59 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H
60 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H
66 #ifdef LV_HAVE_GENERIC
71 unsigned int num_points)
74 const unsigned int num_bytes = num_points * 8;
76 float* res = (
float*)result;
77 float* in = (
float*)input;
78 float* tp = (
float*)taps;
79 unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
81 float sum0[2] = { 0, 0 };
82 float sum1[2] = { 0, 0 };
85 for (
i = 0;
i < n_2_ccomplex_blocks; ++
i) {
86 sum0[0] += in[0] * tp[0] + in[1] * tp[1];
87 sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
88 sum1[0] += in[2] * tp[2] + in[3] * tp[3];
89 sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
95 res[0] = sum0[0] + sum1[0];
96 res[1] = sum0[1] + sum1[1];
98 if (num_bytes >> 3 & 1) {
99 *result += input[(num_bytes >> 3) - 1] *
lv_conj(taps[(num_bytes >> 3) - 1]);
107 #include <immintrin.h>
112 unsigned int num_points)
115 __m256 sum_a_mult_b_real = _mm256_setzero_ps();
116 __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
118 for (
long unsigned i = 0;
i < (num_points & ~3u);
i += 4) {
130 __m256 a = _mm256_loadu_ps((
const float*)&input[
i]);
131 __m256 b = _mm256_loadu_ps((
const float*)&taps[
i]);
132 __m256 b_real = _mm256_moveldup_ps(b);
133 __m256 b_imag = _mm256_movehdup_ps(b);
136 sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
138 sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
142 sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
144 __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
148 sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
150 sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
152 __m128 lower = _mm256_extractf128_ps(sum, 0);
153 _mm_storel_pi((__m64*)result, lower);
156 for (
long unsigned i = num_points & ~3u;
i < num_points; ++
i) {
168 #include <pmmintrin.h>
169 #include <xmmintrin.h>
174 unsigned int num_points)
177 __m128 sum_a_mult_b_real = _mm_setzero_ps();
178 __m128 sum_a_mult_b_imag = _mm_setzero_ps();
180 for (
long unsigned i = 0;
i < (num_points & ~1u);
i += 2) {
192 __m128 a = _mm_loadu_ps((
const float*)&input[
i]);
193 __m128 b = _mm_loadu_ps((
const float*)&taps[
i]);
194 __m128 b_real = _mm_moveldup_ps(b);
195 __m128 b_imag = _mm_movehdup_ps(b);
198 sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
200 sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
205 _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
207 __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
209 sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
211 _mm_storel_pi((__m64*)result, sum);
214 if (num_points & 1u) {
226 #include <arm_neon.h>
230 unsigned int num_points)
233 unsigned int quarter_points = num_points / 4;
240 float32x4x2_t a_val, b_val, accumulator;
241 float32x4x2_t tmp_imag;
242 accumulator.val[0] = vdupq_n_f32(0);
243 accumulator.val[1] = vdupq_n_f32(0);
245 for (number = 0; number < quarter_points; ++number) {
246 a_val = vld2q_f32((
float*)a_ptr);
247 b_val = vld2q_f32((
float*)b_ptr);
252 tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
253 tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
256 tmp_imag.val[1] = vmlsq_f32(tmp_imag.val[1], a_val.val[0], b_val.val[1]);
257 tmp_imag.val[0] = vmlaq_f32(tmp_imag.val[0], a_val.val[1], b_val.val[1]);
259 accumulator.val[0] = vaddq_f32(accumulator.val[0], tmp_imag.val[0]);
260 accumulator.val[1] = vaddq_f32(accumulator.val[1], tmp_imag.val[1]);
267 vst2q_f32((
float*)accum_result, accumulator);
268 *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
271 for (number = quarter_points * 4; number < num_points; ++number) {
272 *result += (*a_ptr++) *
lv_conj(*b_ptr++);
280 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H
281 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H
289 #include <immintrin.h>
294 unsigned int num_points)
297 __m256 sum_a_mult_b_real = _mm256_setzero_ps();
298 __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
300 for (
long unsigned i = 0;
i < (num_points & ~3u);
i += 4) {
312 __m256 a = _mm256_load_ps((
const float*)&input[
i]);
