| v

ERLANG

Mnesia

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Mnesia 4.12.4

February 19, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

February 19, 2016

1.1 Introduction

1 Mnesia User's Guide

Mnesiais a distributed DataBase Management System(DBMS), appropriate for telecommunications applications and
other Erlang applications which require continuous operation and exhibit soft real-time properties.

1.1 Introduction

This book describes the Mnesia DataBase Management System (DBMS). Mnesia is a distributed Database
Management System, appropriate for telecommunications applications and other Erlang applications which require
continuous operation and soft real-time properties. It is one section of the Open Telecom Platform (OTP), which isa
control system platform for building telecommunications applications.

1.1.1 About Mnesia

The management of data in telecommunications system has many aspects whereof some, but not al, are addressed by
traditional commercial DBM Ss (Data Base Management Systems). In particular the very high level of fault tolerance
which is required in many nonstop systems, combined with requirements on the DBMS to run in the same address
space as the application, have led us to implement a brand new DBMS. called Mnesia. Mnesia is implemented in,
and very tightly connected to, the programming language Erlang and it provides the functionality that is necessary for
the implementation of fault tolerant telecommunications systems. Mnesiais a multiuser Distributed DBM S specially
made for industrial telecommunications applications written in the symbolic programming language Erlang, which
is also the intended target language. Mnesia tries to address all of the data management issues required for typical
telecommunications systems and it has a number of features that are not normally found in traditional databases.

In telecommunications applications there are different needs from the features provided by traditional DBMSs. The
applications now implemented in the Erlang language need a mixture of a broad range of features, which generally
are not satisfied by traditional DBMSs. Mnesiais designed with requirements like the following in mind:

* Fast rea-time key/value lookup

* Complicated non real-time queries mainly for operation and maintenance

» Distributed data due to distributed applications

e High fault tolerance

* Dynamic re-configuration

e Complex objects

What sets Mnesia apart from most other DBM Ssisthat it is designed with the typical data management problems of
telecommuni cations applicationsin mind. Hence M nesia combines many concepts found in traditional databases, such
as transactions and queries with concepts found in data management systems for telecommunications applications,
such as very fast real-time operations, configurable degree of fault tolerance (by means of replication) and the ability
to reconfigure the system without stopping or suspending it. Mnesia is also interesting due to its tight coupling to
the programming language Erlang, thus almost turning Erlang into a database programming language. This has many
benefits, the foremost is that the impedance mismatch between data format used by the DBM S and data format used
by the programming language, which is used to manipulate the data, completely disappears.

1.1.2 The Mnesia DataBase Management System (DBMS)

Ericsson AB. All Rights Reserved.: Mnesia | 1

1.1 Introduction

Features

Mnesia contains the following features which combine to produce a fault-tolerant, distributed database management
system written in Erlang:

Database schema can be dynamically reconfigured at runtime.
Tables can be declared to have properties such as location, replication, and persistence.

Tables can be moved or replicated to several nodes to improve fault tolerance. The rest of the system can still
access the tables to read, write, and delete records.

Table locations are transparent to the programmer. Programs address table names and the system itself keeps
track of table locations.

Database transactions can be distributed, and alarge number of functions can be called within one transaction.

Several transactions can run concurrently, and their execution is fully synchronized by the database
management system. Mnesia ensures that no two processes manipulate data simultaneously.

Transactions can be assigned the property of being executed on all nodesin the system, or on none.
Transactions can a so be bypassed in favor of running so called "dirty operations®, which reduce overheads and
run very fast.

Details of these features are described in the following sections.

Add-on Applications

QLC and Mnesia Session can be used in conjunction with Mnesia to produce specialized functions which enhance
the operational ability of Mnesia. Both Mnesia Session and QL C have their own documentation as part of the OTP
documentation set. Below are the main features of Mnesia Session and QL C when used in conjunction with Mnesia:

QLC hasthe ability to optimize the query compiler for the Mnesia Database Management System, essentially
making the DBM S more efficient.

QLC, can be used as a database programming language for Mnesia. It includes a notation called "list
comprehensions' and can be used to make complex database queries over a set of tables.

Mnesia Session is an interface for the Mnesia Database Management System

Mnesia Session enables access to the Mnesia DBM S from foreign programming languages (i.e. other languages
than Erlang).

When to Use Mnesia

Use Mnesiawith the following types of applications:

Applications that need to replicate data.

Applications that perform complicated searches on data.

Applications that need to use atomic transactions to update several records simultaneously.
Applications that use soft real-time characteristics.

On the other hand, Mnesia may not be appropriate with the following types of applications:

Programs that process plain text or binary datafiles

Applications that merely need alook-up dictionary which can be stored to disc can utilize the standard library
module det s, which isadisc based version of themoduleet s.

Applications which need disc logging facilities can utilize the moduledi sc_| og by preference.
Not suitable for hard real time systems.

2 | Ericsson AB. All Rights Reserved.: Mnesia

1.2 Getting Started with Mnesia

Scope and Purpose

Thismanual isincluded in the OTP document set. It describes how to build Mnesia database applications, and how to
integrate and utilize the Mnesia database management system with OTP. Programming constructs are described, and
numerous programming examples are included to illustrate the use of Mnesia.

Prerequisites

Readers of this manual are assumed to be familiar with system development principles and database management
systems. Readers are also assumed to be familiar with the Erlang programming language.

About This Book
This book contains the following chapters:

e Chapter 2, "Getting Started with Mnesia', introduces Mnesia with an example database. Examples are shown of
how to start an Erlang session, specify a Mnesia database directory, initialize a database schema, start Mnesia,
and create tables. Initial prototyping of record definitionsis also discussed.

e Chapter 3, "Building a Mnesia Database", more formally describes the steps introduced in Chapter 2, namely
the Mnesia functions which define a database schema, start Mnesia, and create the required tables.

» Chapter 4, "Transactions and other access contexts", describes the transactions properties which make Mnesia
into afault tolerant, real-time distributed database management system. This chapter also describes the concept
of locking in order to ensure consistency in tables, and so called "dirty operations", or short cuts which bypass
the transaction system to improve speed and reduce overheads.

e Chapter 5, "Miscellaneous Mnesia Features", describes features which enable the construction of more complex
database applications. These features includes indexing, checkpoints, distribution and fault tolerance, disc-less
nodes, replication manipulation, local content tables, concurrency, and object based programming in Mnesia.

« Chapter 6, "Mnesia System Information”, describes the files contained in the M nesia database directory,
database configuration data, core and table dumps, as well as the important subject of backup, fall-back, and
disaster recovery principles.

e Chapter 7, "Combining Mnesiawith SNMP", is a short chapter which outlines Mnesia integrated with SNMP.

e Appendix A, "Mnesia Errors Messages', lists Mnesia error messages and their meanings.

« Appendix B, "The Backup Call Back Interface", is a program listing of the default implementation of this
facility.

* Appendix C, "The Activity Access Call Back Interface”, is a program outlining of one possible implementations
of thisfacility.

1.2 Getting Started with Mnesia

This chapter introduces Mnesia. Following a brief discussion about the first initial setup, a Mnesia database example
is demonstrated. This database example will be referenced in the following chapters, where this example is modified
in order to illustrate various program constructs. In this chapter, the following mandatory procedures are illustrated
by examples:

e Starting an Erlang session and specifying a directory for the Mnesia database.

* Initializing a database schema.

e Starting Mnesia and creating the required tables.

1.2.1 Starting Mnesia for the first time
Following is asimplified demonstration of a Mnesia system startup. Thisis the dialogue from the Erlang shell:

Ericsson AB. All Rights Reserved.: Mnesia | 3

1.2 Getting Started with Mnesia

unix> erl -mnesia dir '"/tmp/funky"'
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with "G)

1>

1> mnesia:create schema([node()]).

ok

2> mnesia:start().

ok

3> mnesia:create table(funky, []).

{atomic, ok}

4> mnesia:info().

---> Processes holding locks <---

---> Processes waiting for locks <---

---> Pending (remote) transactions <---

---> Active (local) transactions <---

---> Uncertain transactions <---

---> Active tables <---

funky : with 0 records occupying 269 words of mem
schema : with 2 records occupying 353 words of mem
===> System info in version "1.0", debug level = none <===
opt disc. Directory "/tmp/funky" is used.

use fall-back at restart = false

running db nodes = [nonode@nohost]
stopped db nodes = []

remote =[]

ram_copies = [funky]
disc_copies = [schemal

disc_only copies []

[{nonode@nohost,disc copies}] = [schema]
[{nonode@nohost, ram copies}] = [funky]

1 transactions committed, O aborted, 0 restarted, 1 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

In the example above the following actions were performed:

The Erlang system was started from the UNIX prompt with aflag- mesi a dir
flag indicates to Mnesiawhich directory will store the data.

A new empty schemawasiinitialized on the local node by evaluating

mesi a: cr eat e_schenma([node()]). Theschema containsinformation about the database in general.
Thiswill be thoroughly explained later on.

The DBMS was started by evaluating nmesi a: start ().

A first table was created, called f unky by evaluating the expression nmesi a: cr eat e_t abl e(f unky,
[1) .- Thetable was given default properties.

mesi a: i nf o() wasevauated and subsequently displayed information regarding the status of the database
on the terminal.

[tnp/ funky"' . This

1.2.2 An Introductory Example

A Mnesiadatabase is organized as a set of tables. Each tableis populated with instances (Erlang records). A table also
has a number of properties, such as location and persistence.

In this example we shall:

Start an Erlang system, and specify the directory where the database will be located.
Initiate a new schemawith an attribute that specifies on which node, or nodes, the database will operate.
Start Mnesiaitself.

4 | Ericsson AB. All Rights Reserved.: Mnesia

1.2 Getting Started with Mnesia

e Create and populate the database tables.

The Example Database

In this database example, we will create the database and relationships depicted in the following diagram. We will
call this database the Company database.

Figure 2.1: Company Entity-Relation Diagram

The database model 1ooks as follows:

« Therearethree entities: employee, project, and department.
» There are three relationships between these entities:

e A department is managed by an employee, hence the manager relationship.
« Anemployee works at a department, hence the at_dep relationship.
» Each employee works on a number of projects, hence the in_proj relationship.

Defining Structure and Content

We first enter our record definitions into atext file named conpany. hr | . Thisfile defines the following structure
for our sample database:

-record(employee, {emp no,
name,
salary,
sex,
phone,
room no}).

-record(dept, {id,
name}).

-record(project, {name,
number}) .

-record(manager, {emp,
dept}).

-record(at _dep, {emp,
dept id}).

-record(in_proj, {emp,
proj name}).

The structure defines six tables in our database. In Mnesia, the function mMmesi a: cr eat e_t abl e(Nane,
Ar gLi st) isusedto createtables. Nane isthe table name Note: The current version of Mnesia does not require that
the name of the table is the same as the record name, See Chapter 4: Record Names Versus Table Names.

For example, the table for employees will be created with the function mmesi a: cr eat e_t abl e(enpl oyee,
[{attributes, record _info(fields, enployee)}]). Thetablenameenpl oyee matchesthe name
for records specifiedin Ar gLi st . Theexpressionr ecord_i nfo(fi el ds, Recor dNane) isprocessed by the
Erlang preprocessor and evaluates to a list containing the names of the different fields for a record.

Ericsson AB. All Rights Reserved.: Mnesia | 5

1.2 Getting Started with Mnesia

The Program

The following shell interaction starts Mnesia and initializes the schema for our conpany database:

% erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)

1> mnesia:create schema([node()]).
ok

2> mnesia:start().

ok

The following program module creates and popul ates previously defined tables:

-include lib("stdlib/include/qlc.hrl").
-include("company.hrl").

init() ->
mnesia:create table(employee,
[{attributes, record info(fields, employee)}]),
mnesia:create table(dept,
[{attributes, record info(fields, dept)}1]),
mnesia:create table(project,
[{attributes, record info(fields, project)}]),
mnesia:create table(manager, [{type, bag},
{attributes, record info(fields, manager)}]),
mnesia:create table(at dep,
[{attributes, record info(fields, at dep)}l),
mnesia:create table(in proj, [{type, bag},
{attributes, record info(fields, in proj)}1).

The Program Explained

The following commands and functions were used to initiate the Company database:

* %erl -mesia dir
entry which startsthe Erlang system. Theflag - mesi a dir Di r specifiesthe location of the database
directory. The system responds and waits for further input with the prompt 1>.

e mesia: create_schema([node()]). Thisfunction hasthe format
mmesi a: cr eat e_schena(D scNodelLi st) andinitiates anew schema. In this example, we have

created a non-distributed system using only one node. Schemas are fully explained in Chapter 3:Defining a
Schema.

* mmesia:start (). Thisfunction starts Mnesia. Thisfunction isfully explained in Chapter 3: Starting
Mnesia.

Continuing the dialogue with the Erlang shell will produce the following:

3> company:init().

{atomic, ok}

4> mnesia:info().

---> Processes holding locks <---

6 | Ericsson AB. All Rights Reserved.: Mnesia

/1di sc/scrat ch/ Mhesi a. Conpany"' . ThisisaUNIX command line

1.2 Getting Started with Mnesia

---> Processes waiting for locks <---
---> Pending (remote) transactions <---
---> Active (local) transactions <---

---> Uncertain transactions <---

---> Active tables <---

in proj : with
at dep : with
manager : with
project : with
dept : with
employee : with
schema : with

0
0
0
0
0
0

7

records
records
records
records
records
records
records

occuping
occuping
occuping
occuping
occuping
occuping
occuping

===> System info in version "1.0", debug

opt disc. Directory "/ldisc/scratch/Mnesia.Company" is used.
use fall-back at restart

running db nodes
stopped db nodes
remote

ram_copies =

[]
[

= false
[nonode@nohost]

269
269
269
269
269
269
571

words
words
words
words
words
words
words

of
of
of
of
of
of
of

level = none

[at dep,dept,employee,in proj,manager,project]

disc_copies
disc_only copies = []

= [schema]

[{nonode@nohost,disc copies}] = [schema]
[{nonode@nohost, ram copies}] =

[employee,dept,project,manager,at dep,in proj]
6 transactions committed, @ aborted, 0 restarted, 6 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote
0 transactions waits for other nodes: []

ok

A set of tablesis created:

mem
mem
mem
mem
mem
mem
mem

<===

e mesi a: create_tabl e(Nane, ArgLi st) . Thisfunction is used to create the required database tables.
The options available with Ar gLi st are explained in Chapter 3: Creating New Tables.

