| v

ERLANG

Kernel

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Kernel 3.1
February 19, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

February 19, 2016

1 Reference Manual

The Kernel application has all the code necessary to run the Erlang runtime system itself: file servers and code servers
and so on.

Ericsson AB. All Rights Reserved.: Kernel | 1

kernel

kernel
Application

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. The Kernel application contains the following services:

» application controller, see application(3)

e code

« disk_log

» dist_ac, distributed application controller

e erl_boot_server

e erl_ddll

e« error_|ogger
« file

e gl obal

* gl obal _group
 heart

* inet
 net_kernel

e 0S

* pg2

e rpc

e seq_trace

e user

Error Logger Event Handlers

Two standard error logger event handlers are defined in the Kernel application. These are described in error_logger (3).

Configuration

Thefollowing configuration parameters are defined for the Kernel application. See app(4) for more information about
configuration parameters.

browser_cnmd = string() | {MF, A}

When pressing the Help button in atool such as Debugger or TV, the help text (an HTML fileFi | e) isby default
displayed in a Netscape browser which is required to be up and running. This parameter can be used to change
the command for how to display the help text if another browser than Netscape is preferred, or another platform
than Unix or Windows is used.

If set to a string Command, the command " Conmmand Fi | e" will be evaluated using os: cnd/ 1.

If set to amodule-function-argstuple{ M F, A}, thecall appl y(M F, [Fi | e| A]) will be evaluated.
distributed = [Distrib]

Specifies which applications are distributed and on which nodes they may execute. In this parameter:

e Distrib = {App, Nodes} | {App, Ti me, Nodes}

* App = aton()

2 | Ericsson AB. All Rights Reserved.: Kernel

kernel

Time = integer()>0
Nodes = [node() | {node(),...,node()}]

The parameter is described in application(3), function | oad/ 2.

di st _aut o_connect = Val ue

Specifies when nodes will be automatically connected. If this parameter is not specified, a node is aways
automatically connected, e.g when amessage is to be sent to that node. Val ue isone of:

never

Connections are never automatically established, they must be explicitly connected. See net_kernel (3).

once

Connections will be established automatically, but only once per node. If a node goes down, it must
thereafter be explicitly connected. See net_kernel(3).

perm ssions = [Pernm

Specifies the default permission for applications when they are started. In this parameter:

Per m = { Appl Name, Bool }

Appl Nane = at om()
Bool = bool ean()

Permissions are described in application(3), function per mi t / 2.

error _| ogger = Val ue

Val ue isone of:

tty

Installs the standard event handler which prints error reportsto st di 0. Thisisthe default option.

{file, FileNane}

Installs the standard event handler which prints error reportsto thefile Fi | eNarre, where Fi | eNarre is
astring.

fal se

No standard event handler is installed, but the initial, primitive event handler is kept, printing raw event
messages to tty.

sil ent

Error logging isturned off.

gl obal _groups = [GroupTupl €]

Defines global groups, see global _group(3).

G oupTupl e = { G oupName, [Node]} | {G oupName, PublishType, [Node]}
GroupNane = atom()

Publ i shType = normal | hidden

Node = node()

i net _default_connect_options = [{Opt, Val}]

Specifies default options for connect sockets, see inet(3).

inet_default listen options = [{Opt, Val}]

Specifies default optionsfor | i st en (and accept) sockets, see inet(3).

{inet_dist_use_interface, ip_address()}

If the host of an Erlang node has several network interfaces, this parameter specifies which one to listen on. See
inet(3) for the type definition of i p_addr ess() .

Ericsson AB. All Rights Reserved.: Kernel | 3

kernel

{inet _dist listen_nmin, First}

See below.
{inet_dist_listen_nmax, Last}

Definethe Fi r st . . Last port range for the listener socket of a distributed Erlang node.
i net_parse_error_log = silent

If this configuration parameter is set, no er r or _| ogger messages are generated when erroneous lines are
found and skipped in the various Inet configuration files.

inetrc = Fil enane
The name (string) of an Inet user configuration file. See ERTS User's Guide, Inet configuration.
net _setuptime = SetupTi ne

Set upTi me must beapositiveinteger or floating point number, and will beinterpreted asthe maximally allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is 120; if higher values are given, 120 will be used. The default value if the variable is not given, or if the value
isincorrect (e.g. not anumber), is 7 seconds.

Note that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.
net _ticktime = TickTinme

Specifiesthe net _ker nel tick time. Ti ckTi me is given in seconds. Once every Ti ckTi me/ 4 second, all
connected nodes are ticked (if anything else has been written to a node) and if nothing has been received from
another node within thelast four (4) tick timesthat node is considered to be down. This ensures that nodes which
are not responding, for reasons such as hardware errors, are considered to be down.

Thetime T, in which anode that is not responding is detected, iscalculated as: M nT < T < MaxT where:

MinT
MaxT

TickTime - TickTime / 4
TickTime + TickTime / 4

Ti ckTi me isby default 60 (seconds). Thus, 45 < T < 75 seconds.

Note: All communicating nodes should have the same Ti ckTi e value specified.

Note: Normally, aterminating node is detected immediately.
shutdown_timeout = integer() | infinity

Specifies the time appl i cati on_control | er will wait for an application to terminate during node
shutdown. If the timer expires, appl i cati on_control | er will brutally kill appl i cati on_nast er of
the hanging application. If this parameter is undefined, it defaultstoi nfinity.

sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes must be alive in order for this node to start properly. If some node in the list does
not start within the specified time, this node will not start either. If this parameter is undefined, it defaultsto [].

sync_nodes_opti onal = [NodeNane]

Specifies which other nodes can be alive in order for this node to start properly. If some nodein thislist does not
start within the specified time, this node starts anyway. If this parameter is undefined, it defaultsto the empty list.

4 | Ericsson AB. All Rights Reserved.: Kernel

kernel

sync_nodes_tinmeout = integer() | infinity

Specifies the amount of time (in milliseconds) this node will wait for the mandatory and optional nodes to start.
If this parameter is undefined, no node synchronization is performed. This option also makes sure that gl obal
is synchronized.

start_dist_ac = true | false

Startsthe di st _ac server if the parameter ist r ue. This parameter should be settot r ue for systemsthat use
distributed applications.

Thedefault valueisf al se. If this parameter is undefined, the server is started if the parameter di st ri but ed
IS set.

start _boot _server = true | false

Starts the boot _ser ver if the parameter ist r ue (see erl_boot_server(3)). This parameter should be set to
t r ue in an embedded system which uses this service.

The default valueisf al se.
boot _server_slaves = [Sl avel P

If the start _boot _server configuration parameter is t r ue, this parameter can be used to initialize
boot server with a list of dave IP addresses. SlavelP = string() [atom |
{integer(),integer(),integer(),integer()}

where0 <= integer() <=255.

Examples of SI avel P inatom, string and tuple form are:
' 150. 236. 16. 70', " 150, 236, 16, 70", {150, 236, 16, 70}.

The default valueis[] .
start_disk log = true | false

Startsthedi sk_| og_ser ver if the parameter ist r ue (see disk_log(3)). This parameter should be set to true
in an embedded system which uses this service.

The default valueisf al se.
start_pg2 = true | false

Startsthepg2 server (see pg2(3)) if the parameter ist r ue. Thisparameter should besettot r ue inan embedded
system which uses this service.

The default valueisf al se.
start _timer = true | false

Startsthet i mer _ser ver if the parameter ist r ue (see timer(3)). This parameter should be set tot rue in
an embedded system which uses this service.

The default valueisf al se.
shut down_func = {Md, Func}

Where:

« Md = atom()

e Func = atom()

Sets afunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as:
Mod: Func(Reason) ,whereReason istheterminatereasonfor appl i cati on_control | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.

Ericsson AB. All Rights Reserved.: Kernel | 5

kernel

See Also

app(4), application(3), code(3), disk log(3), erl_boot_server(3), erl_ddll(3), error_logger(3), file(3), global(3),
global_group(3), heart(3), inet(3), net_kernel(3), 05(3), pg2(3), rpc(3), seq_trace(3), timer(3), user(3)

6 | Ericsson AB. All Rights Reserved.: Kernel

application

application

Erlang module

In OTP, application denotes acomponent implementing some specific functionality, that can be started and stopped as
aunit, and which can be re-used in other systems as well. This module interfaces the application controller, aprocess
started at every Erlang runtime system, and contains functions for controlling applications (for example starting and
stopping applications), and functionsto accessinformation about applications (for example configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resourcefilecalled Appl i cat i on. app, where Appl i cat i on isthe name of the application. Refer to app(4) for
more information about the application specification.

Thismodule can a so be viewed as a behaviour for an application implemented according to the OTP design principles
as a supervision tree. The definition of how to start and stop the tree should be located in an application callback
module exporting a pre-defined set of functions.

Refer to OTP Design Principles for more information about applications and behaviours.

Data Types

start _type() = normal

| {takeover, Node :: node()}
| {failover, Node :: node()}
) I

restart type() = permanent | transient

tuple of(T)
A tuple where the elements are of type T.

temporary

Exports

get all env() -> Env
get all env(Application) -> Env
Types:
Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Appl i cat i on. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
functionreturns|] .

get all key() -> [] | {ok, Keys}
get all key(Application) -> undefined | Keys

Types:
Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their valuesfor Appl i cat i on. If theargument is omitted, it defaults
to the application of the calling process.

Ericsson AB. All Rights Reserved.: Kernel | 7

application

If the specified application is not loaded, the function returnsundef i ned. If the process executing the call does not
belong to any application, the function returns|[] .

get application() -> undefined | {ok, Application}
get application(PidOrModule) -> undefined | {ok, Application}

Types.
PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returnsthe name of the application to which the process Pi d or the module Mbdul e belongs. Providing no argument
isthesameascallingget _appli cation(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returnsundef i ned.

get env(Par) -> undefined | {ok, Val}
get env(Application, Par) -> undefined | {ok, Val}

Types:
Application = Par = atom()
Val = term()

Returns the value of the configuration parameter Par for Appl i cat i on. If the application argument is omitted, it
defaults to the application of the calling process.

If the specified application is not loaded, or the configuration parameter does not exist, or if the process executing the
call does not belong to any application, the function returnsundef i ned.

get env(Application, Par, Def) -> Val
Types:

Application = Par = atom()

Def = Val = term()

Works like get_env/2 but returns Def value when configuration parameter Par does not exist.

get key(Key) -> undefined | {ok, Val}
get key(Application, Key) -> undefined | {ok, Val}

Types:
Application = Key = atom()
Val = term()

Returnsthe value of the application specification key Key for Appl i cat i on. If the application argument is omitted,
it defaults to the application of the calling process.

If the specified application is not loaded, or the specification key does not exist, or if the process executing the call
does not belong to any application, the function returnsundef i ned.

load (AppDescr) -> ok | {error, Reason}

load (AppDescr, Distributed) -> ok | {error, Reason}
Types.

8 | Ericsson AB. All Rights Reserved.: Kernel

application

AppDescr = Application | (AppSpec :: application_spec())
Application = atom()

Distributed = {Application, Nodes}
| {Application, Time, Nodes}
| default
Nodes = [node() | tuple_of (node())]
Time = integer() >=1
Reason = term()
application spec() =
{application,
Application :: atom(),
AppSpecKeys :: [application_opt()]}
application opt() = {description, Description :: string()}
| {vsn, Vsn :: string()}
| {id, Id :: string()}
| {modules, [Module :: module()]}
| {registered, Names :: [Name :: atom()
| {applications, [Application :: atom()
| {included applications,
[Application :: atom()]}
| {env, [{Par :: atom(), Val :: term()}I}
| {start phases,
[{Phase :: atom(), PhaseArgs :: term()}] |
undefined}
| {maxT, MaxT :: timeout()}
| {maxP, MaxP :: integer() >= 1 | infinity}
| {mod,
Start
{Module :: module(),
StartArgs :: term()}}

L oads the application specification for an application into the application controller. It will also load the application
specifications for any included applications. Note that the function does not |oad the actual Erlang object code.

1}
1}

The application can be given by itsname Appl i cat i on. In this case the application controller will search the code
path for the application resource file Appl i cat i on. app and load the specification it contains.

The application specification can also be given directly as atuple AppSpec. This tuple should have the format and
contents as described in app(4) .

If Distributed == {Application,[Tine,]Nodes}, the application will be distributed. The argument
overrides the value for the application in the Kernel configuration parameter di st ri but ed. Appl i cati on must
be the name of the application (same asin thefirst argument). If anode crashesand Ti e has been specified, then the
application controller will wait for Ti me milliseconds before attempting to restart the application on another node. If
Ti e is not specified, it will default to 0 and the application will be restarted immediately.

Nodes isalist of node nameswhere the application may run, in priority from left to right. Node names can be grouped
using tuples to indicate that they have the same priority. Example:

Nodes = [cpl@cave, {cp2@cave, cp3@cave}]

Ericsson AB. All Rights Reserved.: Kernel | 9

application

This means that the application should preferably be started at cpl@ave. If cpl@ave is down, the application
should be started at either cp2@ave or cp3@ave.

IfDi stributed == def aul t,thevauefor theapplicationintheKernel configuration parameter di st ri but ed
will be used.

loaded applications() -> [{Application, Description, Vsn}]

Types:
Application = atom()
Description = Vsn = string()

Returns a list with information about the applications which have been loaded using | oad/ 1, 2, also included
applications. Appl i cat i on isthe application name. Descri pti on and Vsn arethevaluesof itsdescri pti on
and vsn application specification keys, respectively.

permit (Application, Permission) -> ok | {error, Reason}
Types:

Application = atom()

Permission = boolean()

Reason = term()

Changes the permission for Appl i cat i on to run at the current node. The application must have been loaded using
| oad/ 1, 2 for the function to have effect.

If the permission of aloaded, but not started, application isset to f al se, st art will return ok but the application
will not be started until the permissionissettot r ue.

If the permission of a running application is set to f al se, the application will be stopped. If the permission later is
settot rue, it will berestarted.

If the application is distributed, setting the permissionto f al se meansthat the application will be started at, or moved
to, another node according to how its distribution is configured (see | oad/ 2 above).

The function does not return until the application is started, stopped or successfully moved to another node. However,
in some cases where permissionis set to t r ue the function may return ok even though the application itself has not
started. Thisistrue when an application cannot start because it has dependencies to other applications which have not
yet been started. When they have been started, Appl i cat i on will be started as well.

By default, all applications are loaded with permission t r ue on all nodes. The permission is configurable by using
the Kernel configuration parameter per ni ssi ons.

set env(Application, Par, Val) -> ok
set env(Application, Par, Val, Opts) -> ok

Types.
Application = Par = atom()
Val = term()

Opts = [{timeout, timeout()} | {persistent, boolean()}]
Sets the value of the configuration parameter Par for Appl i cati on.

set _env/ 4 uses the standard gen_ser ver timeout value (5000 ms). The t i meout option can be provided if
another timeout value is useful, for example, in situations where the application controller is heavily loaded.

If set _env/ 4 is caled before the application is loaded, the application environment values specified in the
Appl i cati on. app filewill override the ones previously set. Thisis also true for application reloads.

10 | Ericsson AB. All Rights Reserved.: Kernel

application

The per si st ent option can be set to t r ue when there is a need to guarantee parameters set with set _env/ 4
will not be overridden by the ones defined in the application resource file on load. This means persistent values will
stick after the application is loaded and also on application reload.

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application
and configuration parameter dependent when and how often the valueisread by the application, and careless use
of this function may put the application in aweird, inconsistent, and malfunctioning state.

ensure started(Application) -> ok | {error, Reason}
ensure started(Application, Type) -> ok | {error, Reason}
Types:
Application = atom()
Type = restart_type()
Reason = term()
Equivalenttoappl i cation: start/ 1, 2 exceptit returns ok for aready started applications.

ensure all started(Application) -> {ok, Started} | {error, Reason}

ensure all started(Application, Type) ->
{ok, Started} | {error, Reason}

Types:

Application = atom()

Type = restart _type()

Started = [atom()]

Reason = term()
Equivalent to calling appl i cati on: start/ 1, 2 repeatedly on all dependencies that have not yet been started
for an application. The function returns { ok, AppNanes} for a successful start or for an already started
application (which are however omitted from the AppNanes list), and reports{ err or, {AppNane, Reason}}
for errors, where Reason isany possible reason returned by appl i cati on: st art/ 1, 2 when starting a specific

dependency. In case of an error, the applicationsthat were started by the function are stopped to bring the set of running
applications back to itsinitial state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types:
Application = atom()
Type = restart _type()
Reason = term()
Starts Appl i cat i on. If it is not loaded, the application controller will first load it using | oad/ 1. It will make

sure any included applications are loaded, but will not start them. That is assumed to be taken care of in the code
for Appl i cati on.

Ericsson AB. All Rights Reserved.: Kernel | 11

application

The application controller checks the value of the application specification key appl i cat i ons, to ensure that all
applications that should be started before this application are running. If not, { error, { not _st arted, App}} is
returned, where App isthe name of the missing application.

The application controller then creates an application master for the application. The application master is the group
leader of all the processes in the application. The application master starts the application by calling the application
callback function Modul e: st ar t / 2 asdefined by the application specification key nod.

The Ty pe argument specifies the type of the application. If omitted, it defaultstot enpor ary.

e |f apermanent application terminates, all other applications and the entire Erlang node are also terminated.

« |If atransient application terminateswith Reason == nor el , thisisreported but no other applications are
terminated. If atransient application terminates abnormally, all other applications and the entire Erlang node are
also terminated.

» |f atemporary application terminates, thisis reported but no other applications are terminated.

Note that it is always possible to stop an application explicitly by calling st op/ 1. Regardless of the type of the
application, no other applications will be affected.

Note also that the transient type is of little practical use, since when a supervision tree terminates, the reason is set
to shut down, not nor mal .

start _type() -> StartType | undefined | local
Types:
StartType = start_type()

This function is intended to be called by a process belonging to an application, when the application is being started,
to determine the start type which is either St art Type or | ocal .

SeeModul e: st art/ 2 for adescription of St art Type.

| ocal isreturned if only parts of the application is being restarted (by a supervisor), or if the function is called
outside a startup.

If the process executing the call does not belong to any application, the function returnsundef i ned.

stop(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
StopsAppl i cat i on. Theapplication master callsModul e: prep_st op/ 1, if such afunction isdefined, and then
tellsthe top supervisor of the application to shutdown (seesuper vi sor (3)). Thismeansthat the entire supervision

tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calsModul e: st op/ 1. Modul e isthe callback module as defined by the application specification key nmod.

Last, the application master itself terminates. Note that all processes with the application master as group leader, i.e.
processes spawned from a process bel onging to the application, thus are terminated as well.

When stopped, the application is still loaded.

In order to stop a distributed application, st op/ 1 has to be called on all nodes where it can execute (that is, on all
nodes where it has been started). The call to st op/ 1 on the node where the application currently executes will stop
its execution. The application will not be moved between nodes due to st op/ 1 being called on the node where the
application currently executes before st op/ 1 is called on the other nodes.

12 | Ericsson AB. All Rights Reserved.: Kernel

application

takeover(Application, Type) -> ok | {error, Reason}
Types.

Application = atom()

Type = restart _type()

Reason = term()
Performs a takeover of the distributed application Appl i cati on, which executes at another node Node. At
the current node, the application is restarted by calling Modul e: start ({t akeover, Node}, Start Args).
Modul e and Start Args are retrieved from the loaded application specification. The application at the

other node is not stopped until the startup is completed, i.e. when Mbdul e: start/2 and any cdls to
Mbdul e: st art _phase/ 3 have returned.

