests, now

with an updated list of available channels.
9.2.5 Asynchronous Requests - Cast

The asynchronous request f r ee(Ch) isimplemented usinggen_ser ver : cast/ 2:

free(Ch) ->
gen _server:cast(ch3, {free, Ch}).
ch3 isthe name of the gen_server. {free, Ch} isthe actua request.
The request is made into a message and sent to the gen_server. cast , and thusf r ee, then returns ok.

When therequest isreceived, thegen_server callshandl e_cast (Request, St ate) whichisexpectedtoreturn
atuple{noreply, Statel}.Statelisanew valuefor the state of the gen_server.

handle cast({free, Ch}, Chs) ->
Chs2 = free(Ch, Chs),
{noreply, Chs2}.

Inthiscase, the new stateisthe updated list of available channelsChs2. Thegen_server isnow ready for new requests.

9.2.6 Stopping

In a Supervision Tree

If the gen_server is part of a supervision tree, no stop function is needed. The gen_server will automatically be
terminated by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be a timeout value and the gen_server
must be set to trap exit signasin thei ni t function. When ordered to shutdown, the gen_server will then call the
callback functiont er m nat e(shut down, State):

init(Args) ->

process flag(trap exit, true),

{ok, State}.

284 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 Gen_Fsm Behaviour

terminate(shutdown, State) ->
..code for cleaning up here..
ok.

Stand-Alone Gen_Servers

If the gen_server is not part of a supervision tree, a stop function may be useful, for example:

ékéort([stop/O]).

stop() ->
gen_server:cast(ch3, stop).

handle cast(stop, State) ->
{stop, normal, State};
handle cast({free, Ch}, State) ->

terminate(normal, State) ->
ok.

The callback function handling the st op request returns atuple { st op, nornal, Statel}, wherenor nal
specifiesthat itisanormal termination and St at el isanew value for the state of the gen_server. Thiswill cause the
gen_servertocal t er m nat e(nor mal , St at el) and then terminate gracefully.

9.2.7 Handling Other Messages

If the gen server should be able to receive other messages than requests, the callback function
handl e_i nfo(Info, State) must be implemented to handle them. Examples of other messages are exit
messages, if the gen_server islinked to other processes (than the supervisor) and trapping exit signals.

handle info({'EXIT', Pid, Reason}, State) ->
..code to handle exits here..
{noreply, Statel}.

The code_change method also has to be implemented.

code change(0ldVsn, State, Extra) ->
..code to convert state (and more) during code change
{ok, NewState}.

9.3 Gen_Fsm Behaviour

This chapter should be read in conjunction with gen_f sm(3) , where all interface functions and callback functions
are described in detail.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 285

9.3 Gen_Fsm Behaviour

9.3.1 Finite State Machines
A finite state machine, FSM, can be described as a set of relations of the form:

State(S) x Event(E) -> Actions(A), State(S')

These relations are interpreted as meaning:
If wearein state S and the event E occurs, we should perform the actions A and make atransition to the state S' .

For an FSM implemented using the gen_f smbehaviour, the state transition rules are written as a number of Erlang
functions which conform to the following convention:

StateName(Event, StateData) ->
. code for actions here ...
{next_state, StateName', StateData'}

9.3.2 Example

A door with a code lock could be viewed as an FSM. Initialy, the door islocked. Anytime someone presses a button,
this generates an event. Depending on what buttons have been pressed before, the sequence so far may be correct,
incomplete or wrong.

If it is correct, the door is unlocked for 30 seconds (30000 ms). If it isincomplete, we wait for another button to be
pressed. If it isiswrong, we start all over, waiting for a new button sequence.

Implementing the code lock FSM using gen_f smresultsin this callback module:

-module(code lock).
-behaviour(gen fsm).

-export([start link/1]).
-export([button/1]).
-export([init/1, locked/2, open/2]).

start link(Code) ->
gen fsm:start link({local, code lock}, code lock, lists:reverse(Code), []).

button(Digit) ->
gen fsm:send event(code lock, {button, Digit}).

init(Code) ->
{ok, locked, {[], Code}}.

locked({button, Digit}, {SoFar, Code}) ->
case [Digit|SoFar] of
Code ->
do_unlock(),
{next state, open, {[]1, Code}, 30000};
Incomplete when length(Incomplete)<length(Code) ->
{next state, locked, {Incomplete, Code}};
_Wrong ->
{next state, locked, {[], Code}}
end.

open(timeout, State) ->
do lock(),

286 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 Gen_Fsm Behaviour

{next_state, locked, State}.

The codeis explained in the next sections.

9.3.3 Starting a Gen_Fsm

In the examplein the previous section, the gen fsmis started by callingcode_| ock: start | i nk(Code) :

start link(Code) ->
gen fsm:start link({local, code lock}, code lock, lists:reverse(Code), []).

start _|ink calsthefunctiongen_fsm start | i nk/ 4. Thisfunction spawns and links to a new process, a
gen_fsm.

e The first argument {| ocal , code_| ock} specifies the name. In this case, the gen fsm will be localy
registered ascode_| ock.