313 __m256 b = _mm256_load_ps((
const float*)&taps[
i]);
314 __m256 b_real = _mm256_moveldup_ps(b);
315 __m256 b_imag = _mm256_movehdup_ps(b);
318 sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
320 sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
324 sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
326 __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
330 sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
332 sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
334 __m128 lower = _mm256_extractf128_ps(sum, 0);
335 _mm_storel_pi((__m64*)result, lower);
338 for (
long unsigned i = num_points & ~3u;
i < num_points; ++
i) {
349 #include <pmmintrin.h>
350 #include <xmmintrin.h>
355 unsigned int num_points)
358 __m128 sum_a_mult_b_real = _mm_setzero_ps();
359 __m128 sum_a_mult_b_imag = _mm_setzero_ps();
361 for (
long unsigned i = 0;
i < (num_points & ~1u);
i += 2) {
373 __m128 a = _mm_load_ps((
const float*)&input[
i]);
374 __m128 b = _mm_load_ps((
const float*)&taps[
i]);
375 __m128 b_real = _mm_moveldup_ps(b);
376 __m128 b_imag = _mm_movehdup_ps(b);
379 sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
381 sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
386 _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
388 __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
390 sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
392 _mm_storel_pi((__m64*)result, sum);
395 if (num_points & 1u) {
407 #ifdef LV_HAVE_GENERIC
413 unsigned int num_points)
416 const unsigned int num_bytes = num_points * 8;
418 float* res = (
float*)result;
419 float* in = (
float*)input;
420 float* tp = (
float*)taps;
421 unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
423 float sum0[2] = { 0, 0 };
424 float sum1[2] = { 0, 0 };
427 for (
i = 0;
i < n_2_ccomplex_blocks; ++
i) {
428 sum0[0] += in[0] * tp[0] + in[1] * tp[1];
429 sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
430 sum1[0] += in[2] * tp[2] + in[3] * tp[3];
431 sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
437 res[0] = sum0[0] + sum1[0];
438 res[1] = sum0[1] + sum1[1];
440 if (num_bytes >> 3 & 1) {
441 *result += input[(num_bytes >> 3) - 1] *
lv_conj(taps[(num_bytes >> 3) - 1]);
448 #if LV_HAVE_SSE && LV_HAVE_64
450 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse(
lv_32fc_t* result,
453 unsigned int num_points)
456 const unsigned int num_bytes = num_points * 8;
459 static const uint32_t conjugator[4] = {
460 0x00000000, 0x80000000, 0x00000000, 0x80000000
464 "# ccomplex_conjugate_dotprod_generic (float* result, const float *input,\n\t"
465 "# const float *taps, unsigned num_bytes)\n\t"
466 "# float sum0 = 0;\n\t"
467 "# float sum1 = 0;\n\t"
468 "# float sum2 = 0;\n\t"
469 "# float sum3 = 0;\n\t"
471 "# sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
472 "# sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
473 "# sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
474 "# sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
477 "# } while (--n_2_ccomplex_blocks != 0);\n\t"
478 "# result[0] = sum0 + sum2;\n\t"
479 "# result[1] = sum1 + sum3;\n\t"
480 "# TODO: prefetch and better scheduling\n\t"
481 " xor %%r9, %%r9\n\t"
482 " xor %%r10, %%r10\n\t"
483 " movq %[conjugator], %%r9\n\t"
484 " movq %%rcx, %%rax\n\t"
485 " movaps 0(%%r9), %%xmm8\n\t"
486 " movq %%rcx, %%r8\n\t"
487 " movq %[rsi], %%r9\n\t"
488 " movq %[rdx], %%r10\n\t"
489 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t"
490 " movaps 0(%%r9), %%xmm0\n\t"
491 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t"
492 " movups 0(%%r10), %%xmm2\n\t"
493 " shr $5, %%rax # rax = n_2_ccomplex_blocks / 2\n\t"
495 " xorps %%xmm8, %%xmm2\n\t"
496 " jmp .%=L1_test\n\t"
497 " # 4 taps / loop\n\t"
498 " # something like ?? cycles / loop\n\t"
500 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
501 "# movaps (%%r9), %%xmmA\n\t"
502 "# movaps (%%r10), %%xmmB\n\t"
503 "# movaps %%xmmA, %%xmmZ\n\t"
504 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t"
505 "# mulps %%xmmB, %%xmmA\n\t"
506 "# mulps %%xmmZ, %%xmmB\n\t"