Thus two instances of the application will run simultaneously during the takeover, which makesit possible to transfer
datafrom the old to the new instance. If thisisnot acceptabl e behavior, parts of the old instance may be shut down when
the new instance is started. Note that the application may not be stopped entirely however, at least the top supervisor
must remain alive.

Seestart/ 1, 2 for adescription of Type.

unload(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
Unloads the application specification for Appl i cat i on from the application controller. It will also unload the

application specifications for any included applications. Note that the function does not purge the actual Erlang object
code.

unset env(Application, Par) -> ok
unset env(Application, Par, Opts) -> ok
Types:
Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]
Removes the configuration parameter Par and itsvalue for Appl i cat i on.

unset env/ 2 usesthe standard gen_ser ver timeout value (5000 ms). Thet i meout option can be provided if
another timeout valueis useful, for example, in situations where the application controller is heavily loaded.

unset _env/ 3 aso alows the persistent option to be passed (seeset _env/ 4 above).

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application
and configuration parameter dependent when and how often the valueisread by the application, and careless use
of this function may put the application in aweird, inconsistent, and malfunctioning state.

which applications() -> [{Application, Description, Vsn}]
which applications(Timeout) -> [{Application, Description, Vsn}]
Types:

Ericsson AB. All Rights Reserved.: Kernel | 13

application

Timeout = timeout()
Application = atom()
Description = Vsn = string()
Returns alist with information about the applications which are currently running. Appl i cat i on isthe application

name. Descri ption and Vsn are the values of its descri pti on and vsn application specification keys,
respectively.

whi ch_appl i cati ons/ 0 usesthe standard gen_ser ver timeout value (5000 ms). A Ti meout argument can
be provided if another timeout value is useful, for example, in situations where the application controller is heavily
loaded.

CALLBACK MODULE

The following functions should be exported from an appl i cat i on callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}

Types.
Start Type = start_type()
StartArgs = tern()
Pid = pid()

State = term)

This function is called whenever an application is started using appl i cati on: start/ 1, 2, and should start the
processes of the application. If the application is structured according to the OTP design principles as a supervision
tree, this means starting the top supervisor of the tree.

St ar t Type defines the type of start:

e nornal ifit'sanormal startup.

* nornal adsoif theapplication is distributed and started at the current node due to a failover from another node,
and the application specification key st art _phases == undefi ned.

« {takeover, Node} if the application is distributed and started at the current node due to a takeover from
Node, either becauseappl i cati on: t akeover/ 2 has been called or because the current node has higher
priority than Node.

« {failover, Node} if theapplication is distributed and started at the current node due to afailover from
Node, and the application specification key st art _phases /= undefi ned.
Start Args isthe St ar t Ar gs argument defined by the application specification key nod.

The function should return { ok, Pi d} or { ok, Pi d, St at e} where Pi d is the pid of the top supervisor and
St at e is any term. If omitted, St at e defaults to [] . If later the application is stopped, St at e is passed to
Modul e: prep_stop/ 1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types.

Phase = aton()

Start Type = start_type()

PhaseArgs = term))

14 | Ericsson AB. All Rights Reserved.: Kernel

application

Pid = pid()
State = state()

This function is used to start an application with included applications, when there is a need for synchronization
between processesin the different applications during startup.

The start phases is defined by the application specification key st art _phases == [{Phase, PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

See Mbdul e: st art/ 2 for adescription of St art Type.

Module:prep stop(State) -> NewState
Types:
State = NewState = term)
Thisfunctioniscalled when an application isabout to be stopped, before shutting down the processes of the application.

St at e isthe state returned from Modul e: start/ 2, or [] if no state was returned. NewSt at e is any term and
will be passed to Mbdul e: st op/ 1.

The function is optional. If it is not defined, the processes will be terminated and then Modul e: st op(St at €) is
called.

Module:stop(State)
Types.
State = term)

This function is called whenever an application has stopped. It isintended to be the opposite of Mbdul e: start/ 2
and should do any necessary cleaning up. The return value isignored.

St at e isthe return value of Modul e: prep_st op/ 1, if such afunction exists. Otherwise St at e is taken from
thereturn value of Mbdul e: start/ 2.

Module:config change(Changed, New, Removed) -> ok
Types.

Changed = [{Par, Val }]

New = [{Par, Val }]

Removed = [Par]

Par = atom()

Val = term))

This function is called by an application after a code replacement, if there are any changes to the configuration
parameters.

Changed isalist of parameter-value tuples with all configuration parameters with changed values, Newis alist of
parameter-valuetupleswith all configuration parametersthat have been added, and Renoved isalist of all parameters
that have been removed.

SEE ALSO
OTP Design Principles, kernel(6), app(4)

Ericsson AB. All Rights Reserved.: Kernel | 15

auth

auth

Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types

cookie() = atom()

Exports

is_auth(Node) -> yes | no
Types:
Node = node()
Returns yes if communication with Node is authorized. Note that a connection to Node will be established in this

case. Returnsno if Node does not exist or communication is not authorized (it has another cookie than aut h thinks
it has).

Use net_adm: ping(Node) instead.

cookie() -> Cookie
Types:

Cookie = cooki e()
Use erlang: get_cookie() instead.

cookie(TheCookie) -> true

Types.
TheCookie = Cookie | [Cookie]
The cookie may also be given as alist with a single atom element.
Cookie = cooki e()

Use erlang: set_cookie(node(), Cookie) instead.

node cookie([Node, Cookiel]) -> yes | no
Types.

Node = node()

Cooki e = cooki e()

Equivalent to node_cookie(Node, Cookie).

node cookie(Node, Cookie) -> yes | no
Types:

16 | Ericsson AB. All Rights Reserved.: Kernel

auth

Node = node()
Cookie = cookie()

Sets the magic cookie of Node to Cooki e, and verifies the status of the authorization. Equivalent to calling
erlang:set_cookie(Node, Cookie), followed by auth:is_auth(Node).

Ericsson AB. All Rights Reserved.: Kernel | 17

code

code

Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command
lineflag - node.

% erl -mode interactive

Default modeisi nt er acti ve.

* Inembedded mode, al codeisloaded during system start-up according to the boot script. (Code can also beloaded
later by explicitly ordering the code server to do so).

e Ininteractive mode, only some code is loaded during system startup-up, basically the modules needed by the
runtime system itself. Other code is dynamically loaded when first referenced. When a call to a function in a
certain module is made, and the module is not loaded, the code server searches for and tries to load the module.

To prevent accidentally reloading modules affecting the Erlang runtime system itself, the ker nel , stdl i b and
conpi | er directories are considered sticky. This means that the system issues a warning and rejects the request if
a user tries to reload a module residing in any of them. The feature can be disabled by using the command line flag
-nosti ck.

Code Path

In interactive mode, the code server maintains a search path -- usualy called the code path -- consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under thelibrary
directory $OTPROOT/ | i b, where $OTPROOT is the installation directory of Erlang/OTP, code: root _dir ().
Directories can benamed Nane[- VVsn] and the code server, by default, choosesthe directory with the highest version
number among those which have the same Nane. The - Vsn suffix is optional. If an ebi n directory exists under
Narme[- Vsn] , it isthisdirectory which is added to the code path.

The environment variable ERL_ LI BS (defined in the operating system) can be used to define additiona library
directories that will be handled in the same way as the standard OTP library directory described above, except that
directories that do not have an ebi n directory will be ignored.

All application directories found in the additional directorieswill appear before the standard OTP applications, except
for the Kernel and STDLIB applications, which will be placed before any additional applications. In other words,
modules found in any of the additional library directories will override modules with the same name in OTP, except
for modulesin Kernel and STDLIB.

The environment variable ERL_LI BS (if defined) should contain a colon-separated (for Unix-like systems) or
semicolon-separated (for Windows) list of additional libraries.

Example: On an Unix-like system, ERL_LI BS could be setto/ usr/ 1 ocal / junger| :/ home/ sone_user/
my_erlang_| i b.(OnWindows, use semi-colon as separator.)

Code Path Cache

The code server incorporates a code path cache. The cache functionality is disabled by default. To activate it, start the
emulator with the command line flag - code_pat h_cache or call code: r ehash() . When the cache is created

18 | Ericsson AB. All Rights Reserved.: Kernel

code

(or updated), the code server searches for modules in the code path directories. This may take some time if the the
code path islong. After the cache creation, the time for loading modules in alarge system (one with alarge directory
structure) issignificantly reduced compared to having the cache disabled. The code server isableto look up thelocation
of amodule from the cache in constant time instead of having to search through the code path directories.

Application resource files (. app files) are aso stored in the code path cache. This feature is used by the application
controller (see application(3)) to load applications efficiently in large systems.

Note that when the code path cacheis created (or updated), any relative directory namesin the code path are converted
to absolute.

Loading of Code From Archive Files

Warning:

The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is
ready isto obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release.
Thefunctionl i b_di r/ 2 andtheflag - code_pat h_choi ce are also experimental.

Inthe current implementation, Erlang archivesare ZI P fileswith. ez extension. Erlang archives may also be enclosed
inescri pt fileswhose file extension is arbitrary.

Erlang archivefilesmay contain entire Erlang applications or parts of applications. Thestructurein an archivefileisthe
same asthedirectory structure for an application. If you for example would create an archive of mesi a- 4. 4. 7, the
archivefilemust benamed mesi a- 4. 4. 7. ez and it must contain atop directory withthenamemesi a- 4. 4. 7.
If the version part of the name is omitted, it must also be omitted in the archive. That is, ammesi a. ez archive must
contain ammesi a top directory.

An archivefile for an application may for example be created like this:

zip:create("mnesia-4.4.7.ez",
["mnesia-4.4.7"],
[{cwd, code:lib dir()},
{compress, all},
{uncompress, [".beam",".app"1}1).

Any file in the archive may be compressed, but in order to speed up the access of frequently read files, it may be a
good ideato store beamand app files uncompressed in the archive.

Normally thetop directory of an application islocated either inthelibrary directory $OTPROOT/ | i b or inadirectory
referred to by the environment variable ERL_ LI BS. At startup when theinitial code path is computed, the code server
will also look for archivefilesin these directories and possibly add ebi n directoriesin archivesto the code path. The
code path will then contain paths to directories that looks like $OTPROOT/ | i b/ mesi a. ez/ rmmesi a/ ebi n or
$OTPROOT/ | i b/ mesi a-4. 4. 7. ez/ mesi a- 4. 4. 7/ ebi n.

The code server uses the module er| _pri m | oader (possibly via the erl _boot server) to read code
files from archives. But the functions in erl _prim| oader may aso be used by other applications to
read files from archives. For example, the call erl _prim/loader:list dir("/otp/root/lib/
mesi a-4. 4. 7. ez/ mesi a- 4. 4. 7/ exanpl es/ bench) " would list the contents of a directory inside an
archive. Seeerl_prim loader(3)

An application archive file and a regular application directory may coexist. This may be useful when there is a need
of having parts of the application as regular files. A typical caseisthepri v directory which must reside as aregular
directory in order to be able to dynamically link in drivers and start port programs. For other applications that do not

Ericsson AB. All Rights Reserved.: Kernel | 19

code

have this need, the pr i v directory may reside in the archive and the files under the pr i v directory may be read via
theer| _prim.l oader.

At the time point when a directory is added to the code path as well as when the entire code path is (re)set,
the code server will decide which subdirectories in an application that shall be read from the archive and which
that shall be read as regular files. If directories are added or removed afterwards, the file access may fail if
the code path is not updated (possibly to the same path as before in order to trigger the directory resolution
update). For each directory on the second level (ebin, priv, src etc.) in the application archive, the code server will
firstly choose the regular directory if it exists and secondly from the archive. The function code: i b_dir/2
returns the path to the subdirectory. For example code: | i b_di r (megaco, ebi n) may return / ot p/ r oot /
i b/ megaco-3.9.1.1. ez/ megaco-3.9. 1. 1/ ebi nwhilecode: | i b_di r (negaco, pri v) may return
/otp/root/lib/megaco-3.9.1.1/priv.

When an escri pt file contains an archive, there are neither restrictions on the name of theescr i pt nor on how
many applications that may be stored in the embedded archive. Single beamfiles may also reside on the top level in
the archive. At startup, both the top directory in the embedded archive as well as all (second level) ebi n directories
in the embedded archive are added to the code path. See escript(1)

When the choice of directories in the code path is stri ct, the directory that ends up in the code path will be
exactly the stated one. This means that if for example the directory $OTPROOT/ | i b/ mesi a- 4. 4. 7/ ebin is
explicitly added to the code path, the code server will not load files from $OTPROOT/ | i b/ rmmesi a-4. 4. 7. ez/
mmesi a- 4. 4. 7/ ebi n and vice versa

This behavior can be controlled via the command line flag - code_pat h_choi ce Choi ce. If theflag is set to
r el axed, the code server will instead choose a suitable directory depending on the actual file structure. If there exists
aregular application ebin directory,situation it will be chosen. But if it does not exist, the ebin directory in the archive
ischosen if it exists. If neither of them exists the original directory will be chosen.

Thecommand lineflag- code_pat h_choi ce Choi ce doesalso affect howi ni t interpretstheboot scri pt.
The interpretation of the explicit code paths in the boot scri pt may bestrict orrel axed. It is particular
useful to set the flag to r el axed when you want to elaborate with code loading from archives without editing the
boot scri pt.Thedefaultisr el axed. Seeinit(3)

Current and Old Code

The code of a module can exists in two variants in a system: current code and old code. When a module is loaded
into the system for the first time, the code of the module becomes 'current’ and the global export table is updated with
references to all functions exported from the module.

If then a new instance of the module is loaded (perhaps because of the correction of an error), then the code of the
previous instance becomes 'old', and al export entries referring to the previous instance are removed. After that the
new instanceis loaded asif it was loaded for the first time, as described above, and becomes 'current'.

Both old and current code for a module are valid, and may even be evaluated concurrently. The difference is that
exported functionsin old code are unavailable. Hence there is no way to make aglobal call to an exported function in
old code, but old code may still be evaluated because of processeslingering in it.

If athird instance of the modul e isloaded, the code server will remove (purge) the old code and any processeslingering
init will be terminated. Then the third instance becomes 'current' and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, refer
to Erlang Reference Manual.
Argument Types and Invalid Arguments

Generally, module and application names are atoms, while file and directory names are strings. For backward
compatibility reasons, some functions accept both strings and atoms, but a future release will probably only allow the
arguments that are documented.

20 | Ericsson AB. All Rights Reserved.: Kernel

code

From the R12B release, functions in this module will generally fail with an exception if they are passed an incorrect
type (for instance, aninteger or atuplewhere an atom was expected). An error tuplewill bereturned if type of argument
was correct, but there was some other error (for instance, a non-existing directory giventoset _pat h/ 1.

Data Types

load ret() = {error, What :: load_error_rsn()}
| {module, Module :: module()}

load error rsn() = badfile
| native code

| nofile

| not purged

| on load

| sticky directory

Exports

set path(Path) -> true | {error, What}

Types:
Path = [Dir :: file:filenane()]
What = bad directory | bad path

Sets the code path to the list of directories Pat h.

Returnst r ue if successful,or{ error, bad_di rectory} ifanyDi r isnotthenameof adirectory,or{ error,
bad_pat h} if theargument isinvalid.

get path() -> Path

Types:
Path = [Dir :: file:filename()]
Returns the code path

add path(Dir) -> add_path_ret()
add pathz(Dir) -> add_path_ret()
Types.
Dir = file:filenane()
add path ret() = true | {error, bad directory}

Adds Di r to the code path. The directory is added as the last directory in the new path. If Di r already existsin the
path, it is not added.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add patha(Dir) -> add_path_ret()
Types:
Dir = file:filenanme()
add path ret() = true | {error, bad directory}
AddsDi r tothebeginning of the code path. If Di r already exists, it isremoved from the old position in the code path.

Returnst r ue if successful, or{error, bad_directory} if D r isnotthe nameof adirectory.

Ericsson AB. All Rights Reserved.: Kernel | 21

code

add paths(Dirs) -> ok
add pathsz(Dirs) -> ok
Types:
Dirs = [Dir :: file:filenanme()]
Addsthedirectoriesin Di r s to the end of the code path. If aDi r already exists, it is not added. This function always
returns ok, regardless of the validity of each individual Di r .

add pathsa(Dirs) -> ok
Types:
Dirs = [Dir :: file:filenanme()]
Adds the directories in Di r s to the beginning of the code path. If aDi r already exists, it is removed from the old
position in the code path. This function always returns ok, regardiess of the validity of each individual Di r .

del path(NameOrDir) -> boolean() | {error, What}
Types:
NameOrDir = Name | Dir
Name = atom()
Dir = file:filenanme()
What = bad name
Deletes a directory from the code path. The argument can be an atom Narme, in which case the directory with the

name. ../ Name[- Vsn] [/ ebi n] isdeleted from the code path. It is also possible to give the complete directory
name Di r as argument.

Returnst r ue if successful, or f al se if the directory isnot found, or { er r or, bad_nan®e} if the argument is
invalid.

replace path(Name, Dir) -> true | {error, What}
Types.
Name = atom()
Dir = file:filenane()
What = bad directory | bad name | {badarg, term()}
This function replaces an old occurrence of adirectory named . . . / Name[- Vsn] [/ ebi n] , in the code path, with
Di r.If Nanme doesnot exist, it addsthe new directory Di r last in the code path. The new directory must also be named

.../ Name[- Vsn] [/ ebi n] . This function should be used if a new version of the directory (library) is added to
arunning system.

Returnst r ue if successful, or { error, bad_nane} if Name isnotfound, or { error, bad_directory} if
Di r doesnot exist,or{error, {badarg, [Nanme, Dir]}} if Nane or D r isinvalid.

load file(Module) -> load_ret()

Types:
Module = module()
load ret() = {error, What :: load_error_rsn()}

| {module, Module :: module()}

Triesto load the Erlang module Mbdul e, using the code path. It looks for the object code file with an extension that
corresponds to the Erlang machine used, for example Modul e. beam Theloading failsif the module name found in

22 | Ericsson AB. All Rights Reserved.: Kernel

code

the object code differs from the name Modul e. load_binary/3 must be used to load object code with a module name
that is different from the file name.

Returns { nrodul e, Mbdul e} if successful, or {error, nofil e} if no object codeisfound, or { error,
sticky_directory} if the object code resides in a sticky directory. Also if the loading fails, an error tuple is
returned. See erlang:load_module/2 for possible values of What .

load abs(Filename) -> load_ret()

Types:
Filename = file:filenane()
load ret() = {error, What :: load_error_rsn()}
| {module, Module :: module()}
loaded filename() = (Filename :: file:filenane())

| | oaded_ret _atons()
loaded ret atoms() = cover compiled | preloaded
Doesthe same as| oad_fi | e(Modul e), but Fi | enane is either an absolute file name, or a relative file name.