The conpany: i ni t/ 0 function creates our tables. Two tables are of type bag. Thisisthe nanager relation as
well thei n_pr oj relation. Thisshall be interpreted as: An employee can be manager over severa departments, and
an employee can participate in several projects. However, theat _dep relationisset because an employee can only
work in one department. In this data model we have examples of relations that are one-to-one (set), aswell as one-

to-many (bag).

mmesi a: i nf o() now indicates that a database which has seven local tables, of which, six are our user defined
tables and one is the schema. Six transactions have been committed, as six successful transactions were run when

creating the tables.

To write a function which inserts an employee record into the database, there must be an at _dep record and a set of
i n_proj recordsinserted. Examine the following code used to complete this action:

insert emp(Emp, DeptId, ProjNames) ->

Ename = Emp#employee.name,

Fun = fun() ->

mnesia:write(Emp),
AtDep = #at dep{emp = Ename, dept id = DeptId},
mnesia:write(AtDep),
mk_projs(Ename, ProjNames)

end,
mnesia:transaction(Fun).

Ericsson AB. All Rights Reserved.: Mnesia | 7

1.2 Getting Started with Mnesia

mk_projs(Ename, [ProjName|Taill]) ->
mnesia:write(#in proj{emp = Ename, proj name = ProjName}),
mk_projs(Ename, Tail);

mk_projs(_, [1) -> ok.

e insert_enp(Enp, Deptld, ProjNanmes) ->.Theinsert_enp/ 3 argumentsare:
e Enp isan employee record.
o Dept | distheidentity of the department where the employee isworking.
» Proj Nanes isalist of the names of the projects where the employee are working.

Thei nsert_enp(Enp, Deptld, Proj Names) - >functioncreatesafunctional object. Functional objectsare
identified by theterm Fun. The Fun is passed as asingle argument to the function mesi a: t r ansact i on(Fun) .

This means that Fun is run as a transaction with the following properties:

* Fun either succeeds or fails completely.
e Code which manipulates the same data records can be run concurrently without the different processes
interfering with each other.

The function can be used as;

Emp = #employee{emp no= 104732,
name = klacke,
salary = 7,
sex = male,
phone = 98108,
room _no = {221, 015}},
insert emp(Me, 'B/SFR', [Erlang, mnesia, otpl).

Note:

Functional Objects (Funs) are described in the Erlang Reference Manual, "Fun Expressions”.

Initial Database Content

After the insertion of the employee named kI acke we have the following records in the database:

emp_no name saary sex phone room_no

104732 klacke 7 male 99586 {221, 015}

Table 2.1: Employee

An employeerecord has the following Erlang record/tuple representation: { enpl oyee, 104732, kl acke, 7,

mal e, 98108, {221, 015}}

emp dept_name

8 | Ericsson AB. All Rights Reserved.: Mnesia

1.2 Getting Started with Mnesia

klacke B/SFR

Table 2.2: At_dep

At_dep hasthe following Erlang tuple representation: { at _dep, kl acke, ' B/ SFR }.

emp proj_name
klacke Erlang
klacke otp
klacke mnesia

Table 2.3: In_proj

In_proj has the following Erlang tuple representation: {i n_proj, klacke, 'Erlang', klacke, 'otp',
kl acke, 'mesia'}

There is no difference between rows in a table and Mnesia records. Both concepts are the same and will be used
interchangeably throughout this book.

A Mnesiatableis populated by Mnesiarecords. For example, the tuple{ boss, kl acke, bj arne} isarecord.
The second element in thistupleisthe key. In order to uniquely identify atable row both the key and the table nameis
needed. Theterm object identifier, (oid) issometimesused for the arity two tuple{ Tab, Key}. Theoid for the{ boss,
kl acke, bj arne} recordisthe arity twotuple{ boss, Kkl acke}. Thefirst element of the tuple is the type of
the record and the second element is the key. An oid can lead to zero, one, or more records depending on whether
thetabletypeisset or bag.

Wewerealsoabletoinsertthe{ boss, kl acke, bj arne} record which containsanimplicit referenceto another
employee which does not yet exist in the database. Mnesia does not enforce this.

Adding Records and Relationships to the Database
After adding additional record to the Company database, we may end up with the following records:
Employees

{employee, 104465, "Johnson Torbjorn",
{employee, 107912, "Carlsson Tuula",
{employee, 114872, "Dacker Bjarne",
{employee, 104531, "Nilsson Hans",
{employee, 104659, "Tornkvist Torbjorn",
{employee, 104732, "Wikstrom Claes",
{employee, 117716, "Fedoriw Anna",
{employee, 115018, "Mattsson Hakan",

male, 99184, {242,038}}.
female, 94556, {242,056}}.
male, 99415, {221,035}}.
male, 99495, {222,026}}.
male, 99514, {222,022}}.
male, 99586, {221,015}}.
female, 99143, {221,031}}.
male, 99251, {203,348}}.

WENNWWN R

Dept

{dept, 'B/SF', "Open Telecom Platform"}.
{dept, 'B/SFP', "OTP - Product Development"}.

Ericsson AB. All Rights Reserved.: Mnesia | 9

1.2 Getting Started with Mnesia

{dept, 'B/SFR', "Computer Science Laboratory"}.

Projects

%% projects

{project, erlang, 1}.
{project, otp, 2}.

{project, beam, 3}.
{project, mnesia, 5}.
{project, wolf, 6}.
{project, documentation, 7}.
{project, www, 8}.

The above three tables, titled enpl oyees, dept , and pr 0] ect s, are the tables which are made up of real records.
Thefollowing database content is stored in the tableswhich is built on relationships. Thesetablesaretitled nranager ,
at _dep,andi n_proj .

Manager
{manager, 104465, 'B/SF'}.
{manager, 104465, 'B/SFP'}.
{manager, 114872, 'B/SFR'}.

At_dep
{at dep, 104465, 'B/SF'}.
{at_dep, 107912, 'B/SF'}.
{at dep, 114872, 'B/SFR'}.
{at dep, 104531, 'B/SFR'}.
{at dep, 104659, 'B/SFR'}.
{at dep, 104732, 'B/SFR'}.
{at dep, 117716, 'B/SFP'}.
{at dep, 115018, 'B/SFP'}.

In_proj

{in_proj, 104465, otp}.
{in_proj, 107912, otp}.
{in_proj, 114872, otp}.
{in_proj, 104531, otp}.
{in_proj, 104531, mnesia}.
{in_proj, 104545, wolf}.
{in_proj, 104659, otp}.
{in_proj, 104659, wolf}.
{in_proj, 104732, otp}.
{in_proj, 104732, mnesia}.
{in_proj, 104732, erlang}.
{in_proj, 117716, otp}.
{in_proj, 117716, documentation}.

10 | Ericsson AB. All Rights Reserved.: Mnesia

1.2 Getting Started with Mnesia

{in_proj, 115018, otp}.
{in_proj, 115018, mnesia}.

The room number is an attribute of the employee record. Thisis a structured attribute which consists of atuple. The
first element of the tuple identifies a corridor, and the second element identifies the actual room in the corridor. We
could have chosen to represent thisasarecord - r ecor d(room {corr, no}). instead of an anonymoustuple
representation.

The Company database is now initialized and contains data.

Writing Queries

Retrieving data from DBMS should usually be done with rmesi a: r ead/ 3 or mesi a: r ead/ 1 functions. The
following function raises the salary:

raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read(employee, Eno, write),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
mnesia:write(New)

end,
mnesia:transaction(F).

Since we want to update the record using mesi a: wri t e/ 1 after we have increased the salary we acquire awrite
lock (third argument to read) when we read the record from the table.

Itisnot alwaysthe case that we can directly read the values from the table, we might need to search the table or several
tablesto get the data we want, thisis done by writing database queries. Queries are always more expensive operations
than direct lookups done with nmesi a: r ead and should be avoided in performance critical code.

There are two methods for writing database queries:

« Mnesiafunctions
e QLC
Mnesia functions

The following function extracts the names of the femal e employees stored in the database:

mnesia:select(employee, [{#employee{sex = female, name = '$1', ="' '},[]1, ['$1']}]).

Select must always run within an activity such as atransaction. To be able to call from the shell we might construct
afunction as:

all females() ->

F = fun() ->
Female = #employee{sex = female, name = '$1', ="' "'},
mnesia:select(employee, [{Female, []1, ['$1'1}1])
end,

mnesia:transaction(F).

Ericsson AB. All Rights Reserved.: Mnesia | 11

1.2 Getting Started with Mnesia

The select expression matches all entriesin table employee with the field sex set to female.

This function can be caled from the shell as follows:

(klacke@gin)1> company:all females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"1]}

See also the Pattern Matching chapter for a description of select and its syntax.
Using QLC

This section contains simple introductory examples only. Refer to QLC reference manual for afull description of the
QLC query language. Using QLC might be more expensive than using Mnesia functions directly but offers a nice
syntax.

The following function extracts alist of female employees from the database:

Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == female]),
qlc:e(Q),

Accessing mnesia tables from a QLC list comprehension must always be done within a transaction. Consider the
following function:

females() ->

F = fun() ->
Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == femalel),
glc:e(Q)
end,

mnesia:transaction(F).

This function can be called from the shell as follows:

(klacke@gin)1> company:females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

Intraditional relational database terminology, the above operation would be called asel ection, followed by aprojection.
The list comprehension expression shown above contains a number of syntactical elements.

» thefirst[bracket should be read as "build the list"
e the|| "suchthat" and the arrow <- should be read as "taken from"

Hence, the above list comprehension demonstrates the formation of thelist E#enpl oyee. nane such that Eistaken
from the table of employees and the sex attribute of each recordsis equal with the atom f enal e.

The whole list comprehension must be given to theql ¢: g/ 1 function.

It is possible to combine list comprehensions with low level Mnesia functions in the same transaction. If we want to
raise the salary of all female employees we execute:

12 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Building A Mnesia Database

raise females(Amount) ->
F = fun() ->
Q = qlc:q([E || E <- mnesia:table(employee),
E#employee.sex == female]),
Fs = qlc:e(Q),
over write(Fs, Amount)
end,
mnesia:transaction(F).

over write([E|Tail], Amount) ->
Salary = E#employee.salary + Amount,
New = E#employee{salary = Salary},
mnesia:write(New),
1 + over write(Tail, Amount);

over write([],) ->
0.

Thefunctionr ai se_f emal es/ 1 returnsthetuple{ at om ¢, Nunber},whereNunber isthe number of femae
employees who received a salary increase. Should an error occur, the value { abor t ed, Reason} isreturned. In
the case of an error, Mnesia guarantees that the salary is not raised for any employees at all.

33>company:raise females(33).
{atomic, 2}

1.3 Building A Mnesia Database

This chapter detail sthe basi ¢ stepsinvolved when designing a M nesia database and the programming constructs which
make different solutions available to the programmer. The chapter includes the following sections:

e defining aschema

* the datamodel

e dtarting Mnesia

e creating new tables.

1.3.1 Defining a Schema

The configuration of a Mnesia system is described in the schema. The schema is a special table which contains
information such as the table names and each table's storage type, (i.e. whether a table should be stored in RAM, on
disc or possibly on both, aswell asitslocation).

Unlike data tables, information contained in schema tables can only be accessed and modified by using the schema
related functions described in this section.

Mnesia has various functions for defining the database schema. It is possible to move tables, delete tables, or
reconfigure the layout of tables.

Animportant aspect of these functionsisthat the system can accessatable whileit isbeing reconfigured. For example,
it is possible to move a table and simultaneously perform write operations to the same table. This feature is essential
for applications that require continuous service.

The following section describes the functions available for schema management, all of which return atuple:

« {atomic, ok};or,

Ericsson AB. All Rights Reserved.: Mnesia | 13

1.3 Building A Mnesia Database

{aborted, Reason} if unsuccessful.

Schema Functions

mmesi a: cr eat e_schena(NodeLi st) . Thisfunction is used to initialize a new, empty schema. Thisis
amandatory requirement before Mnesia can be started. Mnesiais atruly distributed DBMS and the schemaiis
asystem table that is replicated on al nodesin a Mnesia system. The function will fail if a schemais aready
present on any of the nodesin NodeLi st . Thisfunction requires Mnesiato be stopped onthe all db_nodes
contained in the parameter NodeLi st . Applications call this function only once, sinceit is usually a one-time
activity toinitialize a new database.

mesi a: del et e_schenma(D scNodeli st) . Thisfunction erases any old schemas on the nodesin
Di scNodelLi st . It dso removes all old tables together with all data. This function requires Mnesiato be
stopped on al db_nodes.

mesi a: del et e_t abl e(Tab) . Thisfunction permanently deletes all replicas of table Tab.
mesi a: cl ear _t abl e(Tab) . Thisfunction permanently deletes all entriesin table Tab.

mesi a: nove_t abl e_copy(Tab, From To). Thisfunction movesthe copy of table Tab from node
Fr omto node To. The table storage type, {t ype} ispreserved, so if aRAM table is moved from one node to
another node, it remains a RAM table on the new node. It is still possible for other transactions to perform read
and write operation to the table while it is being moved.

mmesi a: add_t abl e_copy(Tab, Node, Type). Thisfunction createsareplicaof thetable

Tab at node Node. The Type argument must be either of the atomsr am copi es, di sc_copi es, or

di sc_only_copi es. If we add acopy of the system table schena to a node, this means that we want the
Mnesia schemato reside there as well. This action then extends the set of nodes that comprise this particular
Mnesia system.

mesi a: del _t abl e_copy(Tab, Node). Thisfunction deletesthe replica of table Tab at node Node.
When the last replica of atableis removed, the table is deleted.

mesi a: transform tabl e(Tab, Fun, NewAttributeList, NewRecordNane).Thisfunction
changes the format on all recordsin table Tab. It applies the argument Fun to al records in the table. Fun shall
be a function which takes a record of the old type, and returns the record of the new type. The table key may
not be changed.

-record(old, {key, val}).
-record(new, {key, val, extra}).