507 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
508 "# xorps %%xmmPN, %%xmmA\n\t"
509 "# movaps %%xmmA, %%xmmZ\n\t"
510 "# unpcklps %%xmmB, %%xmmA\n\t"
511 "# unpckhps %%xmmB, %%xmmZ\n\t"
512 "# movaps %%xmmZ, %%xmmY\n\t"
513 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t"
514 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t"
515 "# addps %%xmmZ, %%xmmA\n\t"
516 "# addps %%xmmA, %%xmmC\n\t"
517 "# A=xmm0, B=xmm2, Z=xmm4\n\t"
518 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
519 " movaps 16(%%r9), %%xmm1\n\t"
520 " movaps %%xmm0, %%xmm4\n\t"
521 " mulps %%xmm2, %%xmm0\n\t"
522 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
523 " movaps 16(%%r10), %%xmm3\n\t"
524 " movaps %%xmm1, %%xmm5\n\t"
525 " xorps %%xmm8, %%xmm3\n\t"
526 " addps %%xmm0, %%xmm6\n\t"
527 " mulps %%xmm3, %%xmm1\n\t"
528 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t"
529 " addps %%xmm1, %%xmm6\n\t"
530 " mulps %%xmm4, %%xmm2\n\t"
531 " movaps 32(%%r9), %%xmm0\n\t"
532 " addps %%xmm2, %%xmm7\n\t"
533 " mulps %%xmm5, %%xmm3\n\t"
535 " movaps 32(%%r10), %%xmm2\n\t"
536 " addps %%xmm3, %%xmm7\n\t"
537 " add $32, %%r10\n\t"
538 " xorps %%xmm8, %%xmm2\n\t"
542 " # We've handled the bulk of multiplies up to here.\n\t"
543 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
544 " # If so, we've got 2 more taps to do.\n\t"
547 " # The count was odd, do 2 more taps.\n\t"
548 " # Note that we've already got mm0/mm2 preloaded\n\t"
549 " # from the main loop.\n\t"
550 " movaps %%xmm0, %%xmm4\n\t"
551 " mulps %%xmm2, %%xmm0\n\t"
552 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
553 " addps %%xmm0, %%xmm6\n\t"
554 " mulps %%xmm4, %%xmm2\n\t"
555 " addps %%xmm2, %%xmm7\n\t"
557 " # neg inversor\n\t"
558 " xorps %%xmm1, %%xmm1\n\t"
559 " mov $0x80000000, %%r9\n\t"
560 " movd %%r9, %%xmm1\n\t"
561 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t"
563 " xorps %%xmm1, %%xmm6\n\t"
564 " movaps %%xmm6, %%xmm2\n\t"
565 " unpcklps %%xmm7, %%xmm6\n\t"
566 " unpckhps %%xmm7, %%xmm2\n\t"
567 " movaps %%xmm2, %%xmm3\n\t"
568 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t"
569 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t"
570 " addps %%xmm2, %%xmm6\n\t"
571 " # xmm6 = r1 i2 r3 i4\n\t"
572 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t"
573 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
574 " movlps %%xmm6, (%[rdi]) # store low 2x32 bits (complex) "
581 [conjugator]
"r"(conjugator)
582 :
"rax",
"r8",
"r9",
"r10");
584 int getem = num_bytes % 16;
586 for (; getem > 0; getem -= 8) {
587 *result += (input[(num_bytes >> 3) - 1] *
lv_conj(taps[(num_bytes >> 3) - 1]));
592 #if LV_HAVE_SSE && LV_HAVE_32
593 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse_32(
lv_32fc_t* result,
596 unsigned int num_points)
599 const unsigned int num_bytes = num_points * 8;
602 static const uint32_t conjugator[4] = {
603 0x00000000, 0x80000000, 0x00000000, 0x80000000
606 int bound = num_bytes >> 4;
607 int leftovers = num_bytes % 16;
611 " #movl %%esp, %%ebp\n\t"
612 " #movl 12(%%ebp), %%eax # input\n\t"
613 " #movl 16(%%ebp), %%edx # taps\n\t"
614 " #movl 20(%%ebp), %%ecx # n_bytes\n\t"
615 " movaps 0(%[conjugator]), %%xmm1\n\t"
616 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t"
617 " movaps 0(%[eax]), %%xmm0\n\t"
618 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t"
619 " movaps 0(%[edx]), %%xmm2\n\t"
620 " movl %[ecx], (%[out])\n\t"
621 " shrl $5, %[ecx] # ecx = n_2_ccomplex_blocks / 2\n\t"
623 " xorps %%xmm1, %%xmm2\n\t"
624 " jmp .%=L1_test\n\t"
625 " # 4 taps / loop\n\t"
626 " # something like ?? cycles / loop\n\t"
628 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
629 "# movaps (%[eax]), %%xmmA\n\t"
630 "# movaps (%[edx]), %%xmmB\n\t"
631 "# movaps %%xmmA, %%xmmZ\n\t"
632 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t"
633 "# mulps %%xmmB, %%xmmA\n\t"
634 "# mulps %%xmmZ, %%xmmB\n\t"
635 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
636 "# xorps %%xmmPN, %%xmmA\n\t"
637 "# movaps %%xmmA, %%xmmZ\n\t"