The code path is not searched. It returns a value in the same way as load file/1. Note that Fi | enane should not
contain the extension (for example" . beanm!'); | oad_abs/ 1 adds the correct extension itself.

ensure loaded(Module) -> {module, Module} | {error, What}
Types:

Module = module()

What = embedded | badfile | native code | nofile | on_ load

Tries to to load a module in the same way as load_file/1, unless the module is aready loaded. In embedded mode,
however, it does not load a module which is not already loaded, but returns{ err or, enbedded} instead.

load binary(Module, Filename, Binary) ->
{module, Module} | {error, What}

Types:
Module = module()
Filename = | oaded_fil enane()
Binary = binary()
What = badarg | | oad_error_rsn()
loaded filename() = (Filename :: file:filenane())

| | oaded_ret _atons()
loaded ret atoms() = cover compiled | preloaded

This function can be used to load object code on remote Erlang nodes. The argument Bi nar y must contain object
code for Modul e. Fi | enane isonly used by the code server to keep arecord of from which file the object code for
Modul e comes. Accordingly, Fi | enane is not opened and read by the code server.

Returns{ nodul e, Modul e} if successful, or{error, sticky_directory} if theobject coderesidesina
sticky directory, or { er r or, badar g} if any argumentisinvalid. Alsoif theloadingfails, an error tupleisreturned.
See erlang:load_module/2 for possible values of What .

delete(Module) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: Kernel | 23

code

Module = module()

Removes the current code for Modul e, that is, the current code for Modul e is made old. This means that processes
can continue to execute the code in the module, but that no external function calls can be madeto it.

Returnst r ue if successful, or f al se if thereis old code for Mbdul e which must be purged first, or if Modul e
is not a (loaded) module.

purge (Module) -> boolean()
Types.
Module = module()

Purges the code for Modul e, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

Returnst r ue if successful and any process needed to be killed, otherwisef al se.

soft purge(Module) -> boolean()
Types:
Module = module()
Purges the code for Mbdul e, that is, removes code marked as old, but only if no processes linger in it.

Returnsf al se if the module could not be purged due to processes lingering in old code, otherwiset r ue.

is loaded(Module) -> {file, Loaded} | false

Types.
Module = module()
Loaded = | oaded _fil enane()
loaded filename() = (Filename :: file:filenane())

| 1 oaded_ret_atons()
Fi | ename isan absolute filename
loaded ret atoms() = cover compiled | preloaded
Checksif Modul e isloaded. If itis, {fi | e, Loaded} isreturned, otherwisef al se.

Normally, Loaded is the absolute file name Fil enane from which the code was obtained. If the
module is preloaded (see script(4)), Loaded==pr el oaded. If the module is Cover compiled (see cover(3)),
Loaded==cover _conpi | ed.

all loaded() -> [{Module, Loaded}]

Types:
Module = module()
Loaded = | oaded _fil enanme()
loaded filename() = (Filename :: file:filenane())

| 1 oaded_ret_atons()
Fi | enamne isan absolute filename
loaded ret atoms() = cover compiled | preloaded

Returns alist of tuples{ Modul e, Loaded} for all loaded modules. Loaded is normally the absolute file name,
as described for is_loaded/1.

24 | Ericsson AB. All Rights Reserved.: Kernel

code

which(Module) -> Which

Types.
Module = module()
Which = file:filename() | | oaded_ret_atons() | non existing

loaded ret atoms() = cover_compiled | preloaded

If the module is not loaded, this function searches the code path for the first file which contains object code for
Mbdul e and returns the absolute file name. If the module is loaded, it returns the name of the file which contained
the loaded object code. If the module is pre-loaded, pr el oaded is returned. If the module is Cover compiled,
cover _conpi | ed isreturned. non_exi st i ng isreturned if the module cannot be found.

get object code(Module) -> {Module, Binary, Filename} | error
Types.

Module = module()

Binary = binary()

Filename = file:fil enanme()

Searches the code path for the object code of the module Mbdul e. It returns{ Modul e, Bi nary, Fil enane}

if successful, and er r or if not. Bi nar y isabinary data object which contains the object code for the module. This
can be useful if codeisto be loaded on aremote node in adistributed system. For example, loading module Modul e
on anode Node is done as follows:

{ Module, Binary, Filename} = code:get object code(Module),
rpc:call(Node, code, load binary, [Module, Filename, Binary]),

root dir() -> file:filename()
Returns the root directory of Erlang/OTP, which isthe directory whereit isinstalled.

> code:root dir().
"/usr/local/otp"

lib dir() -> file:filename()
Returns the library directory, $OTPROOT/ | i b, where $OTPROCT istheroot directory of Erlang/OTP.

> code:1lib dir().
"/usr/local/otp/lib"

lib_dir(Name) -> file:filenane() | {error, bad name}
Types:
Name = atom()

Thisfunctionismainly intended for finding out the path for the"library directory”, the top directory, for an application
Narme located under $OTPROOT/ | i b or on adirectory referred to viathe ERL_LI BS environment variable.

Ericsson AB. All Rights Reserved.: Kernel | 25

code

If there is a regular directory called Name or Name-Vsn in the code path with an ebi n subdirectory,
the path to this directory is returned (not the ebi n directory). If the directory refers to a directory in an
archive, the archive name is stripped away before the path is returned. For example, if the directory / usr/
| ocal /otp/lib/mesia-4.2.2. ez/ mesi a-4.2.2/ebin isin the path, /usr/1ocal/otp/lib/
mesi a- 4. 2. 2/ ebi n will be returned. This means that the library directory for an application is the same,
regardless of whether the application resides in an archive or not.

> code:lib dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns{ error, bad_nane} if Nane isnot the name of an application under $OTPROOT/ | i b or on adirectory
referred to viathe ERL_ LI BS environment variable. Failswith an exception if Nane has the wrong type.

Warning:
For backward compatibility, Name is also allowed to be a string. That will probably changein a future release.

lib dir(Name, SubDir) -> file:filenanme() | {error, bad name}
Types:
Name = SubDir = atom()

Returnsthe path to asubdirectory directly under the top directory of an application. Normally the subdirectoriesresides
under the top directory for the application, but when applications at least partly resides in an archive the situation is
different. Some of the subdirectories may reside as regular directories while other resides in an archive file. It is not
checked if thisdirectory really exists.

> code:lib dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Nare or SubbDi r has the wrong type.

compiler dir() -> file:filenanme()
Returns the compiler library directory. Equivalenttocode: | i b_dir (conpi l er).

priv_dir(Name) -> file:filenane() | {error, bad name}
Types:
Name = atom()
Returns the path to the pr i v directory in an application. Equivalenttocode: | i b_di r (Nane, priv)..

Warning:
For backward compatibility, Name is also allowed to be a string. That will probably changein a future release.

26 | Ericsson AB. All Rights Reserved.: Kernel

code

objfile extension() -> nonempty string()

Returns the object code file extension that corresponds to the Erlang machine used, namely " . beant'.

stick dir(Dir) -> ok | error
Types:

Dir = file:filenane()
Thisfunction marksDi r as sticky.

Returns ok if successful or er r or if not.

unstick dir(Dir) -> ok | error
Types:
Dir = file:filenane()
This function unsticks a directory which has been marked as sticky.

Returns ok if successful or er r or if not.

is sticky(Module) -> boolean()
Types:
Module = module()

This function returnst r ue if Modul e is the name of a module that has been loaded from a sticky directory (or in
other words: an attempt to reload the module will fail), or f al se if Mbdul e isnot aloaded module or is not sticky.

rehash() -> ok
This function creates or rehashes the code path cache.

where is file(Filename) -> non_existing | Absname
Types:
Filename = Absname = file:fil enane()

Searchesthe code path for Fi | enane, afileof arbitrary type. If found, thefull nameisreturned. non_exi sti ngis
returned if the file cannot be found. The function can be useful, for example, to locate application resource files. If the
code path cache is used, the code server will efficiently read the full name from the cache, provided that Fi | enane
is an object codefileor an . app file.

clash() -> ok
Searches the entire code space for module names with identical names and writes areport to st dout .

is _module native(Module) -> true | false | undefined
Types:
Module = module()

Thisfunctionreturnst r ue if Modul e isname of aloaded modulethat has native codeloaded, andf al se if Mbdul e
is loaded but does not have native. If Mbdul e is not loaded, this function returnsundef i ned.

get mode() -> embedded | interactive
This function returns an atom describing the code_server'smode: i nt er act i ve or enbedded.

Ericsson AB. All Rights Reserved.: Kernel | 27

code

Thisinformation is useful when an external entity (for example, an IDE) provides additional code for a running node.
If in interactive mode, it only needs to add to the code path. If in embedded mode, the code has to be loaded with
| oad_bi nary/ 3

28 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

disk_log

Erlang module

di sk_| og isadisk based term logger which makes it possible to efficiently log items on files. Two types of logs
are supported, halt logs and wrap logs. A halt log appends items to a single file, the size of which may or may not be
limited by the disk log module, whereas awrap log utilizes a sequence of wrap log files of limited size. Asawrap log
file has been filled up, further items are logged onto to the next file in the sequence, starting all over with thefirst file
when the last file has been filled up. For the sake of efficiency, items are always written to files as binaries.

Two formats of the log files are supported, the internal format and the external format. The internal format supports
automatic repair of log files that have not been properly closed, and makes it possible to efficiently read logged items
in chunks using a set of functions defined in this module. In fact, this is the only way to read internally formatted
logs. The external format leavesit up to the user to read the logged deep byte lists. The disk |og module cannot repair
externally formatted logs. An item logged to an internally formatted log must not occupy more than 4 GB of disk
space (the size must fit in 4 bytes).

For each open disk log there is one process that handles requests made to the disk log; the disk log processis created
when open/ 1 is called, provided there exists no process handling the disk log. A process that opens a disk log can
either be an owner or an anonymous user of the disk log. Each owner is linked to the disk log process, and the disk
log is closed by the owner should the owner terminate. Owners can subscribe to notifications, messages of the form
{di sk_l og, Node, Log, |nfo} that aresentfrom the disk log process when certain events occur, see the
commands below and in particular the open/ 1 option notify. There can be several owners of alog, but a process
cannot own a log more than once. One and the same process may, however, open the log as a user more than once.
For adisk log process to properly closeits file and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously; the users are counted, and there must not be any users
left when the disk log process terminates.

Items can be logged synchronously by using the functions| og/ 2, bl og/ 2,1 og_t erns/ 2 andbl og_t er ns/ 2.
For each of these functions, the caller is put on hold until the items have been logged (but not necessarily written,
usesync/ 1 to ensurethat). By adding an a to each of the mentioned function names we get functions that log items
asynchronously. Asynchronous functions do not wait for the disk log process to actually write the items to the file,
but return the control to the caller more or less immediately.

When using the internal format for logs, the functions | og/ 2, | og_terns/ 2, al og/ 2, and al og_terns/ 2
should be used. These functionslog oneor more Erlang terms. By prefixing each of thefunctionswithab (for "binary™)
we get the corresponding bl og functions for the external format. These functions log one or more deep lists of bytes
or, alternatively, binaries of deep lists of bytes. For example, to log the string " hel | 0" in ASCII format, we can
usedi sk_| og: bl og(Log, "hell0"),ordi sk_| og: bl og(Log, list _to _binary("hello")).The
two aternatives are equally efficient. The bl og functions can be used for internally formatted logs aswell, but in this
case they must be called with binaries constructed with callstot er m t o_bi nary/ 1. Thereis no check to ensure
this, it is entirely the responsibility of the caller. If these functions are called with binaries that do not correspond to
Erlang terms, the chunk/ 2, 3 and automatic repair functions will fail. The corresponding terms (not the binaries)
will be returned when chunk/ 2, 3 iscaled.

A collection of open disk logs with the same name running on different nodes is said to be a a distributed disk log
if requests made to any one of the logs are automatically made to the other logs as well. The members of such a
collection will be called individual distributed disk logs, or just distributed disk logs if there is no risk of confusion.
There is no order between the members of such a collection. For instance, logged terms are not necessarily written
onto the node where the request was made before written onto the other nodes. One could note here that there are a
few functions that do not make requests to all members of distributed disk logs, namely i nf o, chunk, bchunk,
chunk_stepandl cl ose. An open disk log that is not a distributed disk log is said to be alocal disk log. A local
disk log is accessible only from the node where the disk log process runs, whereas a distributed disk log is accessible
from all nodes in the Erlang system, with exception for those nodes where alocal disk log with the same name asthe

Ericsson AB. All Rights Reserved.: Kernel | 29

disk_log

distributed disk log exists. All processes on nodes that have access to alocal or distributed disk log can log items or
otherwise change, inspect or close the log.

It is not guaranteed that all log files of a distributed disk log contain the same log items; there is no attempt made to
synchronize the contents of the files. However, aslong as at least one of the involved nodes is alive at each time, all
items will be logged. When logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs areignored. If al nodes are down, the disk log functions reply with anonode error.

Note:

In some applications it may not be acceptable that replies from individual logs are ignored. An alternative in
such situationsisto use severa local disk logsinstead of one distributed disk log, and implement the distribution
without use of the disk log module.

Errors are reported differently for asynchronous log attempts and other uses of the disk log module. When used
synchronously the disk log module replies with an error message, but when called asynchronously, the disk log
module does not know where to send the error message. Instead owners subscribing to notifications will receive an
error_st at us message.

The disk log module itself does not report errors to the err or _| ogger module; it is up to the caller to decide
whether the error logger should be employed or not. Thefunctionf or mat _er r or / 1 can be used to produce readable
messages from error replies. Information events are however sent to the error logger in two situations, namely when
alog isrepaired, or when afileis missing while reading chunks.

The error messageno_such_| og meansthat the given disk log is not currently open. Nothing is said about whether
the disk log files exist or not.

Note:

If an attempt to reopen or truncate a log fails (seer eopen and t r uncat e) the disk log process immediately
terminates. Before the process terminates links to to owners and blocking processes (see bl ock) are removed.
The effect is that the links work in one direction only; any process using a disk log has to check for the error
message no_such_| og if some other process might truncate or reopen the log simultaneously.

Data Types

log() = term()
dlog size() = infinity
| integer() >=1
| {MaxNoBytes :: integer() >= 1,
MaxNoFiles :: integer() >= 1}

dlog format() = external | internal

dlog head opt() = none | term() | binary() | [dl og_byte()]
dlog byte() [dl og_byte()] | byte()

dlog mode() read only | read write

dlog type() halt | wrap

continuation()

Chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3.

30 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

bytes() = binary() | [byte()]
invalid header() = term()
file error() = term()

Exports

accessible logs() -> {[LocalLog], [DistributedLog]}
Types:
LocalLog = DistributedlLog = I og()

Theaccessi bl e_I| ogs/ 0 function returns the names of the disk logs accessible on the current node. Thefirst list
contains local disk logs, and the second list contains distributed disk logs.

alog(Log, Term) -> notify ret()
balog(Log, Bytes) -> notify ret()
Types.
Log = 1 og()
Term = term()
Bytes = bytes()
notify ret() = ok | {error, no such log}
The al og/ 2 and bal og/ 2 functions asynchronously append an item to a disk log. The function al og/ 2 is used

for internally formatted logs, and the function bal og/ 2 for externally formatted logs. bal og/ 2 can be used for
internally formatted logs as well provided the binary was constructed with acall tot erm t o_bi nary/ 1.

The owners that subscribe to notifications will receive the message read_only, bl ocked | og or
f or mat _ext er nal in case the item cannot be written on the log, and possibly one of the messageswr ap, f ul |
and er r or _st at us if an item was written on the log. The message er r or _st at us issent if there is something
wrong with the header function or afile error occurred.

alog terms(Log, TermList) -> notify_ret()
balog terms(Log, BytelList) -> notify_ret()
Types:
Log = log()
TermList = [term()]
BytelList = [bytes()]
notify ret() = ok | {error, no_such log}
The al og_terns/ 2 and bal og_t er ns/ 2 functions asynchronously append a list of items to a disk log. The
function al og_t er s/ 2 is used for internally formatted logs, and the function bal og_t er s/ 2 for externally

formatted logs. bal og_t er s/ 2 can be used for internally formatted logs as well provided the binaries were
constructed with callstot erm t o_bi nary/ 1.

The owners that subscribe to notifications will receive the message read only, bl ocked | og or
format _ext ernal in case the items cannot be written on the log, and possibly one or more of the messages
wrap, ful |l anderror_status if items were written on the log. The message er r or _st at us is sent if there
is something wrong with the header function or afile error occurred.

Ericsson AB. All Rights Reserved.: Kernel | 31

disk_log

block(Log) -> ok | {error, block_error_rsn()}
block(Log, QueueLogRecords) -> ok | {error, block_error_rsn()}
Types:
Log = 1 og()
QueuelLogRecords = boolean()
block error rsn() = no such log | nonode | {blocked log, log()}
With acall to bl ock/ 1, 2 aprocess can block alog. If the blocking processis not an owner of the log, atemporary

link is created between the disk log process and the blocking process. The link is used to ensure that the disk log is
unblocked should the blocking process terminate without first closing or unblocking the log.

Any process can probe a blocked log with i nf o/ 1 or close it with cl ose/ 1. The blocking process can also use
thefunctionschunk/ 2, 3,bchunk/ 2, 3,chunk_st ep/ 3, and unbl ock/ 1 without being affected by the block.
Any other attempt than those hitherto mentioned to update or read a blocked log suspends the calling process until
the log is unblocked or returns an error message { bl ocked_I| og, Log}, depending on whether the value of
QueuelLogRecords istrue or f al se. The default value of QueueLogRecor ds ist r ue, which is used by
bl ock/ 1.

change header(Log, Header) -> ok | {error, Reason}

Types:
Log = log()
Header {head, dl og_head opt ()}
{head func, MFA :: {atom(), atom(), list()}}
Reason = no_such log

{read only mode, Log}
{blocked log, Log}
{badarg, head}

Thechange_header / 2 function changes the value of the head or head_f unc option of adisk log.

|
| nonode
|
|
|

change notify(Log, Owner, Notify) -> ok | {error, Reason}

Types:
Log = 1 og()
Owner = pid()
Notify = boolean()
Reason no such log
nonode

{blocked log, Log}
{badarg, notify}
{not owner, Owner}

Thechange_not i fy/ 3 function changes the value of thenot i f y option for an owner of adisk log.

change size(Log, Size) -> ok | {error, Reason}
Types:
Log = I og()
Size = dl og_size()
Reason = no such log
| nonode

32| Ericsson AB. All Rights Reserved.: Kernel

disk_log

{read only mode, Log}

{blocked log, Log}

{new size too small, CurrentSize :: integer() >= 1}
{badarg, size}

| {file error, file:filename(), file_error()}

The change_si ze/ 2 function changes the size of an open log. For a halt log it is always possible to increase the
size, but it is not possible to decrease the size to something less than the current size of thefile.

For awrap log it is always possible to increase both the size and number of files, as long as the number of files does
not exceed 65000. If the maximum number of files is decreased, the change will not be valid until the current fileis
full and the log wraps to the next file. The redundant files will be removed next time the log wraps around, i.e. starts
to log to file number 1.

As an exampl e, assume that the old maximum number of filesis 10 and that the new maximum number of filesis6. If
the current file number is not greater than the new maximum number of files, the files 7 to 10 will be removed when
file number 6 isfull and the log starts to write to file number 1 again. Otherwise the files greater than the current file
will be removed when the current file is full (e.g. if the current file is 8, the files 9 and 10); the files between new
maximum number of files and the current file (i.e. files 7 and 8) will be removed next time file number 6 isfull.

If the size of the filesis decreased the change will immediately affect the current log. It will not of course change the
size of log files already full until next time they are used.