Transformer =
fun(X) when record(X, old) ->
#new{key = X#old.key,
val = X#old.val,
extra = 42}
end,
{atomic, ok} = mnesia:transform table(foo, Transformer,
record info(fields, new),
new),

The Fun argument can aso be the atom i gnor e, it indicates that only the meta data about the table will be
updated. Usage of i gnor e is hot recommended (since it creates inconsistencies between the meta data and the
actual data) but included as a possibility for the user to do his own (off-line) transform.

change_t abl e_copy_type(Tab, Node, ToType) . Thisfunction changesthe storagetype of atable.
For example, aRAM table is changed to adisc_table at the node specified as Node.

14 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Building A Mnesia Database

1.3.2 The Data Model

The data model employed by Mnesia is an extended relational data model. Data is organized as a set of tables and
relations between different data records can be modeled as additional tables describing the actual relationships. Each
table contains instances of Erlang records and records are represented as Erlang tuples.

Object identifiers, aso known as oid, are made up of atable name and a key. For example, if we have an employee
record represented by thetuple{ enpl oyee, 104732, kl acke, 7, nale, 98108, {221, 015}}.This
record has an object id, (Oid) whichisthetuple{ enpl oyee, 104732}.

Thus, each table is made up of records, where the first element is arecord name and the second element of the table
is akey which identifies the particular record in that table. The combination of the table name and a key, is an arity
two tuple { Tab, Key} cdled the Oid. See Chapter 4:Record Names Versus Table Names, for more information
regarding the relationship between the record name and the table name.

What makes the Mnesia data model an extended relational model is the ability to store arbitrary Erlang termsin the
attribute fields. One attribute value could for example be a whole tree of oids leading to other terms in other tables.
Thistype of record is hard to model in traditional relational DBM Ss.

1.3.3 Starting Mnesia
Before we can start Mnesia, we must initialize an empty schemaon all the participating nodes.

e The Erlang system must be started.

* Nodes with disc database schema must be defined and implemented with the function
creat e_schema(Nodeli st) .

When running a distributed system, with two or more participating nodes, then the rmesi a: start(). function
must be executed on each participating node. Typically this would be part of the boot script in an embedded
environment. In atest environment or an interactive environment, nmesi a: st art () can also be used either from
the Erlang shell, or another program.

Initializing a Schema and Starting Mnesia

To use a known example, we illustrate how to run the Company database described in Chapter 2 on two separate
nodes, whichwe call a@i n and b@keppet . Each of these nodes must have have aMnesiadirectory aswell asan
initialized schema before Mnesia can be started. There are two ways to specify the Mnesia directory to be used:

» Specify the Mnesiadirectory by providing an application parameter either when starting the Erlang shell or in the
application script. Previously the following example was used to create the directory for our Company database:

%erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'

e If nocommand lineflag is entered, then the Mnesia directory will be the current working directory on the node
where the Erlang shell is started.
To start our Company database and get it running on the two specified nodes, we enter the following commands:

e Onthenode called gin:

gin %erl -sname a -mnesia dir '"/ldisc/scratch/Mnesia.company"'

e Onthenode called skeppet:

Ericsson AB. All Rights Reserved.: Mnesia | 15

1.3 Building A Mnesia Database

skeppet %erl -sname b -mnesia dir '"/ldisc/scratch/Mnesia.company"'

¢ On one of the two nodes:

(a@ginl)>mnesia:create schema([a@gin, b@skeppet]).

» Thefunctionmesi a: st art () iscalled on both nodes.
e Toinitialize the database, execute the following code on one of the two nodes.

Asillustrated above, the two directories reside on different nodes, becausethe/ | di sc/ scr at ch (the"local” disc)
exists on the two different nodes.

By executing these commands we have configured two Erlang nodes to run the Company database, and
therefore, initialize the database. This is required only once when setting up, the next time the system is started
mesi a: start () iscaled on both nodes, to initialize the system from disc.

In asystem of Mnesianodes, every nodeisaware of the current location of all tables. In thisexample, dataisreplicated
on both nodes and functions which manipulate the datain our tables can be executed on either of the two nodes. Code
which manipulate M nesia data behaves identically regardless of where the data resides.

Thefunctionmmesi a: st op() stopsMnesiaon the node wherethefunctionisexecuted. Boththest art/ 0 andthe
st op/ 0 functions work on the "local" Mnesia system, and there are no functions which start or stop a set of nodes.

The Start-Up Procedure
Mnesiais started by calling the following function:

mnesia:start().

This function initiates the DBM S locally.
The choice of configuration will ater the location and load order of the tables. The alternatives are listed below:

e Tablesthat are stored locally only, are initialized from the local Mnesia directory.

* Replicated tables that reside locally as well as somewhere else are either initiated from disc or by copying
the entire table from the other node depending on which of the different replicas is the most recent. Mnesia
determines which of the tablesis the most recent.

e Tablesthat reside on remote nodes are available to other nodes as soon as they are loaded.
Table initialization is asynchronous, the function call mesi a: st art () returns the atom ok and then starts to
initialize the different tables. Depending on the size of the database, this may take some time, and the application

programmer must wait for the tables that the application needs before they can be used. This achieved by using the
function:

* mesia:wait_for_tabl es(TabList, Timeout)
This function suspends the caller until all tables specified in TabLi st are properly initiated.

A problem can arise if areplicated table on one node isinitiated, but Mnesia deduces that another (remote) replicais
more recent than the replica existing on the local node, the initialization procedure will not proceed. In this situation,
acal totomesi a: wai t _f or _t abl es/ 2 suspends the caller until the remote node has initiated the table from
itslocal disc and the node has copied the table over the network to the local node.

16 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Building A Mnesia Database

This procedure can be time consuming however, the shortcut function shown below will load all the tables from disc
at afaster rate:

« mesia:force_| oad_t abl e(Tab) . Thisfunction forces tables to be loaded from disc regardless of the
network situation.

Thus, we can assumethat if an application wishesto usetablesa and b, then the application must perform some action
similar to the below code before it can utilize the tables.

case mnesia:wait for tables([a, b], 20000) of

{timeout, RemainingTabs} ->
panic(RemainingTabs) ;
ok ->
synced
end.

Warning:

When tables are forcefully loaded from the local disc, all operations that were performed on the replicated table
while the local node was down, and the remote replicawas alive, are lost. This can cause the database to become
inconsi stent.

If the start-up procedure fails, the mesi a: st art () function returns the cryptic tuple { er r or, { shut down,
{mesi a_sup,start,[normal,[]]}}}.Usecommand line arguments-boot start sasl as argument to the erl
script in order to get more information about the start failure.

1.3.4 Creating New Tables

Mnesia provides one function to create new tables. This function is. nmesi a: cr eat e_t abl e(Nane,
ArgList).

When executing this function, it returns one of the following responses:

« {atomc, ok} ifthefunction executes successfully

e {aborted, Reason} if thefunctionfails.

The function arguments are:

« Nane isthe atomic name of the table. It is usually the same name as the name of the records that constitute the
table. (Seer ecor d_nane for more details.)
e Argli st isalist of { Key, Val ue} tuples. The following arguments are valid:
« {type, Type} whereType must beeither of theatomsset , or der ed_set or bag. The default value
isset . Note: currently ‘ordered set' is not supported for 'disc_only_copies' tables. A table of type set or

order ed_set has either zero or one record per key. Whereas a table of type bag can have an arbitrary
number of records per key. The key for each record is always the first attribute of the record.

The following example illustrates the difference between type set and bag:

f() ->F = fun() ->
mnesia:write({foo, 1, 2}), mnesia:write({foo, 1, 3}),
mnesia:read({foo, 1}) end, mnesia:transaction(F).

Ericsson AB. All Rights Reserved.: Mnesia | 17

1.3 Building A Mnesia Database

This transaction will return the list [{f 00, 1, 3}] if the f oo table is of type set. However, list
[{foo,1,2}, {foo,1,3}] will returnif thetableisof type bag. Note the use of bag and set table

types.

Mnesia tables can never contain duplicates of the same record in the same table. Duplicate records have
attributes with the same contents and key.

« {disc_copies, NodelList},whereNodeLi st isalist of thenodeswherethistablewill reside ondisc.

Write operations to a table replica of type di sc_copi es will write data to the disc copy as well as to the
RAM copy of the table.

It is possible to have areplicated table of type di sc_copi es on one node, and the same table stored as a
different type on another node. Thedefault valueis|[] . Thisarrangement isdesirableif wewant thefollowing
operational characteristics are required:

* read operations must be very fast and performed in RAM
» al write operations must be written to persistent storage.

A writeoperationonadi sc_copi es tablereplicawill be performed in two steps. First the write operation
is appended to alog file, then the actual operation is performed in RAM.

« {ramcopies, NodeLi st},whereNodeLi st isalist of the nodeswherethistableisstored in RAM.
The default value for NodeLi st is[node()] . If the default value is used to create a new table, it will be
located on the local node only.

Table replicas of type ramcopies can be dumped to disc with the function
mesi a: dunp_t abl es(TabLi st).

e {disc_only_copies, Nodelist}.Thesetablereplicasare stored on disc only and are therefore
slower to access. However, a disc only replica consumes less memory than atable replica of the other two
storage types.

« {index, AttributeNaneList},whereAttributeNaneLi st isalistof atoms specifying the
names of the attributes Mnesia shall build and maintain. An index table will exist for every element in the
list. Thefirst field of aMnesiarecord is the key and thus need no extraindex.

Thefirst field of arecord is the second element of the tuple, which is the representation of the record.

e {snnp, SnnpStruct}.SnmpStruct isdescribedinthe SNMP User Guide. Basically, if this
attribute ispresent in Ar gLi st of mesi a: creat e_t abl e/ 2, thetableisimmediately accessible by
means of the Simple Network Management Protocol (SNMP).

It is easy to design applications which use SNMP to manipulate and control the system. Mnesia provides a
direct mapping between the logical tables that make up an SNMP control application and the physical data
which make up aMnesiatable. [] isdefault.

« {local _content, true} Whenan application needs atable whose contents should be locally unique
on each node, | ocal _cont ent tables may be used. The name of the table is known to all Mnesia nodes,
but its contents is unique for each node. Access to this type of table must be done locally.

« {attributes, AtonlList} isalistof theattribute namesfor the records that are supposed to populate
thetable. The default valueisthelist[key, val] . Thetable must at least have one extra attribute besides
the key. When accessing single attributes in a record, it is not recommended to hard code the attribute
names as atoms. Use the construct r ecord_i nfo(fi el ds, record_nane) instead. The expression
record_info(fields,record_nane) isprocessed by the Erlang macro pre-processor and returns a
list of the record's field names. With the record definition - r ecor d(f oo, {Xx,y, z}). the expression
record_info(fields,foo) isexpanded tothelist [x, y, z] . Accordingly, it is possible to provide
the attribute names yourself, or to usether ecor d_i nf o/ 2 notation.

It is recommended that ther ecor d_i nf o/ 2 notation be used as it is easier to maintain the program and
it will be more robust with regards to future record changes.

18 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

 {record_nane, Aton} specifiesthecommon name of al recordsstored in thetable. All records, stored
in thetable, must have thisname astheir first element. Ther ecor d_nane defaultsto the name of thetable.
For more information see Chapter 4:Record Names Versus Table Names.

As an example, assume we have the record definition:
-record(funky, {x, y}).

The below call would create a table which is replicated on two nodes, has an additional index on they attribute, and
isof type bag.

mnesia:create table(funky, [{disc copies, [N1, N2]}, {index,
[yl}, {type, bag}, {attributes, record info(fields, funky)}1]).

Whereas a call to the below default code values:

mnesia:create table(stuff, [])

would return a table with a RAM copy on the local node, no additional indexes and the attributes defaulted to the
list[key, val].

1.4 Transactions and Other Access Contexts

Thischapter describesthe M nesiatransaction system and the transaction propertieswhich make Mnesiaafault tolerant,
distributed database management system.

Also covered in this chapter are the locking functions, including table locks and sticky locks, as well as alternative
functions which bypass the transaction system in favor of improved speed and reduced overheads. These functions
are called "dirty operations’. We also describe the usage of nested transactions. This chapter contains the following
sections:

e transaction properties, which include atomicity, consistency, isolation, and durability

* Locking

* Dirty operations

* Record names vs table names

e Activity concept and various access contexts

* Nested transactions

e Pattern matching

e lteration

1.4.1 Transaction Properties

Transactions are an important tool when designing fault tolerant, distributed systems. A Mnesia transaction is a
mechanism by which a series of database operations can be executed as one functional block. The functional block
whichisrunasatransactioniscalled aFunctional Object (Fun), and this code can read, write, or delete Mnesiarecords.
The Fun is evaluated as a transaction which either commits, or aborts. If a transaction succeeds in executing Fun it
will replicate the action on all nodes involved, or abort if an error occurs.

Ericsson AB. All Rights Reserved.: Mnesia | 19

1.4 Transactions and Other Access Contexts

The following example shows a transaction which raises the salary of certain employee numbers.

raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read(employee, Eno, write),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
mnesia:write(New)

end,
mnesia:transaction(F).

Thetransactionr ai se(Eno, Rai se) - > containsaFun made up of four lines of code. This Funis caled by
the statement mesi a: transact i on(F) and returnsavalue.

The Mnesia transaction system facilitates the construction of reliable, distributed systems by providing the following
important properties:

» Thetransaction handler ensures that a Fun which is placed inside a transaction does not interfere with
operations embedded in other transactions when it executes a series of operations on tables.

» Thetransaction handler ensures that either all operationsin the transaction are performed successfully on all
nodes atomically, or the transaction fails without permanent effect on any of the nodes.

* The Mnesiatransactions have four important properties, which we call Atomicity, Consistency,lsolation, and
Durability, or ACID for short. These properties are described in the following sub-sections.

Atomicity

Atomicity means that database changes which are executed by a transaction take effect on all nodes involved, or on
none of the nodes. In other words, the transaction either succeeds entirely, or it fails entirely.

Atomicity is particularly important when we want to atomically write more than one record in the same transaction.
Ther ai se/ 2 function, shown as an example above, writes one record only. Thei nsert _enp/ 3 function, shown
in the program listing in Chapter 2, writes the record enpl oyee aswell as employee relations such asat _dep and
i n_proj into the database. If we run this latter code inside a transaction, then the transaction handler ensures that
the transaction either succeeds completely, or not at all.