If the name is omitted, the gen_fsmis not registered. Instead its pid must be used. The name could aso be given
as{gl obal , Nane},inwhich casethegen fsmisregistered using gl obal : r egi st er _nane/ 2.

e The second argument, code_| ock, is the name of the callback module, that is the module where the callback
functions are located.

In this case, the interface functions (start | i nk and button) are located in the same module as the
callback functions (i ni t , | ocked and open). Thisis normally good programming practice, to have the code
corresponding to one process contained in one module.
e Thethird argument, Code, isalist of digitswhich is passed reversed to the callback functioni ni t . Here, i ni t
gets the correct code for the lock as indata.
e Thefourth argument, [], isalist of options. Seegen_f sm(3) for available options.
If name registration succeeds, the new gen_fsm process callsthe callback functioncode | ock: i ni t (Code) . This
function is expected to return { ok, St at eNane, St at eDat a}, where St at eNane is the name of the initial
state of the gen_fsm. In this case | ocked, assuming the door is locked to begin with. St at eDat a is the internal
state of the gen_fsm. (For gen_fsms, the internal state is often referred to 'state data to distinguish it from the state
as in states of a state machine.) In this case, the state data is the button sequence so far (empty to begin with) and
the correct code of the lock.

init(Code) ->
{ok, locked, {[], Code}}.

Notethat gen_fsm start | i nk issynchronous. It does not return until the gen_fsm has been initialized and is
ready to receive notifications.

gen_fsmstart |ink must beused if the gen fsmis part of a supervision tree, i.e. is started by a supervisor.
There is another function gen_f sm st art to start a stand-alone gen_fsm, i.e. a gen fsm which is not part of a
supervision tree.

9.3.4 Notifying About Events

The function notifying the code lock about a button event isimplemented using gen_f sm send_event / 2:

button(Digit) ->

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 287

9.3 Gen_Fsm Behaviour

gen fsm:send event(code lock, {button, Digit}).

code_| ock isthe name of the gen_fsm and must agree with the name used to start it. { but t on, Di gi t} isthe
actual event.

The event is made into a message and sent to the gen fsm. When the event is received, the gen fsm calls
St at eNane(Event, StateData) which is expected to return a tuple { next _state, StateNanel,
St at eDat al}. St at eNane isthe name of the current state and St at eNanre1 is the name of the next state to go
to. St at eDat al isanew value for the state data of the gen_fsm.

locked({button, Digit}, {SoFar, Code}) ->
case [Digit|SoFar] of
Code ->
do_unlock(),
{next state, open, {[], Code}, 30000};
Incomplete when length(Incomplete)<length(Code) ->
{next state, locked, {Incomplete, Code}};
_Wrong ->
{next state, locked, {[], Code}};
end.

open(timeout, State) ->

do lock(),
{next state, locked, State}.

If the door islocked and a button is pressed, the complete button sequence so far is compared with the correct code
for the lock and, depending on the result, the door is either unlocked and the gen_fsm goesto state open, or the door
remainsin state| ocked.

9.3.5 Timeouts

When a correct code has been given, the door is unlocked and the following tuple is returned from | ocked/ 2:

{next _state, open, {[], Code}, 30000};

30000 is a timeout value in milliseconds. After 30000 ms, i.e. 30 seconds, a timeout occurs. Then
St at eNanme(ti neout, StateData) iscaled. In thiscase, the timeout occurs when the door has been in state
open for 30 seconds. After that the door is locked again:

open(timeout, State) ->
do lock(),
{next state, locked, State}.

9.3.6 All State Events

Sometimes an event can arrive at any state of the gen fsm. Instead of sending the message with
gen_fsm send_event/ 2 and writing one clause handling the event for each state function, the message can be
sentwithgen_fsm send _al |l _state_event/ 2 and handled with Modul e: handl e_event/ 3:

-module(code lock).

288 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

9.3 Gen_Fsm Behaviour

-export([stop/0]).

stop() ->
gen fsm:send all state event(code lock, stop).

handle event(stop, StateName, StateData) ->
{stop, normal, StateData}.

9.3.7 Stopping

In a Supervision Tree

If thegen_fsm ispart of a supervision tree, no stop function is needed. The gen_fsm will automatically be terminated
by its supervisor. Exactly how thisis doneis defined by a shutdown strategy set in the supervisor.

If it is necessary to clean up before termination, the shutdown strategy must be atimeout value and the gen_fsm must
be set to trap exit signalsinthei ni t function. When ordered to shutdown, the gen _fsm will then call the callback
functiont er m nat e(shut down, StateNanme, StateData):

init(Args) ->
process flag(trap exit, true),

{ok, StateName, StateData}.

terminate(shutdown, StateName, StateData) ->
..code for cleaning up here..
ok.

Stand-Alone Gen_Fsms

If the gen_fsmisnot part of a supervision tree, a stop function may be useful, for example:

:ékport([stop/O]).

stop() ->
gen_fsm:send all state event(code lock, stop).

handle event(stop, StateName, StateData) ->
{stop, normal, StateData}.

terminate(normal, StateName, StateData) ->
ok.

The callback function handling the st op event returns atuple { st op, nor mal , St at eDat al}, where nor nal
specifiesthat it isanormal termination and St at eDat al isanew vaue for the state data of the gen_fsm. Thiswill
causethegen fsmtocall t er mi nat e(nor mal , St at eNan