If the log size is decreased for instance to save space, the function i nc_wrap _fil e/ 1 can be used to force the
log to wrap.

chunk(Log, Continuation) -> chunk_ret ()
chunk(Log, Continuation, N) -> chunk _ret()
bchunk(Log, Continuation) -> bchunk_ret ()
bchunk(Log, Continuation, N) -> bchunk_ret()
Types.

Log = 1 0g()

Continuation = start | continuation()

N = integer() >= 1 | infinity

chunk ret() = {Continuation2 :: continuation(),
Terms :: [term()]}
| {Continuation2 :: continuation(),
Terms :: [term()],
Badbytes :: integer() >= 0}
| eof
| {error, Reason :: chunk_error_rsn()}
bchunk ret() = {Continuation2 :: continuation(),
Binaries :: [binary()]}
| {Continuation2 :: continuation(),
Binaries :: [binary()],
Badbytes :: integer() >= 0}
| eof
| {error, Reason :: chunk_error_rsn()}

chunk _error _rsn() = no_such log

| {format external, log()}
| {blocked log, log()}

| {badarg, continuation}

|

{not_internal wrap, log()}

Ericsson AB. All Rights Reserved.: Kernel | 33

disk_log

| {corrupt log file,
FileName :: file:filenane()}
| {file error, file:filename(), file_error()}

The chunk/ 2, 3 and bchunk/ 2, 3 functions make it possible to efficiently read the terms which have been
appended to an internally formatted log. It minimizes disk 1/O by reading 64 kilobyte chunks from the file. The
bchunk/ 2, 3 functions return the binaries read from the file; they do not call bi nary_t o_t er m Otherwise the
work just likechunk/ 2, 3.

The first time chunk (or bchunk) is called, aninitial continuation, the atom st ar t , must be provided. If thereis
adisk log process running on the current node, terms are read from that log, otherwise an individua distributed log
on some other node is chosen, if such alog exists.

When chunk/ 3 iscalled, N controls the maximum number of termsthat are read from the log in each chunk. Default
isi nfinity, which meansthat all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of the file has been reached.

The chunk function returns atuple { Cont i nuati on2, Terns}, where Ter ns isalist of terms found in the
log. Cont i nuat i on2 isyet another continuation which must be passed on to any subsequent callsto chunk. With
aseries of calsto chunk it ispossible to extract all terms from alog.

The chunk function returnsatuple{ Cont i nuati on2, Terns, Badbyt es} if thelogisopenedin read-only
mode and the read chunk is corrupt. Badbyt es isthe number of bytesin the file which were found not to be Erlang
termsin the chunk. Note also that the log is not repaired. When trying to read chunks from alog opened in read-write
mode, thetuple{corrupt | og file, FileNane} isreturnedif theread chunk is corrupt.

chunk returns eof when the end of the log isreached, or { error, Reason} if an error occurs. Should awrap
log file be missing, a message is output on the error log.

When chunk/ 2, 3 is used with wrap logs, the returned continuation may or may not be valid in the next call to
chunk. Thisis because the log may wrap and delete the file into which the continuation points. To make sure this
does not happen, the log can be blocked during the search.

chunk info(Continuation) -> InfolList | {error, Reason}

Types:
Continuation = continuation()
InfoList = [{node, Node :: node()}, ...]

Reason = {no_continuation, Continuation}

Thechunk_i nf o/ 1 function returnsthefollowing pair describing the chunk continuation returned by chunk/ 2, 3,
bchunk/ 2, 3, or chunk_st ep/ 3:

« {node, Node}.Termsareread from the disk log running on Node.

chunk step(Log, Continuation, Step) ->
{ok, any()} | {error, Reason}
Types:
Log = 1 0g()
Continuation = start | continuation()
Step = integer()
Reason = no such log
| end of log
| {format external, Log}
|
|

{blocked log, Log}
{badarg, continuation}

34 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

| {file error, file:filename(), file_error()}

The function chunk_st ep can be used in conjunction with chunk/ 2, 3 and bchunk/ 2, 3 to search through an
internally formatted wrap log. It takes as argument a continuation as returned by chunk/ 2, 3, bchunk/ 2, 3, or
chunk_st ep/ 3, and steps forward (or backward) St ep files in the wrap log. The continuation returned points to
thefirst log item in the new current file.

If theatom st ar t isgiven as continuation, adisk log to read terms from is chosen. A local or distributed disk log on
the current node is preferred to an individua distributed log on some other node.

If the wrap log is not full because all files have not been used yet, { error, end_of | og} isreturned if trying
to step outside the log.

close(Log) -> ok | {error, close_error_rsn()}

Types.
Log = log()

close error rsn() = no such log
| nonode
| {file error, file:filename(), file_ error()}

The function cl ose/ 1 closes alocal or distributed disk log properly. An internally formatted log must be closed
before the Erlang system is stopped, otherwisethelog is regarded as unclosed and the automatic repair procedure will
be activated next time the log is opened.

The disk log process in not terminated as long as there are owners or users of the log. It should be stressed that each
and every owner must close the log, possibly by terminating, and that any other process - not only the processes that
have opened the log anonymously - can decrement the user s counter by closing the log. Attemptsto close alog by
aprocess that is not an owner are simply ignored if there are no users.

If thelog is blocked by the closing process, the log is aso unblocked.

format error(Error) -> io_lib:chars()
Types:
Error = term()

Given the error returned by any function in this module, the function f or mat _er r or returns a descriptive string of
the error in English. For file errors, the functionf or mat _error/ 1 inthefi | e moduleis called.

inc_wrap file(Log) -> ok | {error, inc_wap_error_rsn()}
Types:

Log = 1 og()

inc_wrap _error_rsn() = no_such log

| nonode

| {read only mode, log()}

| {blocked log, log()}

| {halt log, log()}

| {invalid header, invalid_header()}
| {file error,

file:filenane(),

file_error()}

invalid header() = term()

Thei nc_wr ap_fil e/ 1 functionforcestheinternally formatted disk log to start logging to the next log file. It can be
used, for instance, in conjunction withchange_si ze/ 2 to reduce the amount of disk space allocated by the disk log.

Ericsson AB. All Rights Reserved.: Kernel | 35

disk_log

The ownersthat subscribe to notificationswill normally receive awr ap message, but in case of an error with areason
tagofi nval i d_header orfil e_error anerror_st at us message will be sent.

info(Log) -> InfoList | {error, no such log}
Types:
Log = 1 og()
InfolList = [dlog_info()]
dlog info() = {name, Log :: log()}
| {file, File :: file:filenanme()}
| {type, Type :: dlog_type()}
| {format, Format :: dlog_format()}
| {size, Size :: dlog_size()}
| {mode, Mode :: dl og_node() }
| {owners, [{pid(), Notify :: boolean()}1}
I
I

{users, Users :: integer() >= 0}
{status,
Status :: ok
| {blocked,
QueuelLogRecords :: boolean()}}

| {node, Node :: node()}
| {distributed, Dist :: local | [node()]1}
| {head,
Head :: none
| {head, term()}
| (MFA :: {atom(), atom(), list()})}
| {no written items,
NoWrittenItems :: integer() >= 0}
{full, Full :: boolean}
{no_current bytes, integer() >= 0}
{no_current items, integer() >= 0}
{no_items, integer() >= 0}
{current _file, integer() >= 1}
{no_overflows,
{SincelLogWasOpened :: integer() >= 0,
SinceLastInfo :: integer() >= 0}}

Thei nf o/ 1 functionreturnsalist of { Tag, Val ue} pairsdescribingthelog. If thereisadisk log process running
on the current node, that log is used as source of information, otherwise an individual distributed log on some other
node is chosen, if such alog exists.

The following pairs are returned for all logs:

« {nane, Log},whereLog isthe name of thelog as given by the open/ 1 option narne.

o {file, File}.ForhdtlogsFil e isthefilename, and for wraplogsFi | e isthe base name

« {type, Type},whereType isthetype of thelog asgiven by theopen/ 1 optiont ype.

« {format, Format},whereFor mat istheformat of thelog asgiven by theopen/ 1 option f or mat .

- {size, Size},whereSi ze isthe size of thelog as given by the open/ 1 option si ze, or the size set by
change_si ze/ 2. Thevalue set by change_si ze/ 2 isreflected immediately.

« {node, Mode}, whereMbde isthe mode of thelog as given by theopen/ 1 option node.

e {owners, [{pid(), Notify}]} whereNoti fy isthevaueset by theopen/ 1 optionnoti fy orthe
function change_not i f y/ 3 for the owners of the log.

36 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

« {users, Users} whereUser s isthe number of anonymous users of thelog, seethe open/ 1 option linkto.

e {status, Status},whereStatusisok or{bl ocked, QueuelLogRecords} asset by thefunctions
bl ock/ 1, 2 and unbl ock/ 1.

« {node, Node}.Theinformation returned by the current invocation of thei nf o/ 1 function has been gathered
from the disk log process running on Node.

« {distributed, D st}.Ifthelogisloca onthe current node, then Di st hasthevaluel ocal , otherwise
all nodes where the log is distributed are returned as alist.
Thefollowing pairs are returned for all logs openedinr ead_wr i t € mode:

e {head, Head}. Depending of the value of the open/ 1 options head and head_f unc or set by the
function change_header/ 2, thevalue of Head isnone (default), { head, H} (head option)or { M F, A}
(head_f unc option).

e {no witten_itens, NoWittenltens},whereNoWittenltens isthenumber of itemswrittento
the log since the disk log process was created.

Thefollowing pair isreturned for halt logs opened inr ead_wr i t e mode:

e {full, Full}, whereFull istrue orfal se depending on whether the halt log isfull or not.

The following pairs are returned for wrap logs opened inr ead_wr i t e mode:

e {no_current_bytes, integer() >= 0} isthenumber of byteswritten to the current wrap log file.

* {no_current_itens, integer() >= 0} isthenumber of items written to the current wrap log file,
header inclusive.

e {no_itens, integer() >= 0} isthetota number of itemsin all wrap log files.

e {current_file, integer()} istheordinal for the current wrap log fileintherange 1. . MaxNoFi | es,
where MaxNoFi | es isgiven by theopen/ 1 optionsi ze or set by change_si ze/ 2.

e {no_overflows, {SinceLogWasOpened, SincelLastlnfo}}, where Si nceLogWasOpened
(Si nceLast I nf o) is the number of times a wrap log file has been filled up and a new one opened or
inc_w ap_filellhasbeencaledsincethedisk logwaslast opened (i nf o/ 1 waslast called). Thefirst time
i nf o/ 2 iscaled after alog was (re)opened or truncated, the two values are equal.

Note that the chunk/ 2, 3, bchunk/ 2, 3, and chunk_st ep/ 3 functions do not affect any value returned by
i nfo/l.

lclose(Log) -> ok | {error, Iclose_error_rsn()}
lclose(Log, Node) -> ok | {error, Iclose_error_rsn()}
Types.

Log = 1 0g()

Node = node()

lclose error _rsn() = no_such log
| {file error,
file:filenane(),
file_error()}

The function | cl ose/ 1 closes a local log or an individual distributed log on the current node. The function
| cl ose/ 2 closesanindividual distributed log onthe specified nodeif thenodeisnot thecurrent one.| cl ose(Log)
isequivalenttol cl ose(Log, node()) . Seeaso close/1.

If there is no log with the given name on the specified node, no_such_| og isreturned.

Ericsson AB. All Rights Reserved.: Kernel | 37

disk_log

log(Log, Term) -> ok | {error, Reason :: log_error_rsn()}
blog(Log, Bytes) -> ok | {error, Reason :: log_error_rsn()}
Types:

Log = 1 og()

Term = term()
Bytes = bytes()
log error _rsn() = no_such log

| nonode

| {read only mode, log()}

| {format external, 1og()}

| {blocked log, log()}

| {full, log()}

| {invalid header, invalid_header()}

| {file error, file:filename(), file_error()}

The | og/ 2 and bl og/ 2 functions synchronously append a term to a disk log. They return ok or {error,
Reason} when the term has been written to disk. If the log is distributed, ok is always returned, unless all nodes
are down. Terms are written by means of the ordinary wr i t e() function of the operating system. Hence, thereisno
guarantee that the term has actually been written to the disk, it might linger in the operating system kernel for awhile.
To make sure the item is actually written to disk, the sync/ 1 function must be called.

Thel og/ 2 functionisused for internally formatted logs, and bl og/ 2 for externally formatted logs. bl og/ 2 can be
used for internally formatted logs as well provided the binary was constructed with acall tot erm t o_bi nary/ 1.

The owners that subscribe to notifications will be notified of an error with an er r or _st at us messageif the error
reasontagisi nval i d_header orfil e_error.

log terms(Log, TermList) ->

ok | {error, Resaon :: log_error_rsn()}
blog terms(Log, ByteslList) ->
ok | {error, Reason :: log_error_rsn()}
Types.
Log = log()

TermList = [term()]
BytesList = [bytes()]
log error _rsn() = no _such log
| nonode
| {read only mode, log()}
| {format external, log()}
| {blocked log, log()}
| {full, log()}
| {invalid header, invalid_header()}
| {file error, file:filename(), file_error()}

Thel og_t erms/ 2 and bl og_t er ms/ 2 functions synchronously append alist of itemsto the log. The benefit of
using these functions rather than the | og/ 2 and bl og/ 2 functionsisthat of efficiency: the given list is split into as

large sublists as possible (limited by the size of wrap log files), and each sublist is logged as one single item, which
reduces the overhead.

Thel og_t er ms/ 2 function is used for internally formatted logs, and bl og_t er ns/ 2 for externally formatted
logs. bl og_t er ms/ 2 can be used for internally formatted logs as well provided the binaries were constructed with
calstoterm to_binary/ 1.

38| Ericsson AB. All Rights Reserved.: Kernel

disk_log

The owners that subscribe to notifications will be notified of an error with an er r or _st at us messageif the error
reasontagisi nval i d_header orfil e_error.

open(ArgL) -> open_ret() | dist_open_ret()
Types:

ArgL = dl og_options()
dlog options() = [dl og_option()]

dlog option() {name, Log :: log()}
{file, FileName :: file:filenane()}
{linkto, LinkTo :: none | pid()}
{repair, Repair :: true | false | truncate}

I
I
I
| {type, Type :: dlog type}

| {format, Format :: dlog_format()}

| {size, Size :: dlog_size()}

| {distributed, Nodes :: [node()]}

| {notify, boolean()}

| {head, Head :: dl og_head_opt ()}

| {head func, MFA :: {atom(), atom(), list()}}
| {mode, Mode :: dl og_node() }

open ret() =ret() | {error, open_error_rsn()}

ret() = {ok, Log :: log()}
| {repaired,
Log :: log(),
{recovered, Rec :: integer() >= 0},

{badbytes, Bad :: integer() >= 0}}
dist open ret() =
{[{node(), ret()}], [{node(), {error, dist_error_rsn()}}1}
dist error _rsn() = nodedown | open_error_rsn()

open _error _rsn() = no such log

| {badarg, term()}

| {size mismatch,
CurrentSize :: dlog_size(),
NewSize :: dlog_size()}

| {arg mismatch,
OptionName :: dlog optattr(),

CurrentValue :: term(),
Value :: term()}
| {name already open, Log :: log()}
| {open read write, Log :: log()}
| {open read only, Log :: log()}
| {need repair, Log :: log()}
| {not a log file,
FileName :: file:filenane()}
| {invalid index file,
FileName :: file:filenane()}

| {invalid header, invalid_header()}
| {file error, file:filename(), file_ error()}
| {node already open, Log :: log()}
dlog optattr() = name
| file

Ericsson AB. All Rights Reserved.: Kernel | 39

disk_log

| linkto
| repair
| type
| format
| size
| distributed
| notify
| head
| head func
| mode
infinity
integer() >=1
{MaxNoBytes :: integer() >= 1,
MaxNoFiles :: integer() >= 1}

dlog size()

The Ar gL parameter isalist of options which have the following meanings:

{name, Log} specifiesthe name of the log. Thisis the name which must be passed on as a parameter in all
subsequent logging operations. A name must always be supplied.

{file, FileNane} specifiesthe name of thefile which will be used for logged terms. If thisvalue is omitted
and the name of the log is either an atom or a string, the file name will default to | i st s: concat ([Log,
".LOG']) forhaltlogs. For wraplogs, thiswill bethe base name of thefiles. Each fileinawrap logwill becalled
<base_nane>. N, where N is an integer. Each wrap log will also have two files called <base_nane>. i dx
and <base_ nane>. si z.

{l'inkto, LinkTo}.IfLinkTo isapid, that pid becomes an owner of thelog. If Li nkTo isnone thelog
recordsthat it is used anonymously by some process by incrementing the user s counter. By default, the process
which callsopen/ 1 ownsthelog.

{repair, Repair}.If Repair istrue,thecurrentlog filewill berepaired, if needed. Astherestorationis
initiated, a message is output on the error log. If f al se isgiven, no automatic repair will be attempted. Instead,
thetuple{error, {need repair, Log}} isreturnedif an attempt is made to open a corrupt log file. If
t runcat e isgiven, thelog file will be truncated, creating an empty log. Default ist r ue, which has no effect
on logs opened in read-only mode.

{type, Type} isthetypeof thelog. Defaultishal t .
{format, Format} specifiestheformat of thedisk log. Defaultisi nt er nal .

{size, Size} specifiesthesize of thelog. When a halt log has reached its maximum size, all attemptsto log
moreitems areregjected. Thedefault sizeisi nf i ni t y, whichfor halt impliesthat there is no maximum size. For
wrap logs, the Si ze parameter may be either a pair { MaxNoByt es, MaxNoFi | es} orinfinity.Inthe
latter case, if the files of an already existing wrap log with the same name can be found, the size is read from the
existing wrap log, otherwise an error is returned. Wrap logs write at most MaxNoByt es bytes on each file and
use MaxNoFi | es filesbefore starting all over with the first wrap log file. Regardless of MaxNoByt es, at least
the header (if there is one) and one item is written on each wrap log file before wrapping to the next file. When
opening an existing wrap log, it is not necessary to supply a value for the option Si ze, but any supplied value
must equal the current size of the log, otherwisethetuple{error, {size_m smatch, CurrentSi ze,
NewSi ze} } isreturned.

{di stributed, Nodes}.Thisoption can be used for adding membersto adistributed disk log. The default
valueis[], which meansthat the log islocal on the current node.

{notify, bool ()}.Iftrue,theownersof thelog are notified when certain events occur in the log. Default
isf al se. The owners are sent one of the following messages when an event occurs:

e {disk |og, Node, Log, {wap, NoLostltens}} issentwhenawraplog hasfilled up one of
its files and a new file is opened. NoLost | t ens isthe number of previously logged items that have been
lost when truncating existing files.

40 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

e {disk_log, Node, Log, {truncated, NoLostltens}} issentwhenalog hasbeentruncated
or reopened. For halt logsNoLost | t ens isthe number of itemswritten on thelog since the disk log process
was created. For wrap logs NoLost | t errs is the number of items on all wrap log files.

e {disk log, Node, Log, {read only, Itens}} issentwhen an asynchronous log attemptis
made to alog file opened in read-only mode. | t ens isthe items from the log attempt.

e {disk_|log, Node, Log, {blocked_ |og, Itens}} issentwhen an asynchronouslog attempt
is made to a blocked log that does not queue log attempts. | t ernrs is the items from the log attempt.