Mnesiaisadistributed DBM S where data can be replicated on several nodes. |n many such applications, it isimportant
that a series of write operations are performed atomically inside a transaction. The atomicity property ensures that a
transaction take effect on al nodes, or none at all.

Consistency

Consistency. This transaction property ensures that a transaction always leaves the DBMS in a consistent state. For
example, Mnesia ensures that inconsistencies will not occur if Erlang, Mnesia or the computer crashes while awrite
operation isin progress.

Isolation

Isolation. Thistransaction property ensuresthat transactionswhich execute on different nodesin anetwork, and access
and manipulate the same data records, will not interfere with each other.

The isolation property makes it possible to concurrently execute the r ai se/ 2 function. A classical problem in
concurrency control theory is the so called "lost update problem".

Theisolation property isextremely useful if the following circumstances occurs where an employee (with an employee
number 123) and two processes, (P1 and P2), are concurrently trying to raise the salary for the employee. Theinitial
value of the employees salary is, for example, 5. Process P1 then starts to execute, it reads the employee record and
adds 2 to the salary. At thispoint in time, process P1 isfor some reason preempted and process P2 has the opportunity

20 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

to run. P2 reads the record, adds 3 to the salary, and finally writes a new employee record with the salary set to 8.
Now, process P1 start to run again and writesits employee record with salary set to 7, thus effectively overwriting and
undoing the work performed by process P2. The update performed by P2 islost.

A transaction system makes it possible to concurrently execute two or more processes which manipulate the same
record. The programmer does not need to check that the updates are synchronous, this is overseen by the transaction
handler. All programs accessing the database through the transaction system may be written as if they had sole access
to the data.

Durability

Durability. This transaction property ensures that changes made to the DBMS by a transaction are permanent. Once
a transaction has been committed, all changes made to the database are durable - i.e. they are written safely to disc
and will not be corrupted or disappear.

Note:

The durability feature described does not entirely apply to situations where Mnesia is configured as a "pure”
primary memory database.

1.4.2 Locking

Different transaction managers employ different strategies to satisfy the isolation property. Mnesia uses the standard
technique of two-phase locking. This means that locks are set on records before they are read or written. Mnesia uses
five different kinds of locks.

» Readlocks. A read lock is set on one replica of arecord before it can be read.

* Writelocks. Whenever atransaction writes to an record, write locks are first set on al replicas of that particular
record.

« Readtablelocks. If atransaction traverses an entire table in search for arecord which satisfy some particular
property, it is most inefficient to set read locks on the records, one by one. It is also very memory consuming,
since the read locks themselves may take up considerable space if the table is very large. For this reason,
Mnesia can set aread lock on an entire table.

* Writetablelocks. If atransaction writes alarge number of recordsto onetable, it is possible to set awrite lock
on the entire table.

» Sicky locks. These are write locks that stay in place at a node after the transaction which initiated the lock has
terminated.

Mnesia employs a strategy whereby functions such as nmesi a: r ead/ 1 acquire the necessary locks dynamically
as the transactions execute. Mnesia automatically sets and releases the locks and the programmer does not have to
code these operations.

Deadlocks can occur when concurrent processes set and release locks on the same records. Mnesia employs a "wait-
die" strategy to resolve these situations. If Mnesia suspects that a deadlock can occur when atransaction triesto set a
lock, the transaction isforced to release all itslocks and sleep for awhile. The Fun in the transaction will be evaluated
one moretime.

For thisreason, it isimportant that the codeinsidethe Fungiventormesi a: t ransact i on/ 1 ispure. Somestrange
results can occur if, for example, messages are sent by the transaction Fun. The following example illustrates this
situation:

bad raise(Eno, Raise) ->

Ericsson AB. All Rights Reserved.: Mnesia | 21

1.4 Transactions and Other Access Contexts

F = fun() ->
[E] = mnesia:read({employee, Eno}),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
io:format("Trying to write ... ~n", []),
mnesia:write(New)

end,
mnesia:transaction(F).

This transaction could writethetext" Trying to wite ... " athousand timesto thetermina. Mnesia does
guarantee, however, that each and every transaction will eventually run. Asaresult, Mnesiais not only deadlock free,
but aso livelock free.

The Mnesia programmer cannot prioritize one particular transaction to execute before other transactions which are
waiting to execute. As aresult, the Mnesia DBMSS transaction system is not suitable for hard real time applications.
However, Mnesia contains other features that have real time properties.

Mnesia dynamically sets and releases locks as transactions execute, therefore, it is very dangerous to execute code
with transaction side-effects. In particular, ar ecei ve statement inside a transaction can lead to a situation where
the transaction hangs and never returns, which in turn can cause locks not to release. This situation could bring the
whole system to a standstill since other transactions which execute in other processes, or on other nodes, are forced
to wait for the defective transaction.

If atransaction terminates abnormally, Mnesiawill automatically release the locks held by the transaction.

We have shown examples of anumber of functions that can be used inside atransaction. The following list showsthe
simplest Mnesiafunctionsthat work with transactions. It isimportant to realize that these functions must be embedded
in atransaction. If no enclosing transaction (or other enclosing Mnesia activity) exists, they will al fail.

e mesia:transacti on(Fun) -> {aborted, Reason} |{atom c, Value}.Thisfunction
executes one transaction with the functional object Fun asthe single parameter.

e mesia:read({Tab, Key}) -> transaction abort | RecordLi st. Thisfunction readsall
records with Key as key from table Tab. This function has the same semantics regardless of the location of
Tabl e. If thetableisof typebag, ther ead({ Tab, Key}) canreturn an arbitrarily long list. If the tableis
of typeset , thelistiseither of length one, or [] .

e mesia:wead({Tab, Key}) -> transaction abort | RecordLi st.Thisfunction behaves
the same way as the previously listed r ead/ 1 function, except that it acquires awrite lock instead of aread
lock. If we execute a transaction which reads a record, modifies the record, and then writes the record, it
isslightly more efficient to set the write lock immediately. In caseswhereweissueamesi a: read/ 1,
followed by ammesi a: wri t e/ 1, thefirst read lock must be upgraded to a write lock when the write
operation is executed.

 mesia:wite(Record) -> transaction abort | ok. Thisfunctionwritesarecord intothe
database. The Recor d argument is an instance of arecord. The function returns ok, or aborts the transaction if
an error should occur.

e mnesia:del ete({Tab, Key}) -> transaction abort | ok.Thisfunctiondeletesall records
with the given key.

* mesi a: del ete_obj ect (Record) -> transaction abort | ok.Thisfunction deletesrecords
with object id Recor d. This function is used when we want to delete only some records in atable of type bag.

Sticky Locks

As previoudly stated, the locking strategy used by Mnesiais to lock one record when we read a record, and lock all
replicas of arecord when we write a record. However, there are applications which use Mnesia mainly for its fault-
tolerant qualities, and these applications may be configured with one node doing all the heavy work, and a standby
node which is ready to take over in case the main node fails. Such applications may benefit from using sticky locks
instead of the normal locking scheme.

22 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

A sticky lock isalock which staysin place at anode after the transaction which first acquired the lock has terminated.
To illustrate this, assume that we execute the following transaction:

F = fun() ->
mnesia:write(#foo{a = kalle})
end,

mnesia:transaction(F).

Thef oo tableisreplicated on the two nodes N1 and N2.
Normal locking requires:

» one network rpc (2 messages) to acquire the write lock
» three network messages to execute the two-phase commit protocol.

If we use sticky locks, we must first change the code as follows:

F = fun() ->
mnesia:s write(#foo{a = kalle})
end,

mnesia:transaction(F).

Thiscodeusesthes_wri t e/ 1 function instead of thewr i t e/ 1 function. Thes_wri t e/ 1 function sets a sticky
lock instead of anormal lock. If thetableisnot replicated, sticky locks have no special effect. If thetableisreplicated,
and we set a sticky lock on node N1, this lock will then stick to node N1. The next time we try to set a sticky lock
on the same record at node N1, Mnesia will see that the lock is already set and will not do a network operation in
order to acquire the lock.

It ismuch more efficient to set alocal lock than it isto set anetworked lock, and for thisreason sticky locks can benefit
application that use areplicated table and perform most of the work on only one of the nodes.

If arecordisstuck at node N1 and wetry to set asticky lock for therecord on node N2, the record must be unstuck. This
operation is expensive and will reduce performance. The unsticking is done automatically if weissues_write/ 1
requests at N2.

Table Locks

Mnesia supports read and write locks on whole tables as a complement to the normal locks on single records. As
previously stated, Mnesia sets and releases locks automatically, and the programmer does not have to code these
operations. However, transactions which read and write alarge number of recordsin a specific table will execute more
efficiently if we start the transaction by setting atable lock on this table. Thiswill block other concurrent transactions
from the table. The following two function are used to set explicit table locks for read and write operations:

e mesia:read_| ock_t abl e(Tab) Setsareadlock on thetable Tab

« mesia:wite_ | ock tabl e(Tab) Setsawritelock onthetable Tab
Alternate syntax for acquisition of table locksis asfollows:

mnesia:lock({table, Tab}, read)
mnesia:lock({table, Tab}, write)

Ericsson AB. All Rights Reserved.: Mnesia | 23

1.4 Transactions and Other Access Contexts

The matching operations in Mnesia may either lock the entire table or just a single record (when the key is bound
in the pattern).

Global Locks

Write locks are normally acquired on all nodes where a replica of the table resides (and is active). Read locks are
acquired on one node (the local oneif alocal replicaexists).

The function mesi a: | ock/ 2 isintended to support table locks (as mentioned previously) but aso for situations
when locks need to be acquired regardless of how tables have been replicated:

mnesia:lock({global, GlobalKey, Nodes}, LockKind)

LockKind ::= read | write | ...

Thelock is acquired on the Lockltem on all Nodes in the nodes list.

1.4.3 Dirty Operations

In many applications, the overhead of processing a transaction may result in aloss of performance. Dirty operation
are short cuts which bypass much of the processing and increase the speed of the transaction.

Dirty operation are useful in many situations, for example in a datagram routing application where Mnesia stores the
routing table, and it is time consuming to start a whole transaction every time a packet is received. For this reason,
Mnesia has functions which manipulate tables without using transactions. This aternative to processing is known as
adirty operation. However, it isimportant to realize the trade-off in avoiding the overhead of transaction processing:
» Theatomicity and the isolation properties of Mnesiaare lost.

e Theisolation property is compromised, because other Erlang processes, which use transaction to manipulate the
data, do not get the benefit of isolation if we simultaneously use dirty operations to read and write records from
the sametable.

The major advantage of dirty operationsisthat they execute much faster than equivalent operations that are processed
as functional objects within atransaction.

Dirty operations are written to disc if they are performed on a table of type di sc_copi es, or type
di sc_only_copi es. Mnesia also ensures that al replicas of a table are updated if a dirty write operation is
performed on atable.

A dirty operation will ensure acertain level of consistency. For example, it isnot possiblefor dirty operationsto return
garbled records. Hence, each individual read or write operation is performed in an atomic manner.

All dirty functions execute acall toexi t ({abort ed, Reason}) onfailure. Evenif the following functions are
executed inside a transaction no locks will be acquired. The following functions are available:
 mesia:dirty read({Tab, Key}).Thisfunction readsrecord(s) from Mnesia
 mesia:dirty_wite(Record).Thisfunctionwritestherecord Record

e mesia:dirty _del ete({Tab, Key}). Thisfunction deletesrecord(s) with the key Key.

 mesia:dirty_del et e_obj ect (Record) Thisfunctionisthe dirty operation alternative to the
functiondel et e_object/ 1

« mesia:dirty first(Tab). Thisfunction returnsthe "first" key in thetable Tab.

Recordsinset or bag tablesare not sorted. However, thereisarecord order which is not known to the user. This
means that it is possible to traverse a table by means of this function in conjunction withthedi rty_next/ 2
function.

24 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

If there are no records at al in the table, this function will return the atom ' $end_of tabl e' . It is not
recommended to use this atom as the key for any user records.

mesi a: di rty_next (Tab, Key). Thisfunction returnsthe "next" key inthe table Tab. Thisfunction
makes it possible to traverse a table and perform some operation on all records in the table. When the end of the
table isreached the special key ' $end_of _t abl e' isreturned. Otherwise, the function returns a key which
can be used to read the actua record.

The behavior is undefined if any process perform a write operation on the table while we traverse the table
withthedi rty_next/ 2 function. Thisis becausewr i t e operations on aMnesiatable may lead to internal
reorganizations of the table itself. Thisis an implementation detail, but remember the dirty functions are low
level functions.

mesi a: di rty_I| ast (Tab) Thisfunction works exactly likermesi a: dirty_first/ 1 but
returns the last object in Erlang term order for the or der ed_set tabletype. For all other table types,
mesia:dirty_first/landmesia:dirty_|ast/1aresynonyms.

mesi a: dirty_prev(Tab, Key) Thisfunctionworksexactly likermesi a: di rty_next/ 2 but
returns the previous object in Erlang term order for the ordered set table type. For al other table types,
mesi a: di rty_next/2 andmmesi a: di rty_prev/ 2 are synonyms.

mesi a:dirty_sl ot (Tab, Slot)

Returns the list of records that are associated with Slot in atable. It can be used to traverse a table in a manner
similar tothedi rty_next/ 2 function. A table has a number of dots that range from zero to some unknown
upper bound. Thefunctiondi rty_sl ot/ 2 returnsthe special atom' $end_of _t abl e' whentheend of the
table is reached.

The behavior of this function is undefined if the table is written on while being traversed.
mmesi a: read_| ock_t abl e(Tab) may be used to ensurethat no transaction protected writes are performed
during the iteration.

mesi a: di rty_updat e_count er ({Tab, Key}, Val).
Counters are positive integers with avalue greater than or equal to zero. Updating a counter will add the Val and
the counter where Val isa positive or negative integer.

There exists no specia counter records in Mnesia. However, records on the form of { TabNanme, Key,
I nt eger} can be used as counters, and can be persistent.

It is not possible to have transaction protected updates of counter records.

