fmpq_mpoly_factor.h – factorisation of multivariate polynomials over the rational numbers

Types, macros and constants

type fmpq_mpoly_factor_struct

A struct for holding a factored rational polynomial. There is a single constant and a product of bases to corresponding exponents.

type fmpq_mpoly_factor_t

An array of length 1 of fmpq_mpoly_factor_struct.

Memory management

void fmpq_mpoly_factor_init(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)

Initialise f.

void fmpq_mpoly_factor_clear(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)

Clear f.

Basic manipulation

void fmpq_mpoly_factor_swap(fmpq_mpoly_factor_t f, fmpq_mpoly_factor_t g, const fmpq_mpoly_ctx_t ctx)

Efficiently swap \(f\) and g.

slong fmpq_mpoly_factor_length(const fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)

Return the length of the product in \(f\).

void fmpq_mpoly_factor_get_constant_fmpq(fmpq_t c, const fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)

Set \(c\) to the constant of \(f\).

void fmpq_mpoly_factor_get_base(fmpq_mpoly_t B, const fmpq_mpoly_factor_t f, slong i, const fmpq_mpoly_ctx_t ctx)
void fmpq_mpoly_factor_swap_base(fmpq_mpoly_t B, fmpq_mpoly_factor_t f, slong i, const fmpq_mpoly_ctx_t ctx)

Set (resp. swap) B to (resp. with) the base of the term of index \(i\) in \(A\).

slong fmpq_mpoly_factor_get_exp_si(fmpq_mpoly_factor_t f, slong i, const fmpq_mpoly_ctx_t ctx)

Return the exponent of the term of index \(i\) in \(A\). It is assumed to fit an slong.

void fmpq_mpoly_factor_sort(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)

Sort the product of \(f\) first by exponent and then by base.

int fmpq_mpoly_factor_make_monic(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)
int fmpq_mpoly_factor_make_integral(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)

Make the bases in \(f\) monic (resp. integral and primitive with positive leading coefficient). Return \(1\) for success, \(0\) for failure.

Factorisation

A return of \(1\) indicates that the function was successful. Otherwise, the return is \(0\) and \(f\) is undefined. None of these functions multiply \(f\) by \(A\): \(f\) is simply set to a factorisation of \(A\), and thus these functions should not depend on the initial value of the output \(f\). The normalization of the factors is not yet specified: use fmpq_mpoly_factor_make_monic() or fmpq_mpoly_factor_make_integral() for common normalizations.

int fmpq_mpoly_factor_squarefree(fmpq_mpoly_factor_t f, const fmpq_mpoly_t A, const fmpq_mpoly_ctx_t ctx)

Set \(f\) to a factorization of \(A\) where the bases are primitive and pairwise relatively prime. If the product of all irreducible factors with a given exponent is desired, it is recommend to call fmpq_mpoly_factor_sort() and then multiply the bases with the desired exponent.

int fmpq_mpoly_factor(fmpq_mpoly_factor_t f, const fmpq_mpoly_t A, const fmpq_mpoly_ctx_t ctx)

Set \(f\) to a factorization of \(A\) where the bases are irreducible.