« {disk_Ilog, Node, Log, {format_external, Itens}} is sent when al og/ 2 or
al og_t er ns/ 2 isused for internally formatted logs. | t ens isthe items from the log attempt.

e {disk_|og, Node, Log, full} issentwhenan attempttologitemstoawraplogwould write more
bytes than the limit set by the si ze option.

e {disk _log, Node, Log, {error_status, Status}} issentwhen the error status changes.
The error statusis defined by the outcome of the last attempt to log itemsto athe log or to truncate the log or
thelast useof sync/ 1,inc_wap_file/1lorchange_size/2.Statusisoneof ok and{error,
Er r or}, theformer being theinitial value.

« {head, Head} specifiesaheader to be written first on thelog file. If thelog isawrap log, theitem Head is
written first in each new file. Head should be aterm if the format isi nt er nal , and adeep list of bytes (or a
binary) otherwise. Default isnone, which means that no header iswritten first on the file.

e {head_func, {MF, A}} specifiesafunctionto becalled eachtimeanew logfileisopened. Thecall M F(A)
is assumed to return { ok, Head}. Theitem Head is written first in each file. Head should be a term if the
format isi nt er nal , and adeep list of bytes (or a binary) otherwise.

« {node, Mode} specifiesif thelogistobeopenedinread-only or read-write mode. It defaultstor ead_wri t e.

Theopen/ 1 functionreturns{ ok, Log} if thelogfilewassuccessfully opened. If thefilewas successfully repaired,
thetuple{repaired, Log, {recovered, Rec}, {badbytes, Bad}} isreturned, where Rec isthe
number of whole Erlang terms found in the file and Bad is the number of bytes in the file which were non-Erlang
terms. If thedi st ri but ed parameter was given, open/ 1 returnsalist of successful replies and alist of erroneous
replies. Each reply istagged with the node name.

When a disk log is opened in read-write mode, any existing log file is checked for. If there is none a new empty log
is created, otherwise the existing file is opened at the position after the last logged item, and the logging of items will
commence from there. If the format isi nt er nal and the existing file is not recognized as an internally formatted
log, atuple{error, {not_a log file, FileNane}} isreturned.

The open/ 1 function cannot be used for changing the values of options of an already open log; when there are
prior owners or users of alog, al option values except nane, | i nkt o and noti fy arejust checked against the
values that have been supplied before as option valuesto open/ 1, change_header/ 2, change_noti fy/ 3 or
change_si ze/ 2. As a consegquence, none of the options except namne is mandatory. If some given value differs
from the current value, atuple{error, {arg_m smatch, OptionNanme, CurrentVal ue, Val ue}} is
returned. Caution: an owner's attempt to open alog as owner once again is acknowledged with the return value { ok,
Log}, but the state of the disk log is not affected in any way.

If alog with agiven nameislocal on some node, and one tries to open the log distributed on the same node, then the
tuple{error, {node_al ready_open, Log}} isreturned. The sametupleisreturnedif thelog is distributed
on some node, and one tries to open the log locally on the same node. Opening individual distributed disk logs for the
first time adds those logs to a (possibly empty) distributed disk log. The option values supplied are used on all nodes
mentioned by the di st ri but ed option. Individual distributed logs know nothing about each other's option values,
so each node can be given unique option values by creating a distributed log with several callsto open/ 1.

Itis possible to open alog file more than once by giving different values to the option nane or by using the samefile
when distributing alog on different nodes. It is up to the user of thedi sk_| og module to ensure that no more than
one disk log process has write access to any file, or the the file may be corrupted.

Ericsson AB. All Rights Reserved.: Kernel | 41

disk_log

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed, Reason}, [{di sk_| og, open, 1}]1}. The function returns { error, Reason} for al other
errors.

pid2name(Pid) -> {ok, Log} | undefined

Types:
Pid = pid()
Log = log()

The pi d2nane/ 1 function returns the name of the log given the pid of a disk log process on the current node, or
undef i ned if thegiven pidis not adisk log process.

This function is meant to be used for debugging only.

reopen(Log, File) -> ok | {error, reopen_error_rsn()}
reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
Types:

Log = I og()

File = file:fil enanme()

Head = term()

BHead = bytes()

reopen_error _rsn() no such log

nonode

{read only mode, log()}

{blocked log, log()}

{same file name, log()}

{invalid index file, file:filenanme()}
{invalid header, invalid_header()}
{file error,

file:filenane(),

file error()}

Ther eopen functionsfirst renamethelog fileto Fi | e and then re-create anew log file. In case of awraplog, Fi | e
is used as the base name of the renamed files. By default the header given to open/ 1 is written first in the newly
opened log file, but if the Head or the BHead argument is given, this item is used instead. The header argument is
used once only; next time awrap log file is opened, the header given to open/ 1 isused.

Ther eopen/ 2, 3 functions are used for internally formatted logs, and br eopen/ 3 for externally formatted logs.
The owners that subscribe to notifications will receiveat r uncat e message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{fai |l ed, Error},
[{disk_|og, Fun, Arity}]},andother processesthat have requests queued receive the message{ di sk_| og,
Node, {error, disk |og stopped}}.

sync(Log) -> ok | {error, sync_error_rsn()}
Types.
Log = 1 0g()

sync_error _rsn() no such log

| nonode
| {read only mode, log()}

42 | Ericsson AB. All Rights Reserved.: Kernel

disk_log

| {blocked log, log()}
| {file error, file:filename(), file_error()}

The sync/ 1 function ensures that the contents of the log are actually written to the disk. This is usually a rather
expensive operation.

truncate(Log) -> ok | {error, trunc_error_rsn()}
truncate(Log, Head) -> ok | {error, trunc_error_rsn()}
btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()}
Types:
Log = log()
Head = term()
BHead = bytes()
trunc error rsn() = no such log
| nonode
| {read only mode, I|og()}
| {blocked log, log()}
| {invalid header, invalid_header()}
| {file error, file:filename(), file_error()}

Thet r uncat e functionsremove all itemsfrom adisk log. If the Head or the BHead argument isgiven, thisitemis
written first in the newly truncated log, otherwise the header given to open/ 1 is used. The header argument is only
used once; next time awrap log file is opened, the header givento open/ 1 is used.

Thet runcat e/ 1, 2 functions are used for internally formatted logs, and bt r uncat e/ 2 for externally formatted
logs.

The owners that subscribe to notifications will receiveat r uncat e message.

If the attempt to truncate thelog fails, the disk log processterminateswiththe EXIT message{ { f ai | ed, Reason},
[{disk_|og, Fun, Arity}]},andother processesthat have requests queued receive the message{ di sk_| og,
Node, {error, disk |og stopped}}.

unblock(Log) -> ok | {error, unblock_error_rsn()}
Types:
Log = [og()
unblock error rsn() = no such log
| nonode
| {not blocked, 1og()}
| {not blocked by pid, log()}

The unbl ock/ 1 function unblocks alog. A log can only be unblocked by the blocking process.

See Also
file(3), pg2(3), wrap_log_reader(3)

Ericsson AB. All Rights Reserved.: Kernel | 43

erl_boot_server

erl_boot_server

Erlang module

This server is used to assist diskless Erlang nodes which fetch all Erlang code from another machine.

Thisserver isused to fetch all code, including the start script, if an Erlang runtime system is started withthe- | oader
i net command line flag. All hosts specified with the - host s Host command line flag must have one instance
of this server running.

This server can be started with the ker nel configuration parameter st art _boot _server.
Theer| boot server canbothread regular filesaswell asfilesin archives. See code(3) and erl_prim_loader (3).

Warning:

The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is
ready isto obtain early feedback. The file format, semantics, interfaces etc. may be changed in afuture release.

Exports

start(Slaves) -> {ok, Pid} | {error, What}
Types:
Slaves = [Host]
Host = atom()
Pid = pid()
What = any()
Starts the boot server. Sl aves isalist of 1P addresses for hosts which are allowed to use this server as a boot server.

start link(Slaves) -> {ok, Pid} | {error, What}
Types.
Slaves = [Host]
Host = atom()
Pid = pid()
What = any()
Startsthe boot server and linksto the caller. Thisfunctionisused to start the server if itisincluded in asupervision tree.

add slave(Slave) -> ok | {error, What}

Types:
Slave = Host
Host = atom()
What = any()

AddsaS| ave nodeto thelist of allowed slave hosts.

44 | Ericsson AB. All Rights Reserved.: Kernel

erl_boot_server

delete slave(Slave) -> ok | {error, What}
Types.

Slave = Host

Host = atom()

What = any()

Deletesa Sl ave node from the list of allowed dave hosts.

which slaves() -> Slaves
Types.

Slaves = [Host]

Host = atom()

Returns the current list of allowed slave hosts.

SEE ALSO
init(3), erl_prim_loader(3)

Ericsson AB. All Rights Reserved.: Kernel | 45

erl_ddll

erl_ddll

Erlang module

Theer| _ddl I module provides an interface for loading and unloading erlang linked in driversin runtime.

Note:

Thisisalarge reference document. For casual use of the module, aswell asfor most real world applications, the
descriptions of the functions |oad/2 and unload/1 are enough to get going.

The driver should be provided as a dynamically linked library in a object code format specific for the platform in
use, i. e. . so files on most Unix systems and . dd| files on windows. An erlang linked in driver has to provide
specific interfaces to the emulator, so this module is not designed for loading arbitrary dynamic libraries. For further
information about erlang drivers, refer to the ERTS reference manual section erl_driver.

When describing a set of functions, (i.e. a module, a part of a module or an application) executing in a process and
wanting to useaddll-driver, we use theterm user. There can be several usersin one process (different modules needing
the samedriver) and several processes running the same code, making up several usersof adriver. Inthebasic scenario,
each user loads the driver before starting to use it and unloads the driver when done. The reference counting keeps
track of processes aswell asthe number of loads by each process, so that the driver will only be unloaded when no one
wantsit (it has no user). The driver also keepstrack of portsthat are opened towardsit, so that one can delay unloading
until all ports are closed or kill all ports using the driver when it is unloaded.

Theinterface supports two basic scenarios of loading and unloading. Each scenario can a so have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are:

Load and unload on a "when needed basis"

This (most common) scenario simply supports that each user of the driver loads it when it is needed and unloads
it when the user no longer have any use for it. The driver is always reference counted and as long as a process
keeping the driver loaded is still alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not really concerned with if the driver is already loaded from the filesystem or if the object code hasto be loaded
from filesystem.

Two pairs of functions support this scenario:
load/2 and unload/1

When usingthel oad/ unl oad interfaces, the driver will not actually get unloaded until the last port using
the driver is closed. The function unl oad/ 1 can return immediately, as the users are not really concerned
withwhen the actual unloading occurs. Thedriver will actually get unloaded when no one needsit any longer.

If a process having the driver loaded dies, it will have the same effect as if unloading was done.

When loading, the function | oad/ 2 returns ok as soon as there is any instance of the driver present, so
that if adriver iswaiting to get unloaded (due to open ports), it will simply change state to no longer need
unloading.

load_driver/2 and unload_driver/1

These interfaces is intended to be used when it is considered an error that ports are open towards a driver
that no user has|loaded. The ports still open when the last user callsunl oad_dri ver/ 1 or when the last
process having the driver loaded dies, will get killed with reason dr i ver _unl oaded.

46 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

The function names| oad_dri ver andunl oad_dri ver arekept for backward compatibility.
Loading and reloading for code replacement
This scenario occurs when the driver code might need replacement during operation of the Erlang emulator.
Implementing driver code replacement is somewhat more tedious than beam code replacement, as one driver

cannot be loaded as both "old" and "new" code. All users of adriver must have it closed (no open ports) before
the old code can be unloaded and the new code can be |oaded.

The actual unloading/loading is done as one atomic operation, blocking all processes in the system from using
the driver concerned while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process start, the driver is loaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when areload is aready in progress is aways an error. Using the high level functions, it is
aso an error to demand rel oading when more than one user hasthe driver loaded. To simplify driver replacement,
avoid designing your system so that more than than one user has the driver loaded.

The two functions for reloading drivers should be used together with corresponding load functions, to support
the two different behaviors concerning open ports:

load/2 and reload/2

This pair of functions is used when reloading should be done after the last open port towards the driver is
closed.

Asr el oad/ 2 actually waitsfor the rel oading to occur, a misbehaving process keeping open portstowards
thedriver (or keeping the driver loaded) might causeinfinite waiting for reload. Timeouts hasto be provided
outside of the process demanding the reload or by using the low-level interface try |oad/3 in combination
with driver monitors (see below).

load_driver/2 and reload_driver/2

This pair of functions are used when open ports towards the driver should be killed with reason
dri ver _unl oaded toalow for new driver code to get loaded.

If, however, another process has the driver loaded, caling r el oad_dri ver returns the error code
pendi ng_pr ocess. Asstated earlier, the recommended designisto not allow other usersthan the "driver
reloader” to actually demand loading of the concerned driver.

Data Types

driver() = iolist() | atom()
path() = string() | atom()

Exports

demonitor(MonitorRef) -> ok
Types.
MonitorRef = reference()

Removes a driver monitor in much the same way as erlang: demonitor/1 does with process monitors. See monitor/2,
try load/3 and try_unload/2 for details about how to create driver monitors.

The function throws abadar g exception if the parameter is not a reference().

Ericsson AB. All Rights Reserved.: Kernel | 47

erl_ddll

info() -> AllInfolList
Types.
AllInfoList = [DriverInfo]
DriverInfo = {DriverName, InfolList}
DriverName = string()
InfoList = [InfoItem]
InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples { Dri ver Nane, | nfolList}, wherel nfoLi st isthe result of caling info/1 for that
Dr i ver Nane. Only dynamically linked in drivers are included in thelist.

info(Name) -> InfolList

Types:
Name = driver()
InfolList = [InfoItem, ...]
InfoItem = {Tag :: atom(), Value :: term()}

Returnsalist of tuples{ Tag, Val ue}, where Tag istheinformationitem and Val ue istheresult of calling info/2
with this driver name and this tag. The result being atuple list containing all information available about a driver.

The different tags that will appear in the list are:

* processes

e driver_options

e port_count

o linked_in_driver

e permanent

e awaiting_load

e awaiting_unload

For a detailed description of each value, please read the description of info/2 below.
The function throws abadar g exception if the driver is not present in the system.

info(Name, Tag) -> Value

awaiting load
awaiting unload

Value = term()

Types:

Name = driver ()

Tag = processes
| driver_options
| port _count
| linked in driver
| permanent
I
I

This function returns specific information about one aspect of adriver. The Tag parameter specifies which aspect to
get information about. The Val ue return differs between different tags:

processes

Return all processes containing users of the specific driversasalist of tuples{ pi d(), i nteger() >= 0},
wherethei nt eger () denotesthe number of usersin the processpi d() .

48 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

driver_options

Return alist of the driver options provided when loading, as well as any options set by the driver itself during
initialization. The currently only valid option being ki I | _ports.

port_count

Return the number of ports(ani nt eger >= 0()) using thedriver.
linked in_driver

Return abool ean(), beingt r ue if thedriver isa statically linked in one and f al se otherwise.
permanent

Return a bool ean(), being t r ue if the driver has made itself permanent (and is not a statically linked in
driver). f al se otherwise.

awaiting_load

Return a list of all processes having monitors for | oadi ng active, each process returned as
{pid(),integer() >= 0},wherethei nt eger () isthe number of monitorsheld by the processpi d() .

awaiting_unload

Return a list of al processes having monitors for unl oadi ng active, each process returned as
{pid(),integer() >= 0},wherethei nt eger () isthe number of monitorsheld by the processpi d() .

If the options | i nked_in_driver or pernanent return true, al other options will return the value
i nked_i n_dri ver or per manent respectively.

The function throws abadar g exception if the driver is not present in the system or the tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()

Name = driver ()

ErrorDesc = term()

Loads and links the dynamic driver Nane. Pat h isafile path to the directory containing the driver. Name must be a
sharable object/dynamic library. Two driverswith different Pat h parameters cannot be loaded under the same name.
The Namre isastring or atom containing at least one character.

The Nane given should correspond to the filename of the actual dynamically loadable object file residing in the
directory given as Pat h, but without the extension (i.e. . so). The driver name provided in the driver initialization
routine must correspond with the filename, in much the same way as erlang module names correspond to the names
of the. beamfiles.

If the driver has been previously unloaded, but is still present due to open ports against it, acall tol oad/ 2 will stop
the unloading and keep the driver (aslong asthe Pat h isthe same) and ok isreturned. If one actually wants the object
code to be reloaded, one uses reload/2 or the low-level interface try |oad/3 instead. Please refer to the description of
different scenarios for loading/unloading in the introduction.

If more than one processtriesto load an already loaded driver withe the same Pat h, or if the same processtriestoload
it several times, the function will return ok. The emulator will keep track of thel oad/ 2 calls, so that acorresponding
number of unl oad/ 2 callswill have to be done from the same process before the driver will actually get unloaded.
It istherefore safe for an application to load adriver that is shared between processes or applications when needed. It
can safely be unloaded without causing trouble for other parts of the system.

It isnot allowed to load several drivers with the same name but with different Pat h parameters.

Ericsson AB. All Rights Reserved.: Kernel | 49

erl_ddll

Note:

Note especially that the Pat h isinterpreted literally, so that all loaders of the same driver needsto give the same
literalPat h string, even though different paths might point out the same directory in the filesystem (due to use
of relative paths and links).

On success, the function returns ok. On failure, the return valueis{ err or, Err or Desc}, where Er r or Desc is
an opague term to be translated into human readable form by the format_error/1 function.

For more control over the error handling, again use the try_|load/3 interface instead.

The function throws abadar g exception if the parameters are not given as described above.

load driver(Path, Name) -> ok | {error, ErrorDesc}

Types.
Path = path()
Name = driver ()

ErrorDesc = term()

Works essentially as| oad/ 2, but will load the driver with other options. All ports that are using the driver will get
killed with thereason dr i ver _unl oaded when the driver isto be unloaded.

The number of loads and unloads by different users influence the actual loading and unloading of a driver file. The
port killing will therefore only happen when the last user unloads the driver, or the last process having loaded the
driver exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Using try load/3 with
{driver _options,[kill_ports]} intheoptionlistwill givethe same effect regarding the port killing.

The function throws abadar g exception if the parameters are not given as described above.

monitor(Tag, Item) -> MonitorRef
Types:
Tag = driver

Item = {Name, When}
Name = driver ()
When = loaded | unloaded | unloaded only

MonitorRef = reference()

This function creates a driver monitor and works in many ways as the function erlang: monitor/2, does for processes.
When a driver changes state, the monitor results in a monitor-message being sent to the calling process. The
Moni t or Ref returned by this function isincluded in the message sent.

As with process monitors, each driver monitor set will only generate one single message. The monitor is "destroyed"
after the message is sent and there is then no need to call demonitor/1.

The Moni t or Ref can also be used in subsequent calls to demonitor/1 to remove a monitor.
The function accepts the following parameters:
Tag

The monitor tag is always dr i ver as this function can only be used to create driver monitors. In the future,
driver monitors will be integrated with process monitors, why this parameter has to be given for consistence.

50 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Item

Thel t emparameter specifies which driver one wants to monitor (the name of the driver) as well aswhich state
change one wants to monitor. The parameter is a tuple of arity two whose first element is the driver name and
second element is either of:

|loaded

Notify me when the driver is reloaded (or loaded if loading is underway). It only makes sense to monitor
drivers that are in the process of being loaded or reloaded. One cannot monitor a future-to-be driver name
for loading, that will only result in a' DOAN message being immediately sent. Monitoring for loading is
therefore most useful when triggered by the try_load/3 function, where the monitor is created because the
driver isin such a pending state.