There are two significant differences when using this function instead of reading the record, performing the
arithmetic, and writing the record:
e itismuch more efficient

 thedirty_updat e_count er/ 2 function is performed as an atomic operation although it is not
protected by atransaction. Accordingly, no table update islost if two processes simultaneously execute the
di rty_updat e_count er/ 2 function.

mesi a: di rty_mat ch_obj ect (Pat) . Thisfunction isthe dirty equivalent of

mmesi a: mat ch_obj ect/ 1.

mmesi a: dirty_sel ect (Tab, Pat). Thisfunctionisthe dirty equivalent of mesi a: sel ect/ 2.
mesi a: di rty_i ndex_nmat ch_obj ect (Pat, Pos). Thisfunction isthedirty equivalent of

mmesi a: i ndex_mat ch_obj ect/ 2.

mesi a: dirty_i ndex_read(Tab, SecondaryKey, Pos).Thisfunctionisthedirty equivalent of
mesi a: i ndex_r ead/ 3.

mesi a: dirty_al | _keys(Tab) . Thisfunctionisthedirty equivalent of mesi a: al | _keys/ 1.

Ericsson AB. All Rights Reserved.: Mnesia | 25

1.4 Transactions and Other Access Contexts

1.4.4 Record Names versus Table Names

In Mnesia, al records in atable must have the same name. All the records must be instances of the same record type.
The record name does however not necessarily be the same as the table name. Even though that it is the case in the
most of the examplesin this document. If atableis created without ther ecor d_nane property the code bel ow will
ensure all records in the tables have the same name as the table:

mnesia:create table(subscriber, [])

However, if the table is is created with an explicit record name as argument, as shown below, it is possible to store
subscriber records in both of the tables regardless of the table names:;

TabDef = [{record name, subscriber}],
mnesia:create table(my subscriber, TabDef),
mnesia:create table(your subscriber, TabDef).

In order to access such tables it is not possible to use the simplified access functions as described earlier in the
document. For example, writing a subscriber record into atable requiresammesi a: wri t e/ 3function instead of the
simplified functionsmmesi a: wite/ 1 andmesi a: s_wite/ 1:

mnesia:write(subscriber, #subscriber{}, write)
mnesia:write(my subscriber, #subscriber{}, sticky write)
mnesia:write(your subscriber, #subscriber{}, write)

Thefollowing simplified piece of codeillustrates the rel ationship between the simplified access functions used in most
examples and their more flexible counterparts:

mnesia:dirty write(Record) ->
Tab = element(1l, Record),
mnesia:dirty write(Tab, Record).

mnesia:dirty delete({Tab, Key}) ->
mnesia:dirty delete(Tab, Key).

mnesia:dirty delete object(Record) ->
Tab = element(1l, Record),
mnesia:dirty delete object(Tab, Record)

mnesia:dirty update counter({Tab, Key}, Incr) ->
mnesia:dirty update counter(Tab, Key, Incr).

mnesia:dirty read({Tab, Key}) ->
Tab = element(1l, Record),
mnesia:dirty read(Tab, Key).
mnesia:dirty match object(Pattern) ->
Tab = element(1l, Pattern),
mnesia:dirty match object(Tab, Pattern).

mnesia:dirty index match object(Pattern, Attr)

26 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

Tab = element(1l, Pattern),

mnesia:dirty index match object(Tab, Pattern, Attr).

mnesia:write(Record) ->
Tab = element(1l, Record),
mnesia:write(Tab, Record, write).

mnesia:s write(Record) ->
Tab = element(1, Record),
mnesia:write(Tab, Record, sticky write).

mnesia:delete({Tab, Key}) ->
mnesia:delete(Tab, Key, write).

mnesia:s delete({Tab, Key}) ->
mnesia:delete(Tab, Key, sticky write).

mnesia:delete object(Record) ->
Tab = element(1l, Record),
mnesia:delete object(Tab, Record, write).

mnesia:s delete object(Record) ->
Tab = element(1l, Record),

mnesia:delete object(Tab, Record. sticky write).

mnesia:read({Tab, Key}) ->
mnesia:read(Tab, Key, read).

mnesia:wread({Tab, Key}) ->
mnesia:read(Tab, Key, write).

mnesia:match object(Pattern) ->
Tab = element(1l, Pattern),
mnesia:match object(Tab, Pattern, read).

mnesia:index match object(Pattern, Attr) ->
Tab = element (1, Pattern),

mnesia:index match object(Tab, Pattern, Attr, read).

1.4.5 Activity Concept and Various Access Contexts

As previously described, a functional object (Fun) performing table access operations as listed below may be passed
on as arguments to the function mesi a: t ransacti on/ 1, 2, 3:

mnesiawrite/3 (write/1, s write/1)

mnesia.delete/3 (delete/1, s_delete/1)
mnesia.delete_object/3 (delete_object/1, s delete object/1)
mnesiarread/3 (read/1, wread/1)
mnesiamatch_object/2 (match_object/1)
mnesia:select/3 (select/2)

mnesia:foldl/3 (foldl/4, foldr/3, foldr/4)
mnesiaall_keys/1

mnesiaiindex_match_object/4 (index_match_object/2)
mnesiaiindex_read/3

mnesialock/2 (read lock_table/1, write lock_table/1)
mnesiattable_info/2

Ericsson AB. All Rights Reserved.: Mnesia | 27

1.4 Transactions and Other Access Contexts

These functions will be performed in a transaction context involving mechanisms like locking, logging, replication,
checkpoints, subscriptions, commit protocols etc.However, the same function may also be evaluated in other activity
contexts.

The following activity access contexts are currently supported:

e transaction
e sync_transaction

e async_dirty
e sync _dirty
e ets

By passing the same "fun" as argument to the function rmesi a: sync_transaction(Fun [, Args]) it
will be performed in synced transaction context. Synced transactions waits until al active replicas has committed
the transaction (to disc) before returning from the mnesia:sync_transaction call. Using sync_transaction is useful for
applications that are executing on several nodes and want to be sure that the update is performed on the remote nodes
before a remote process is spawned or a message is sent to a remote process, and also when combining transaction
writeswith dirty_reads. Thisisalso useful in situations where an application performs frequent or voluminous updates
which may overload Mnesia on other nodes.

By passing the same "fun" as argument to the function rmesi a: async_dirty(Fun [, Args]) it will be
performed in dirty context. The function calls will be mapped to the corresponding dirty functions. This will still
involve logging, replication and subscriptions but there will be no locking, loca transaction storage or commit
protocols involved. Checkpoint retainers will be updated but will be updated "dirty". Thus, they will be updated
asynchronously. The functions will wait for the operation to be performed on one node but not the others. If the table
resides locally no waiting will occur.

By passing the same "fun" as an argument to the function rmesi a: sync_dirty(Fun [, Args]) itwill be
performed in almost the same context as rmesi a: async_di rty/ 1, 2. The difference is that the operations are
performed synchronously. The caller will wait for the updates to be performed on all active replicas. Using sync_dirty
is useful for applications that are executing on several nodes and want to be sure that the update is performed on
the remote nodes before a remote process is spawned or a message is sent to a remote process. Thisis aso useful in
situations where an application performs frequent or voluminous updates which may overload Mnesia on other nodes.

Y ou can check if your code is executed within atransaction with mesi a: i s_t ransacti on/ O, itreturnst r ue
when called inside a transaction context and fal se otherwise.

Mnesia tables with storage type RAM_copies and disc_copies are implemented internally as "ets-tables’ and it is
possiblefor applicationsto access the these tables directly. Thisisonly recommended if al options have been weighed
and the possible outcomes are understood. By passing the earlier mentioned "fun” to the function rmesi a: et s(Fun
[, Args]) itwill be performed but in avery raw context. The operations will be performed directly on the local
ets tables assuming that the local storage type are RAM_copies and that the table is not replicated on other nodes.
Subscriptions will not be triggered nor checkpoints updated, but this operation is blindingly fast. Disc resident tables
should not be updated with the ets-function since the disc will not be updated.

The Fun may also be passed as an argument to the function mesi a: acti vi ty/ 2, 3, 4 which enables usage of
customized activity access callback modules. It can either be obtained directly by stating the module name as argument
or implicitly by usage of theaccess_nodul e configuration parameter. A customized callback module may be used
for several purposes, such as providing triggers, integrity constraints, run time statistics, or virtual tables.

The callback module does not have to accessreal Mnesiatables, it isfreeto do whatever it likes aslong as the callback
interface is fulfilled.

In Appendix C "The Activity Access Call Back Interface” the source code for one alternate implementation is
provided (mnesia frag.erl). The context sensitivefunctionrmesi a: t abl e_i nf o/ 2 may be used to providevirtual
information about a table. One usage of thisisto perform QLC queries within an activity context with a customized
callback module. By providing table information about table indices and other QL C requirements, Q.C may be used
as ageneric query language to access virtual tables.

28 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

QLC queries may be performed in al these activity contexts (transaction, sync_transaction, async_dirty, sync_dirty
and ets). The ets activity will only work if the table has no indices.

Note:

The mnesia:dirty_* function always executes with async_dirty semantics regardless of which activity access
contexts are invoked. They may even invoke contexts without any enclosing activity access context.

1.4.6 Nested transactions

Transactions may be nested in an arbitrary fashion. A child transaction must run in the same process as its parent.
When a child transaction aborts, the caller of the child transaction will get the return value { abort ed, Reason}
and any work performed by the child will be erased. If a child transaction commits, the records written by the child
will be propagated to the parent.

No locks are released when child transactions terminate. Locks created by a sequence of nested transactions are
kept until the topmost transaction terminates. Furthermore, any updates performed by a nested transaction are only
propagated in such a manner so that the parent of the nested transaction sees the updates. No final commitment will
be done until the top level transaction is terminated. So, although a nested transaction returns{ at omi ¢, Val }, if
the enclosing parent transaction is aborted, the entire nested operation is aborted.

The ability to have nested transaction with identical semantics astop level transaction makesit easier to write library
functions that manipulate mnesia tables.

Say for example that we have a function that adds a new subscriber to atelephony system:

add_subscriber(S) ->
mnesia:transaction(fun() ->
case mnesia:read(..........

This function needs to be caled as a transaction. Now assume that we wish to write a function that both calls the
add_subscri ber/ 1 function and is in itself protected by the context of a transaction. By simply calling the
add_subscri ber/ 1 from within another transaction, a nested transaction is created.

It is also possible to mix different activity access contexts while nesting, but the dirty ones (async_dirty,sync_dirty
and ets) will inherit the transaction semantics if they are called inside a transaction and thus it will grab locks and
use two or three phase commit.

add subscriber(S) ->
mnesia:transaction(fun() ->
%% Transaction context
mnesia:read({some tab, some data}),
mnesia:sync dirty(fun() ->
%% Still in a transaction context.
case mnesia:read(..) ..end), end).
add subscriber2(S) ->
mnesia:sync dirty(fun() ->
%% In dirty context
mnesia:read({some tab, some data}),
mnesia:transaction(fun() ->
%% In a transaction context.
case mnesia:read(..) ..end), end).

Ericsson AB. All Rights Reserved.: Mnesia | 29

1.4 Transactions and Other Access Contexts

1.4.7 Pattern Matching

Whenitisnot possibletousemmesi a: r ead/ 3 Mnesiaprovidesthe programmer with several functionsfor matching
records against a pattern. The most useful functions of these are:

mnesia:select(Tab, MatchSpecification, LockKind) ->
transaction abort | [ObjectList]
mnesia:select(Tab, MatchSpecification, NObjects, Lock) ->

transaction abort | {[Object],Continuation} | '$end of table'
mnesia:select(Cont) ->
transaction abort | {[Object],Continuation} | '$end of table'

mnesia:match object(Tab, Pattern, LockKind) ->
transaction abort | RecordList

ThesefunctionsmatchesaPat t er n against all recordsintable Tab. Inamesi a: sel ect cal Pat t er nisapart
of Mat chSpeci fi cati on described below. It is not necessarily performed as an exhaustive search of the entire
table. By utilizing indices and bound values in the key of the pattern, the actual work done by the function may be
condensed into afew hash lookups. Using or der ed_set tables may reduce the search spaceif the keysare partialy
bound.

The pattern provided to the functions must be a valid record, and the first element of the provided tuple must be the
recor d_nane of thetable. The special element’ ' matches any data structure in Erlang (also known as an Erlang
term). The special elements ' $<nunber >' behaves as Erlang variables i.e. matches anything and binds the first
occurrence and matches the coming occurrences of that variable against the bound value.

Use the function mesi a: t abl e_i nf o(Tab, wil d_pattern) to obtain abasic pattern which matches all
records in a table or use the default value in record creation. Do not make the pattern hard coded since it will make
your code more vulnerable to future changes of the record definition.

Wildpattern = mnesia:table info(employee, wild pattern),
%% 0r use
Wildpattern

#employee{ ="' '},
For the employee table the wild pattern will look like:
{employee, '_*, '_*, '_', '_', '_',' _'}.

In order to constrain the match you must replace some of the' ' elements. The code for matching out all female
employees, looks like:

Pat = #employee{sex = female, ="' "'}

F = fun() -> mnesia:match object(Pat) end,
Females = mnesia:transaction(F).

30 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Transactions and Other Access Contexts

It is also possible to use the match function if we want to check the equality of different attributes. Assume that we
want to find all employees which happens to have a employee number which is equal to their room number:

Pat = #employee{emp no = '$1', room no = '$1', ="' "'},
F = fun() -> mnesia:match object(Pat) end,
0dd = mnesia:transaction(F).

The function mesi a: mat ch_obj ect / 3 lacks some important features that mesi a: sel ect/ 3 have. For
examplemmesi a: mat ch_obj ect / 3 can only return the matching records, and it can not express constraints other
then equality. If we want to find the names of the male employees on the second floor we could write:

MatchHead = #employee{name='$1', sex=male, room no={'$2', ' '}, =' '},
Guard = [{'>="', '$2', 220},{'<', '$2', 230}1,
Result = '$1',

mnesia:select(employee, [{MatchHead, Guard, [Result]}])

Select can be used to add additional constraints and create output which can not be done with
mesi a: mat ch_obj ect/ 3.