638 "# unpcklps %%xmmB, %%xmmA\n\t"
639 "# unpckhps %%xmmB, %%xmmZ\n\t"
640 "# movaps %%xmmZ, %%xmmY\n\t"
641 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t"
642 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t"
643 "# addps %%xmmZ, %%xmmA\n\t"
644 "# addps %%xmmA, %%xmmC\n\t"
645 "# A=xmm0, B=xmm2, Z=xmm4\n\t"
646 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
647 " movaps 16(%[edx]), %%xmm3\n\t"
648 " movaps %%xmm0, %%xmm4\n\t"
649 " xorps %%xmm1, %%xmm3\n\t"
650 " mulps %%xmm2, %%xmm0\n\t"
651 " movaps 16(%[eax]), %%xmm1\n\t"
652 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
653 " movaps %%xmm1, %%xmm5\n\t"
654 " addps %%xmm0, %%xmm6\n\t"
655 " mulps %%xmm3, %%xmm1\n\t"
656 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t"
657 " addps %%xmm1, %%xmm6\n\t"
658 " movaps 0(%[conjugator]), %%xmm1\n\t"
659 " mulps %%xmm4, %%xmm2\n\t"
660 " movaps 32(%[eax]), %%xmm0\n\t"
661 " addps %%xmm2, %%xmm7\n\t"
662 " mulps %%xmm5, %%xmm3\n\t"
663 " addl $32, %[eax]\n\t"
664 " movaps 32(%[edx]), %%xmm2\n\t"
665 " addps %%xmm3, %%xmm7\n\t"
666 " xorps %%xmm1, %%xmm2\n\t"
667 " addl $32, %[edx]\n\t"
671 " # We've handled the bulk of multiplies up to here.\n\t"
672 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
673 " # If so, we've got 2 more taps to do.\n\t"
674 " movl 0(%[out]), %[ecx] # n_2_ccomplex_blocks\n\t"
675 " shrl $4, %[ecx]\n\t"
676 " andl $1, %[ecx]\n\t"
678 " # The count was odd, do 2 more taps.\n\t"
679 " # Note that we've already got mm0/mm2 preloaded\n\t"
680 " # from the main loop.\n\t"
681 " movaps %%xmm0, %%xmm4\n\t"
682 " mulps %%xmm2, %%xmm0\n\t"
683 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
684 " addps %%xmm0, %%xmm6\n\t"
685 " mulps %%xmm4, %%xmm2\n\t"
686 " addps %%xmm2, %%xmm7\n\t"
688 " # neg inversor\n\t"
689 " #movl 8(%%ebp), %[eax] \n\t"
690 " xorps %%xmm1, %%xmm1\n\t"
691 " movl $0x80000000, (%[out])\n\t"
692 " movss (%[out]), %%xmm1\n\t"
693 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t"
695 " xorps %%xmm1, %%xmm6\n\t"
696 " movaps %%xmm6, %%xmm2\n\t"
697 " unpcklps %%xmm7, %%xmm6\n\t"
698 " unpckhps %%xmm7, %%xmm2\n\t"
699 " movaps %%xmm2, %%xmm3\n\t"
700 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t"
701 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t"
702 " addps %%xmm2, %%xmm6\n\t"
703 " # xmm6 = r1 i2 r3 i4\n\t"
704 " #movl 8(%%ebp), %[eax] # @result\n\t"
705 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t"
706 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
707 " movlps %%xmm6, (%[out]) # store low 2x32 bits (complex) "
713 [ecx]
"r"(num_bytes),
715 [conjugator]
"r"(conjugator));
717 for (; leftovers > 0; leftovers -= 8) {
718 *result += (input[(bound << 1)] *
lv_conj(taps[(bound << 1)]));
static void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse3(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:352
static void volk_32fc_x2_conjugate_dot_prod_32fc_a_generic(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:410
static void volk_32fc_x2_conjugate_dot_prod_32fc_a_avx(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:291
static void volk_32fc_x2_conjugate_dot_prod_32fc_generic(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:68
static void volk_32fc_x2_conjugate_dot_prod_32fc_u_avx(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:109
static void volk_32fc_x2_conjugate_dot_prod_32fc_u_sse3(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:171
static void volk_32fc_x2_conjugate_dot_prod_32fc_neon(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:227
#define __VOLK_VOLATILE
Definition: volk_common.h:64
#define __VOLK_PREFETCH(addr)
Definition: volk_common.h:62
#define __VOLK_ASM
Definition: volk_common.h:63
#define __VOLK_ATTR_ALIGNED(x)
Definition: volk_common.h:56
#define lv_cimag(x)
Definition: volk_complex.h:89
#define lv_conj(x)
Definition: volk_complex.h:91
#define lv_cmake(r, i)
Definition: volk_complex.h:68
#define lv_creal(x)
Definition: volk_complex.h:87
float complex lv_32fc_t
Definition: volk_complex.h:65
for i
Definition: volk_config_fixed.tmpl.h:25