Setting adriver monitor for | oadi ng will eventually lead to one of the following messages being sent:
{'UP', reference(), driver, Name, |oaded}

This message is sent, either immediately if the driver is already loaded and no reloading is pending, or
when reloading is executed if reloading is pending.

The user is expected to know if reloading is demanded prior to creating a monitor for loading.
{'UP", reference(), driver, Name, permanent}

This message will be sent if reloading was expected, but the (old) driver made itself permanent prior to
reloading. It will also be sent if the driver was permanent or statically linked in when trying to create
the monitor.

{'DOWN, reference(), driver, Name, load_cancelled}

This message will arrive if reloading was underway, but the user having requested reload cancelled
it by either dying or calling try_unload/2 (or unl oad/ 1/unl oad_dri ver/ 1) again before it was
reloaded.

{'DOWN, reference(), driver, Name, {load failure, Failure}}

This message will arrive if reloading was underway but the loading for some reason failed. The
Fai | ur e term isone of the errors that can be returned from try_|load/3. The error term can be passed
to format_error/1 for translation into human readable form. Note that the tranglation has to be done in
the same running erlang virtual machine as the error was detected in.

unloaded

Monitor when a driver gets unloaded. If one monitors a driver that is not present in the system, one will
immediately get notified that the driver got unloaded. There is no guarantee that the driver was actually
ever |oaded.

A driver monitor for unload will eventually result in one of the following messages being sent:
{'DOWN, reference(), driver, Name, unloaded}

The driver instance monitored is now unloaded. As the unload might have been dueto ar el oad/ 2
request, the driver might once again have been loaded when this message arrives.

{'UP", reference(), driver, Name, unload_cancelled}

This message will be sent if unloading was expected, but while the driver was waiting for all portsto
get closed, anew user of the driver appeared and the unloading was cancelled.

Thismessage appearswhenan{ ok, pendi ng_dri ver}) wasreturned fromtry _unload/2) for the
last user of the driver andthena{ ok, al ready_| oaded} isreturned fromacall totry load/3.

Ericsson AB. All Rights Reserved.: Kernel | 51

erl_ddll

If one wants to really monitor when the driver gets unloaded, this message will distort the picture, no
unloading was really done. The unl oaded_onl y option creates amonitor similar to an unl oaded
monitor, but does never result in this message.

{'UP", reference(), driver, Name, permanent}

This message will be sent if unloading was expected, but the driver made itself permanent prior to
unloading. It will also be sent if trying to monitor a permanent or statically linked in driver.

unloaded only

A monitor created asunl oaded_onl y behaves exactly as one created as unl oaded with the exception
thatthe{' UP', reference(), driver, Name, unload_cancel | ed} messagewill never be
sent, but the monitor instead persists until the driver really gets unloaded.

The function throws abadar g exception if the parameters are not given as described above.

reload(Path, Name) -> ok | {error, ErrorDesc}
Types:
Path = path()
Name = driver ()
ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Reloads the driver named Nane from a possibly different Pat h than was previously used. This function is used in
the code change scenario described in the introduction.

If there are other users of this driver, the function will return{ err or, pendi ng_pr ocess}, but if there are no
more users, the function call will hang until all open ports are closed.

Note:

Avoid mixing several userswith driver rel oad requests.

If one wants to avoid hanging on open ports, one should use the try_|oad/3 function instead.
The Nane and Pat h parameters have exactly the same meaning as when calling the plain load/2 function.

Note:

Avoid mixing several userswith driver reload requests.

On success, the function returns ok. On failure, the function returns an opaque error, with the exception of the
pendi ng_pr ocess error described above. The opague errors are to be translated into human readable form by the
format_error/1 function.

For more control over the error handling, again use the try_|oad/3 interface instead.
The function throws abadar g exception if the parameters are not given as described above.

reload driver(Path, Name) -> ok | {error, ErrorDesc}
Types.

52 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Path = path()

Name = driver ()

ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Works exactly asreload/2, but for driversloaded with the load_driver/2 interface.

Asthisinterface implies that ports are being killed when the last user disappears, the function wont hang waiting for
portsto get closed.

For further details, see the scenarios in the module description and refer to the reload/2 function description.
The function throws abadar g exception if the parameters are not given as described above.

try load(Path, Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorDesc}

Types:
Path = path()
Name = driver ()
OptionList = [Option]
Option = {driver options, DriverOptionList}
| {monitor, MonitorOption}
| {reload, ReloadOption}

DriverOptionList = [DriverOption]

DriverOption = kill ports

MonitorOption = ReloadOption = pending driver | pending
Status = loaded | already loaded | PendingStatus
PendingStatus = pending driver | pending process

Ref = reference()

ErrorDesc = ErrorAtom | OpaqueError

ErrorAtom = linked in driver
| inconsistent
| permanent
| not loaded by this process
| not loaded
| pending reload
| pending process

OpaqueError = term()

This function provides more control than the | oad/ 2/rel oad/ 2 and | oad_dri ver/ 2/rel oad_driver/2
interfaces. It will never wait for completion of other operations related to the driver, but immediately return the status
of the driver as either:

{ok, loaded}
The driver was actually loaded and isimmediately usable.
{ok, already |oaded}

The driver was already loaded by another process and/or isin use by aliving port. The load by you is registered
and acorresponding t ry_unl oad is expected sometime in the future.

Ericsson AB. All Rights Reserved.: Kernel | 53

erl_ddll

{ok, pending_driver}or {ok, pending_driver, reference()}

Theload request isregistered, but the loading is delayed due to the fact that an earlier instance of the driver isstill
waiting to get unloaded (there are open portsusing it). Still, unload is expected when you are done with the driver.
This return value will mostly happen when the { r el oad, pendi ng_dri ver} or {rel oad, pendi ng}
options are used, but can happen when another user isunloading adriver in parallel andtheki I | _port s driver
option is set. In other words, this return value will always need to be handled!

{ok, pending_process}or {ok, pending_process, reference()}

The load request is registered, but the loading is delayed due to the fact that an earlier instance of the driver
is still waiting to get unloaded by another user (not only by a port, in which case { ok, pendi ng_dri ver}
would have been returned). Still, unload is expected when you are done with the driver. This return value will
only happen when the{ r el oad, pendi ng} optionisused.

When the function returns { ok, pending_driver} or {ok, pending process}, one might want
to get information about when the driver is actually loaded. This can be achieved by using the { noni t or,
Moni t or Opti on} option.

When monitoring is requested, and a corresponding { ok, pendi ng _driver} or{ok, pendi ng_process}
would be returned, the function will instead return atuple { ok, Pendi ngSt at us, reference()} andthe
process will, at a later time when the driver actually gets loaded, get a monitor message. The monitor message one
can expect is described in the monitor/2 function description.

Note:

Note that in case of loading, monitoring can not only get triggered by using the{r el oad, Rel oadOpti on}
option, but also in special cases where the load-error is transient, why { moni t or, pendi ng_dri ver}
should be used under basically all real world circumstances!

The function accepts the following parameters:
Path

Thefilesystem path to the directory where the driver object fileis situated. The filename of the object file (minus
extension) must correspond to the driver name (used in the name parameter) and the driver must identify itself
with thevery samename. ThePat h might beprovided asaniolist(), meaningit canbealist of otheri ol i st () s,
characters (eight bit integers) or binaries, al to be flattened into a sequence of characters.

The (possibly flattened) Pat h parameter must be consistent throughout the system, adriver should, by all users,
beloaded using the sameliteralPat h. The exceptioniswhen reloading isrequested, in which casethe Pat h may
be specified differently. Note that all userstrying to load the driver at alater time will need to use the newPat h
if the Pat h is changed using ar el oad option. Thisis yet another reason to have only one loader of adriver
one wants to upgrade in arunning system!

Name

The name parameter is the name of the driver to be used in subsequent calls to open_port. The name can be
specified either asani ol i st () or asan at on{) . The name given when loading is used to find the actua
object file (with the help of the Pat h and the system implied extension suffix, i.e. . s0). The name by which
the driver identifiesitself must also be consistent with this Name parameter, much as a beam-file's module name
much correspond to its filename.

OptionList

A number of options can be specified to control the loading operation. The options are given as a list of two-
tuples, the tuples having the following values and meanings:

54 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

{driver_options, DriverOptionList}

Thisoptionisto provide optionsthat will changeits general behavior and will "stick" to thedriver throughout
its lifespan.

The driver options for a given driver name need always to be consistent, even when the driver is reloaded,
meaning that they are as much a part of the driver as the actual name.

Currently the only allowed driver optioniski | | _port s, which means that all ports opened towards the
driver are killed with the exit-reason dri ver _unl oaded when no process any longer has the driver
loaded. This situation arises either when the last user callstry_unload/2, or the last process having loaded
the driver exits.

{monitor, MonitorOption}

A Monitor Optiontellstry | oad/ 3 to trigger a driver monitor under certain conditions. When the
monitor is triggered, the function will return athree-tuple{ ok, Pendi ngSt atus, reference()},
wherether ef er ence() isthe monitor ref for the driver monitor.

Only oneMbni t or Opt i on canbespecified anditiseither theatom pendi ng, which meansthat amonitor
should be created whenever a load operation is delayed, and the atom pendi ng_dri ver, in which a
monitor is created whenever the operation is delayed due to open ports towards an otherwise unused driver.
The pendi ng_dri ver option is of little use, but is present for completeness, it is very well defined
which reload-options might give rise to which delays. It might, however, be a good idea to use the same
Moni t or Opt i on asthe Rel oadOpt i on if present.

If reloading is not requested, it might still be useful to specify the noni t or option, as forced unloads
(ki I'l _ports driver option or the ki | | _ports option to try_unload/2) will trigger a transient state
where driver loading cannot be performed until all closing ports are actually closed. So, ast ry_unl oad
can, in amost all situations, return { ok, pendi ng_dri ver}, one should always specify at least
{moni tor, pending_driver} inproduction code (seethe monitor discussion above).

{reload,Rel oadOption}

This option is used when one wants to reload a driver from disk, most often in a code upgrade scenario.
Having ar el oad option aso implies that the Pat h parameter need not be consistent with earlier loads
of thedriver.

To reload a driver, the process needs to have previously loaded the driver, i.e there has to be an active user
of the driver in the process.

Ther el oad option can be either the atom pendi ng, in which reloading is requested for any driver and
will be effectuated when all ports opened against the driver are closed. The replacement of the driver will
in this case take place regardless of if there are till pending users having the driver loaded! The option
also triggers port-killing (if theki I | _port s driver option is used) even though there are pending users,
making it usable for forced driver replacement, but laying a lot of responsibility on the driver users. The
pending option is seldom used as one does not want other usersto have loaded the driver when code change
is underway.

The more useful optionispendi ng_dr i ver, which means that reloading will be queued if the driver is
not loaded by any other users, but the driver has opened ports, in which case{ ok, pendi ng_dri ver}
will bereturned (anoni t or optionis of course recommended).

If the driver is unloaded (not present in the system), the error code not _| oaded will be returned. The
r el oad option isintended for when the user has already loaded the driver in advance.

Thefunction might return numerous errors, of which some only can be returned given acertain combination of options.

A number of errors are opague and can only be interpreted by passing them to the format_error/1 function, but some
can be interpreted directly:

Ericsson AB. All Rights Reserved.: Kernel | 55

erl_ddll

{error,linked_in_driver}
The driver with the specified name is an erlang statically linked in driver, which cannot be manipulated with
this API.
{error,inconsistent}
Thedriver hasaready been loaded with either other Dr i ver Qpt i onLi st or adifferent literalPat h argument.
This can happen eveniif ar el oad optionisgiven, if theDri ver Opt i onLi st differ from the current.
{error, permanent}

The driver has requested itself to be permanent, making it behave like an erlang linked in driver and it can no
longer be manipulated with this API.

{error, pending_process}
Thedriver isloaded by other userswhenthe{r el oad, pendi ng_dri ver} optionwasgiven.
{error, pending_reload}
Driver reload is already requested by another user whenthe{r el oad, Rel oadOpti on} option wasgiven.
{error, not_loaded by this process}
Appears when the r el oad option is given. The driver Name is present in the system, but there is no user of
it in this process.
{error, not_loaded}

Appears when the r el oad option is given. The driver Nane is not in the system. Only drivers loaded by this
process can be rel oaded.

All other error codes are to be trandated by the format_error/1 function. Note that callsto f or mat _er r or should
be performed from the same running instance of the erlang virtual machine as the error was detected in, due to system
dependent behavior concerning error values.

If the arguments or options are malformed, the function will throw abadar g exception.

try unload(Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorAtom}

Types:
Name = driver()
OptionList = [Option]
Option = {monitor, MonitorOption} | kill ports
MonitorOption = pending driver | pending
Status = unloaded | PendingStatus
PendingStatus = pending driver | pending process
Ref = reference()

ErrorAtom = linked in driver

| not loaded

| not loaded by this process
| permanent

Thisisthelow level function to unload (or decrement reference counts of) adriver. It can be used to force port killing,
in much the same way as the driver option ki | | _port s implicitly does, and it can trigger a monitor either due to
other users still having the driver loaded or that there are open ports using the driver.

56 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular
process (i.e. this user) no longer needs the driver. That can, if there are no other users, trigger actual unloading of the
driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed. If the driver hastheki | | _port s option set, orif ki I | _port s was specified as an
option to this function, all pending ports using this driver will get killed when unloading is done by the last user. If
no port-killing isinvolved and there are open ports, the actual unloading is delayed until there are no more open ports
using the driver. If, in this case, another user (or even this user) loads the driver again before the driver is actually
unloaded, the unloading will never take place.

To alow the user that requests unloading to wait for actual unloading to take place, noni t or triggers can be
specified in much the same way aswhen loading. As users of thisfunction however seldom are interested in more than
decrementing the reference counts, monitoring is more seldom needed. If theki | | _port s optionis used however,
monitor trigging is crucial, as the ports are not guaranteed to have been killed until the driver is unloaded, why a
monitor should be triggered for at least the pendi ng_dri ver case.

The possible monitor messagesthat can be expected arethe sameaswhen usingtheunl oaded optionto the monitor/2
function.

The function will return one of the following statuses upon success:
{0k, unloaded}

The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if
the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and there are no more users requiring
it to be loaded.

{ok, pending_driver}or {ok, pending_driver, reference()}

Thisreturn value indicates that this call removed the last user from the driver, but there are still open ports using
it. When all ports are closed and no new users have arrived, the driver will actually be reloaded and the name
and memory reclaimed.

This return value is valid even when the option ki | | _port s was used, as killing ports may not be a process
that completes immediately. The condition is, in that case, however transient. Monitors are as aways useful to
detect when the driver isreally unloaded.

{ok, pending_process}or {ok, pending_process, reference()}

The unload request is registered, but there are still other users holding the driver. Note that the term
pendi ng_pr ocess might refer to the running process, there might be more than one user in the same process.

Thisisanormal, healthy return value if the call was just placed to inform the emulator that you have no further
use of the driver. It is actually the most common return value in the most common scenario described in the
introduction.

The function accepts the following parameters:
Name

The name parameter isthe name of the driver to be unloaded. The name can be specified either asani ol i st ()
orasanaton().

OptionList

TheOpt i onLi st argument can be used to specify certain behavior regarding portsaswell astriggering monitors
under certain conditions:

kill_ports

Force killing of all ports opened using this driver, with the exit reason dr i ver _unl oaded, if you are
the lastuser of the driver.

Ericsson AB. All Rights Reserved.: Kernel | 57

erl_ddll

If there are other users having the driver loaded, this option will have no effect.

If one wants the consistent behavior of killing ports when the last user unloads, one should use the driver
optionki | I _port s when loading the driver instead.

{monitor, Monitor Option}

This option creates a driver monitor if the condition given in Moni t or Opt i on istrue. The valid options
are:

pending_driver
Create adriver monitor if the return valueisto be{ ok, pendi ng_dri ver}.
pending

Create a monitor if the return value will be either {ok, pendi ng_driver} or {ok,
pendi ng_process}.

The pendi ng_dri ver Nonit or Opti on isby far the most useful and it has to be used to ensure that
the driver has really been unloaded and the ports closed whenever the ki | | _port s optionisused or the
driver may have been loaded with theki | | _port s driver option.

By using the monitor-triggersinthecall tot r y_unl oad one can be sure that the monitor is actually added
before the unloading is executed, meaning that the monitor will always get properly triggered, which would
not bethe caseif onecaleder| _ddl | : noni t or/ 2 separately.

The function may return several error conditions, of which all are well specified (no opague values):
{error, linked_in_driver}

Y ou were trying to unload an erlang statically linked in driver, which cannot be manipulated with this interface
(and cannot be unloaded at al).

{error, not_loaded}
The driver Nane is not present in the system.
{error, not_loaded by this process}
The driver Nane is present in the system, but there is no user of it in this process.

Asaspecial case, drivers can be unloaded from processes that has done no corresponding call totry | oad/ 3
if, and only if, there are no users of the driver at all, which may happen if the process containing the last user dies.

{error, permanent}

The driver has made itself permanent, in which case it can no longer be manipulated by thisinterface (much like
astatically linked in driver).

The function throws abadar g exception if the parameters are not given as described above.

unload(Name) -> ok | {error, ErrorDesc}
Types.
Name = driver ()
ErrorDesc = term()
Unloads, or at least dereferences the driver named Nane. If the caller isthe last user of the driver, and there are no

more open ports using the driver, the driver will actually get unloaded. In al other cases, actua unloading will be
delayed until all ports are closed and there are no remaining users.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user of the driver. For usage scenarios, see the description in the beginning of this document.

58 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

TheEr r or Desc returned is an opaque value to be passed further on to the format_error/1 function. For more control
over the operation, use the try_unload/2 interface.

The function throws abadar g exception if the parameters are not given as described above.

unload driver(Name) -> ok | {error, ErrorDesc}
Types:

Name = driver ()

ErrorDesc = term()

Unloads, or at least dereferences the driver named Nane. If the caller isthe last user of the driver, all remaining open
portsusing the driver will get killed withthereasondr i ver _unl oaded and thedriver will eventually get unloaded.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user. For usage scenarios, see the description in the beginning of this document.

TheEr r or Desc returned is an opaque value to be passed further on to the format_error/1 function. For more control
over the operation, use the try_unload/2 interface.

The function throws abadar g exception if the parameters are not given as described above.

loaded drivers() -> {ok, Drivers}
Types:
Drivers = [Driver]
Driver = string()
Returns alist of all the available drivers, both (statically) linked-in and dynamically loaded ones.
The driver names are returned as alist of strings rather than alist of atoms for historical reasons.

More information about drivers can be obtained using one of the info functions.

format error(ErrorDesc) -> string()
Types:
ErrorDesc = term()

Takes an Er r or Desc returned by load, unload or reload functions and returns a string which describes the error or
warning.

Note:

Dueto peculiaritiesin the dynamic loading interfaces on different platform, the returned string is only guaranteed
to describe the correct error if format_error/1 is called in the same instance of the erlang virtual machine as the
error appeared in (meaning the same operating system process)!

SEE ALSO
erl_driver(4), driver_entry(4)

Ericsson AB. All Rights Reserved.: Kernel | 59

erl_prim_loader

erl_prim_loader

Erlang module

The module erl_prim_loader is moved to the runtime system application. Please see erl_prim loader(3) in the erts
reference manual instead.