The second argument to select is a MatchSpecification. A MtchSpecification is list
of MatchFunctions, where each Mat chFuncti on consists of a tuple containing {Mat chHead,
Mat chCondi ti on, MatchBody}. Mat chHead is the same pattern used in rmesi a: mat ch_obj ect/ 3
described above. Mat chCondi ti on isalist of additional constraints applied to each record, and Mat chBody is
used to construct the return values.

A detailed explanation of match specifications can be found in the Erts users guide: Match specificationsin Erlang,
and the ets/dets documentations may provide some additional information.

The functionssel ect/ 4 and sel ect/ 1 are used to get alimited number of results, where the Cont i nuat i on
are used to get the next chunk of results. Mnesia uses the NObj ect s as an recommendation only, thus more or less
results then specified with NObj ect s may be returned in the result list, even the empty list may be returned despite
there are more results to collect.

Warning:

Thereisasevere performance penaty inusingmmesi a: sel ect /[1| 2| 3| 4] after any modifying operations
are done on that table in the same transaction, i.e. avoid using mesi a: wri te/ 1 or nmesi a: del ete/ 1
beforeamesi a: sel ect in the same transaction.

If the key attribute is bound in a pattern, the match operation isvery efficient. However, if the key attribute in apattern
isgivenas' _' ,or' $1',thewhole enpl oyee table must be searched for records that match. Hence if the table is
large, this can become atime consuming operation, but it can be remedied with indices (refer to Chapter 5: Indexing)
if mesi a: nat ch_obj ect isused.

QLC queries can aso be used to search Mnesia tables. By using rmesi a: t abl e/ [1] 2] asthe generator inside
a QLC query you let the query operate on a mnesia table. Mnesia specific optionsto rmesi a: t abl e/ 2 are {lock,
Lock}, { n_objects,Integer} and {traverse, SelMethod}. The | ock option specifies whether mnesia should acquire a
read or writelock onthetable, andn_obj ect s specifieshow many results should be returned in each chunk to QL C.
Thelast optionist r aver se and it specifieswhich function mnesia should useto traversethetable. Default sel ect

Ericsson AB. All Rights Reserved.: Mnesia | 31

1.4 Transactions and Other Access Contexts

isused, but by using{t raverse, {select, MatchSpecification}} asanoptiontormesi a:tabl e/ 2
the user can specify it's own view of the table.

If no options are specified a read lock will acquired and 100 results will be returned in each chunk, and select will
be used to traverse the table, i.e.:

mnesia:table(Tab) ->
mnesia:table(Tab, [{n objects,100},{lock, read}, {traverse, select}]).

Thefunctionnmesi a: al | _keys(Tab) returnsal keysin atable.

1.4.8 lteration

Mnesia provides a couple of functions which iterates over al the recordsin atable.

mnesia:foldl
mnesia:foldr
mnesia:foldl
mnesia:foldr

Fun, AccO, Tab) -> NewAcc | transaction abort
Fun, AccO, Tab) -> NewAcc | transaction abort
Fun, AccO, Tab, LockType) -> NewAcc | transaction abort
Fun, AccO, Tab, LockType) -> NewAcc | transaction abort

—_——~—~—

These functions iterate over the mnesia table Tab and apply the function Fun to each record. The Fun takes two
arguments, the first argument is a record from the table and the second argument is the accumulator. The Fun return
anew accumulator.

Thefirst timethe Fun isapplied AccO will be the second argument. The next time the Fun is called the return value
from the previous call, will be used as the second argument. The term the last call to the Fun returnswill be the return
value of thef ol d[| r] function.

The difference between f ol dI and f ol dr is the order the table is accessed for or der ed_set tables, for every
other table type the functions are equivalent.

LockType specifies what type of lock that shall be acquired for the iteration, default isr ead. If records are written
or deleted during the iteration awrite lock should be acquired.

These functions might be used to find records in a table when it is impossible to write constraints for
mesi a: mat ch_obj ect / 3, or when you want to perform some action on certain records.

For example finding all the employees who has a salary below 10 could look like:

find low _salaries() ->

Constraint =
fun(Emp, Acc) when Emp#employee.salary < 10 ->
[Emp | Accl;
(_, Acc) ->
Acc
end,

Find = fun() -> mnesia:foldl(Constraint, [], employee) end,
mnesia:transaction(Find) .

Raising the salary to 10 for everyone with a salary below 10 and return the sum of all raises:

32| Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

increase low salaries() ->
Increase =
fun(Emp, Acc) when Emp#employee.salary < 10 ->
0ldS = Emp#employee.salary,
ok = mnesia:write(Emp#employee{salary = 10}),
Acc + 10 - 0ldS;
(71 ACC) ->
Acc
end,
IncLow = fun() -> mnesia:foldl(Increase, 0, employee, write) end,
mnesia:transaction(InclLow).

A lot of nice things can be done with the iterator functions but some caution should be taken about performance and
memory utilization for large tables.

Call theseiteration functions on nodes that contain areplica of thetable. Each call to the function Fun accessthetable
and if the table resides on another node it will generate alot of unnecessary network traffic.

Mnesiaalso provides somefunctionsthat makeit possiblefor the user toiterate over thetable. The order of theiteration
isunspecified if thetableis not of theor der ed_set type.

mnesia:first(Tab) -> Key | transaction abort

mnesia:last(Tab) -> Key | transaction abort

mnesia:next(Tab,Key) -> Key | transaction abort
mnesia:prev(Tab,Key) -> Key | transaction abort
mnesia:snmp _get next index(Tab,Index) -> {ok, NextIndex} | endOfTable

The order of first/last and next/prev are only valid for or der ed_set tables, for all other tables, they are synonyms.
When the end of the table isreached the special key ' $end_of _t abl e' isreturned.

If records are written and deleted during the traversal, use mesi a: fold[I1r]/4 with awite lock. Or
mesi a: wite_ | ock_tabl e/ 1whenusingfirst and next.

Writing or deleting in transaction context creates alocal copy of each modified record, so modifying each record in
alarge table uses a lot of memory. Mnesia will compensate for every written or deleted record during the iteration
in atransaction context, which may reduce the performance. If possible avoid writing or deleting records in the same
transaction before iterating over the table.

In dirty context, i.e. sync_di rty orasync_di rty, the modified records are not stored in alocal copy; instead,
each record is updated separately. This generates alot of network traffic if the table has a replica on another node and
has dll the other drawbacksthat dirty operations have. Especially for thermesi a: fi rst/ 1 andmmesi a: next/ 2
commands, the same drawbacks as described abovefordi rty first anddi rty_ next applies,i.e. nowritesto
the table should be done during iteration.

1.5 Miscellaneous Mnesia Features

The earlier chapters of this User Guide described how to get started with Mnesia, and how to build a Mnesia database.
Inthischapter, wewill describe the more advanced features available when building adistributed, fault tolerant Mnesia
database. This chapter contains the following sections:

* Indexing

» Distribution and Fault Tolerance

e Tablefragmentation.

* Local content tables.

Ericsson AB. All Rights Reserved.: Mnesia | 33

1.5 Miscellaneous Mnesia Features

» Disc-lessnodes.

e More about schema management

» Debugging a Mnesia application

* Concurrent Processesin Mnesia

* Prototyping

* Object Based Programming with Mnesia

1.5.1 Indexing

Data retrieval and matching can be performed very efficiently if we know the key for the record. Conversely, if the
key isnot known, al recordsin atable must be searched. The larger the table the more time consuming it will become.
To remedy this problem Mnesia'sindexing capabilities are used to improve dataretrieval and matching of records.

The following two functions manipulate indexes on existing tables:

e mesia:add _tabl e index(Tab, AttributeNane) -> {aborted, R} |{atom c, ok}
e mesia:del _table_index(Tab, AttributeNane) -> {aborted, R} |{atom c, ok}

These functions create or delete atable index on field defined by At t r i but eNane. To illustrate this, add an index
to the table definition (enpl oyee, {enp_no, nane, salary, sex, phone, room no}, whichis
the example table from the Company database. The function which adds an index on the element sal ary can be
expressed in the following way:

e mesia: add_tabl e_i ndex(enpl oyee, salary)

Theindexing capabilities of Mnesia are utilized with the following three functions, which retrieve and match records
on the basis of index entriesin the database.

* mesia:index_read(Tab, SecondaryKey, AttributeNane) -> transaction abort
| RecordLi st . Avoids an exhaustive search of the entire table, by looking up the Secondar yKey inthe
index to find the primary keys.

e mmesia:index_match_object(Pattern, AttributeNane) -> transaction abort |
Recor dLi st Avoids an exhaustive search of the entire table, by looking up the secondary key in the index
to find the primary keys. The secondary key isfound inthe At t r i but eNane field of thePat t er n. The
secondary key must be bound.

* mnesia:match_obj ect(Pattern) -> transaction abort | RecordLi st Usesindicesto
avoid exhaustive search of the entire table. Unlike the other functions above, this function may utilize any index
as long as the secondary key is bound.

These functions are further described and exemplified in Chapter 4: Pattern matching.

1.5.2 Distribution and Fault Tolerance

Mnesiais adistributed, fault tolerant DBMS. It is possible to replicate tables on different Erlang nodes in avariety of
ways. The Mnesia programmer does not have to state where the different tables reside, only the names of the different
tables are specified in the program code. Thisis known as "location transparency” and it is an important concept. In
particular:

« A program will work regardless of the location of the data. It makes no difference whether the data resides on
the local node, or on aremote node. Note: The program will run slower if the datais|ocated on a remote node.

* The database can be reconfigured, and tables can be moved between nodes. These operations do not effect the
user programs.

We have previously seen that each table has a number of system attributes, such asi ndex andt ype.

Table attributes are specified when the table is created. For example, the following function will create a new table
with two RAM replicas:

34 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

mnesia:create table(foo,
[{ram copies, [N1, N2]},
{attributes, record info(fields, foo)}]).

Tables can aso have the following properties, where each attribute has alist of Erlang nodes as its value.

e« ram copi es. Thevalue of the nodelist isalist of Erlang nodes, and a RAM replica of the table will reside on
each node in the list. Thisisa RAM replica, and it is important to realize that no disc operations are performed
when a program executes write operations to these replicas. However, should permanent RAM replicas be a
requirement, then the following alternatives are available:

e Themesi a: dunp_t abl es/ 1 function can be used to dump RAM table replicas to disc.

« Thetablereplicas can be backed up; either from RAM, or from disc if dumped there with the above
function.

« disc_copi es. Thevaueof the attribute isalist of Erlang nodes, and areplica of the table will reside both in
RAM and on disc on each node in the list. Write operations addressed to the table will address both the RAM
and the disc copy of the table.

« disc_only_copies. Thevaueof theattribute isalist of Erlang nodes, and areplica of the table will reside
only as adisc copy on each node in the list. The major disadvantage of this type of table replicais the access
speed. The major advantage is that the table does not occupy space in memory.

It is also possible to set and change table properties on existing tables. Refer to Chapter 3: Defining the Schema for
full details.

There are basically two reasonsfor using more than one table replica: fault tolerance, or speed. It isworthwhileto note
that table replication provides a solution to both of these system reguirements.

If we have two active table replicas, all information is still available if one of the replicas fail. This can be a very
important property in many applications. Furthermore, if atable replicaexistsat two specific nodes, applicationswhich
execute at either of these nodes can read data from the table without accessing the network. Network operations are
considerably slower and consume more resources than local operations.

It can be advantageous to create table replicas for a distributed application which reads data often, but writes data
seldom, in order to achieve fast read operations on the local node. The major disadvantage with replication is the
increased timeto write data. If atable hastwo replicas, every write operation must access both tablereplicas. Sinceone
of these write operations must be a network operation, it is considerably more expensive to perform awrite operation
to areplicated table than to a non-replicated table.

1.5.3 Table Fragmentation
The Concept

A concept of table fragmentation has been introduced in order to cope with very large tables. The ideais to split a
table into several more manageable fragments. Each fragment is implemented as a first class Mnesia table and may
be replicated, have indices etc. as any other table. But the tables may neither have | ocal _cont ent nor have the
snnp connection activated.

In order to be able to access a record in a fragmented table, Mnesia must determine to which fragment the actual
record belongs. This is done by the mesi a_f r ag module, which implements the rmesi a_access callback
behaviour. Please, read the documentation about resi a: acti vi t y/ 4 to see how mesi a_f r ag can be used
asammesi a_access callback module.

At eachrecord accessrmesi a_f r ag first computes ahash value from the record key. Secondly the name of thetable
fragment is determined from the hash value. And finally the actual table accessis performed by the same functions as
for non-fragmented tables. When the key is not known beforehand, all fragments are searched for matching records.

Ericsson AB. All Rights Reserved.: Mnesia | 35

1.5 Miscellaneous Mnesia Features

Note: In or der ed_set tables the records will be ordered per fragment, and the the order is undefined in results
returned by select and match_object.

The following piece of code illustrates how an existing Mnesia table is converted to be a fragmented table and how
more fragments are added later on.

Eshell V4.7.3.3 (abort with ~G)
(a@sam) 1> mnesia:start().
ok
(a@sam)2> mnesia:system info(running db nodes).
[b@sam, c@sam, a@sam]
(a@sam)3> Tab = dictionary.
dictionary
(a@sam)4> mnesia:create table(Tab, [{ram copies, [a@sam, b@sam]}]).
{atomic, ok}
(a@sam)5> Write = fun(Keys) -> [mnesia:write({Tab,K,-K}) || K <- Keys], ok end.
#Fun<erl eval>
(a@sam)6> mnesia:activity(sync dirty, Write, [lists:seq(l, 256)], mnesia frag).
ok
(a@sam)7> mnesia:change table frag(Tab, {activate, [1}).
{atomic, ok}
(a@sam)8> mnesia:table info(Tab, frag properties).
[{base table,dictionary},
{foreign key,undefined},
{n_doubles, 0},
{n_fragments, 1},
{next n to split,1},
{node pool, [a@sam, b@sam, c@sam]}]
(a@sam)9> Info = fun(Item) -> mnesia:table info(Tab, Item) end.
#Fun<erl eval>
(a@sam)10> Dist = mnesia:activity(sync dirty, Info, [frag dist], mnesia frag).
[{c@sam, 0}, {a@sam, 1}, {b@sam,1}]
(a@sam)11> mnesia:change table frag(Tab, {add frag, Dist}).
{atomic, ok}
(a@sam)12> Dist2 = mnesia:activity(sync dirty, Info, [frag dist], mnesia frag).
[{b@sam, 1}, {c@sam, 1}, {a@sam,2}]
(a@sam)13> mnesia:change table frag(Tab, {add frag, Dist2}).
{atomic, ok}
(a@sam)14> Dist3 = mnesia:activity(sync dirty, Info, [frag dist], mnesia frag).
[{a@sam, 2}, {b@sam, 2}, {c@sam,2}]
(a@sam)15> mnesia:change table frag(Tab, {add frag, Dist3}).
{atomic, ok}
(a@sam) 16> Read = fun(Key) -> mnesia:read({Tab, Key}) end.
#Fun<erl eval>
(a@sam)17> mnesia:activity(transaction, Read, [12], mnesia frag).
[{dictionary,12,-12}]
(a@sam)18> mnesia:activity(sync dirty, Info, [frag size], mnesia frag).
[{dictionary, 64},
{dictionary frag2,64},
{dictionary frag3,64},
{dictionary frag4,64}]
(a@sam) 19>

Fragmentation Properties

There is a table property called frag_properti es and may be read with mesi a: t abl e_i nf o(Tab,
frag_properties). Thefragmentation propertiesisalist of tagged tuples with the arity 2. By default the list is
empty, but when itisnon-empty it triggers Mnesiato regard the tabl e as fragmented. The fragmentation properties are:

36 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

{n_fragments, Int}

n_f ragment s regulates how many fragments that the table currently has. This property may explicitly be set
at table creation and later be changed with {add_frag, NodesOrDi st} ordel _frag.n_fragnents
defaultsto 1.

{node_pool, List}

The node pool contains a list of nodes and may explicitly be set at table creation and later be changed with
{add_node, Node} or{del node, Node}. At table creation Mnesiatries to distribute the replicas of
each fragment evenly over al the nodes in the node pool. Hopefully all nodes will end up with the same number
of replicas. node_pool defaultsto the return value from mesi a: syst em i nf o(db_nodes).

{n_ramcopies, Int}

Regulates how many r am copi es replicas that each fragment should have. This property may explicitly be
set at table creation. The default is O, but if n_di sc_copi es and n_di sc_only_copi es dso are O,
n_ram copi es will default besetto 1.

{n_di sc_copies, Int}

Regulates how many di sc_copi es replicas that each fragment should have. This property may explicitly be
Set at table creation. The default is 0.

{n_disc_only copies, Int}

Regulates how many di sc_onl y_copi es replicas that each fragment should have. This property may
explicitly be set at table creation. The default is 0.

{foreign_key, ForeignKey}

For ei gnKey may either betheatomundef i ned orthetuple{ For ei gnTab, Attr},whereAttr denotes
an attribute which should be interpreted as akey in another fragmented table named For ei gnTab. Mnesiawill
ensure that the number of fragments in this table and in the foreign table are always the same. When fragments
are added or deleted Mnesiawill automatically propagate the operation to all fragmented tables that hasaforeign
key referring to this table. Instead of using the record key to determine which fragment to access, the value of
the At t r fieldisused. Thisfeature makesit possible to automatically co-locate records in different tables to the
same node. f or ei gn_key defaultsto undef i ned. However if the foreign key is set to something else it will
cause the default values of the other fragmentation properties to be the same values as the actua fragmentation
properties of the foreign table.

{hash_nodul e, Aton}

Enables definition of an aternate hashing scheme. The module must implement the mesi a_frag_hash
callback behaviour (see the reference manual). This property may explicitly be set at table creation. The default
ismmesi a_frag_hash.

Older tables that was created before the concept of user defined hash modules was introduced, uses the
mesi a_f rag_ol d_hash module in order to be backwards compatible. The mesi a_frag_ol d_hash
isstill using the poor deprecated er | ang: hash/ 1 function.

{hash_state, Tern}

Enables a table specific parameterization of a generic hash module. This property may explicitly be set at table
creation. The default isundef i ned.

Eshell V4.7.3.3 (abort with ~G)

(a@sam)1> mnesia:start().

ok

(a@sam)2> PrimProps = [{n_fragments, 7}, {node pool, [node()]}].
[{n_fragments,7},{node pool, [a@sam]}]

Ericsson AB. All Rights Reserved.: Mnesia | 37

1.5 Miscellaneous Mnesia Features

(a@sam)3> mnesia:create table(prim dict,
[{frag properties, PrimProps},
{attributes, [prim key,prim val]}]).
{atomic, ok}
(a@sam)4> SecProps = [{foreign key, {prim dict, sec val}}].
[{foreign key,{prim dict,sec val}}]
(a@sam)5> mnesia:create table(sec dict,
[{frag properties, SecProps},
(a@sam) 5> {attributes, [sec key, sec val]}l).
{atomic, ok}
(a@sam)6> Write = fun(Rec) -> mnesia:write(Rec) end.
#Fun<erl eval>
(a@sam)7> PrimKey = 11.
11
(a@sam)8> SecKey = 42.
42
(a@sam)9> mnesia:activity(sync dirty, Write,
[{prim _dict, PrimKey, -11}], mnesia frag).
ok
(a@sam) 10> mnesia:activity(sync dirty, Write,
[{sec _dict, SecKey, PrimKey}], mnesia_ frag).
ok
(a@sam)11> mnesia:change table frag(prim dict, {add frag, [node()]}).
{atomic, ok}
(a@sam) 12> SecRead = fun(PrimKey, SecKey) ->
mnesia:read({sec dict, PrimKey}, SecKey, read) end.
#Fun<erl eval>
(a@sam) 13> mnesia:activity(transaction, SecRead,
[PrimKey, SecKey], mnesia frag).
[{sec dict,42,11}]
(a@sam)14> Info = fun(Tab, Item) -> mnesia:table info(Tab, Item) end.
#Fun<erl eval>
(a@sam) 15> mnesia:activity(sync dirty, Info,
[prim dict, frag size], mnesia frag).
[{prim dict,0},
{prim_dict frag2,0},
{prim_dict frag3,0},
{prim_dict frag4,1},
{prim_dict frag5,0},
{prim_dict frag6,0},
{prim_dict frag7,0},
{prim_dict frag8,0}]
(a@sam) 16> mnesia:activity(sync dirty, Info,
[sec dict, frag size], mnesia frag).
[{sec dict,0},
{sec _dict frag2,0},
{sec _dict frag3,0},
{sec _dict frag4,1},
{sec _dict frag5,0},
{sec _dict frag6,0},
{sec _dict frag7,0},
{sec _dict frag8,0}]
(a@sam) 17>

Management of Fragmented Tables

The function mesi a: change_t abl e_frag(Tab, Change) isintended to be used for reconfiguration of
fragmented tables. The Change argument should have one of the following values:

{activate, FragProps}

Activates the fragmentation properties of an existing table. Fr agPr ops should either contain { node_pool ,
Nodes} or be empty.

38| Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

deactivate

Deactivates the fragmentation properties of a table. The number of fragments must be 1. No other tables may
refer to thistablein its foreign key.

{add_frag, NodesOrDi st}

Adds one new fragment to afragmented table. All recordsin one of the old fragments will be rehashed and about
half of them will be moved to the new (last) fragment. All other fragmented tables, which refers to thistablein
their foreign key, will automatically get a new fragment, and their records will also be dynamically rehashed in
the same manner as for the main table.

The NodesOr Di st argument may either be alist of nodes or the result from mesi a: t abl e_i nf o(Tab,
frag dist). The NodesOr Di st argument is assumed to be a sorted list with the best nodes to host new
replicas first in the list. The new fragment will get the same number of replicas as the first fragment (see
n_ram copi es,n_disc_copies andn_di sc_only_copi es). The NodesOr Di st list must at least
contain one element for each replica that needs to be allocated.

del _frag

Deletes one fragment from a fragmented table. All recordsin the last fragment will be moved to one of the other
fragments. All other fragmented tables which refersto thistablein their foreign key, will automatically lose their
last fragment and their records will also be dynamically rehashed in the same manner as for the main table.

{add_node, Node}

Adds a new node to the node_pool. The new node pool will affect the list returned from
mesi a: tabl e_i nfo(Tab, frag_dist).

{del _node, Node}
Deletes a new node from the node_pool . The new node pool will affect the list returned from
mesi a: tabl e_i nfo(Tab, frag dist).

Extensions of Existing Functions

The function mesi a: creat e_t abl e/ 2 is used to create a brand new fragmented table, by setting the table
property f rag_pr operti es to some proper values.

The function mesi a: del et e_t abl e/ 1 is used to delete a fragmented table including all its fragments. There
must however not exist any other fragmented tables which refers to this tablein their foreign key.

Thefunctionmmesi a: t abl e_i nf o/ 2 now understandsthef r ag_pr operti es item.

If the function mesi a: tabl e_i nfo/ 2 is invoked in the activity context of the mmesi a_f rag module,
information of several new items may be obtained:

base tabl e
the name of the fragmented table
n_fragments
the actual number of fragments
node_pool
the pool of nodes
n_ram copi es
n_di sc_copi es
n_di sc_only_copies
the number of replicas with storage type ram copi es, di sc_copies and di sc_only_copies
respectively. The actual values are dynamically derived from the first fragment. The first fragment

Ericsson AB. All Rights Reserved.: Mnesia | 39

1.5 Miscellaneous Mnesia Features

serves as a pro-type and when the actual values needs to be computed (eg. when adding new
fragments) they are simply determined by counting the number of each replicas for each storage
type. This means, when the functions mesi a: add_t abl e_copy/ 3, mesi a: del _t abl e_copy/ 2
andmesi a: change_t abl e_copy_t ype/ 2 are applied on the first fragment, it will affect the settings on
n_ram copi es,n_di sc_copi es,andn_di sc_only_copi es.

forei gn_key
the foreign key.
foreigners
all other tablesthat refersto thistable in their foreign key.
frag_names
the names of all fragments.
frag_di st

a sorted list of { Node, Count} tupleswhich is sorted in increasing Count order. The Count is the total
number of replicas that this fragmented table hosts on each Node. The list aways contains at least all nodes
in the node_pool . The nodes which not belongs to the node_pool will be put last in the list even if their
Count islower.

frag_size
alist of { Name, Si ze} tupleswhere Nane isafragment Name and Si ze ishow many recordsit contains.
frag_nenory

alist of { Nane, Menory} tuples where Nare is a fragment Name and Menory is how much memory it
occupies.

si ze

total size of all fragments
nenory

the total memory of all fragments

Load Balancing

There are severa algorithmsfor distributing recordsin afragmented table evenly over apool of nodes. No oneis best,
it smply depends of the application needs. Here follows some examples of situations which may need some attention:

per manent change of nodes when anew permanent db_node isintroduced or dropped, it may be time to
change the pool of nodes and re-distribute the replicas evenly over the new pool of nodes. It may aso be time to add
or delete afragment before the replicas are re-distributed.

si ze/ menory threshol d when the total size or total memory of a fragmented table (or a single fragment)
exceeds some application specific threshold, it may be timeto dynamically add anew fragment in order obtain abetter
distribution of records.

tenporary node down when anode temporarily goes down it may be time to compensate some fragments with
new replicasin order to keep the desired level of redundancy. When the node comes up again it may be timeto remove
the superfluous replica.

over | oad t hr eshol d whentheload on some node is exceeds some application specific threshold, it may betime
to either add or move some fragment replicas to nodes with lesser load. Extra care should be taken if the table has a
foreign key relation to some other table. In order to avoid severe performance penalties, the same re-distribution must
be performed for al of the related tables.

40 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

Use mmesia:change_table_frag/2 to add new fragments and apply the wusual schema
manipulation functions (such as mesi a: add_t abl e_copy/ 3, mmesi a: del _tabl e_copy/2 and
mesi a: change_t abl e_copy_t ype/ 2) on each fragment to perform the actua re-distribution.

1.5.4 Local Content Tables

Replicated tables have the same content on all nodes wherethey are replicated. However, it is sometimes advantageous
to have tables but different content on different nodes.

If we specify the attribute{ | ocal _cont ent, true} whenwe create the table, the table will reside on the nodes
wherewe specify that thetable shall exist, but thewrite operations on thetablewill only be performed on thelocal copy.

Furthermore, when the table is initialized at start-up, the table will only be initialized locally, and the table content
will not be copied from another node.

1.5.5 Disc-less Nodes

It is possible to run Mnesia on nodes that do not have a disc. It is of course not possible to have replicas of neither
di sc_copi es,nordi sc_onl y_copi es onsuch nodes. This especially troublesome for the schena table since
Mnesia need the schemain order to initiaize itself.

The schema table may, as other tables, reside on one or more nodes. The storage type of the schema table may either
bedi sc_copi es orram copi es (notdi sc_onl y_copi es). At start-up Mnesia uses its schemato determine
with which nodes it should try to establish contact. If any of the other nodes are already started, the starting node
merges its table definitions with the table definitions brought from the other nodes. This also applies to the definition
of the schematable itself. The application parameter ext r a_db_nodes contains alist of nodes which Mnesia also
should establish contact with besides the ones found in the schema. The default value isthe empty list[] .

Hence, when a disc-less node needs to find the schema definitions from a remote node on the network, we
need to supply this information through the application parameter - mesi a extra_db_nodes Nodeli st.
Without this configuration parameter set, Mnesia will start as a single node system. It is also possible to use
mesi a: change_confi g/ 2 to assign avalueto 'extra_db_nodes and force a connection after mnesia have been
started, i.e. mnesia:change_config(extra_db_nodes, NodeL ist).

The application parameter schema |ocation controls where Mnesiawill search for its schema. The parameter may be
one of the following atoms:
di sc
Mandatory disc. The schema is assumed to be located on the Mnesia directory. And if the schema cannot be
found, Mnesiarefusesto start.
ram

Mandatory ram. The schemaresidesin ram only. At start-up atiny new schemais generated. This default schema
containsjust the definition of the schematable and only resides on thelocal node. Since no other nodes are found
inthe default schema, the configuration parameter ext r a_db_nodes must beused in order to let the node share
its table definitions with other nodes. (Theext r a_db_nodes parameter may also be used on disc-full nodes.)

opt _di sc

Optional disc. The schema may reside on either disc or ram. If the schemais found on disc, Mnesia starts as a
disc-full node (the storage type of the schematableis disc_copies). If no schemais found on disc, Mnesia starts
as a disc-less node (the storage type of the schema table is ram_copies). The default value for the application
parameter isopt _di sc.