60 | Ericsson AB. All Rights Reserved.: Kernel

erlang

erlang

Erlang module

The module erlang is moved to the runtime system application. Please see erlang(3) in the erts reference manual
instead.

Ericsson AB. All Rights Reserved.: Kernel | 61

error_handler

error_handler

Erlang module

The error handler module defines what happens when certain types of errors occur.

Exports

undefined function(Module, Function, Args) -> any()
Types:
Module = Function = atom()
Args = list()
A (possibly empty) list of arguments Ar g1, . ., ArgN
This function is called by the run-time system if a call is made to Mbdul e: Function(Argl,.., ArgN) and

Modul e: Funct i on/ Nisundefined. Notethat undef i ned_f unct i on/ 3 isevaluated insidethe processmaking
the original call.

This function will first attempt to autoload Modul e. If that is not possible, an undef exception will be raised.
If it was possible to load Modul e and the function Funct i on/ Nisexported, it will be called.

Otherwise, if the function ' $handl e_undefined_function'/2 is exported, it will be caled as
" $handl e_undefi ned_functi on' (Function, Args).

Warning:

Defining ' $handl e_undefi ned_f uncti on' /2 in ordinary application code is highly discouraged. It is
very easy to make subtle errors that can take along time to debug. Furthermore, none of the tools for static code
analysis (such as Dialyzer and Xref) supportstheuseof ' $handl e_undef i ned_f uncti on' / 2 andno such
support will be added. Only use this function after having carefully considered other, less dangerous, solutions.
One example of potential legitimate useis creating stubs for other sub-systems during testing and debugging.

Otherwise an undef exception will be raised.

raise undef exception(Module, Function, Args) -> no _return()
Types:

Module = Function = atom()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN

Raise an undef exception with a stacktrace indicating that Modul e: Funct i on/ Nis undefined.

undefined lambda(Module, Fun, Args) -> term()
Types:

62 | Ericsson AB. All Rights Reserved.: Kernel

error_handler

Module = atom()

Fun = function()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN

This function is evaluated if acall is madeto Fun(Argl, .., ArgN) when the module defining the fun is not
loaded. The function is evaluated inside the process making the original call.

If Modul e isinterpreted, the interpreter isinvoked and the return value of the interpreted Fun(Argl, .., ArgN)
cal isreturned.

Otherwise, it returns, if possible, the value of appl y(Fun, Args) after an attempt has been made to autoload
Modul e. If thisis not possible, the call fails with exit reason undef .
Notes

The code in error _handl er is complex and should not be changed without fully understanding the interaction
between the error handler, thei ni t process of the code server, and the I/O mechanism of the code.

Changesin the code which may seem small can cause a deadlock as unforeseen consegquences may occur. The use of
i nput isdangerousin thistype of code.

Ericsson AB. All Rights Reserved.: Kernel | 63

error_logger

error_logger

Erlang module

The Erlang error logger is an event manager (see OTP Design Principles and gen event(3)), registered as
error_| ogger . Error, warning and info events are sent to the error logger from the Erlang runtime system and the
different Erlang/OTP applications. The events are, by default, logged to tty. Note that an event from a process P is
logged at the node of the group leader of P. This means that log output is directed to the node from which a process
was created, which not necessarily is the same node as where it is executing.

Initially, er r or _| ogger only hasaprimitive event handler, which buffersand printstheraw event messages. During
system startup, the application Kernel replaces this with a standard event handler, by default one which writes nicely
formatted output to tty. Kernel can also be configured so that events are logged to file instead, or not logged at al,
see kernel (6).

Alsothe SASL application, if started, addsitsown event handler, which by default writes supervisor, crash and progress
reports to tty. See sad(6).

It is recommended that user defined applications should report errors through the error logger, in order
to get uniform reports. User defined event handlers can be added to handle application specific events.
(add_report _handl er/ 1, 2). Also, there is a useful event handler in STDLIB for multi-file logging of events,
seel og_nf_h(3).

Warning events were introduced in Erlang/OTP R9C. To retain backwards compatibility, these are by default tagged
aserrors, thus showing up as error reportsin the logs. By using the command lineflag +W <w | i >, they caninstead
be tagged as warnings or info. Tagging them as warnings may require rewriting existing user defined event handlers.

Data Types

report() = [{Tag :: term(), Data :: term()} | term()]
| strlng)
| term(

Exports

error_msg(Format) -> ok
error_msg(Format, Data) -> ok
format(Format, Data) -> ok
Types.

Format = string()

Data = list()

Sends a standard error event to the error logger. The For mat and Dat a arguments are the same as the arguments of
i o: format/ 2. Theevent is handled by the standard event handler.

1> error logger:error msg("An error occurred in ~p~n", [a modulel]).
=ERROR REPORT==== 11-Aug-2005::14:03:19 ===

An error occurred in a module

ok

64 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, useer r or _r eport/ 1 instead.

error_report(Report) -> ok
Types:
Report = report()
Sends a standard error report event to the error logger. The event is handled by the standard event handler.

2> error_logger:error _report([{tagl,datal},a term,{tag2,data}]).

=ERROR REPORT==== 11-Aug-2005::13:45:41 ===
tagl: datal
a_term
tag2: data
ok
3> error_logger:error_report("Serious error in my module").
=ERROR REPORT==== 11-Aug-2005::13:45:49 ===
Serious error in my module
ok

error_report(Type, Report) -> ok
Types:
Type = term()
Report = report()
Sends a user defined error report event to the error logger. An event handler to handle the event is supposed to have
been added. The event isignored by the standard event handler.

It is recommended that Repor t follows the same structure asfor error _report/ 1.

warning map() -> Tag
Types:
Tag = error | warning | info
Returns the current mapping for warning events. Events sent using warning_nsg/ 1,2 or

war ni ng_report/ 1, 2 aretagged as errors (default), warnings or info, depending on the value of the command
line flag +W

0s$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ~G)

1> error_logger:warning map().

error

2> error_logger:warning msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error

Ericsson AB. All Rights Reserved.: Kernel | 65

error_logger

ok
3>
User switch command

__>q
0s$ erl +W w
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ~G)

1> error_logger:warning map() .

warning

2> error_logger:warning msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok

warning msg(Format) -> ok
warning msg(Format, Data) -> ok
Types:
Format = string()
Data = list()
Sends a standard warning event to the error logger. The For nat and Dat a arguments are the same as the arguments

of i o: format/ 2. The event is handled by the standard event handler. It is tagged either as an error, warning or
info, see warning_map/0.

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, usewar ni ng_r epor t/ 1 instead.

warning report(Report) -> ok
Types:
Report = report()

Sends a standard warning report event to the error logger. The event is handled by the standard event handler. It is
tagged either as an error, warning or info, see warning_map/0.

warning report(Type, Report) -> ok
Types:
Type = any()
Report = report ()
Sends a user defined warning report event to the error logger. An event handler to handle the event is supposed to

have been added. The event is ignored by the standard event handler. It is tagged either as an error, warning or info,
depending on the value of warning_map/0.

info msg(Format) -> ok

info msg(Format, Data) -> ok
Types:

66 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

Format = string()
Data = list()

Sends a standard information event to the error logger. The For nat and Dat a arguments are the same as the
argumentsof i o: f or mat / 2. The event is handled by the standard event handler.

1> error_logger:info _msg("Something happened in ~p~n", [a modulel]).

=INFO REPORT==== 11-Aug-2005::14:06:1
Something happened in a module
ok

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, usei nf o_r eport/ 1 instead.

info_report(Report) -> ok
Types:
Report = report()

Sends a standard information report event to the error logger. The event is handled by the standard event handler.

2> error_logger:info report([{tagl,datal},a term,{tag2,data}]).

=INFO REPORT==== 11-Aug-2005::13:55:09
tagl: datal
a_term
tag2: data
ok
3> error_logger:info report("Something
=INFO REPORT==== 11-Aug-2005::13:55:36
Something strange happened
ok

info _report(Type, Report) -> ok
Types:

Type = any()

Report = report ()

strange happened").

Sends a user defined information report event to the error logger. An event handler to handle the event is supposed to
have been added. The event isignored by the standard event handler.

It isrecommended that Report followsthe same structureasfori nfo_report/ 1.

add report handler(Handler) -> any()
add_report handler(Handler, Args) -> Result

Types:

Ericsson AB. All Rights Reserved.: Kernel | 67

error_logger

Handler = module()

Args = gen_event: handl er _args()

Result = gen_event:add_handl er _ret ()
Adds a new event handler to the error logger. The event handler must be implemented as agen_event callback
module, see gen_event(3).
Handl er istypically the name of the callback module and Ar gs is an optional term (defaults to []) passed to the
initialization callback function Handl er : i ni t/ 1. The function returns ok if successful.

The event handler must be able to handle the events described below.

delete report handler(Handler) -> Result
Types:

Handler = module()

Result = gen_event: del _handl er_ret ()

Deletes an event handler from the error logger by caling gen_event : del et e_handl er (error _| ogger,
Handl er, []),seegen event(3).

tty(Flag) -> ok
Types:
Flag = boolean()
Enables (FI ag == true) ordisables(FI ag == f al se) printout of standard eventsto the tty.

Thisis done by adding or deleting the standard event handler for output to tty, thus calling this function overrides the
value of the Kernel er r or _| ogger configuration parameter.

logfile(Request :: {open, Filename}) -> ok | {error, OpenReason}
logfile(Request :: close) -> ok | {error, CloseReason}
logfile(Request :: filename) -> Filename | {error, FilenameReason}
Types:

Filename = file: nane()

OpenReason = allready have logfile | open_error()

CloseReason = module not found

FilenameReason = no log file

open error() = file:posix() | badarg | system limit
Enables or disables printout of standard eventsto afile.

Thisis done by adding or deleting the standard event handler for output to file, thus calling this function overrides the
value of the Kernel er r or _| ogger configuration parameter.

Enabling file logging can be used in combination with callingt t y(f al se) , in order to have asilent system, where
all standard events are logged to afile only. There can only be one active log file at atime.

Request isoneof:
{open, Fil enane}

Opens the log file Fi | ename. Returns ok if successful, or {error, allready_have |ogfil e} if
logging to file is aready enabled, or an error tuple if another error occurred. For example, if Fi | enane could
not be opened.

68 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

cl ose
Closes the current log file. Returns ok, or { err or, nodul e_not _f ound}.
fil enane
Returnsthe name of thelog fileFi | enanme, or{error, no_log fil e} ifloggingtofileisnot enabled.

Events

All event handlers added to the error logger must handle the following events. G eader isthe group leader pid of
the process which sent the event, and Pi d is the process which sent the event.

{error, deader, {Pid, Format, Data}}

Generated whenerror _nsg/ 1, 2 or f or mat iscalled.
{error_report, G eader, {Pid, std error, Report}}

Generated whenerror _report/ 1iscaled.
{error _report, deader, {Pid, Type, Report}}

Generated whenerror _report/ 2 iscalled.
{warni ng_nsg, d eader, {Pid, Format, Data}}

Generated when war ni ng_mnsg/ 1, 2 iscalled, provided that warnings are set to be tagged as warnings.
{warni ng_report, deader, {Pid, std warning, Report}}

Generated when war ni ng_r eport/ 1 iscalled, provided that warnings are set to be tagged as warnings.
{warni ng_report, deader, {Pid, Type, Report}}

Generated when war ni ng_r eport/ 2 iscaled, provided that warnings are set to be tagged as warnings.
{info_nsg, d eader, {Pid, Format, Data}}

Generated wheni nf o_mnsg/ 1, 2 iscalled.
{info_report, deader, {Pid, std_info, Report}}

Generated wheni nf o_r eport/ liscalled.
{info_report, deader, {Pid, Type, Report}}

Generated wheni nf o_report/ 2 iscalled.

Note that also a number of system internal events may be received, a catch-all clause last in the definition
of the event handler callback function Mbdul e: handl e_event/ 2 is necessary. This aso holds true for
Modul e: handl e_i nf o/ 2, as there are a number of system internal messages the event handler must take care
of aswell.

SEE ALSO
gen_event(3), log_mf_h(3), kernel(6), sasl(6)

Ericsson AB. All Rights Reserved.: Kernel | 69

file

file

Erlang module

Themodulef i | e provides an interface to the file system.

On operating systems with thread support, it is possible to let file operations be performed in threads of their own,
allowing other Erlang processes to continue executing in parallel with the file operations. See the command line flag
+Ainerl(l).

With regard to file name encoding, the Erlang VM can operate in two modes. The current mode can be queried using
the native_name_encoding/0 function. It returnseither | ati n1 or ut f 8.

Inthel at i n1 mode, the Erlang VM does not change the encoding of file names. In the ut f 8 mode, file names can
contain Unicode characters greater than 255 and the VM will convert file names back and forth to the native file name
encoding (usually UTF-8, but UTF-16 on Windows).

The default mode depends on the operating system. Windows and MacOS X enforce consistent file name encoding
and therefore the VM uses the ut f 8 mode.

On operating systems with transparent naming (i.e. all Unix systems except MacOS X), the default will be ut f 8 if
the terminal supports UTF-8, otherwisel at i n1. The default may be overridden using the +f nl (to forcel ati nl
mode) or +f nu (to force ut f 8 mode) when starting erl.

On operating systems with transparent naming, files could be inconsistently named, i.e. some files are encoded in
UTF-8 while othersare encoded in (for example) iso-latinl. To be ableto handlefile systemswith inconsistent naming
when running in the ut f 8 mode, the concept of "raw file names" has been introduced.

A raw file nameis afile name given as a binary. The Erlang VM will perform no translation of afile name given as
abinary on systems with transparent naming.

When running intheut f 8 mode, thefile:list_dir/1landfil e:read_Iink/1functionswill never return
raw file names. Use thelist_dir_all/1 and read link_all/1 functions to return all file namesincluding raw file names.

Also see Notes about raw file names.

Data Types

deep list() = [char() | atom() | deep_list()]
fd()

A file descriptor representing afile opened in raw mode.

filename() = string()

filename all() = string() | binary()

io device() = pid() | fd()

Asreturned by file:open/2; pi d() isaprocess handling I/O-protocols.

name() = string() | atom() | deep_list()

If VM isin Unicode filename mode, st ri ng() and char () arealowed to be > 255.

name all() = strlng()
| atom(
| deep_ Ilst()

70 | Ericsson AB. All Rights Reserved.: Kernel

file

| (RawFilename :: binary())

If VM isin Unicodefilename mode, st ri ng() andchar () areallowedto be> 255. RawFi | enane isafilename
not subject to Unicode translation, meaning that it can contain characters not conforming to the Unicode encoding
expected from the filesystem (i.e. non-UTF-8 characters although the VM is started in Unicode filename mode).

posix() = eacces
| eagain
| ebadf

| ebusy

| edquot
| eexist
| efault
| efbig

| eintr

| einval
| eio

| eisdir
| eloop

| emfile
| emlink
| enametoolong
| enfile
| enodev
| enoent
| enomem
| enospc
| enotblk
| enotdir
| enotsup
| enxio

| eperm

| epipe

| erofs

| espipe
| esrch

| estale
| exdev

An atom which is named from the POSI X error codes used in Unix, and in the runtime libraries of most C compilers.
date time() = cal endar:datetine()
Must denote avalid date and time.

file info() =
#file info{size
type

undefined | integer() >= 0,
undefined

| device

| directory
| other
|

|

regular
symlink,

access = undefined
| read

Ericsson AB. All Rights Reserved.: Kernel | 71

file

| write
| read write
| none,
atime = undefined
| file:date_tinme()
| integer() >= 0,
mtime = undefined
| file:date_tinme()
| integer() >= 0,
ctime = undefined
| file:date_tinme()
| integer() >= 0,
mode = undefined | integer() >= 0,
links = undefined | integer() >= 0,
major device = undefined | integer() >= 0,
minor device = undefined | integer() >= 0,
inode = undefined | integer() >= 0,
uid = undefined | integer() >= 0,
gid = undefined | integer() >= 0}
location() = integer()
| {bof, Offset :: integer()}
| {cur, Offset :: integer()}
| {eof, Offset :: integer()}
| bof
| cur
| eof

mode() = read
| write
| append
| exclusive
| raw
| binary
| {delayed write,
Size :: integer() >= 0,
Delay :: integer() >= 0}
delayed write

|

| {read ahead, Size :: integer() >= 1}
| read ahead

| compressed

| {encoding, uni code: encodi ng() }

| sync

file info option() = {time, local}
| {time, universal}
| {time, posix}
| raw

Exports

advise(IoDevice, Offset, Length, Advise) -> ok | {error, Reason}
Types:

72 | Ericsson AB. All Rights Reserved.: Kernel

file

IoDevice = io_device()
Offset = Length = integer()
Advise = posix_file_advise()
Reason = posix() | badarg
posix file advise() = normal
| sequential
| random
| no reuse
| will need
| dont need

advi se/ 4 can be used to announce an intention to access file data in a specific pattern in the future, thus alowing
the operating system to perform appropriate optimizations.

On some platforms, this function might have no effect.

allocate(File, Offset, Length) -> ok | {error, posix()}
Types:

File = i o_device()

Offset = Length = integer() >= 0

al | ocat e/ 3 can be used to preallocate space for afile.

This function only succeeds in platforms that implement this feature. When it succeeds, space is preallocated for the
file but the file size might not be updated. This behaviour depends on the preall ocation implementation. To guarantee
thefile size is updated one must truncate the file to the new size.

change group(Filename, Gid) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Gid = integer()

Reason = posix() | badarg
Changes group of afile. Seewrite file info/2.

change mode(Filename, Mode) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Mode = integer()

Reason = posix() | badarg
Changes permissions of afile. Seewrite file info/2.

change owner(Filename, Uid) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Uid = integer()

Reason = posix() | badarg
Changes owner of afile. See write file_info/2.

Ericsson AB. All Rights Reserved.: Kernel | 73

file

change owner(Filename, Uid, Gid) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Uid = Gid = integer()

Reason = posi x() | badarg
Changes owner and group of afile. Seewrite file info/2.

change time(Filename, Mtime) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Mtime = date_tine()

Reason = posi x() | badarg
Changes the modification and access times of afile. See write file info/2.

change time(Filename, Atime, Mtime) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Atime = Mtime = date_tine()

Reason = posix() | badarg
Changes the modification and last access times of afile. Seewrite file info/2.

close(IoDevice) -> ok | {error, Reason}
Types:
IoDevice = io_device()
Reason = posix() | badarg | terminated
Closesthefilereferenced by | oDevi ce. It mostly returns ok, expect for some severe errors such as out of memory.

Notethat if the option del ayed_wri t e was used when opening thefile, cl ose/ 1 might return an old write error
and not even try to close the file. See open/2.

consult(Filename) -> {ok, Terms} | {error, Reason}
Types:

Filename = nane_all ()

Terms = [term()]

Reason = posi x()
| badarg
| terminated

| system limit

| {Line :: integer(), Mod :: module(), Term :: term()}

Reads Erlang terms, separated by "', from Fi | enane. Returns one of the following:
{ok, Terns}
The file was successfully read.
{error, atom()}
An error occurred when opening the file or reading it. See open/2 for alist of typical error codes.

74 | Ericsson AB. All Rights Reserved.: Kernel

file

{error, {Line, Md, Ternt}}
An error occurred when interpreting the Erlang termsin the file. Usef or mat _er r or / 1 to convert the three-
element tuple to an English description of the error.

Example:

f.txt: {person, "kalle", 25}.
{person, "pelle", 30}.

1> file:consult("f.txt").
{ok, [{person, "kalle", 25}, {person, "pelle",30}]}

The encoding of of Fi | enamne can be set by a comment as described in epp(3).

copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}

copy(Source, Destination, ByteCount) ->
{ok, BytesCopied} | {error, Reason}

Types:
Source = Destination = io_device() | Filename | {Filename, Modes}
Filename = nane_all ()

Modes = [npde()]

ByteCount = integer() >= 0 | infinity
BytesCopied = integer() >= 0

Reason = posix() | badarg | terminated

CopiesByt eCount bytesfrom Sour ce toDest i nati on. Sour ce and Dest i nat i on refer to either filenames
or |O devicesfrom e.g. open/ 2. Byt eCount defaultstoi nf i ni ty, denoting an infinite number of bytes.

The argument Mbdes isalist of possible modes, see open/2, and defaultsto [].

If both Sour ce and Dest i nat i on refer to filenames, thefilesare opened with[r ead, binary] and[wite,
bi nary] prepended to their mode lists, respectively, to optimize the copy.

If Sour ce refersto afilename, it is opened with r ead mode prepended to the mode list before the copy, and closed
when done.

If Desti nati on refersto afilename, it is opened with wr i t € mode prepended to the mode list before the copy,
and closed when done.

Returns{ ok, Byt esCopi ed} whereByt esCopi ed isthe number of bytes that actually was copied, which may
be less than Byt eCount if end of file was encountered on the source. If the operation fails, { err or, Reason}
is returned.

Typical error reasons; Asfor open/ 2 if afile had to be opened, and asforread/ 2 andwr i t e/ 2.

del dir(Dir) -> ok | {error, Reason}
Types:
Dir = nane_al |l ()
Reason = posix() | badarg
Triesto delete the directory Di r . The directory must be empty before it can be deleted. Returns ok if successful.

Typical error reasons are:

Ericsson AB. All Rights Reserved.: Kernel | 75

file

eacces
Missing search or write permissions for the parent directoriesof Di r .
eexi st
The directory is not empty.
enoent
The directory does not exist.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.
ei nval
Attempt to delete the current directory. On some platforms, eacces isreturned instead.

delete(Filename) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Reason = posi x() | badarg

Triesto delete the file Fi | enane. Returns ok if successful.
Typical error reasons are:
enoent

Thefile does not exist.
eacces

Missing permission for the file or one of its parents.
eperm

Thefileisadirectory and the user is not super-user.
enotdir

A component of the file nameis not adirectory. On some platforms, enoent isreturned instead.
ei nval

Fi | ename had an improper type, such astuple.

Warning:

In afuture release, a bad type for the Fi | enane argument will probably generate an exception.

eval(Filename) -> ok | {error, Reason}

Types:
Filename = nane_all ()
Reason = posi x()
| badarg
| terminated
|

system limit

76 | Ericsson AB. All Rights Reserved.: Kernel

file

| {Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '." (or ',', a sequence of expressionsis aso an expression), from
Fi | ename. The actual result of the evaluation is not returned; any expression sequence in the file must be there for
its side effect. Returns one of the following:

ok

The file was read and evaluated.
{error, atom)}

An error occurred when opening the file or reading it. Seeopen/ 2 for alist of typical error codes.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. Usef or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of of Fi | enane can be set by a comment as described in epp(3).

eval(Filename, Bindings) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Bindings = erl _eval : bi ndi ng_struct ()

Reason = posi x()

| badarg

| terminated
| system limit
| {Line :: integer(), Mod :: module(), Term :: term()}

Thesameaseval / 1 but the variable bindings Bi ndi ngs are used in the evaluation. See erl_eval(3) about variable
bindings.

format _error(Reason) -> Chars

Types.
Reason posi x()
badarg

system limit
{Line :: integer(), Mod :: module(), Term :: term()}
Chars = string()

|
| terminated
|
|

Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get cwd() -> {ok, Dir} | {error, Reason}
Types:

Dir = fil ename()

Reason = posi x()

Returns{ ok, Dir},whereDi r isthe current working directory of the file server.

Ericsson AB. All Rights Reserved.: Kernel | 77

file

Note:

In rare circumstances, this function can fail on Unix. It may happen if read permission does not exist for the
parent directories of the current directory.

Typical error reasons are:
eacces

Missing read permission for one of the parents of the current directory.

get cwd(Drive) -> {ok, Dir} | {error, Reason}
Types.

Drive = string()

Dir = fil ename()

Reason = posix() | badarg

Dri ve should be of theform "Let t er : ", for example"c:". Returns{ ok, Dir} or{error, Reason},where
Di r isthe current working directory of the drive specified.

Thisfunctionreturns{ er r or, enot sup} onplatformswhich have no concept of current drive (Unix, for example).
Typical error reasons are;
enot sup
The operating system has no concept of drives.
eacces
The drive does not exist.
ei nval
Theformat of Dri ve isinvalid.

list dir(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = nane_al |l ()

Filenames = [fil enane()]

Reason = posi x()
| badarg
| {no_translation, Filename :: unicode:latinl_binary()}

Lists al filesin adirectory, except files with "raw" names. Returns{ ok, Fi | enanes} if successful. Otherwise,
itreturns{error, Reason}.Fil enanes isalist of the names of al the files in the directory. The names are
not sorted.

Typical error reasons are:
eacces

Missing search or write permissions for Di r or one of its parent directories.
enoent

The directory does not exist.

78 | Ericsson AB. All Rights Reserved.: Kernel

file

{no_translation, Filenane}

Fi | ename isabi nary() with characters coded in 1SO-latin-1 and the VM was started with the parameter
+f nue.

list dir all(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = nane_al |l ()

Filenames = [filename_all ()]

Reason = posix() | badarg

Lists al the files in a directory, including files with "raw" names. Returns { ok, Fi | enanmes} if successful.
Otherwisg, it returns{ error, Reason}.Fil enamnes isalist of the names of al the filesin the directory. The
names are not sorted.

Typical error reasons are:
eacces

Missing search or write permissions for Di r or one of its parent directories.
enoent

The directory does not exist.

make dir(Dir) -> ok | {error, Reason}
Types:
Dir = name_al I ()
Reason = posix() | badarg
Triesto create the directory Di r . Missing parent directories are not created. Returns ok if successful.
Typical error reasons are:
eacces
Missing search or write permissions for the parent directories of Di r .
eexi st
Thereisaready afile or directory named Di r .
enoent
A component of Di r does not exist.
enospc
There isano space left on the device.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.

make link(Existing, New) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 79

file

Existing = New = nane_all ()
Reason = posix() | badarg

Makes a hard link from Exi st i ng to New, on platforms that support links (Unix and Windows). This function
returns ok if the link was successfully created, or { error, Reason}. On platforms that do not support links,
{error, enot sup} isreturned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup

Hard links are not supported on this platform.

make symlink(Existing, New) -> ok | {error, Reason}
Types.

Existing = New = nane_all ()

Reason = posix() | badarg

Thisfunction createsasymbolic link Newto thefileor directory Exi st i ng, on platformsthat support symbolic links
(most Unix systems and Windows beginning with Vista). Exi st i ng need not exist. This function returns ok if the
link was successfully created, or { er r or, Reason}. On platformsthat do not support symbolic links, { er r or,
enot sup} isreturned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup
Symbolic links are not supported on this platform.
eperm
User does not have privilegesto create symbolic links (SeCr eat eSynbol i cLi nkPri vi | ege onWindows).

native name_encoding() -> latinl | utf8

This function returns the file name encoding mode. If itis| at i n1, the system does no trandation of file names. If
itisut f 8, file names will be converted back and forth to the native file name encoding (usually UTF-8, but UTF-16
on Windows).

open(File, Modes) -> {ok, IoDevice} | {error, Reason}
Types:

80 | Ericsson AB. All Rights Reserved.: Kernel

file

File = Filename | iodata()

Filename = nane_all ()

Modes = [nmpde() | ram]

IoDevice = io_device()

Reason = posix() | badarg | system limit

OpensthefileFi | e inthe mode determined by Modes, which may contain one or more of the following items:

read

The file, which must exist, is opened for reading.

wite

The file is opened for writing. It is created if it does not exist. If the file exists, and if wri t e is not combined
withr ead, the file will be truncated.

append

Thefilewill be opened for writing, and it will be created if it does not exist. Every write operation to afile opened
with append will take place at the end of thefile.

excl usi ve

The file, when opened for writing, is created if it does not exist. If the file exists, open will return { er r or,
eexi st}.

Warning:

This option does not guarantee exclusiveness on file systems that do not support O_EXCL properly, such
as NFS. Do not depend on this option unless you know that the file system supportsit (in general, local file
systems should be safe).

raw

The r aw option allows faster access to a file, because no Erlang process is needed to handle the file. However,
afile opened in this way has the following limitations:

e Thefunctionsinthei o module cannot be used, because they can only talk to an Erlang process. Instead,
usetheread/ 2,read_|ine/1landwite/ 2 functions.

e Especidlyifread | i ne/ 1istobeusedonar awfile, it is recommended to combine this option with
the{read ahead, Si ze} optionaslineoriented I/O isinefficient without buffering.

e Only the Erlang process which opened the file can use it.

< A remote Erlang file server cannot be used; the computer on which the Erlang node is running must have
access to the file system (directly or through NFS).

bi nary

When this option has been given, read operations on the file will return binaries rather than lists.

{del ayed write, Size, Del ay}

If thisoptionisused, thedatain subsequentwr i t e/ 2 callsisbuffered until thereareat least Si ze bytesbuffered,
or until the oldest buffered datais Del ay milliseconds old. Then all buffered data is written in one operating
system call. The buffered datais also flushed before some other file operation thanwr i t e/ 2 is executed.

Ericsson AB. All Rights Reserved.: Kernel | 81

file

The purpose of this option is to increase performance by reducing the number of operating system calls, so the
write/ 2 cals should be for sizes significantly less than Si ze, and not interspersed by to many other file
operations, for this to happen.

When this option is used, the result of wr i t e/ 2 calls may prematurely be reported as successful, and if awrite
error should actually occur the error is reported as the result of the next file operation, which is not executed.

For example, when del ayed_wri t e is used, after a number of write/ 2 cals, cl ose/ 1 might return
{error, enospc} becausetherewasnot enough space onthedisc for previously written data, and cl ose/ 1
should probably be called again since thefileis still open.

del ayed wite

Thesameas{del ayed wite, Size, Delay} with reasonable default values for Si ze and Del ay.
(Roughly some 64 KBytes, 2 seconds)

{read_ahead, Size}

This option activates read data buffering. If r ead/ 2 calls are for significantly less than Si ze bytes, read
operations towards the operating system are till performed for blocks of Si ze bytes. The extra data is buffered
and returned in subsequent r ead/ 2 calls, giving a performance gain since the number of operating system calls
is reduced.

Ther ead_ahead buffer isaso highly utilized by ther ead_I i ne/ 1 function in r aw mode, why this option
is recommended (for performance reasons) when accessing raw files using that function.

If read/ 2 callsarefor sizes not significantly less than, or even greater than Si ze bytes, no performance gain
can be expected.

read_ahead

Thesameas{r ead_ahead, Si ze} withareasonable default value for Si ze. (Roughly some 64 KBytes)

conpr essed

Makesit possibleto read or write gzip compressed files. The conpr essed option must be combined with either
read orwrit e, but not both. Note that the file size obtained withr ead_f i | e_i nf o/ 1 will most probably
not match the number of bytes that can be read from a compressed file.

{encodi ng, Encodi ng}

Makes the file perform automatic translation of characters to and from a specific (Unicode) encoding. Note that
the data supplied to file:write or returned by filerread till is byte oriented, this option only denotes how data is
actually stored in the disk file.

Depending on the encoding, different methods of reading and writing data is preferred. The default encoding
of I ati nl implies using this (the file) module for reading and writing data, as the interfaces provided here
work with byte-oriented data, while using other (Unicode) encodings makes the io(3) module's get _char s,
get | ineandput char s functions more suitable, asthey can work with the full Unicode range.

If dataissenttoani o_devi ce() inaformat that cannot be converted to the specified encoding, or if data
isread by afunction that returns datain aformat that cannot cope with the character range of the data, an error
occurs and the file will be closed.

The alowed values for Encodi ng are:
latinl

The default encoding. Bytes supplied to i.e. file:write are written as is on the file, likewise bytes read from
thefilearereturned toi.e. filerread asis. If the io(3) module is used for writing, the file can only cope with
Unicode characters up to codepoint 255 (the 1SO-latin-1 range).

82 | Ericsson AB. All Rights Reserved.: Kernel

file

uni codeorutf 8

Characters are trandlated to and from the UTF-8 encoding before being written to or read from the file. A
file opened in this way might be readable using the file:read function, as long as no data stored on the file
lies beyond the 1SO-latin-1 range (0..255), but failure will occur if the data contains Unicode codepoints
beyond that range. Thefileis best read with the functionsin the Unicode aware io(3) module.

Bytes written to the file by any means are translated to UTF-8 encoding before actually being stored on
the disk file.

utfl6or{utf 16, bi g}

Works like uni code, but translation is done to and from big endian UTF-16 instead of UTF-8.
{utfl16,little}

Workslike uni code, but translation is done to and from little endian UTF-16 instead of UTF-8.
utf32or{utf32, bi g}

Workslike uni code, but tranglation is done to and from big endian UTF-32 instead of UTF-8.
{utf32,1ittle}

Workslike uni code, but translation is done to and from little endian UTF-32 instead of UTF-8.

The Encoding can be changed for afile"on the fly" by using the io: setopts/2 function, why afile can be analyzed
in latinl encoding for i.e. a BOM, positioned beyond the BOM and then be set for the right encoding before
further reading.See the unicode(3) module for functions identifying BOM's.

This option is not allowed on r awfiles.
ram

Fi | e must bei odat a() . Returnsan f d() which letsthefi | e module operate on the data in-memory as
if itisafile

sync
On platforms that support it, enables the POSIX O _SYNC synchronous I/O flag or its platform-dependent
equivalent (eg., FI LE_FLAG WRI TE_THROUGH on Windows) so that writes to the file block until the data
has been physically written to disk. Be aware, though, that the exact semantics of this flag differ from platform
to platform; for example, neither Linux nor Windows guarantees that all file metadata are also written before

the call returns. For precise semantics, check the details of your platform's documentation. On platforms with no
support for POSIX O_SYNC or equivalent, use of thesync flag causesopen toreturn{ error, enotsup}.

Returns:
{ok, 1| oDevice}

The file has been opened in the requested mode. | oDevi ce isareferenceto thefile.
{error, Reason}

Thefile could not be opened.

| oDevi ce isreally the pid of the process which handlesthefile. Thisprocessislinked to the processwhich originally
openedthefile. If any processtowhichthel oDevi ce islinked terminates, thefilewill be closed and the processitself
will beterminated. An| oDevi ce returned from this call can be used as an argument to the 1O functions (seeio(3)).

Ericsson AB. All Rights Reserved.: Kernel | 83

file

Note:

In previous versions of f i | e, modes were given as one of the atomsr ead, wite,orread_wit e instead
of alist. Thisis still allowed for reasons of backwards compatibility, but should not be used for new code. Also
notethat read_wri t e isnot allowed in amodelist.

Typical error reasons:
enoent

The file does not exist.
eacces

Missing permission for reading the file or searching one of the parent directories.
eisdir

The named fileis not aregular file. It may be a directory, afifo, or adevice.
enotdir

A component of the file nameis not adirectory. On some platforms, enoent isreturned instead.
enospc

There isano space |eft on the device (if wr i t e access was specified).

path consult(Path, Filename) ->
{ok, Terms, FullName} | {error, Reason}

Types:
Path = [Dir]
Dir = Filename = nane_all ()
Terms = [term()]
FullName = filenane_all ()

Reason = posi x()
| badarg
| terminated

| system limit

| {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Pat h (alist of directory names) until the file Fi | ename isfound. If Fi | enane is an absolute
filename, Pat h isignored. Then reads Erlang terms, separated by ".", from the file. Returns one of the following:

{ok, Termns, Full Nane}
The file was successfully read. Ful | Narre isthe full name of thefile.
{error, enoent}
Thefile could not be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. See open/2 for alist of typical error codes.
{error, {Line, Md, Ternt}

An error occurred when interpreting the Erlang termsin the file. Usef or mat _er r or / 1 to convert the three-
element tuple to an English description of the error.

84 | Ericsson AB. All Rights Reserved.: Kernel

file

The encoding of of Fi | enamne can be set by a comment as described in epp(3).

path eval(Path, Filename) -> {ok, FullName} | {error, Reason}
Types:

Path = [Dir :: nane_all ()]

Filename = nane_all ()

FullName = filenanme_all ()

Reason = posi x()
| badarg
| terminated

| system limit

| {Line :: integer(), Mod :: module(), Term :: term()}

Searchesthe path Pat h (alist of directory names) until thefile Fi | ename isfound. If Fi | enamne isan absolutefile
name, Pat h isignored. Then reads and eval uates Erlang expressions, separated by '.' (or ',', a sequence of expressions
isalso an expression), from the file. The actual result of evaluation is not returned; any expression sequencein thefile
must be there for its side effect. Returns one of the following:

{ok, Full Nane}
Thefile wasread and evaluated. Ful | Nane isthe full name of thefile.

{error, enoent}
Thefile could not be found in any of the directoriesin Pat h.

{error, atom)}
An error occurred when opening the file or reading it. See open/2 for alist of typical error codes.

{error, {Line, Md, Tern}}
An error occurred when interpreting the Erlang expressions in the file. Use f or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of of Fi | enamne can be set by a comment as described in epp(3).

path open(Path, Filename, Modes) ->
{ok, IoDevice, FullName} | {error, Reason}

Types:
Path = [Dir :: nane_all ()]
Filename = nane_all ()
Modes = [npde()]
IoDevice = io_device()
FullName = fil enanme_all ()
Reason = posix() | badarg | system limit
Searchesthe path Pat h (alist of directory names) until thefile Fi | enamne isfound. If Fi | enamne isan absolutefile
name, Pat h isignored. Then opensthe file in the mode determined by Modes. Returns one of the following:
{ok, loDevice, Full Nane}
The file has been opened in the requested mode. | oDevi ce isareferenceto thefileand Ful | Nane isthefull
name of thefile.
{error, enoent}
Thefile could not be found in any of the directoriesin Pat h.

Ericsson AB. All Rights Reserved.: Kernel | 85

file

{error, atom)}
The file could not be opened.

path script(Path, Filename) ->
{ok, Value, FullName} | {error, Reason}

Types:
Path = [Dir :: name_all ()]
Filename = nanme_all ()
Value = term()
FullName = filenane_all ()

Reason = posi x()
| badarg
| terminated

| system limit

| {Line :: integer(), Mod :: module(), Term :: term()}

Searchesthe path Pat h (alist of directory names) until thefile Fi | ename isfound. If Fi | ename isan absolutefile
name, Pat h isignored. Then reads and eval uates Erlang expressions, separated by '." (or *,', a sequence of expressions
is aso an expression), from the file. Returns one of the following:

{ok, Value, Full Nane}

Thefilewasread and evaluated. Ful | Nane isthefull nameof thefileand Val ue thevalue of thelast expression.
{error, enoent}

Thefile could not be found in any of the directoriesin Pat h.

{error, atom)}
An error occurred when opening the file or reading it. See open/2 for alist of typical error codes.

{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. Usef or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The enco