Whentheschena_| ocat i onissettoopt discthefunctionmmesi a: change_t abl e_copy_t ype/ 3 may be
used to change the storage type of the schema. Thisisillustrated below:

Ericsson AB. All Rights Reserved.: Mnesia | 41

1.5 Miscellaneous Mnesia Features

1> mnesia:start().

ok

2> mnesia:change table copy type(schema, node(), disc copies).
{atomic, ok}

Assuming that the call to mesi a: st art did not find any schemato read on the disc, then Mnesia has started as a
disc-less node, and then changed it to a node that utilizes the disc to locally store the schema.

1.5.6 More Schema Management

It is possible to add and remove nodes from a Mnesia system. This can be done by adding a copy of the schema to
those nodes.

Thefunctionsmrmesi a: add_t abl e_copy/ 3andmmesi a: del _t abl e_copy/ 2 may beused to add and delete
replicas of the schematable. Adding a node to the list of nodes where the schema s replicated will affect two things.
First it allows other tables to be replicated to this node. Secondly it will cause Mnesia to try to contact the node at
start-up of disc-full nodes.

Thefunctioncal mesi a: del _t abl e_copy(schenma, nynode@ost) deletesthenode'mynode@host' from
the Mnesia system. The call fails if mnesiais running on ‘'mynode@host’. The other mnesia nodes will never try to
connect to that node again. Note, if there is a disc resident schema on the node 'mynode@host’, the entire mnesia
directory should be deleted. This can be donewith nmesi a: del et e_schemna/ 1. If mnesiais started again on the
the node 'mynode@host’ and the directory has not been cleared, mnesia's behaviour is undefined.

If the storage type of the schema is ram_copies, i.e, we have disc-less node, Mnesia will not use the disc on that
particular node. The disc usage is enabled by changing the storage type of the table schena to disc_copies.

New schemas are created explicitly with nmesi a: cr eat e_schena/ 1 or implicitly by starting Mnesia without a
disc resident schema. Whenever a table (including the schematable) is created it is assigned its own unigque cookie.
The schematableis not created with mesi a: cr eat e_t abl e/ 2 asnormal tables.

At start-up Mnesia connects different nodes to each other, then they exchange table definitions with each other and
the table definitions are merged. During the merge procedure Mnesia performs a sanity test to ensure that the table
definitions are compatible with each other. If atable exists on several nodes the cookie must be the same, otherwise
Mnesiawill shutdown one of the nodes. This unfortunate situation will occur if atable has been created on two nodes
independently of each other while they were disconnected. To solve the problem, one of the tables must be deleted (as
the cookies differ we regard it to be two different tables even if they happen to have the same name).

Merging different versions of the schematable, does not always require the cookies to be the same. If the storage type
of the schematableisdisc_copies, the cookie isimmutable, and al other db_nodes must have the same cookie. When
the schemalis stored as type ram_copies, its cookie can be replaced with a cookie from another node (ram_copies or
disc_copies). The cookie replacement (during merge of the schema table definition) is performed each time a RAM
node connects to another node.

mesi a: system i nfo(schena_| ocati on) and mesi a: system i nfo(extra_db_nodes) may
be used to determine the actua values of schema location and extra db_nodes respectively.
mesi a: system i nfo(use_di r) may be used to determine whether Mnesia is actually using the Mnesia
directory. use_di r may be determined even before Mnesiais started. The function rmesi a: i nf o/ 0 may now be
used to printout some system information even before Mnesia is started. When Mnesia is started the function prints
out more information.

Transactions which update the definition of atable, requiresthat Mnesiais started on all nodes where the storage type
of the schemaisdisc_copies. All replicas of the table on these nodes must also be loaded. There are afew exceptions
to these availability rules. Tables may be created and new replicas may be added without starting all of the disc-full
nodes. New replicas may be added before all other replicas of the table have been loaded, it will suffice when one
other replicais active.

42 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

1.5.7 Mnesia Event Handling
System events and table events are the two categories of events that Mnesiawill generate in various situations.
It ispossible for user process to subscribe on the events generated by Mnesia. We have the following two functions:
mmesi a: subscri be(Event - Cat egory)
Ensures that a copy of all events of type Event - Cat egor y are sent to the calling process.

mesi a: unsubscri be(Event - Cat egory)
Removes the subscription on events of type Event - Cat egory

Event - Cat egory may either be the atom syst em the atom acti vity, or one of the tuples {t abl e,

Tab, sinple},{table, Tab, detail ed}. Theold event-category {t abl e, Tab} isthe same event-
category as{t abl e, Tab, si npl e}. The subscribe functions activate a subscription of events. The events are
delivered as messages to the process evaluating thermesi a: subscri be/ 1 function. The syntax of system events
is{mesi a_system event, Event},{mesia activity event, Event} for activity events, and
{mesi a_tabl e_event, Event} fortable events. What the various event types mean is described below.

All system events are subscribed by Mnesia's gen_event handler. The default gen_event handler isnmesi a_event.
But it may be changed by using the application parameter event nodul e. The value of this parameter must
be the name of a module implementing a complete handler as specified by the gen_event module in STDLIB.
mesi a: system i nfo(subscri bers) andmesi a: tabl e_i nfo(Tab, subscri bers) may beused
to determine which processes are subscribed to various events.

System Events
The system events are detailed below:
{mesi a_up, Node}

Mnesia has been started on anode. Node is the name of the node. By default this event isignored.
{mesi a_down, Node}

Mnesia has been stopped on anode. Node is the name of the node. By default this event isignored.
{mmesi a_checkpoi nt _activat ed, Checkpoint}

a checkpoint with the name Checkpoi nt has been activated and that the current node is involved in the
checkpoint. Checkpoints may be activated explicitly withrmesi a: acti vat e_checkpoi nt/ 1 orimplicitly
at backup, adding table replicas, internal transfer of data between nodes etc. By default this event isignored.

{mesi a_checkpoi nt _deacti vat ed, Checkpoi nt}

A checkpoint with the name Checkpoi nt has been deactivated and that the current node was involved in the
checkpoint. Checkpoints may explicitly be deactivated with mesi a: deact i vat e/ 1 or implicitly when the
last replica of atable (involved in the checkpoint) becomes unavailable, e.g. at node down. By default this event
isignored.

{mmesi a_overl oad, Detail s}
Mnesia on the current node is overloaded and the subscriber should take action.

A typical overload situation occurs when the applications are performing more updates on disc resident tables
than Mnesia is able to handle. Ignoring this kind of overload may lead into a situation where the disc space is
exhausted (regardless of the size of the tables stored on disc).

Each update is appended to the transaction log and occasionally(depending of how it is configured) dumped to
the tables files. The table file storage is more compact than the transaction log storage, especidly if the same
record is updated over and over again. If the thresholds for dumping the transaction log have been reached before
the previous dump was finished an overload event istriggered.

Ericsson AB. All Rights Reserved.: Mnesia | 43

1.5 Miscellaneous Mnesia Features

Another typical overload situation is when the transaction manager cannot commit transactions at the same pace
as the applications are performing updates of disc resident tables. When this happens the message queue of the
transaction manager will continue to grow until the memory is exhausted or the load decreases.

The same problem may occur for dirty updates. The overload is detected locally on the current node, but its cause
may be on another node. Application processes may cause heavy loads if any table are residing on other nodes
(replicated or not). By default this event is reported to the error_logger.

{inconsi stent _dat abase, Context, Node}

Mnesia regards the database as potentia inconsistent and gives its applications a chance to
recover from the inconsistency, eg. by instaling a consistent backup as falback and then
restart the system or pick a Mast er Node from mmesi a: system i nfo(db_nodes)) and invoke
mesi a: set _nast er _node([Mast er Node]) . By default an error is reported to the error logger.

{mesia fatal, Format, Args, BinaryCore}

Mnesia has encountered a fatal error and will (in a short period of time) be terminated. The reason for the fatal
error isexplained in Format and Argswhich may begivenasinputtoi o: f or mat / 2 or sent to the error_logger.
By default it will be sent totheerror_logger. Bi nar y Cor e isabinary containingasummary of Mnesiasinternal
state at the time the when the fatal error was encountered. By default the binary is written to a unique file name
on current directory. On RAM nodes the coreisignored.

{mesi a_info, Format, Args}

Mnesia has detected something that may be of interest when debugging the system. Thisisexplained in For mat
and Ar gs which may appear asinput to i o: f or mat / 2 or sent to the error_logger. By default this event is
printed withi o: f or mat / 2.

{mmesi a_error, Format, Args}

Mnesia has encountered an error. The reason for the error isexplained i For mat and Ar gs which may be given
asinputtoi o: f or mat / 2 or sent to the error_logger. By default this event is reported to the error_|logger.

{mmesi a_user, Event}

An application hasinvoked the function mesi a: r eport _event (Event) . Event may beany Erlang data
structure. When tracing a system of Mnesia applicationsit is useful to be able to interleave Mnesia's own events
with application related events that give information about the application context. Whenever the application
starts with anew and demanding Mnesia activity or enters anew and interesting phasein its execution it may be
agoodideatousenmesi a: report _event/ 1.

Activity Events
Currently, there is only one type of activity event:
{conplete, ActivitylD}

This event occurs when a transaction that caused a modification to the database has completed. It is useful for
determining when a set of table events (see below) caused by a given activity have all been sent. Once the this
event has been received, it is guaranteed that no further table events with the same ActivitylD will be received.
Note that this event may still be received even if no table events with a corresponding Activityl D were received,
depending on the tables to which the receiving process is subscribed.

Dirty operations always only contain one update and thus no activity event is sent.

Table Events

The final category of events are table events, which are events related to table updates. There are two types of table
events simple and detailed.

44 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Miscellaneous Mnesia Features

The simple table events are tuples looking like this: { Oper, Record, Activityld}.Where Oper isthe
operation performed. Recor d is the record involved in the operation and Acti vi tyl d is the identity of the
transaction performing the operation. Note that the name of therecord isthe table nameeven whenther ecor d_nane
has another setting. The various table related events that may occur are:

{write, NewRecord, Activityld}
anew record has been written. NewRecord contains the new value of the record.
{del ete_object, A dRecord, Activityld}

arecord has possibly been deleted withrmesi a: del et e_obj ect/ 1. d dRecor d containsthe value of the
old record as stated as argument by the application. Note that, other records with the same key may be remaining
inthetableif itisabag.

{del ete, {Tab, Key}, Activityld}
one or more records possibly has been deleted. All records with the key Key in the table Tab have been deleted.

The detailed table events are tuples looking like this: { Oper, Tabl e, Data, [O dRecs], Activityld}.
Where Qper isthe operation performed. Tabl e isthetableinvolved inthe operation, Dat a isthe record/oid written/
deleted. O dRecs isthe contentsbeforethe operation. and Act i vi t yI d istheidentity of the transaction performing
the operation. The various table related events that may occur are:

{write, Table, NewRecord, [d dRecords], Activityld}

a new record has been written. NewRecord contains the new value of the record and OldRecords contains the
records before the operation is performed. Note that the new content is dependent on the type of the table.

{del ete, Table, What, [OA dRecords], Activityld}

records has possibly been deleted What is either { Table, Key} or arecord { RecordName, Key, ...} that was
deleted. Note that the new content is dependent on the type of the table.

1.5.8 Debugging Mnesia Applications

Debugging a Mnesia application can be difficult due to a number of reasons, primarily related to difficulties in
understanding how thetransaction and tableload mechanismswork. An other source of confusion may bethe semantics
of nested transactions.

We may set the debug level of Mnesia by calling:
e mesi a: set_debug | evel (Level)
Where the parameter Level s
none

no trace outputs at all. Thisisthe default.
ver bose

activates tracing of important debug events. These debug events will generate { mesi a_i nf o, For mat,
Ar gs} system events. Processes may subscribe to these events with rmesi a: subscri be/ 1. Theeventsare
aways sent to Mnesias event handler.

debug

activates all events at the verbose level plus traces of all debug events. These debug events will generate
{mesia_info, Format, Args} system events. Processes may subscribe to these events with
mesi a: subscri be/ 1. The events are always sent to Mnesia's event handler. On this debug level Mnesia's
event handler starts subscribing updatesin the schematable.

Ericsson AB. All Rights Reserved.: Mnesia | 45

1.5 Miscellaneous Mnesia Features

trace

activates all events at the debug level. On this debug level Mnesia's event handler starts subscribing updates on
al Mnesiatables. Thislevel is only intended for debugging small toy systems, since many large events may be
generated.

fal se

isan dliasfor none.
true

isan aliasfor debug.

The debug level of Mnesiaitself, isalso an application parameter, thereby making it possible to start an Erlang system
in order to turn on Mnesiadebug in the initial start-up phase by using the following code:

% erl -mnesia debug verbose

1.5.9 Concurrent Processes in Mnesia

Programming concurrent Erlang systemsis the subject of a separate book. However, it isworthwhileto draw attention
to the following features, which permit concurrent processes to exist in a Mnesia system.

A group of functions or processes can be called within atransaction. A transaction may include statements that read,
write or delete data from the DBMS. A large number of such transactions can run concurrently, and the programmer
does not have to explicitly synchronize the processes which manipulate the data. All programs accessing the database
through the transaction system may be written asif they had sole access to the data. Thisis avery desirable property
since all synchronization is taken care of by the transaction handler. If a program reads or writes data, the system
ensures that no other program tries to manipulate the same data at the same time.

It is possible to move tables, delete tables or reconfigure the layout of atable in various ways. An important aspect
of the actual implementation of these functionsisthat it is possible for user programs to continue to use atable while
it is being reconfigured. For example, it is possible to simultaneously move a table and perform write operations to
the table . This is important for many applications that require continuously available services. Refer to Chapter 4:
Transactions and other access contexts for more information.

1.5.10 Prototyping

If and when we decide that we would like to start and manipulate Mnesia, it is often easier to wri